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Abstract
We estimate the country-level risk of extreme wildfires defined by burned area (BA) for
Mediterranean Europe and carry out a cross-country comparison. To this end, we avail
of the European Forest Fire Information System (EFFIS) geospatial data from 2006 to
2019 to perform an extreme value analysis. More specifically, we apply a point pro-
cess characterization of wildfire extremes using maximum likelihood estimation. By
modeling covariates, we also evaluate potential trends and correlations with commonly
known factors that drive or affect wildfire occurrence, such as the Fire Weather Index
as a proxy for meteorological conditions, population density, land cover type, and sea-
sonality. We find that the highest risk of extreme wildfires is in Portugal (PT), followed
by Greece (GR), Spain (ES), and Italy (IT) with a 10-year BA return level of 50’338
ha, 33’242 ha, 25’165 ha, and 8’966 ha, respectively. Coupling our results with existing
estimates of the monetary impact of large wildfires suggests expected losses of 162–
439 million € (PT), 81–219 million € (ES), 41–290 million € (GR), and 18–78 million
€ (IT) for such 10-year return period events.
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SUMMARY
We model the risk of extreme wildfires for Italy, Greece, Portugal, and Spain in form
of burned area return levels, compare them, and estimate expected losses.

1 INTRODUCTION

Wildfires affect humans, assets, and ecosystems and can
lead to extensive socioeconomic and environmental impacts
(Keeley et al., 2012). Within Europe, the Mediterranean
region is the most fire prone with high wildfire incidence
and consequences (San-Miguel-Ayanz et al., 2020). This was
bleakly illustrated by the pronounced wildfire season in 2017
with blazing fires in France and roughly 140’000 hectares
(ha) burnt in Portugal (NATURE, 2017), or by the 2018 fatal
fires in Greece leading to more than 100 deaths and causing
major damage to the ecosystems of the susceptible Natura
2000 protected areas (San-Miguel-Ayanz et al., 2018). Not

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2022 The Authors. Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.

only do Portugal (PT), Spain (ES), Italy (IT), Greece (GR),
and France (FR) combined account for about 85% of the total
annual burned area (BA) in Europe (De Rigo et al., 2017),
the Mediterranean area is also particularly vulnerable in that
it is densely populated, characterized by a large wildland–
urban interface (WUI) (San-Miguel-Ayanz et al., 2013), and
due to the species richness as well as the high proportion of
endemisms, it marks a “biodiversity hotspot” (Batllori et al.,
2013; Myers et al., 2000).

Notably, fire has historically played an integral role
in Mediterranean Europe by performing highly beneficial
ecosystem functions (Holmes et al., 2008), and has been
utilized by communities for agricultural practices (e.g., to
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2 MEIER ET AL.

fertilize soils and control plant growth) and landscape modifi-
cations (Santín & Doerr, 2016). However, although societies
and ecosystems are likely to adapt to near-normal conditions,
this is arguably not the case for extreme events (Bowman
et al., 2017; San-Miguel-Ayanz et al., 2013; Tedim et al.,
2018). Rather, evidence shows that particularly large wild-
fires are linked to severe disturbances and losses and are
the cause of the bulk of social, economic, and adverse envi-
ronmental impacts (Evin et al., 2018; Gill & Allan, 2008;
Mendes et al., 2010).

The purpose of this study is to characterize the spatiotem-
poral distribution and dynamics of extremely large wildfires
in Mediterranean Europe, as well as to quantify and compare
their risk probabilities across countries. Since our interest lies
in the risk quantification of rare or extreme events, we model
the probabilistic structure of the commonly heavy-tailed
right tail of the wildfire BA density distribution (Beverly &
Martell, 2005; Hernandez et al., 2015; Scotto et al., 2014)
applying extreme value theory (EVT). A series of commonly
known variables that potentially influence the production of
large wildfires, such as the Fire Weather Index (FWI), popu-
lation density, land cover type, and seasonality, are included
as covariates to evaluate potential conditional probabilities.
Employing the analytical tools provided by EVT enables to
extrapolate wildfires of potentially unobserved size based on
the European Forest Fire Information System (EFFIS) BA
data set from 2006 to 2019, and thus, to quantify the risk of
country-level extreme wildfires. Furthermore, we convert our
estimates into rough monetary losses using figures from the
existing literature to facilitate the potential application of our
estimates to policy decisions.

EVT has been proven to be a suitable inferential tool
for wildfire size risk quantification (Hernandez et al., 2015;
Holmes et al., 2008), and has been applied globally (Jiang
& Zhuang, 2011; Keyser & Westerling, 2019). For Mediter-
ranean Europe, Evin et al. (2018) evaluate the risk of
large wildfires in France conditional on a new fire policy
introduced in 1994. Moreover, several studies quantify and
compare regional wildfire risk and regimes in Portugal (De
Zea Bermudez et al., 2009; Mendes et al., 2010; Scotto et al.,
2014), which is unsurprising given the country bears the high-
est wildfire prevalence within Mediterranean Europe (Turco
et al., 2019). However, to the best of our knowledge, ours is
the first study to use EVT to perform a cross-country quan-
tification of wildfire risk. Our contribution is threefold. First,
we merge high-quality homogenized and up-to-date geospa-
tial data sets for the European Mediterranean region. Second,
we perform a country-level analysis of extremely large wild-
fires in Mediterranean Europe, and third, we compare the
estimated risks across the region.

The remainder of this study is organized as follows. Sec-
tion 2 describes the data sources followed by Section 3
outlining the methodology underpinning the extreme value
analysis. Section 4 summarizes the results and derives mon-
etary losses by matching our estimates with economic loss
figures from the existing literature. The findings are subse-
quently discussed in Section 5, before Section 6 concludes.

2 DATA AND VARIABLES

2.1 Burned area

We use a high-quality BA spatial data product compiled by
the Joint Research Centre (JRC) and provided by the EFFIS.1

It is the primary source of harmonized data on wildfires
in Europe, and thus enables a sound cross-country com-
parison. The data product is derived from semiautomatic
classification of daily processing of Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite imagery at
250 m spatial resolution. The definite fire perimeters are
refined through visual image interpretation and systemati-
cally collected fire news from various media. The data set
includes fires larger than approximately 30 ha, and contains
information on the initial date, country, province, place, as
well as the BA polygons.2 We model the extreme BA con-
ditional on the covariates described hereafter. For the full
list of covariates refer to Table A1 in Appendix A in the
Supporting Information.

2.2 Fire Weather Index

Weather conditions are a major driver of wildfire events
and are commonly applied to construct fire danger indices
(Bedia et al., 2014; Krawchuk et al., 2009; Sousa et al.,
2015). We employ the FWI component of the Canadian
Forest Fire Weather Index System as a proxy for meteo-
rological conditions incorporating temperature, wind speed,
relative humidity, and precipitation. Providing a homoge-
neous numerical rating of relative fire potential resulting
from the combination of the two fire behavior indices,
namely, the Buildup Index and the Initial Spread Index (Van
Wagner & Pickett, 1985), the FWI has become a refer-
ence index for European fire danger maps produced by the
JRC (Camia et al., 2008). We use a high-resolution cal-
culation developed by Natural Resources Canada based on
the European Centre for Medium-Range Weather Forecasts
ERA5-HRES3 reanalysis product presented in McElhinny
et al. (2020). To account for the effect of interseasonal
drought, we use the FWI version derived from the overwin-
tered Drought Code with a spatial resolution of 31 km (0.28◦

on a reduced Gaussian grid).
We spatially join the centroid of every wildfire polygon

to the closest grid cell of the FWI data set and extract (i)
the daily FWI values 1 month prior, as well as 1 week after
the initial date of the fire, and (ii) the daily FWI values of
the respective year of the fire. Using (i), we create the vari-
ables FWI on the initial date (FWI_InitDat), the mean FWI
of the month prior to the initial date (FWI_MP), the mean
FWI of the week prior to the initial date (FWI_WP), and the
mean FWI of the month prior until the week after the initial

1 https://effis.jrc.ec.europa.eu.
2 https://effis.jrc.ec.europa.eu/about-effis/technical-background/rapid-damage-
assessment.
3 https://cds.climate.copernicus.eu/cdsapp#!/home.
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date (FWI_MP_WA). We employ (ii) to estimate the annual
mean as well as the 0.5, 0.9, 0.95, 0.99 quantiles (FWI_Mean,
FWI_q0.5, FWI_q0.9, FWI_q0.95, FWI_q0.99) of the FWI
for the corresponding year of the fire incidence.

2.3 Population density

Population density has gained widespread attention for its
role as an ignition source, as a facilitator of suppression
efforts, and as a factor that captures impact-related impor-
tance (Fernandes, 2019; González-Cabán, 2009; Lankoande
& Yoder, 2006; Pechony & Shindell, 2010). To proxy popu-
lation density near wildfires, we use the Oak Ridge National
Laboratory’s LandScan4 annual global population distribu-
tion data provided at approximately 1 km (30’’) spatial
resolution. The raster data representing the ambient pop-
ulation distribution are based on remote sensing imagery
analysis techniques, and demographic and geographic data.
We create approximately 4 km buffers5 around the centroid
of the polygons and calculate the mean population density in
counts per square kilometer of the respective LandScan year
denoted by the variable Pop_4km.

2.4 Land cover type

The 2006, 2012, and 2018 versions of the Copernicus’
CORINE land cover6 are employed to categorize the EFFIS
perimeters of BA to evaluate a potential correlation between
land cover type and the distribution of large fires. The
CORINE land cover information is derived from satellite
data7 using a minimum mapping unit of 25 ha and consists
of an inventory of 44 land cover classes. We extract the dom-
inant land cover type for each EFFIS BA polygon considering
the latest version of the CORINE land cover data with respect
to the initial date of the observation. We further reclassify the
most prevalent land cover types for each country with regard
to the extreme wildfire observations. For an overview of the
dominant land cover types for each country, see Table A2
of Appendix A in the Supporting Information. In the con-
ducted analysis, types I to III are incorporated as indicator
variables. A fourth indicator variable named Type_Other is
created where none of the three types applies.

3 METHODS

3.1 Point process (PP) using maximum
likelihood estimation

The foundation of the PP approach regarding extremal pro-
cesses was originally introduced by Pickands (1971), and
applied to environmental processes by Smith (1989). The

4 https://landscan.ornl.gov.
5 The exact measure is 0.05 decimal degrees, which at 45◦N corresponds to 3’935.5 m.
6 https://land.copernicus.eu/pan-european/corine-land-cover.
7 2006: SPOT-4/5 and IRS P6 LISS III; 2012: IRS P6 LISS III and RapidEye; 2018:
Sentinel-2 and Lansat-8.

PP approach is particularly suitable as it uses data effi-
ciently and can easily be adapted to include temporal or
covariate effects (Coles, 2001). We apply a nonhomoge-
neous PP model to simulate the occurrence (i.e., frequency
of exceedance) and intensity (i.e., excess) of a value of BA
above a chosen threshold.

Let Xi be a series of independent and identically dis-
tributed (i.i.d.) random variables representing wildfire BAs,

and Nn = {(
i

n+1
,Xi) : i = 1, n} be a sequence of PPs. Then,

given a sufficiently large threshold u, on regions of the form
[0, 1] × (u,∞), the PP Nn is approximately a Poisson process
with the intensity measure Λ(A) shown in Equation (1) on a
set of the form A = [t1, t2] × (u,∞):

Λ(A) = ny(t2 − t1)
(

1 + 𝜉
(u − 𝜇

𝜎

))−1∕𝜉
. (1)

The interval (t1, t2) on the abscissa is a subset of [0,1] and
ny denotes the number of years of observations so that events
in nonoverlapping subsets of [0, 1] × (u,∞) are independent
and the estimated parameters 𝜉, 𝜇, and 𝜎 correspond to the
generalized extreme value (GEV) distribution. It envelops
three types of limit distributions, which are uniquely defined
by the shape parameter 𝜉. The Fréchet distribution (𝜉 > 0) is
characterized by a heavy tail, the Gumbel distribution (𝜉 = 0)
exposes an exponential decay of the tail, whereas a Weibull
limit distribution (𝜉 < 0) has an upper bound. In general, a
heavier tail implies that the probability of an “unexpected”
event is larger, while the location 𝜇 and the scale 𝜎 parameters
relate to the mean and spread of the distribution, respec-
tively. For greater detail on the GEV see Appendix B in the
Supporting Information.

Following Coles (2001), the model parameters are esti-
mated by maximizing the likelihood function

L(𝜇, 𝜎, 𝜉) = exp

{
−ny

[
1 + 𝜉

u − 𝜇

𝜎

]−1∕𝜉
}

×

N(A)∏
i=1

𝜎−1

{[
1 + 𝜉

(xi − 𝜇

𝜎

)]− 1

𝜉
−1
}𝛿i[xi>u]

, (2)

where 𝛿i is one if the realization of Xi > u, and zero other-
wise. The first part of the likelihood expression entails the
contribution of the number of fire events (occurrence) char-
acterized by the Poisson distribution with mean Λ{[0, 1] ×
[u,∞)}. The second part shows the excess contribution of the
observations (intensity), which are modeled as generalized
Pareto distribution (GPD). 𝜎 is adjusted as 𝜎∗ = 𝜎(u) − 𝜉u,
so that the scale parameter is independent of the threshold.
The cumulative GPD is given by Equation (3):

F(z;𝜎∗, 𝜉, u) =

⎧⎪⎨⎪⎩
1 −

[
1 + 𝜉(

z−u

𝜎∗

)
]

−1

𝜉
, for 𝜉 ≠ 0

1 − e
−z

𝜎∗ , for 𝜉 = 0,

(3)

where 1 + 𝜉(
z−u

𝜎∗
) > 0, z − u > 0, and 𝜎∗ > 0.
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4 MEIER ET AL.

Given that X has a GPD, the distribution of the rescaled
random variable z∕𝜎∗ is independent of 𝜎∗ (Katz et al., 2005).

We perform the numerical optimization using the R
package extRemes (Gilleland & Katz, 2016) to estimate
Equation (2).

3.2 Model assumptions

The theoretical justification for using a PP characterization
of extremes is predicated on the assumptions of (i) unbiased
threshold choice, (ii) stationarity, and (iii) independence of
the excesses. Regarding (i), too low a threshold leads to a
bias potentially violating the asymptotic basis of the model. If
the threshold chosen is too high, the reduction of data points
leads to high variance. We determine the individual countries’
thresholds using the threshold diagnostic tools provided in
the R package extRemes. They are based on the following
rationale. Let the excesses over a threshold u be defined as
y = x − u. Recalling from Section 3.1 that these excesses fol-
low a GPD, this also holds true for all y > 0 of a threshold
v > u with

GPD
(
y, 𝜎v, 𝜉v

)
=

GPD
(
(v − u) + y, 𝜎u, 𝜉u

)
GPD

(
(v − u), 𝜎u, 𝜉u

) . (4)

As a consequence, Equation (4) can only be satisfied if
𝜉v = 𝜉u and 𝜎v − 𝜉 ⋅ v = 𝜎u − 𝜉 ⋅ u. This implies that for a
sufficiently high threshold, both the shape parameter 𝜉 and
the modified scale 𝜎 − 𝜉u are independent of the threshold
and need to be stable. Besides plotting the shape and mod-
ified scale parameters individually, the mean value of the
excesses y over u can be plotted against u, which is known as
the Mean Residual Life (MRL) plot (Coles, 2001). The GPD
is deemed to fit the data well when a straight line starting
from the selected threshold can be fitted within the confidence
bands of the MRL plot, and thereby indicating a stable distri-
bution. In practice, the visual interpretation of the MRL plot,
as well as the individual parameter plots, is somewhat subjec-
tive. Thus, we additionally consider the threshold selection
suggestions provided by the automated Bayesian leave-one-
out cross-validation approach, which compares the extreme
value predictive performance resulting from each of a set of
thresholds. This approach was first introduced by Northrop
et al. (2017) and is implemented in the R package threshr
(Northrop & Attalides, 2020). As this approach is only appli-
cable for independent observations, we compare outcomes in
an iterative process with the estimation of the extremal index
𝜃 as a measure of dependence.

While Equation (2) implicitly assumes stationarity of the
GEV parameters, we also estimate nonstationary models
where 𝜉, 𝜇, and 𝜎 are conditioned on various functional forms
of the covariates described in Section 2 (as well as on season-
ality variables) in order to assess assumption (ii). Equation (5)
serves as an example of modeling a nonconstant linear loca-

tion parameter dependent on the mean FWI of the month prior
to the initial date FWI_MP:

𝜇(FWI_MP) = 𝜇O + 𝜇1 ∗ FWI_MP. (5)

The evaluation of the nonstationary models is based on the
Akaike information criterion (AIC), the Bayesian informa-
tion criterion (BIC), and, for nested models, on the likelihood
ratio test.8 We systematically model the location, shape, and
scale parameters individually and combined starting with lin-
ear functional forms of the respective parameters. Whenever a
model shows an improvement over the stationary model, we
explore more complex functional forms (i.e., quadratic and
interactions). In cases where the parameter confidence inter-
vals (CIs) could not be estimated via the delta method, 500
iterative bootstraps with replacement were applied to evaluate
the parameter significance.

As a means to examine the independence assumption (iii),
the degree of dependence is explored using the extremal index
𝜃 ∈ (0, 1] suggested by Ferro and Segers (2003), which is
defined as:

𝜃 =

⎧⎪⎪⎨⎪⎪⎩
min

{
1,

2
(∑N−1

i=1Ti

)2

(N−1)
∑N−1

i=1 T2
i

}
, if max {Ti : 1 ≤ i ≤ N − 1} ≤ 2

min

{
1,

2
(∑N−1

i=1 (Ti−1)
)2

(N−1)
∑N−1

i=1 (Ti−1)(Ti−2)

}
, if max {Ti : 1 ≤ i ≤ N − 1} > 2,

(6)
where Ti denotes the length between excesses (interex-
ceedance time). A value of the extremal index 𝜃 = 1 implies
complete independence, whereas 𝜃 → 0 indicates perfect
dependence. In case the extremal index suggests a violation
of the independence assumption, the data can be declustered
to filter the dependent observations.

3.3 Model fit

In order to assess the fit of the selected model, we implement
two common diagnostic plots incorporated in the extRemes
package. First, we avail of the Z-plot following Smith and
Shively (1995). Let Zk be the Poisson intensity parameter
integrated from exceedance time k − 1 to exceedance time
k (starting the series with k = 1). The Z-plot then determines
whether this random variable Zk is independent exponentially
distributed with mean one, which corresponds to the obser-
vations lying on the diagonal. Second, we plot the kernel
density functions of the observed data versus the modeled
distribution. For the particular case of the PP characterization
of extremes, the density of the calculated data block maxima
is compared to the PP model with respect to the equivalent
GEV.

8 Suppose that the negative likelihood is x for the stationary base model and y for the
restricted model, the deviance statistic D = −2(y − x) then follows the 𝜒2

k distribution,
where k indicates the difference in the number of estimated parameters (Coles, 2001).
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3.4 Return levels (quantiles)

Harnessing the estimated probabilities associated with
extremes, the interest is typically focused on providing esti-
mates of the upper quantiles of the modeled distribution
functions. Specifically, the return level of an extremely large
fire, defined as zp, which is associated with a return period
of 1∕p, embodies a tangible outcome. It is equivalent to the
(1 − p)th quantile of the corresponding modeled distribution
by the PP representation of extremes. As the PP approach
combines the Poisson distribution parameter with the GPD,
the return level zp is obtained by setting the cumulative dis-
tribution function Equation (3) equal to the desired quantile
1 − p. Solving for z (for a probability p) leads to Equation (7)
(Coles, 2001):

zp = F−1
(
1 − p;𝜎∗, 𝜉, u

)
=

{
u + (𝜎∗∕𝜉)

(
p−𝜉 − 1

)
, for 𝜉 ≠ 0

u + 𝜎∗ ln(1∕p), for 𝜉 = 0,
(7)

where the return level zp denotes the BA level that is expected
to be exceeded in any given year with probability p.

3.5 Economic valuation

A transformation of the informational content of the BA
return-level estimates into economic values could arguably be
beneficial supporting policy decisions. Our approach in this
regard is to multiply associated per ha monetary losses with
the expected BA, as suggested by Holmes et al. (2008). To
this end, we resort to existing studies either providing explicit
per ha loss estimates or we calculate per ha values by com-
bining information on total BA with total loss estimates. To
facilitate a comparison over space and time, spatial values
are harmonized in hectares, and monetary values are inflation
adjusted and expressed in 2020 euros using the 2020 monthly
average exchange rate (US$ = 0.87€). Values in U.S. dol-
lars are deflated based on the not seasonally adjusted urban
Consumer Price Index CPI.9 Table 1 provides a summary of
the economic impact aspects that have been included in each
study as well as of the inflation-adjusted €per ha monetary
values for the five papers included in the table. Note that the
calculated €/ha losses are highly dependent on the estimation
method used, the type of damage and losses included, and on
the specific situation of the fire (season) that is studied in the
article. Therefore, the figures derived from the multiplication
of our return levels with estimates from existing publications
need to be interpreted with caution.

More specifically, two studies have a European context.
The first estimates we derive are from a comprehensive report
for Mediterranean forests by Merlo and Croitoru (2005),
who provide figures in 2001 prices that encompass country-

9 https://www.bls.gov/cpi.

specific estimates of 884€/ha (GR), 1’480€/ha (IT), and
3’420€/ha (PT). This translates into inflation-adjusted mon-
etary values expressed in 2020 euros of 1’228€/ha (GR),
2’004€/ha (IT), and 4’728€/ha (PT). We also include the eco-
nomic impact estimates from a study of Galicia, Spain, by
Barrio et al. (2007), which implements an ecosystem service
approach based on assessing services that are affected due to
wildfire existence. The reported monetary losses range from
2’249 to 3’162 €/ha in 2006 values. We apply the mean of
this range, that is, 3’304€/ha in 2020 euros.

As suitable research on Southern Europe is limited, we
also include three loss estimates derived from studies of U.S.
wildfires. The Butry et al. (2001) case study assesses the
Florida 1998 summer wildfires that burned a total of around
500’000 acres (202’343 ha). We apply the conservative lower
bound total cost estimate of US$ 600 million (in 2001 val-
ues). Dividing the total cost by the total BA leads to an
inflation-adjusted estimate of 3’801€/ha. A second study by
Rahn et al. (2014) evaluates the 2003 wildfires in San Diego
(United States) and reports a cost of US$ 6’500 per acre (US$
2’630/ha in 2014 values), which is equivalent to 3’230€/ha in
2020 euros. Finally, we include the recent publication on Cal-
ifornia wildfires by Safford et al. (2022), who investigate the
extraordinary 2020 fire season. The authors estimate losses of
US$ 19 billion for a historical record of 1.74 million ha BA,
which is equivalent to 8’717€/ha in 2020 euros.10

4 RESULTS

4.1 Summary statistics

Country-level BA summary statistics of the EFFIS BA data
product are presented in Table 2. The single largest fire in
the data set that burnt 67’521 ha occurred in October 2017 in
Portugal. Greece exhibits a comparably lower frequency of
fires but has the largest mean, median, 75 percentile, and 90
percentile BA values. The highest annual wildfire incidence
is recorded in Italy.

Figure 1 presents the log transformed wildfire BA obser-
vations from 2006 to 2019 at the country level. The data
show a slightly decreasing tendency in BA for Spain, France,
Italy, and Greece, and no clear trend in Portugal. How-
ever, a slightly different picture emerges from Figure A1 of
Appendix A in the Supporting Information when we focus
on BA extremes, herein defined as the wildfires that exceed
the selected country-level threshold. While, once again, we
observe decreasing BA trends for France, Italy, and Greece,

10 Extensive research conducted by Wang et al. (2021) estimates the economic losses
for the 2018 wildfire season in California that include indirect losses and suggests total
wildfire damages were in the region of US$148.5 billion for a total BA of 7’700 km2.
This leads to a per ha loss estimate of 165’467 €/ha in 2020 euros, which is around
19 times larger than the Safford et al. (2022) estimate for the 2020 season. Given this
estimate is far beyond all the other estimates, we do not use it in this analysis and only
present the more conservative estimates. However, Wang et al. (2021) give some indi-
cation of how far reaching the costs of extreme wildfires are when we include indirect
health costs as well as costs arising outside the affected region assuming extreme fires
in Mediterranean Europe are comparable to those in California.
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CROSS-COUNTRY RISK QUANTIFICATION OF EXTREME WILDFIRES IN MEDITERRANEAN EUROPE 7

TA B L E 2 BA summary statistics (2006–2019)

Country n Events per year (na) Mean (ha) Median (ha) Pctl 75 (ha) Pctl 90 (ha) Max (ha)

Portugal 3’084 220.3 474 106 259 768 67’521

Spain 2’412 173.3 386 95 240 678 32’424

France 668 47.7 171 65 150 340 3’555

Italy 3’260 232.9 204 91 188 372 11’550

Greece 748 53.4 761 138 412 1’325 45’809

Note: n: number of observations; Pctl: percentile.

F I G U R E 1 BA (log10 scaled) with indicated threshold choice (black dashed line) over study period (2006–2019) with a generalized linear model
smoothed conditional mean with CIs on the 90% level

no trend is evident for Spain. In contrast, the extreme BA val-
ues for Portugal exhibit an increasing trend, largely driven by
the 2017 fire season.

Figure 2 displays the annual number of wildfires and total
BA over the study period enabling a direct country compar-
ison. There are few observations and little variation over the
years for Greece, while the opposite is the case for Italy. The
year 2017 particularly stands out for Portugal with many fire
records as well as large total BA. For France, 2019 accounts
for more than half of all the observations in the study period.

Regarding the correlation between BA and the covariates,
there is a general tendency of a positive correlation between
the BA and the mean FWI of the week prior to the fire ini-
tial date (FWI_WP). No conclusive relationship is observable
between the BA and population density. Correlation plots
are provided in the Supporting Information in Appendix A
(Figure A2 and Figure A3 for the association of the FWI and
the population density, respectively).

4.2 Threshold selection/dependence test

The MRL plots with the final threshold choice (after consid-
ering all decision-supporting tools outlined in this section) are
shown in Figure 3. Complementing the MRL plots, the indi-
vidual behavior of the shape parameter 𝜉 and the modified
scale parameter 𝜎 − 𝜉u are analyzed but not shown.

The Bayesian leave-one-out cross-validation plots are pre-
sented in Figure 4. These show a single run output and vary
across different executions. The best threshold evaluated by
this approach, denoted as ub, is provided below the plot
whenever it proved stable over 10 consecutive runs.

Table 3 provides a summary of the final threshold choices
with the corresponding extremal indices 𝜃, and the number
of observations above the selected threshold. The excesses of
Spain and Greece indicate perfect independence, while Por-
tugal and Italy show a very high 𝜃 value. The lowest extremal
index value is found for France, which did not improve after
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8 MEIER ET AL.

F I G U R E 2 Annual number of wildfires and annual total BA in the EFFIS BA product

F I G U R E 3 Mean Residual Life (MRL) plots with indicated final threshold choice
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CROSS-COUNTRY RISK QUANTIFICATION OF EXTREME WILDFIRES IN MEDITERRANEAN EUROPE 9

F I G U R E 4 Bayesian leave-one-out cross-validation threshold selection approach

TA B L E 3 Summary statistics thresholds and extremal indices

Country Threshold u Extremal index 𝜽 n > u (% of total)

Portugal 4’900 ha 0.9 42 (1.4)

Spain 2’600 ha 1 62 (2.6)

France 520 ha 0.84 42 (6.3)

Italy 1’550 ha 0.94 45 (1.4)

Greece 1’943 ha 1 45 (6)

declustering.11 The number of observations above the respec-
tive country-specific thresholds ranges from 42 to 62 and
corresponds to 1.4%–6.3% of the total country-level data.

4.3 Nonstationarity

Since the stationary models are embedded in potential non-
stationary models, the results of the latter are reported first.
Table 4 lists all the models with an improvement of the
BIC > 10 over the stationary model following Neath and
Cavanaugh (2012), suggesting this threshold as “very strong”

11 The specific case of modeling the extremes with the data available for France is
addressed in Section 4.3 and Section 4.4.

evidence to favor the model with the lower BIC over the
competing model.

For Portugal, letting the location parameter 𝜇 depend on
the mean FWI for the month prior to the initial date of the
fire (FWI_MP) leads to the best model fit. The evaluation
of conditional effects for the historical excesses in Spain
and Italy shows that modeling the location and the shape
parameter dependent on the FWI on the reported initial date
(FWI_InitDat) improves the model fit the most. None of the
nonstationary models leads to any improvements of the model
fit for Greece. For France, land cover type is found to be
most influential in modeling the observed data. More specif-
ically, modeling the location parameter conditional on land
cover Type_I (Sclerophyllous vegetation) in a linear func-
tional form not only proves to capture the empirical data best,
but also leads to a significant positive shift of the distribu-
tional mean. However, even though modeling nonstationarity
leads to an increased model fit in specific cases, with the
exception of France, results do not indicate a significant
modification of the modeled GEV parameters. Consequently,
based on the covariates considered, the assumption of station-
arity holds true in the data sample for all countries except
for France. Therefore, reported probabilities of the stationary
model are valid and comparable for Portugal, Spain, Italy, and
Greece.
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4.4 Model selection/model fit

In light of no significant parameter changes modeling the
extremes conditional on the implemented covariates for
Portugal, Spain, Italy, and Greece, we base the subsequent
model evaluations and estimations on the stationary model.
Not only does the distribution of the historical extremes
for France show dependence and therefore violate the sta-
tionarity assumption, but the extremal index 𝜃 in Table 2
also indicates higher dependence of the excesses than is the
case for the other countries. Thus, we exclude France from
subsequent analysis.

Evaluating the model fit using Z-plots depicted in Figure 5,
it is evident that all observations lie well within the 95% con-
fidence bands and that there is arguably a good model fit
for Portugal, Spain, and Italy, and a moderately good fit for
Greece. A similar conclusion can be drawn from Figure 6
plotting the kernel density functions of the empirical against
the modeled data. Once again, the observed data are very well
modeled for Italy, and fairly well for Portugal and Spain. For
Greece, the modeled data, in contrast, captures the empirical
data relatively less well.

4.5 Parameter estimates

The three GEV distribution parameter estimates by country
are shown in Table 5. The largest point estimate 𝜇̂ is found
for Portugal, followed by Spain, Greece, and Italy, respec-
tively. Although the center of the distribution is larger for
Spain than for Greece, 𝜎̂ indicates that the spread of the dis-
tribution is wider for Greece than for Spain. In general, we
observe extremely small CIs for Portugal for the location and
scale parameters.

The largest shape parameter value 𝜉̂, and thus the heavi-
est tail, is estimated for Greece followed by Portugal and is
larger than 0.5 indicating that although the mean is finite, the
variance is infinite (Katz et al., 2005).12 The point estimates
of the shape parameter for Spain and Italy are fairly similar.
However, 𝜉̂ is insignificant for Italy. On that account, the main
difference in the distributions of the extremes comparing the
individual countries is that Portugal, Greece, and Spain have a
significantly positive shape parameter 𝜉 indicating a Fréchet-
type limit distribution, while the excesses for Italy follow the
Gumbel-type limit distribution.

4.6 Return levels and probabilities of
exceedance

Table 6 displays the numerical estimates of the T-year (here
with T = 5, 10, 20, 50) BA return levels, where the BA val-
ues given in ha are exceeded in 1 year with probability 1/T.
The return levels are found to be highest in Portugal in any

12 A statistical moment is infinite if it converges too slowly to be integrated, and thus
does not exist (Holmes et al., 2008).
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CROSS-COUNTRY RISK QUANTIFICATION OF EXTREME WILDFIRES IN MEDITERRANEAN EUROPE 11

F I G U R E 5 Model fit diagnostics: Z-plots

TA B L E 5 Country-level maximum likelihood GEV parameter estimates with confidence intervals (CIs) on the 95% level

Country Location 𝝁̂ (ha) Scale 𝝈̂ (ha) Shape 𝝃 Limit distribution

Portugal 13’017 (13’017, 13’017) 9’061 (9’061, 9’061) 0.52 (0.28, 0.64) Fréchet

Spain 8’673 (8’518, 8’690) 4’719 (4’700, 4’934) 0.36 (0.28, 0.46) Fréchet

Italy 3’483 (3’397, 3’649) 1’874 (1’539, 2’031) 0.37 (−0.06, 0.55) Gumbel

Greece 7’206 (7’084, 7’106) 5’743 (5’742, 5’767) 0.58 (0.38, 0.69) Fréchet

Note: The CIs are estimated employing a parametric bootstrap simulating data from the fitted model.

TA B L E 6 Individual country return levels in ha for specific return periods

Country 5-year (CI) 10-year (CI) 20-year (CI) 50-year (CI)

Portugal 33’279 (30’062, 35’832) 50’338 (39’924, 58’557) 75’256 (53’038, 94’587) 123’719 (73’838, 172’805)

Spain 18’080 (17’376, 18’822) 25’165 (23’391, 26’905) 34’017 (30’277, 39’079) 49’452 (41’636, 61’197)

Italy 7’325 (6’149, 9’025) 8’966 (6’531, 12’842) 10’890 (6’944, 12’842) 14’627 (7’053, 26’704)

Greece 20’687 (18’370, 22’372) 33’242 (28’298, 37’876) 51’764 (39’636, 64’261) 91’037 (58’694, 124’476)

Note: The return levels and CIs on the 95% level are estimated employing a parametric bootstrap simulating data from the fitted model.
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12 MEIER ET AL.

F I G U R E 6 Model fit diagnostics: Density plots

given return period followed by Greece, Spain, and Italy. For
example, the probability that a single wildfire burns more than
50’338 ha in any given year is 10% in Portugal, while for
Spain the probability of a fire exceeding approximately this
size (49’452 ha) is about 2%.

The individual country return-level plots in Figure 7 show
the distribution of the observations within the tail. Essen-
tially, the limit distributions found for all the Mediterranean
countries have no upper bound (i.e., the extremes are not con-
verging to a specific value). Furthermore, the return level
plots enable a better understanding of the different limit
type distributions in a graphical fashion. In particular, the
distinction between the Gumbel-type distribution found for
the extremes in Italy versus the Fréchet-type distributions
for the other countries is distinctly visible. As the x-axis is
log-transformed, the return-level plot reflects Gumbel-type
distributions characterized by an exponential decay of the

tail as a straight line, while the Fréchet-type distributions
manifest as convex shapes.

We find that all the observed events lie within the boot-
strapped CIs. Furthermore, the smallest confidence bands at
the 95% level are observed for Spain indicating high certainty
of the point estimates. In contrast, the largest CIs are appar-
ent for Italy suggesting a wide range of potential outcomes
within the 95% CI.

Looking at the largest wildfire for each country (max value
in Table 2), an event of such size or larger is expected to
occur, on average, once every 16 years for Portugal with an
annual occurrence probability of 1.9%. The calculated yearly
probability for the largest observed fire in Spain is 1% and
has a return period of about 18 years. In Italy, the maximum
BA value is expected to be exceeded once in every 23 years
with an annual probability of 2.6%, and the largest BA value
for Greece, is estimated as an approximately 16-year event

 15396924, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.14075 by U

niversity of B
irm

ingham
, W

iley O
nline L

ibrary on [13/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CROSS-COUNTRY RISK QUANTIFICATION OF EXTREME WILDFIRES IN MEDITERRANEAN EUROPE 13

F I G U R E 7 Return-level plots with bootstrapped CIs on the 95% level

with a yearly probability of occurrence of 1.8%. Figure 8
overlays the individual country return-level plots to facilitate
a cross-country comparison of the extremal BA distribution.
We find the highest risk for extremely large fires for any given
return period for Portugal and the lowest for Italy. Compar-
ing Greece and Spain, a higher risk for large BAs emerges for
Spain for low return periods (approximately < 3 years) but
above this threshold, the return levels are distinctively larger
for Greece.

A similar picture emerges when overlying the individual
country-level BA thresholds that are exceeded in any given
year with corresponding probabilities shown in Figure 9.
The annual probability for extremely large fires decreases
fastest for Italy and slowest for Portugal. The rate of the
yearly probability decrease is comparably close for Spain
and Greece with the 𝜉 parameter point estimates only
differing marginally.

4.7 Economic valuation

Combining our results with the economic loss figures in €/ha
leads to expected return period–specific economic losses pre-

TA B L E 7 Range of country-level economic loss estimates for specific
return levels (rl) in million € (in 2020€)

Country 5-year rl 10-year rl 20-year rl 50-year rl

Portugal 107–290 162–439 243–656 400–1’078

Spain 58–158 81–219 110–297 160–431

Italy 15–64 18–78 22–95 29–128

Greece 25–180 41–290 64–451 11–794

sented in Table 7. Allowing a comparison of the individual
publications’ loss calculations, Figure 10 graphically displays
the economic loss estimates for wildfires that are expected to
occur, on average once every 20 years.

Recall from Table 1, that while the estimates by Butry et al.
(2001), Rahn et al. (2014), and Barrio et al. (2007) are rela-
tively close, the country-specific €/ha estimate based on the
figures in Merlo and Croitoru (2005) is lower than the other
three for Italy and Greece, and higher for Portugal. The latest
study conducted by Safford et al. (2022) clearly stands out
with a distinctively larger loss estimate value.

In addition to providing economic loss estimates for
specific return periods resulting from the extreme value mod-
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14 MEIER ET AL.

F I G U R E 8 All country return-level plot

F I G U R E 9 Country-level BA exceedance
probabilities in any given year

eling, we also show cost estimates based on the single largest
observed wildfires in the study period for each country.
Hence, the cost estimates come from multiplying the maxi-
mum events in Table 2 by the corresponding €/ha estimates
derived from the existing literature. The largest wildfire event
leads to an economic loss estimate of 218–589 million € for
Portugal, 105–283 million € for Spain, 23–101 million € for
Italy, and 56–399 million € for Greece for a specific event of
that magnitude.

5 DISCUSSION

5.1 Implications

With the quantification of country-level risk of extreme wild-
fires, we are able to contribute to the empirical evidence to
information-based decision making regarding forest manage-
ment for various stakeholders. Providing reliable estimates

of return periods arguably has important implications for
government agencies looking to adjust budget planning for
fire prevention measures and suppression spending. Further-
more, the quantification of large fire risk through return
levels can provide useful information for landowners regard-
ing long-term investment and forest management choices,
or for other institutions such as reinsurance companies.
Moreover, the knowledge of the wildfire risk could also
be used to increase awareness and thus may affect deci-
sion making at the individual level (i.e., location choices,
property protection measures, investment in insurance asso-
ciated with wildfire damage). Converting the return-level
estimates of extreme wildfires in Mediterranean Europe
to monetary values, as we did here, arguably provides
an important tool for policy-related cost–benefit analyses.
For example, the associated monetary values with a return
period event can assist a government in the budget allo-
cation of both fire prevention and suppression spending
by comparing their expenditures with the expected losses
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F I G U R E 1 0 Country-level economic loss
estimates for the 20-year return period

particularly for extremely large wildfires over a specific time
period.

Examining the specific results, it is insightful to first reflect
on the implications of the different distributions of extreme
wildfires estimated for the individual countries in our anal-
ysis. Most importantly, we find that these rare events follow
a Fréchet-type distribution for Portugal, Spain, and Greece.
This is in line with regional estimates within Portugal by De
Zea Bermudez et al. (2009) and Scotto et al. (2014). Out of
the three limit-type distributions, the Fréchet distribution has
the heaviest tail indicating that the probability of rare events
is much higher than commonly perceived (i.e., “extreme”
wildfires are not as surprising). However, although the point
estimate of the shape parameter is very similar for Spain
and Italy, it is not found to be significantly positive for
Italy, implying that the respective extremes follow a Gumbel
distribution characterized by a lighter tail than for the other
Mediterranean countries. Thus, extremely large wildfires are
expected to occur less often in Italy than in Spain. Overall,
we find the largest point estimate of the shape parameter of
0.58 for Greece, followed by a value of 0.52 for Portugal.
This indicates that the probability of extremely large wild-
fires is highest in Greece when only the shape parameter of
the extreme event distribution is considered (i.e., excluding
the mean and the spread of the distribution). Notably, both
the Fréchet and the Gumbel distribution do not converge to
an upper limit but are unbounded. As a matter of fact, the
extremes, and thus the associated losses, characterized by the
Fréchet distribution, are limitless.

The return-level results derived from the inclusion of all the
three parameter estimates (location, scale, and shape) indi-
cate the highest risk of extremely large wildfires across all
evaluated return periods in Portugal and the lowest risk in
Italy. Comparing Greece and Portugal, the return level for up
to about 3-year events is higher in Spain, but for any return
period above, it is found to be higher for Greece. For instance,
the individual country return levels for 10-year return period
events are 50’338 ha (PT), 33’242 ha (GR), 25’165 ha (ES),
and 8’966 ha (IT). For wildfires, which are expected to occur
on average once in 20 years, the return levels are estimated at

75’256 ha (PT), 51’764 ha (GR), 34’017 ha (ES), and 10’890
ha (IT).

Our data do not suggest that the FWI, which captures
relative fire danger, affects the distribution of wildfire occur-
rence or their magnitude. Ideally, we would have a much
longer time series, which would make it possible to detect
climatological changes. This means our results should be
interpreted with care. In this regard, it must be pointed out
that while many climate change projections suggest that
Southern Europe faces an increasing risk in extreme wild-
fires (Bowman et al., 2017; De Rigo et al., 2017; Turco
et al., 2018), Batllori et al. (2013) indicate that fire activ-
ity predictions can be highly divergent particularly regarding
precipitation-related variables. Notwithstanding the wildfire
risk driven by future climate conditions, evidence also sug-
gests that the risk associated with human exposure may
increase especially with projected population growth in fire-
prone regions (Knorr et al., 2016; Turco et al., 2019). Even
though we did not find evidence supporting a time trend in
our study, it is crucial to continue efforts to better understand
the risk associated with wildfires for Mediterranean Europe.
Going forward, more comprehensive and harmonized data
are needed to evaluate future extreme wildfire risk scenar-
ios incorporating climatic and demographic components as
well as more detailed information on the individual fires
(e.g., duration, severity, ignition point, cause) in order to
distinguish which factors have the potential to influence the
extremely large fires.

5.2 Limitations

Although predictions of events not actually observed in the
historical data are common with the use of EVT meth-
ods, we need to emphasize that our estimates are based on
data for a particularly short time period of 14 years. In this
regard, encounter probability13 suggests that the probability

13 The encounter probability Pe = 1 − (1 −
1

T
)n is the likelihood of observing a T-return

period event within a specific time period denoted by n.

 15396924, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.14075 by U

niversity of B
irm

ingham
, W

iley O
nline L

ibrary on [13/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



16 MEIER ET AL.

of observing a 5-year event given our data is approximately
96%, a 10-year event 77%, a 20-year event 51%, and a
50-year event 25%, and only our 10- and 20-year event esti-
mates are based on events witnessed in the sample period.
The short time period of data may also play a role in
the nonstationarity results. Although modeling the threshold
excesses conditional on factors potentially influencing the
distribution of extreme wildfires does lead to an improved
capture of the empirical data for all countries but Greece,
none of the models significantly changed the extremal dis-
tribution. Whereas it is not given that the included variables
would lead to a change in the distribution of extremely large
wildfires with a prolonged time period, a potential underly-
ing dependence on factors driving or affecting extreme BA is
more difficult to detect in shorter periods of analysis.

The coupling of our estimated BA return levels with exist-
ing economic loss figures also comes with strong caveats,
particularly with regard to regional and temporal transfers
of monetary estimates, as well as through the distinct study
designs incorporating disparate economic variables in the
respective loss calculations. For example, only Barrio et al.
(2007) and Butry et al. (2001) include any estimation of
wildfire-related health costs, which are of significant mag-
nitude and thus, of rising concern as pointed out in Black
et al. (2017). Furthermore, even though Merlo and Croitoru
(2005) address country-level estimates of indirect use, option,
bequest, and existence values of forests in general, they are
not applied to the BA scenario and only the estimate pro-
vided by Safford et al. (2022) includes ecological (vegetation
and wildlife) damage. Moreover, as the monetary valuation of
indirect costs poses great challenges, besides the impediment
imposed by oftentimes limited data availability particularly
driven by methodological restraints, many loss calculations
focus on direct impacts. However, the indirect costs are likely
to exceed the reported costs as argued in CCST (2020). Thus,
our calculations are conservative and the considered losses
are likely to represent only some fraction of the actual eco-
nomic impact. Nevertheless, our results still provide some
indication of the serious implications wildfires have for many
other sectors that they can reach far beyond the commonly
assessed impacts.

In terms of examining the role of covariates in potential
changes in the distribution of extreme wildfires, the FWI may
not be the most suitable variable to capture those. Jiménez-
Ruano et al. (2019) conclude that although the FWI provides
useful information regarding seasonal variability and near-
future trends, it is not necessarily the most advisable index
to detect long-term trends. In this regard however, Pérez-
Sánchez et al. (2017) do identify the FWI as the most suitable
index for fire-risk ignition and spreading in semiarid areas
such as the Iberian Peninsula. Likewise, De Rigo et al. (2017)
point out that the FWI is well suited as a harmonized index
over different regions for weather-driven fire danger, and
Fernandes et al. (2016) observe that particularly large fires
exhibit stronger responses to the severity of the fire weather.

With respect to the population density covariate, Bowman
et al. (2017) demonstrate that large destructive wildfires are

most likely to occur in a two-sided bounded area that excludes
either very sparsely or densely populated areas, and thus
highlights the underlying complexity of this interdependence.
On this account, our study design calculating the mean pop-
ulation density around the center of a BA, might arguably
be an unsatisfactory way to capture this intricate relationship,
given there exists one for the extremely large fires in the stud-
ied geographical area. Additionally, we do see that many of
the population density values for the extreme wildfires in our
data set lie within a narrow range leading to small explana-
tory power of the variable. Having information on the exact
ignition location of a fire might contribute to the evaluation
of the potential association between population density and
extreme wildfire occurrence.

Regarding the land cover type, we face a slightly differ-
ent problem as it is implemented as a categorical variable.
As we look at the extremes, we focus on solely on 42–62
observations for each country, and thus, we need to strictly
limit the number of categories to forego having only very
few wildfires for each of those. Therefore, we categorize the
extreme wildfires into four main country-specific land cover–
type classes, and thereby sacrifice some of the specificity.
Comparable drawbacks arise from the categorical covari-
ates capturing seasonality as the extremely large wildfires
are assigned to one of the four seasons. However, in this
case, it is less a problem of simplification but rather one
of unequally distributed observations per category, particu-
larly as “off-wildfire season” categories arguably contain very
few observations.

For the specific case of France, we note that compared to
the other countries the data are more challenging to work
with. Although it is typical for all the Mediterranean coun-
tries that certain years stand out with more severe fire seasons,
this is particularly pronounced for the wildfire records in
France with more than half of the observations coming from
2019. This in turn leads to a comparably high dependence
of the extreme observations as many of the largest wildfires
are recorded in a single year. Furthermore, in contrast to the
other European Mediterranean countries, France geographi-
cally expands much further North, and is thus characterized
by more diverse land cover types. Hence, the finding that a
specific land cover type, namely, Sclerophyllous vegetation,
leads to a positive shift in the distribution of the extremes
might indicate that this is the vegetation type most dominant
at the Mediterranean coastline and may be correlated with
extreme wildfires.14

6 CONCLUSION

In this article, we assemble a high-quality homogeneous up-
to-date geospatial data set for Mediterranean Europe and

14 Although the aim of this article is to model and compare country-level data, future
research may benefit from regional modeling, which may be particularly useful for
the case of France where there is considerable heterogeneity in wildfire occurrence
primarily between the North and the South of the country (and Corsica).
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perform a cross-country risk analysis of extreme wildfires
defined by BA. Although modeling a variety of covariates
with the potential to affect the extremal distributions, we
find no evidence for nonstationarity in the observed study
period. Furthermore, the threshold excesses for France in the
data set do not fulfill underlying assumptions to carry out
a sound EVT analysis, and are thus only included in the
descriptive part. In our results, we find the highest risk for
extremely large wildfires in Portugal, followed by Greece,
Spain, and Italy. We estimate the return levels for 5-, 10-, 20-,
and 50-year return period events and combine our outcomes
with the existing literature on economic costs. The robust
estimation of extreme wildfire events underlying an evidence-
based risk assessment is arguably beneficial for governmental
bodies, reinsurance institutions, landowners, and residents in
wildfire-prone areas providing support in information-based
decision-making processes.

We emphasize the need to build international homo-
geneous comprehensive databases with high spatial and
temporal resolution regarding wildfire occurrence (ideally
including point of origin, duration, and cause) but also
dedicated to associated measures such as prevention and sup-
pression spending, as well as individual fire event impact on
ecosystems, infrastructures, properties, and people. Accom-
panying the extensive WUI with exposed communities
particularly at the highly populated coastal areas of Southern
Europe and vulnerable ecosystems across the region, extreme
wildfire events continue to pose a substantial environmental
hazard for Mediterranean Europe in the future.
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