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Predicting failures in electronic water taps in rural

sub-Saharan African communities: an LSTM-based

approach

N. M. Offiong, Y. Wu and F. A. Memon
ABSTRACT
There is a growing need to sustain solar-powered water taps in most parts of the sub-Saharan Africa.

The frequent failure of the water taps gives rise to intermittent water supply and poor service

delivery by the water service providers. The challenge is to foresee and predict the failure of these

water systems before they occur. This study develops a scalable machine-learning model for failure

prediction in electronic water taps to ensure timely maintenance of the taps. Specifically, we develop

a model based on long short-term memory (LSTM) to efficiently make failure predictions with noisy

heterogeneous time-series data from rural water taps. Results from the experiment prove that the

proposed model can effectively classify activities and patterns in various time-series datasets. With

the proposed model, the failures of the solar-powered taps due to abnormal events can be

successfully predicted well in advance, with an accuracy of 78.54%. Based on the data analyses,

common causes of failures are presented.

Key words | anomaly detection, deep learning, failure prediction, LSTM, time-series data
HIGHLIGHTS

• Detecting failures in solar-powered standalone taps using machine learning.

• Adaptive framework for data feature extraction.

• Failure prediction in rural water supply taps.

• Coding errors to check their frequency of occurrence.

• Sustaining rural water supply taps.
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INTRODUCTION
Rural villages in most of sub-Saharan Africa depend on hand
pumps and solar-powered water taps for clean domestic
water supply (Foster & Cota ). These solar-powered

taps, which are not adequate for the growing rural popu-
lation, sometimes break down and typically cause a
shortage in the water supply. The failure of these taps affects
both water users and water service providers, and is a
considerable concern for efficient ways to manage them for
continuous service delivery. Hence, this research focuses on
the need to develop a useful model for failure prediction in

solar-powered water taps deployed in the sub-Saharan region.
This research employs a data-driven approach for failure

prediction; this involves the use of the data generated from
the case study to predict possible failures in solar-powered

water taps. Some studies have used statistical analysis to
investigate time series (i.e., data points with temporal order-
ing) based on the data acquired from an operational system

(Cabrera ; Mazumder et al. ). Recently, the appli-
cation of machine learning (ML) paradigms to manage
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water infrastructures has produced significant improvements

in failure prediction by modelling temporal datasets acquired
from the systems of study (Mounce et al. ). The advance-
ments in ML paradigms have made it possible (Mounce et al.
), and the advancement in computing architecture has
also made it possible for researchers to carry out failure pre-
diction on time-series data (Jordan & Mitchell ).

Our failure prediction approach uses long short-term

memory (LSTM), an ML-based approach, to analyse the
time-series data obtained from stand-alone solar-powered
electronic water taps. Besides the LSTM model, there are tra-

ditional methods for time series forecasting, which include
the autoregressive (AR), autoregressive integrated moving
average (ARIMA), K nearest neighbour (KNN) and the

support vector Machines (SVM) models. These traditional
methods can be categories into two groups, namely model-
based and distance-based.

The model-based time-series classification approaches

include the AR model, which is one of the simplest methods
that have been used for time-series analyses by a lot of ana-
lysts (Kini & Sekhar ). However, the AR model has a

disadvantage, which is that it requires the time-series to
satisfy stationary assumptions. In practice, this requirement
is always breached. Also, the ARIMA harnesses previously

observed data (AR) and the moving average of past data
points to model output indirectly by integrating differenced
output values. Stationary time series are derived from this

process, and are needed because of their ability to extrap-
olate information generated from a one-time step to the
next (Sina & Thomas ). ARIMA also has some draw-
backs, including the fact that it is limited when dealing

with complex datasets (Chen & Wang ).
Time-series models based on distance include KNN and

SVM. The two models can be directly applied to time-series

classification. However, these models’ optimization problem
falls into non-convex optimization and can quickly encoun-
ter local minima. Optimizing these models can cause

overfitting and may prove to be a difficult problem to solve
(Fu et al. ). Another challenge with SVM is that it
shows less efficiency for a complex and massive dataset,

which is a characteristic of the dataset of this research.
However, the choice of LSTM hinges on recent

advancements in computational power and its ability to
learn frommassive datasets with longer temporal sequences.

Therefore, LSTM offers a better classification accuracy over
these traditional methods when dealing with large amounts
of time-series data (Nakisa et al. ). LSTMs also have a

special memory built into the LSTM architecture, which
allows it to store information for a more extended period
://iwaponline.com/wst/article-pdf/82/12/2776/802941/wst082122776.pdf
(Shewalkar et al. ). The time-series data are generated

through daily usage of the water taps; the data are collected
and sent remotely to a base station where the water installa-
tions monitoring takes place. The data collected from the

electronic water supply points (EWSP) are various time-
series datasets that possess latent information about the sys-
tem’s behaviour and this information needs a systematic
interpretation with the use of the LSTM approach (Laucelli

& Giustolisi ).
Overall, the main target of this study is to identify tech-

nical failures in the EWSP by analysing the collected data

and using the information obtained to predict EWSP fail-
ures. The failure prediction is made to support timely
detection and system maintenance through the development

of a data-driven warning system. We harnessed case studies
from smart water setups in sub-Saharan Africa to validate
the effectiveness of the developed system. Most of the
recently conducted research focuses on the use of hydraulic

and water-quality data to monitor failures (Wu & Rahman
; Mamun et al. ). In this study, we label anomalies
in water withdrawal data and use the labels to determine

which anomaly is likely to cause failures in a water dispen-
sing system through the use of the LSTM model. This was
achieved through preprocessing of historical water usage

data, observing the possible causes of failure and using the
LSTMmodel to predict their occurrence. Some of the poten-
tial failures considered in this paper include (i) failure due to

lack of voltage in the system (indicating a failure in the solar
energy supply system), (ii) malfunction of the electronic tap
(due to mechanical failure), (iii) low flow error (due to short-
age of water) and (iv) master tag error (due to chipset

miscommunication).
The contribution of this study centres on the following:

• Anomaly prediction from solar-powered taps through the
application of the LSTM paradigm. The proposed model
is a classification framework based on LSTM and capable

of adaptive data feature learning.

• The detection of different failure events by labelling
anomalies in a stationary real-world dataset; in turn, the

labelled anomalies are used to determine the type of fail-
ures that may occur and their frequency of occurrence.

Sustaining water withdrawal systems by predicting the

water system’s failures in rural areas of sub-Saharan Africa
is one of the crucial issues that many researchers are dili-
gently investigating (Behailu et al. ; Yuanyuan et al.
; Foster et al. ). In this section, we review already
published theories and methods for failure prediction and



Table 1 | Extracted relevant data feature for the time-series analysis

Column
header Column description

AssetID Unique identification for the EWSPs (tap number)

ErrorCode Different codes to indicate issues with water tap
usage (e.g. F1, F2, F3, F4)

FlowCount Derived value to indicate value for flow rate

FlowTime Time at which flow occurred

Litres Volume of water withdrawn

Voltage The battery voltage capacity detected at each
instance the water tap accessed

DateTime Time of event (water withdrawal date and time)

FlowRate Volume of water collected per unit time
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sustainability; and give a description of time series to guide

the reader.
Time series, as described by Malhotra et al. (), is a

set X ¼ {x(1), x(2), . . . , x(n)}, where each of the points

x(1)ϵRm in the time series is an m-dimensional matrix
{x(t)1 , x(t)m , . . . , x(t)m } whose elements correspond to the input
variables. Time series are datasets produced over time. The
goal of forecasting procedures is to extract a meaningful

amount of information from the time-series data during
the training process (i.e., the time where a model learns
trends in the data) and use the obtained information to pre-

dict the behaviour of the next time point with the aid of ML
(Ram ). ML gives insight into the pattern created by the
time series. In most cases, these are patterns that are not

clear to humans because they are latent and too complicated
for a standard statistical method to understand, hence the
need to use the LSTM approach. (Muharemi et al. ).

Wu et al. () used ML to manage smart water supply

networks by simulating and optimizing the control of water
distribution systems. The study showed that ML is capable of
extracting salient data features from a large dataset through

a layered architecture (Najafabadi et al. ; Chollet ).
The study saw the development of a framework for ML to
carry out predictive analysis and anomaly detection in

time-series data with a specific focus on pressure, flow and
water consumption.

In another study, three variants of ML techniques,

including the LSTM method, were used to study a water
system based on the time-series data generated by their
case study (Wei et al. ). The study used the root mean
square error (RMSE) and the coefficient of determination

(R2) to evaluate the model. The study showed that the
LSTM model could provide a more precise and robust
prediction than most of the other ML models by character-

izing the lag in time between the external inputs and
responses from the investigated studies.

Similarly, the research carried out by Xu et al. ()
applied LSTM to predict failure related to pressure and
some other abnormal operational conditions in a water dis-
tribution system. In that study, they considered three model

inputs and these include the pressures at measuring points,
the water supply pressure and the entry point flow of the
water supply system. Liu et al. () analysed and predicted
water quality with the use of a LSTM network. In that study,

they designed a model for drinking-water quality and used
the model to make future predictions on the quality of
water based on past datasets.

The related works reviewed from other researches con-
centrated more on flow, pressure and water quality. In our
om http://iwaponline.com/wst/article-pdf/82/12/2776/802941/wst082122776.pdf
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research, we are interested in labelling some of the

anomalies associated with the electronic tap (e-tap) and
make predictions based on the labels.
MATERIALS AND METHODS

Dataset

The datasets used in this study are historical data (January to

December 2018) of real usage of the EWSP installed by a
commercial water services provider in the Gambia. The
data contains a record with 1,047,114 rows representing

time-series samples from 27 different EWSPs and 22 col-
umns describing the features of the dataset. The data were
collected over one year and transmitted to a remote server
where they are kept for processing and planning purposes.

The data contains both relevant features and other features
that are not relevant to this study. From the dataset, we
extracted the relevant feature for the analysis and they are

shown in Table 1.
The three most important data columns that helped to

answer the overall aims of the project are ErrorCode, Voltage
and FlowRate. We split the data into two parts (80% for
training (part of which we used for validation) and 20%
for testing. Following this technique, we trained the devel-
oped model (explained later) on all the available data by

selecting the time series on a step-by-step basis. During the
implementation, we designed the training set to expand
after each iteration while the test set remains fixed at a

one-time step. The training and validation of the model
occurred inside the loop of each iteration. With each iter-
ation, a new model is created. This procedure repeats for
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all the sequences and the average taken to give the overall

effectiveness of the model. The splitting of the data was
done as follows:

1. Training set (for the network to learn from)
2. Testing set (to evaluate the model)
3. Validation set (for early stopping and optimization of the

parameters that the proposed model cannot learn by
itself)

The original dataset is a noisy dataset with some missing

information and mismatched datatypes, and preprocessing
was done on the data to normalize the dataset and prepare
it for the analysis. The data normalization method used in

this study was the min-max method, which transforms the
minimum value of the data to 0 and the maximum value
to 1. The values between the minimum and maximum

values are transformed to decimal values between 0 and
1. The formula for min-max normalization is shown in
Equation (1) below:

x(0,1) ¼
x�min

max�min
(1)

where x(0,1) and x are the normalized and original datasets,
respectively. Min and max are the minimum and maximum
values of the whole dataset, respectively.
Figure 1 | Initial analysis of the dataset with a conventional method to show functionality and

://iwaponline.com/wst/article-pdf/82/12/2776/802941/wst082122776.pdf
The min-max normalization algorithm is widely used

(Patro & Sahu ). The drawback of the method includes
inefficiency in handling outliers in datasets. To solve this
problem, we expanded the min-max range to accommodate

any outliers in the dataset. Before the proposed LSTM-based
model was built, the dataset was transformed to match a
supervised learning format needed to solve the time-series
modelling problem, where the time steps were structurally

transformed to input and output values.
An initial analysis was done on the data with a conven-

tional data manipulation to show how the two columns,

Voltage and FlowRate, relate to one another, and more
importantly, how both columns affect the behaviour of the
e-taps. The preliminary analysis in Figure 1 shows the fail-

ures and normal functioning of the investigated taps.
Figure 1 reveals some failures and normal functioning of

taps, but our interest is in failure trends. It can be seen from
the preliminary analysis that at a point where the voltage of

the system is 0, there was a considerable amount of flow
from the EWSPs. It can also be seen that at a point where
the voltage was at a peak, there was a failure and the tap

did not dispense water. To uncover other latent behaviour
of the system, we applied our model to investigate the
daily water withdrawal data, which covers the period of Jan-

uary to December 2018 (one year). There are a few other
interesting observations that can be made from the plot in
Figure 1. A few striking observations are:
non-functionality of the EWSPs in the case study.



Figure 2 | The proposed model based on the LSTM network.
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• Most of the water tap failures occur in the extreme right

side of the plot, where FlowRate is the lowest. This may
indicate a flow-related problem.

• There are two instances of failure where the FlowRate
was recorded at the value of 1,900, but the voltage
remained 0. This could be indicating a battery failure.

• There is one failure that occurred when the voltage was
around 12.8 volts, but the FlowRate was around 15

litres, and it was recorded as a latent failure as well.

• There is another inspection that was performed to check if
an error may be incorrectly indicating failures in the e-tap.

The inspection shows that when the voltage was 0.00,
there was still a reasonable quantity of flow (of up to
about 13 litres). This may indicate a chipset error.

Based on the observations above, we coded some of the
errors and used them as labels to investigate how they affect

the sustainability of the electronic water withdrawal points.
Table 2 below shows some of the sample errors and their
associated codes (F1–F6).
Model development

As mentioned in the introduction section, we propose a
novel predictive model based on the LSTM technique

(Chollet ), which is capable of learning good represen-
tations of the available input time-series data. The
representations can get closer to the expected output infor-

mation for decision making.
After the preliminary investigation, we developed the

proposed model (Figure 2) with Keras (one of the packages

in the Python programming language that is widely used
and supports LSTM modelling). Each of the LSTM memory
cells has a 3D input (Wei et al. ). The choice of Keras
in this study was because it gives room for consistency and

provides useful feedback whenever there is a user error
(Chollet ). The Keras application programming interface
(API) is flexible and straightforward to use for a wide range of
Table 2 | Some of the errors investigated in the research

Failure definition Failure code

No flow error F1

Proxy error F2

Voltage error F3

Faulty valve error F4

Master tag error F5

Host valve error F6
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ML tasks. The LSTM layers were stacked so that the setup of
the previous layer can be changed to give a 3D output. This

was achieved by making the argument of the ‘return
sequence’ on the last layer to True. The proposed model
used for this study is a stacked LSTM network with eight

hidden layers for 3D input in time processing. The hidden
layers in the study are connected to a single output layer to
produce a 2D output. The loss function used in the model
design is the RMSE.

The central part of the proposed LSTM-based model is
the cell state (which is the horizontal line running through
the top in the ‘MODEL TRAINING’ box in Figure 2)

down to the entire chain, with some linear interactions.
The cells of the proposed model can remember values
over a long period. The training model contains three

gates that manage the flow of information in and out of
the cell. The three gates in the model are: the input gate
(it ), the forget (f i) gate and the output (ot ) gate.

The input gate makes a decision on which new input
to update to the current state of the cell; the forget gate
determines the number of the previous states Ht�1 that
are allowed to go through the cell or what information

to discard from memory. The output gate, on the other
hand, makes the decision on the output based on the
current state of the cell. The memory is then updated

to hold the most current information based on the
combination (or aggregation) of the old memory through
the forget gate and the new memory state through the

input gate.
These gates are introduced into the sigmoid function (σ)

in Figure 2 to solve the vanishing gradient problem, and at
time t it is computed as follows:

it ¼ σ(Wi � (Wh , WHt�1)þ bi) (2)

f t ¼ σ(Wf � (Wh xt , WHt�1)þ bf ) (3)

ot ¼ σ(Wo � (Wh xt , WHt�1)þ bo) (4)
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�C ¼ Softmax (Wc � (Wh xt , WHt�1)þ bc ) (5)

Ct ¼ f t � Ct�1 þ it � Ct (6)

Ht ¼ ot � softmax (Ct ) (7)

where

it and Ç – input gate values and the state of the memory cell
at time t , respectively.

f t – the value of the forget gate;

ot – the output gate of the model;
Ct –the current state of the model;
Wi , Wf , Wo – randomly generated weight vectors for all

three gates;
bi , bf , bo – bias vectors for all three gates; and
Ht – the value of the memory cell at time t .

The sigmoid function (σ) serves to control the output
between the values of 0 and 1 based on the current input

of x and the prior output WHt�1. At the computational
phase of Equations (2)–(7), the weight and biases get trained
by the model. This training is achieved by minimizing the
loss between the outputs and the actual training samples

of the proposed model.
Model implementation and validation

The proposed LSTM-based model is designed with a single
input layer and eight LSTM-type hidden layers. A few other
LSTM structures were examined as well, but the structure
used for this study proved to perform better for the dataset.

The number of neurons in the proposed model was initially
set to 200 neurons, which was run against four hidden
layers. However, the resulting predictions showed a terrible

convergence of the model. Based on some of the limitations
found in the dataset and the inconsistencies found in the
time steps and date, the better option was to focus on every

AssetID (tap) independently. Two different time steps that
need to be programmed into the proposed model were con-
sidered. First is the n_steps_in parameter, which indicates

the number of past time steps taken by the model to predict
the corresponding output values (in time steps). The
number of output time steps produced is dependent on the
second parameter, which is n_steps_out. The final model

includes the last 30 time steps from the dataset for different
assets (taps) to predict future time steps.

The model fitness was validated using the technique

called the walk-forward validation technique because of its
ability to preserve temporal data (Falessi et al. ). In
://iwaponline.com/wst/article-pdf/82/12/2776/802941/wst082122776.pdf
this case, the dataset gets split into two units (the training

set and the testing set) that can be ordered. Then a decision
is made on the minimum number of observations needed for
the model training. This is done to obtain a configuration for

the test setup. The training of the model then begins at the
start of the time series with a design that enables it to
make decisions for the next time step. Subsequently, the pre-
diction is evaluated against the next time step in the time

series. The predicted values were then measured using
RMSE scores.

The hyper-parameters were tuned with the use of Talos,

a library built for automated hyper-parameter tuning; it can
be installed to work with Keras and it helped to reduce pro-
cedural redundancy.

The proposed model was built such that hyper-
parameters will not be manually tuned. The accuracy of
the model was another critical study criterion that was
taken into consideration. For the model to be accepted as

a useful prediction model, the accuracy has to be high
enough. The proposed model was built on training sets to
determine its accuracy; then, the testing sets were used as

moderator samples to test the trained model. The prediction
results were then compared with the actual values (ground
truth) by calculating the accuracy based on Equation (8):

accuracy ¼ correctly predicted classes
total testing class

× 100% (8)

While the Python programming language takes the

weight of writing complex ML algorithms, we make a
decision on the hyper-parameters to use in the model
tuning, and this greatly influences the model’s accuracy.
Figure 3(a) and 3(b) show the results of model accuracy

and loss from the experiment.
Figure 3(a) shows the proposed model’s accuracy. The

model’s accuracy was measured using the RMSE, which

gives the differences between the actual and the predicted
values. Equation (9) below gives the formula used to calcu-
late the RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(xi � x̂i)
2

vuut (9)

where

N – number of total observations

xi – actual value
x̂i – predicted value



Figure 3 | Models showing accuracy and loss of the model. (a) Model accuracy, (b) Model loss.
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The benefit of using RMSE is that it scales the scores
and in the same unit as the values of forecast (i.e., hourly
in our study). As seen from the diagram (Figure 3(a)), the

accuracy of the model is increasing, with a current accuracy
of 78%. The testing set shows this increment for categorical
predictions only. So when different failures are categorized,

the proposed model can easily predict the failure that is
likely to occur in the future in the water taps. Figure 3(b)
shows the training of the model’s loss values for continuous

predictions only. To make the model fit easily, we used
fewer hyper-parameters. The epoch in the figure is the
number of passes (times) that the proposed model’s training
vectors are used to update the weight.

Training the model is computationally very expensive.
Our proposed model was built on a cloud-GPU platform,
which hosts the Quadro P5000 graphics card. The time to

complete a 100-epoch training (per tap) is, on average, 6
hours. Another GTX 1050 GPU was used for model training
in parallel. It took roughly 8 hours to execute the task for

one tap; this is because the program implementation needs
a massive memory space to work effectively. With a cloud
server, the training time of the model will reduce

significantly.
RESULTS AND DISCUSSION

We proposed a predictive model for time-series prediction
based on LSTM that is capable of predicting failures in

rural water withdrawal taps. The model was built using the
most fundamental principles and techniques, taking into
om http://iwaponline.com/wst/article-pdf/82/12/2776/802941/wst082122776.pdf
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consideration the many missing and incorrect values in
the dataset (since the data is a very noisy dataset). The meth-
odology presented in this paper is data-driven, and it is

capable of self-learning to detect anomalies in the data. Con-
cerning the above, the system can dynamically redesign
itself to work for different time-series datasets.

The experimental model involves the use of a real data-
set acquired from real solar-powered water taps. The data
were preprocessed to remove impurities and further used

as input for the prediction. The core of the LSTM model is
the cell state and the three gates (the input, forget and the
output gates as described in the ‘Model development’ sec-
tion). The cell is the memory that holds information about

the EWSPs. As the data are processed, information gets
added or removed via the gates of the LSTM architecture.
The gates, on the other hand, are different neural networks

that are capable of making a decision about which infor-
mation to allow into the memory or which one to forget
during model training. Each of the gates has the activation

function that scrunches values between 0 and 1 to help
the cell state decide which data to allow or forget based
on their importance. The model can categorize and predict

failures for a real dataset and the model design can be
further adjusted to suit the demand of future time series. A
complete dataset would allow for higher quality predictions,
accurately reflecting the future outcome for specific water

tap assets that were analysed earlier. Two critical par-
ameters that may be important to pay extra attention to
would be: n_steps_in and n_steps_out (these parameters

enable the model to take the past time steps in as a learning
input, to produce predictions). The number of output



Figure 4 | Predicted errors/failures on some of the e-taps.
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time-step predictions of the proposed model will depend on

the value of n_steps_out (this parameter represents the
number of time steps that are outputted as predictions).

The sample results for some of the failures are shown in

Figure 4. Figure 4(a) shows a chipset error (F5), Figure 4(b)
shows a card incompatibility error (F2), Figure 4(c) shows a
voltage error (F3). Figure 4(d) represents error code F1,

which is a flow-related error; Figure 4(e) shows a typical
trend for failure type F6, which is a host valve error type.
The figure shows that the error is predicted to remain at
zero, which means that the error may not occur and cause
://iwaponline.com/wst/article-pdf/82/12/2776/802941/wst082122776.pdf
the tap to fail. Figure 4(f), on the otherhand, shows a faulty

valve error (F4). We observed that when there is a peak
error, the tap stops functioning.

For all the results presented in this study, the two

main empirical features used are the Voltage and Flow-
Rate features, which were observed against the different
failure trends in the ErrorCode column of the dataset.

Figure 4(a) shows a monthly prediction of chipset error,
which can cause the EWSPs to not dispense water. This
kind of failure is caused when there is a technical mis-
communication between a user token (pre-paid tag) and
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an EWSP or a temporary malfunction of the EWSP. The

proposed model is able to determine when the fault will
occur and show its severity. Figure 4(b) represents a
card incompatibility failure, which can occur when a

token has been restricted or, mainly, because it was lost
by a user. This failure can also arise due to the mechan-
ical or technical malfunctioning of the EWSP. This kind
of failure occurs but may not last for an extended

period of time. Figure 4(c) captures the failure that can
be caused by the voltage. When the voltage is below 6.0
volts, the EWSP will not have the capacity to power

the e-tap. This failure can occur mostly during the rainy
season, where there is less sunlight to charge the battery
component of the EWSP system. Figure 4(d) shows the

frequency of the failure caused by flow. Figure 4(e)
shows a host valve error, and it can be noted that there
was no error with the host valve throughout the period
of study. Figure 4(f) shows a faulty valve error.
CONCLUSION

This research paper presents a model based on the LSTM

paradigm for fault prediction in EWSPs in rural sub-Saharan
Africa. It is actually the first time the method has been
used to investigate e-taps. The proposed model takes into

consideration two crucial pieces of input information from
the solar-powered electronic taps, which are the flow rate
and the voltage of the e-tap. The dataset used for the research
is a real historical dataset with some inconsistencies.

From the result of the experiments, it has been shown
that the LSTM model can discover latent information from
the time-series dataset and can make informed predictions

based on the results of the predictions. The proposed
model’s performance based on LSTM proves to have
superior accuracy and efficiency for massive datasets (typi-

cally generated from daily use of the EWSPs in our case
study) compared to the traditional statistical methods men-
tioned in the introductory section. The user of the model

decides the best number of outputs needed. The size of
these parameters influences the computation cost of the
training of the proposed model.

From the results and the accuracy of the model, we con-

clude that the proposed model can provide reasonable
predictions for the investigated tap failures. In the future,
we hope to compare LSTM with other ML tools so as to

generate a hybrid model for the development of an early-
warning system for smart water taps.
om http://iwaponline.com/wst/article-pdf/82/12/2776/802941/wst082122776.pdf
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