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We describe a proof-of-concept development and application of a
phase-averaging technique to the nonlinear rotating shallow-water equations
on the sphere, discretised using compatible finite-element methods. Phase
averaging consists of averaging the nonlinearity over phase shifts in the expo-
nential of the linear wave operator. Phase averaging aims to capture the slow
dynamics in a solution that is smoother in time (in transformed variables), so
that larger timesteps may be taken. We overcome the two key technical chal-
lenges that stand in the way of studying the phase averaging and advancing its
implementation: (1) we have developed a stable matrix exponential specific to
finite elements and (2) we have developed a parallel finite averaging procedure.
Following recent studies, we consider finite-width phase-averaging windows,
since the equations have a finite timescale separation. In our numerical imple-
mentation, the averaging integral is replaced by a Riemann sum, where each
term can be evaluated in parallel. This creates an opportunity for parallelism in
the timestepping method, which we use here to compute our solutions. Here,
we focus on the stability and accuracy of the numerical solution. We confirm
that there is an optimal averaging window, in agreement with theory. Critically,
we observe that the combined time discretisation and averaging error is much
smaller than the time discretisation error in a semi-implicit method applied to
the same spatial discretisation. An evaluation of the parallel aspects will follow
in later work.
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1 INTRODUCTION

Phase averaging is a technique for approximating highly
oscillatory partial differential equations (PDEs), such
as the equations that govern the dynamics of models

of large-scale geophysical fluid dynamics. Examples of
phase averaging include the solution of ordinary diffe-
rential equations (ODEs; Sanders et al., 2007) and the
analysis of fast singular limits (Klainerman and Majda,
1981; Majda and Embid, 1998) in simple geometries.
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Phase averaging is an important concept used in under-
standing the influence of oscillations on mean flows,
with connections to Lagrangian averaging. In fact, theo-
retical and numerical work on phase averaging suggest
that nonlinear phase averaging provides more accurate
leading-order dynamics (e.g., Wagner and Young, 2015;
Kafiabad et al., 2021). Therefore, the tools developed in
this work could contribute to further understanding this
challenging topic in planetary fluid dynamics. In addition,
phase averaging has been proposed as a way to introduce
more parallelization into numerical models (Haut and
Wingate, 2014; Ariel et al., 2016; Peddle et al., 2019). How-
ever, phase averaging in the spherical geometries required
for large-scale geophysical fluid dynamics applications has
two key technical barriers that stand in the way of study-
ing the phase average as a potentially interesting physical
quantity as well as a potential basis for advancing par-
allel computing: (1) the development of a stable matrix
exponential required for the mapping and (2) the devel-
opment of a parallel finite-interval averaging procedure.
This article overcomes these two challenges, providing a
proof-of-concept model of phase-averaged timestepping in
spherical geometries, as well as a study of the method’s
accuracy.

We focus on the rotating shallow-water equations in
the low Rossby number regime. The phase-averaging tech-
nique averages the nonlinearity over all phases of the fast
waves to obtain an approximation of the slow dynamics
with no fast oscillations present. Since the magnitude of
time discretisation errors is governed by the magnitude
of time derivatives in the equation, this means that these
errors can be reduced for phase-averaged models, allowing
larger timesteps to be taken in an accurate numerical inte-
gration. However, there is an additional error introduced
by the phase averaging itself, which we shall investigate in
this work.

For the rotating shallow-water equations, Majda and
Embid (1998) showed that taking the low Rossby number
limit in the phase-averaged equations leads to the quasi-
geostrophic equations. However, the quasigeostrophic
equations are not uniformly valid, which is one reason why
their 3D counterpart is not used for operational weather
forecasting. Haut and Wingate (2014) proposed using a
phase average of the nonlinearity over a finite-width aver-
aging window T. For small T the original equations are
recovered, and for large T the full phase averaging is recov-
ered, which filters all fast dynamics. They proposed to
perform the phase averaging numerically, replacing the
phase integral with a numerical quadrature rule. The idea
is to use parallel computation to implement the averag-
ing: each term in the quadrature rule can be evaluated
independently and hence in parallel. Peddle et al. (2019)
showed that, given a chosen timestepping scheme and

timestep size, there is an optimum averaging window
T that minimises the total error (combining numerical
timestepping error and averaging error). Below the opti-
mum the timestepping error dominates (and the timestep-
ping scheme may become unstable), and above the opti-
mum the averaging error dominates. For larger timesteps,
the optimal T is larger, requiring more quadrature points
in the average and consequently requiring more computa-
tional cores.

The finite-window phase-averaged model trades com-
putational cores for larger timesteps at the expense of accu-
racy (because of the additional error from phase averag-
ing). If the level of accuracy is insufficient, a time-parallel
predictor–corrector approach might be used to increase
accuracy. Haut and Wingate (2014) proposed to use the
averaged model as the coarse propagator in a highly effi-
cient Parareal iteration, demonstrating parallel speedups
of a factor of 100 in a rotating shallow-water test case.
Peddle et al. (2019) proved convergence of the itera-
tive Parareal procedure for highly oscillatory PDEs with
quadratic nonlinearity, making use of the optimal averag-
ing window T at finite Rossby number. Bauer et al. (2022)
created a hierarchy of higher-order averaged models that
increase accuracy through increasing the number of vari-
ables; this type of hierarchy is ideal for predictor–corrector
approaches such as revisionist integral deferred correction
methods (Ong et al., 2016) and the parallel full approxima-
tion scheme in space and time algorithm (Minion, 2011)
that compute more accurate correction steps in parallel
as new predictor steps are being taken. These are moti-
vations for the work in this article, but here we focus on
the impact of the averaging on the rotating shallow-water
solution.

This article addresses the challenge of producing a
proof of concept of the numerical averaging technique
applied to the rotating shallow-water equations on the
sphere. This required us to find a performant way of imple-
menting the necessary matrix exponentials, and to find a
discretisation approach that avoids instabilities in those
exponentials from spurious eigenvalues. It also required
us to produce a parallel implementation of the numerical
averaging. Our proof of concept allows us to evaluate, for
the first time, the solution quality arising from the averag-
ing technique against a test case that is used in dynamical
core development.

The rest of this work is organised as follows. In
Section 2, we describe the phase-averaging procedure
and how it can be applied to the rotating shallow-water
equations. We also describe our approach to timestepping
these equations. In Section 3, we present our numerical
results, examining the impact of averaging window T and
timestepΔt on the errors associated with time integration.
Finally, in Section 4 we provide a summary.

 1477870x, 2023, 755, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4517 by U
niversity O

f E
xeter, W

iley O
nline L

ibrary on [07/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2506 YAMAZAKI et al.

2 DESCRIPTION OF THE
METHOD

2.1 Shallow-water equations

In this section, we describe the shallow-water equations
and link them to the general notation framework for phase
averaging that will be used in subsequent sections.

We begin with the nonlinear shallow-water equations
on a two-dimensional surface that is embedded in three
dimensions,

ut + f u⊥ + (u ⋅ ∇)u + g∇𝜂 = 0, (1)

𝜂t +H∇ ⋅ u + ∇ ⋅ [u(𝜂 − b)] = 0, (2)

where u is the horizontal velocity, f is the Coriolis param-
eter, u⊥ = k × u where k is the normal to the surface,
and g is the gravitational acceleration; 𝜂 is the free sur-
face elevation, H is the mean layer thickness, and b is
the height of the lower boundary, where the layer depth
h = H + 𝜂 − b;∇ and∇⋅ are appropriate invariant gradient
and divergence operators defined on the surface. Here we
will concentrate on the case of the equations being solved
on the surface of the sphere, so there are no boundary
conditions to consider.

Then we rewrite the equations as

Ut = U + (U), (3)

where the vector of unknowns U(t) = (u, 𝜂). The matrix
 represents a linear operator and  (⋅) is a nonlinear
operator which satisfies

U =

(
−f (⋅)⊥ −g∇
−H∇⋅ 0

)(
u
𝜂

)
=

(
−f (u)⊥ −g∇𝜂
−H∇ ⋅ u 0

)
,

(4)

 (U) =

(
−(u ⋅ ∇)u

−∇ ⋅
[
u(𝜂 − b)

]
)
. (5)

2.2 Phase averaging

Now we consider an approximation to Equation 3 by aver-
aging the nonlinearity over the fast oscillations. First we
introduce a coordinate transformation,

V(t) = e−tU(t), (6)

𝜕V
𝜕t
(t) = e−t


(

etV(t)
)
, (7)

where etV is the solution at time t to the linear part of the
equation Ut = U with an initial condition of U(0) = V.

To allow averaging the model over a finite time interval
s around time t, we follow Bauer et al. (2022) and extend
Equations 6 and 7 by introducing a phase variable s,

V(t, s) = e−(t+s)U(t, s), (8)

𝜕V
𝜕t
(t, s) = e−(t+s)


(

e(t+s)V(t, s)
)
. (9)

Of course, we are only interested in the solution at s = 0,
but the averaging approximation below corresponds to
the assumption that the solution V(t, s) is insensitive to
changes in s. Bauer et al. (2022) introduced higher order
approximations that parameterise the sensitivity to s near
s = 0.

An averaging approximation to Equation 9 over the
averaging window T with respect to a weight function 𝜌

can be written as

𝜕V
𝜕t
(t) = 1

2T∫

T

−T
𝜌

( s
T

)
e−(t+s)



(
e(t+s)V(t)

)
ds, (10)

where V denotes the averaged V. In our computations, 𝜌 is
given by

𝜌(s) =
⎧⎪⎨⎪⎩
𝜌0 exp(−1∕((s − 0.5)(s + 0.5))), −0.5 < s < 0.5,

0, |s| ≥ 0.5,

(11)

with an appropriate weighting factor, but other weight
functions may be used provided that they integrate to 1.

It is very important to note that this averaging integral
is not integrating along the history of V (which would be
an integral in the time variable t), but is instead integrating
over the phase shift variable s in the exponential operators.
Equation 10 is similar to the phase averaging in Peddle
et al. (2019). The main difference is that our phase shift
is defined in the mapping in Equation 8, whereas Peddle
et al. (2019) introduce the phase shift parameter, s, in the
nonlinear term.

The unaveraged Equation 9 has oscillatory nonau-
tonomous contributions coming from the exponentials
(corresponding to fast waves in the untransformed
Equation 3), and the averaging approximation filters out
the components of these contributions with time period
below T. This approximation is best understood in var-
ious limits. In the limit as T → 0, 𝜌(s∕T)∕(2T) → 𝛿(s),
so we recover the original unaveraged Equation 7.
In the limit T →∞, the asymptotic approximation
U(t) = exp(−t∕𝜖0)V(t) + (𝜖) is obtained, where
 = 𝜖0 (Majda and Embid, 1998). This asymptotic
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YAMAZAKI et al. 2507

approximation describes a slowly evolving solution V(t)
with superposed fast linear waves: the classic “slow mani-
fold” picture. For intermediate values of T, we can select
which nonautonomous contributions we want to remove
and which contributions we want to retain. This can be
important if the interaction between the two exponen-
tials inside and outside  in Equation 9 (e.g., through
triad interactions in the case of quadratic nonlinearity)
leads to oscillations with frequencies approaching those
of the dynamics of V ; in that case we would lose long time
accuracy if we increased T to remove those oscillations.

For an implementable method, we replace the integral
with a Riemann sum to obtain

𝜕V
𝜕t

≃
N∑

k=−N
wke−(t+sk)

(
e(t+sk)V(t)

)
(12)

∶=
⟨

e−(t+s)


(
e(t+s)V(t)

)⟩
s
, (13)

where wk are appropriate weight coefficients (obtained
from the product quadrature rule weights and the value of
the weight function 𝜌 evaluated at the quadrature points)
and sk = kT∕N. This defines the angle bracket notation
in Equation 13, used in the following section. Since this
is an oscillatory integral, there is little reduction in the
quadrature error until the oscillations are resolved on the
quadrature points, after which the error collapses quickly.
In this work we used equispaced quadrature points, with
four points per time period of the fastest frequency of ;
the resulting dynamics was very insensitive to increasing
this number beyond four.

Whilst Equation 13 looks complicated, each of the
terms in the sum is independent and so they can be evalu-
ated in parallel if computational resources are available.

2.3 Time discretisation

In this section, we describe our time integration approach.
The general summary is that we use an averaged version
of a Lawson exponential integrator; see Hochbruck and
Ostermann (2010) for a review. This means that we apply
a standard time integration method to Equation 13, and
then transform from V back to U to restrict exponentiation
to time intervals of (Δt). These shorter exponentiations
are less expensive to compute numerically.

For the classical fourth-order Runge–Kutta scheme, we
obtain

U1 = U
n
+ Δt

2

⟨
e−s
 (esU

n
)
⟩

s
, (14)

U2 = e
Δt
2 U

n
+ Δt

2

⟨
e−s
 (e

Δt
2 esU1)

⟩
s
, (15)

U3 = e
Δt
2 U

n
+ Δt

⟨
e−s


(
esU2

)⟩
s
, (16)

U
n+1

= eΔtU
n
+ Δt

6

[
eΔt

⟨
e−s


(
esU

n)⟩
s

+ 2e
Δt
2

⟨
e−s


(
e

Δt
2 esU1

)⟩
s

+ 2e
Δt
2

⟨
e−s


(
esU2

)⟩
s

+
⟨

e−s


(
e

Δt
2 esU3

)⟩
s

]
. (17)

2.4 Chebyshev exponentiation

Implementing exponentials et of grid-based discretisa-
tions on the sphere is challenging, because the efficiency
and parallel scalability of these discretisations relies upon
matrix sparsity, and et is not sparse. Instead we need
to consider scalable algorithms that construct et using
only sparse matrix applications and local operations. This
is done for the first time in this work in the context of
numerical averaging techniques applied to the rotating
shallow-water equations on the sphere.

To implement the exponential operator et, we use a
Chebyshev approximation,

etU ≈
N∑

k=0
akPk(t)U, (18)

where N is the number of polynomials, ak are polynomial
coefficients, and Pk are modified Chebyshev polynomials.
The modification is a change of coordinates transforming
the imaginary interval

{z = iy ∶ y ∈ [−L,L]} (19)

to the unit interval [−1, 1], where L = |𝜆max|tmax, 𝜆max is
the eigenvalue of  with maximum magnitude, and the
approximation is valid for times |t| < tmax.

In general, Krylov subspace methods (of which
the Chebyshev approach is one) for oscillatory prob-
lems require a number of iterations proportional to
the Courant number (Hochbruck and Ostermann, 2010;
Pieper et al. 2019). The advantage with Chebyshev poly-
nomials is that there is a three-term recurrence, so we
do not need to store and compute with the entire Krylov
basis. This method starts with the three-term recurrence
for Chebyshev polynomials, modified with the above coor-
dinate transformation to get

P0(l) = 1, (20)

P1(l) =
−il
L
, (21)
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2508 YAMAZAKI et al.

Pk+1(l) =
2lPk(l)

iL
− Pk−1(l). (22)

Therefore the Pk(t)U in Equation 18 are obtained recur-
sively as

P0(t)U = U, (23)

P1(t)U = −itU
L

, (24)

Pk+1(t)U = 2tPk(t)U
iL

− Pk−1(t)U. (25)

This avoids explicitly forming polynomials of matrices, by
instead just forming the action of polynomials of matrices
on vectors recursively, by repeated application of . Fur-
ther, this application is performed matrix-free by writing
the action of the matrix on a vector equivalently as a set of
integrals (in the usual finite-element manner), although a
mass matrix solve is required in this formulation.

As usual for Chebyshev polynomials, the coefficients
ak are computed by using a fast Fourier transform (Tre-
fethen, 2019). Following Gander and Güttel (2013), we
then discard coefficients starting at the highest degree and
going downwards until the total magnitude of discarded
coefficients exceeds some threshold (1.0 × 10−6 for our
results).

We note that, for larger averaging windows, higher
degree Chebyshev approximations are needed, meaning
that the application of the approximated exponential oper-
ator takes longer. This is illustrated in Table 1. We see that
the growth is approximately linear in both mesh resolution
and time.

For a fully performant method, in the future we
will incorporate the rational approximation of exponen-
tial integrators technique of Haut et al. (2016), which
approximates the exponential along the imaginary axis
by a sum of rational polynomials. This method can be
parallelised over the sum; each parallel term requires
the solution of a complex-valued elliptic problem of the
form aI + b, where a and b are rational coefficients.
Some more details of the implementation and examina-
tion of parallel performance are provided in Schreiber

et al. (2018). When extending to three dimensions, it may
also be useful to exploit the vertical horizontal tensor
product structure in the exponential, as discussed in Croci
and Muñoz-Matute (2022).

However, here we are focussed on the error behaviour
of the averaging technique, so the Chebyshev approxi-
mation suffices for this purpose. The goal here is to use
parallelism as a way of understanding the impact of the
averaging technique on the solution of the PDE.

2.5 Spatial discretisation

In this study, we used the compatible finite-element
discretisation for the nonlinear rotating shallow-water
equations on the sphere given in Gibson et al. (2019).
This was chosen because it leads to a discretised  that
still has purely imaginary eigenvalues, and has a discrete
Helmholtz decomposition that correctly separates the fast
inertia gravity waves and the slow balanced motion. This
is critical to addressing the challenge of applying numer-
ical averaging to the rotating shallow-water equations on
the sphere. Any similar approach to the discretisation with
these properties (e.g., a spectral discretisation or C-grid
finite-difference method) is expected to produce similar
results.

The compatible finite-element discretisation is built
around a pair of spaces V1 ⊂ H(div) and V2 ⊂ L2, selecting
u ∈ V1 and 𝜂 ∈ V2. In these examples we chose BDM2 for
V1 and P1DG for V2, producing a second-order scheme in
space.

The discrete linear operator  ∶ V1 ×V2 → V1 ×V2 is
then defined by (u, 𝜂) = (u1, 𝜂1), where

∫Ω
w ⋅ u1 dx

= −
∫Ω

w ⋅ (f u⊥) dx +
∫Ω
(∇ ⋅w)g𝜂 dx, ∀w ∈ V1,

(26)

∫Ω
𝜙 𝜂1 dx = −H

∫Ω
𝜙∇ ⋅ u dx, ∀𝜙 ∈ V2. (27)

Implementing this requires the solution of a block diago-
nal system for the basis coefficients of 𝜂1 and a sparse (but

T A B L E 1 Table showing the number of Chebyshev iterations required to provide a Chebyshev approximation of the exponential that is
truncated once the total magnitude of the coefficients of the remainder is less than 1.0 × 10−6, for different mesh refinements and times.

Mesh refinement level 𝚫s = 15 min 𝚫s = 30 min 𝚫s = 1 hr

Number of iterations 3 10 15 24

Number of iterations 4 16 25 41

Number of iterations 5 26 42 73
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YAMAZAKI et al. 2509

globally coupled) system for the basis coefficients of u1.
For the latter we observe a mesh-independent number of
iterations when solving using a scalable iterative method
(described below).

The discrete nonlinear operator  ∶ V1 ×V2 →
V1 ×V2 is then similarly defined by  (u, 𝜂) = (u2, 𝜂2),
where

∫Ω
w ⋅ u2 dx =

∫Ω
u ⋅ ∇⊥(u⊥ ⋅w) dx

−
∫Γ

[[
n⊥(u⊥ ⋅w)

]]
⋅ ũ dS

+
∫Ω
∇ ⋅w

(1
2
|u|2) dx, ∀w ∈ V1, (28)

∫Ω
𝜙 𝜂2 dx =

∫Ω
∇𝜙 u(𝜂 − b) dx

+
∫Γ
[[𝜙u]] (𝜂 − b) dS, ∀𝜙 ∈ V2, (29)

where n is the outward-pointing unit normal vector to the
boundary 𝜕Ω ofΩ, Γ denotes the set of interior facets in the
mesh, with the two sides of each facet arbitrarily labeled
by + and −, the jump operator is defined by

[[
q
]]
= q+n+ + q−n−, (30)

[[v]] = v+ ⋅ n+ + v− ⋅ n−, (31)

for any scalar q and vector v, and ũ is evaluated on the
upwind side as

ũ =

{
u+ if u ⋅ n+ < 0,
u− otherwise.

(32)

Implementing this requires the solution of the same sys-
tems for u2 and 𝜂2 as u1 and 𝜂1, respectively. This upwind
stabilisation of the advection terms is the only dissipative
term and there are no explicit dissipation terms in the
model.

Our code implementation was written using Fire-
drake (Rathgeber et al., 2016), an automated system
for the solution of partial differential equations using
the finite-element method, with the resulting matrix
systems being solved using Portable, Extensible Toolkit
for Scientific Computation libraries (Balay et al., 2021).
A direct solver was used for the block diagonal systems
for 𝜂 and the conjugate gradient method preconditioned
by incomplete Cholesky factorisation was used to solve the
sparse systems for u. The terms of the average are com-
puted in parallel using the “ensemble parallelism” capabil-
ity of Firedrake, which was implemented for this project.
This implementation provides message passing interface

subcommunicators for the distribution of the terms of the
averaging sum, with the sum being formed by reduction
over the subcommunicators.

3 NUMERICAL EXPERIMENTS

In this section, we show numerical results from a stan-
dard test case on the sphere described by Williamson
et al. (1992). Here we use their test case number 5 (flow
over a mountain), where the model is initialised with
the layer depth and velocity fields that are in geostrophic
balance:

h = H −

(
RΩu0 +

u2
0

2

)
z2

gR2 , (33)

u = u0

R
(−y, x, 0), (34)

where R = 6.37122 × 106 m is the radius of the Earth,
Ω = 7.292 × 105 s−1 is the rotation rate of the Earth, (x, y, z)
are the 3D Cartesian coordinates, the maximum zonal
wind speed u0 = 20 m, g = 9.8 m ⋅ s−2, and H = 5960 m. An
isolated mountain is placed with its centre at latitude 𝜙 =
𝜋∕6 and longitude 𝜆 = −𝜋∕2. The height of the mountain
is described as

b = b0

(
1 −

(min[R2
0, (𝜙 − 𝜙c)2 + (𝜆 − 𝜆c)2])1∕2

R0

)
, (35)

where b0 = 2000 m and R0 = 𝜋∕9. The sudden appearance
of this mountain disturbing the balanced flow creates sig-
nificant fast unbalanced inertia–gravity waves as well as
triggering slow balanced vortex motion.

Icosahedral grids with a piecewise cubic approxima-
tion to the sphere are used in the model. The number
of cells is NC = 20,480, the maximum cell centre to cell
centre distance is 263 km, and the minimum distance is
171 km. A timestep of 900 s is used in the averaged model
unless stated otherwise. As there is no analytical solution
for this problem, the model output is compared with a
reference solution generated from a semi-implicit nonlin-
ear shallow-water code provided by Gibson et al. (2019)
(which we refer to as the “standard model”), using the
same spatial resolution of NC = 20,480 and the same spa-
tial discretisation. A much smaller timestep of 22.5 s is
used to generate the reference solution, to get as close
as possible to the exact solution to the time-continuous
space-discrete system we are trying to approximate with
the averaging technique.

Figure 1 shows the field of the free surface eleva-
tion 𝜂 at day 15 from the averaged model plotted in a
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F I G U R E 1 Free surface
elevation 𝜂 at day 15 from the averaged
model. The timestep is Δt = 900 s and
the averaging window is T = 1 hr. The
solid line indicates the position of the
mountain. [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 2 Errors in the
elevation 𝜂 at day 15 compared with the
reference solution. The solid line
indicates the position of the mountain.
[Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 3 Potential vorticity at
(top) day 15 and (bottom) day 50 from
the averaged model. The timestep is
Δt = 900 s and the averaging window is
T = 1 hr. The solid lines indicate the
position of the mountain. [Colour
figure can be viewed at
wileyonlinelibrary.com]

latitude–longitude space. The averaging window is T = 1
hr in this plot. The model successfully reproduces waves
that travel around the globe as a result of the zonal flow
interacting with the mountain. Figure 2 shows the errors in
𝜂 at day 15 compared with the reference solution. We can
see that errors are sufficiently small and not dominated by
errors due to grid imprinting.

Figure 3 shows the fields of the potential vorticity at
days 15 and 50 from the averaged model. The flow is
only weakly nonlinear at day 15, and fine-scale struc-
ture has been generated at day 50 as the flow becomes
more nonlinear. These results are consistent with the
numerical results by Thuburn et al. (2014) and Shipton
et al. (2018).
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F I G U R E 4 Normalised errors in the averaged model at day 1
versus the averaging window T. The solid curve with triangles
shows the H(div) norm of u, and the solid curve with crosses shows
the L2 norm of 𝜂, normalised by the norms of the reference solution.
The timestep Δt = 900 s is fixed in all simulations. Note the clear
existence of optimal averaging windows for each variable.

Now, we examine the impact of the averaging win-
dow T on the accuracy of the averaged model. Figure 4
shows the H(div) norm of u and the L2 norm of 𝜂 at
day 1, normalised by the norms of the reference solu-
tion, plotted over various averaging windows. The spatial
resolution of N = 20,480 and the timestep of Δt = 900 s
were kept the same as in Figure 2, whereas a range of
values between 0.25 and 10 hr were used for the the aver-
aging window T. The result reveals the clear existence of

optimal averaging windows at around T = 0.35 hr for u
and T = 0.45 hr for 𝜂, respectively; this will vary depending
on the choice of norm. This result demonstrates that the
behavior in the averaged model is consistent with the error
bounds shown in Peddle et al. (2019). Figure 5 shows the
time evolution of the errors in u and 𝜂 up to day 5. For both
variables, the minima in the error curves move to the left at
day 2. From day 3, the errors at averaging windows T ≤ 0.3
grow rapidly, showing that the model is slowly blowing up
in those small averaging windows. This is because the fixed
timestep is not resolving the unfiltered fast oscillations at
these small averaging window widths.

Finally, we examine the accuracy of the averaged
model when using different timestep size Δt. The curves
with markers in Figure 6 show the H(div) norm of u and
the L2 norm of 𝜂 at day 1 in the averaged model, nor-
malised by the norms of the reference solution, when
using three different timesteps: Δt = 450, 900, and 1350 s.
The averaging window T was changed between Tmin ≤

T ≤ 1 hour, where Tmin = 0.1, 0.25, and 0.375 hr for the
results usingΔt = 450, 900, and 1350 s, respectively. When
using T smaller than Tmin that is corresponding to each
timestep size, the model blows up within 1 day due to
the timestepping errors. The results show that, for both
variables, the minimum error as well as the optimal aver-
aging window size decreases as the timestep is reduced.
As the averaging window increases, the amplitudes of
the error become almost identical to each other regard-
less of the timestep size. This result confirms that the
averaged model is more accurate with a smaller timestep
when the chosen averaging window is smaller or similar
to Δt, and that the size of Δt does not affect the accuracy

F I G U R E 5 Time evolution of the errors up to day 5: (left) the H(div) norm of u and (right) the L2 norm of 𝜂, normalised by the norms
of the reference solution. The five curves in each panel show the corresponding errors at days 1, 2, 3, 4, and 5 from the bottom to the top,
respectively. The timestep Δt = 900 s is fixed in all the simulations. [Colour figure can be viewed at wileyonlinelibrary.com]
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2512 YAMAZAKI et al.

F I G U R E 6 Normalised errors in the averaged model at day 1 using different timestep sizes: (left) the H(div) norm of u and (right) the
L2 norm of 𝜂, normalised by the norms of the reference solution. Dashed, solid, and dotted curves show the errors from the averaged model
using Δt = 450, 900, and 1350 s, respectively. Dashed, solid, and dotted straight lines show the errors from the standard semi-implicit model
(Gibson et al., 2019) using Δt = 450, 900, and 1350 s, respectively.

with larger averaging windows where the averaging error
dominates.

Also shown in Figure 6 as lines without markers are
the same errors at day 1 in the standard semi-implicit
model (Gibson et al., 2019), also normalised by the norms
of the reference solution, when using the same three differ-
ent timesteps: Δt = 450, 900, and 1350 s. As the standard
model does not have averaging windows, the errors are
shown as straight lines regardless of the size of the aver-
aging window. It is clear that, for all three timesteps used
in this test, the solution from the averaged model is more
accurate than that from the standard model using the
same timestep size, for the range of the averaging windows
shown in Figure 6. In other words, the averaged model
would allow us to use a larger timestep to achieve the same
level of accuracy of the standard model when the averaging
windows are chosen near the optimum.

4 SUMMARY AND OUTLOOK

In this work, we presented a phase-averaging frame-
work for the rotating shallow-water equations and a
time-integration methodology for it. The new frame-
work includes overcoming two key technical challenges
for finite-element methods on the sphere: the develop-
ment of a stable numerical matrix exponential used for
the mappings and a parallel phase-averaging procedure.
We presented proof-of-concept results from the rotat-
ing shallow-water equations and analysed their errors,
which confirm that there is an optimal averaging window
value for a given timestep size Δt. Naturally, the

optimal averaging window for both height and velocity
fields combined depends on the choice of norm. Criti-
cally, we observe that the combined time discretisation and
averaging error for the averaged model is much smaller
than the time discretisation error in a semi-implicit
method applied to the same semidiscretisation, illustrat-
ing the benefits of the approach. This is a very significant
result, because it suggests that phase averaging could in
itself be used as a time-parallel algorithm for the rotat-
ing shallow-water equations on the sphere (and perhaps
three-dimensional models), without necessarily needing
corrections through the Parareal algorithm, as proposed in
Haut and Wingate (2014).

In future work, we will explore the combination of
phase-averaging methods with implicit or split timestep
methods that allow us to take even larger timesteps,
we will incorporate parallel rational approximation tech-
niques to speed up the exponential evaluations (Haut
et al., 2016), and we will undertake parallel performance
benchmarks.
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