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Abstract To foster early bowel cancer diagnosis, a
non-invasive biomechanical characterisation of bowel
lesions is proposed. This method uses the dynamics
of a self-propelled capsule and a two-stage machine
learning procedure. As the capsule travels and encoun-
ters lesions in the bowel, its exhibited dynamics are
envisaged to be of biomechanical significance being a
highly sensitive nonlinear dynamical system. For this
study, measurable capsule dynamics including acceler-
ation and displacement have been analysed for features
that may be indicative of biomechanical differences,
Young’s modulus in this case. The first stage of the
machine learning involves the development of super-
vised regression networks including multi-layer per-
ceptron (MLP) and support vector regression (SVR),
that are capable of predicting Young’s moduli from
dynamic signals features. The second stage involves an
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unsupervised categorisation of the predicted Young’s
moduli into clusters of high intra-cluster similarity but
low inter-cluster similarity using K-means clustering.
Based on the performance metrics including coeffi-
cient of determination and normalised mean absolute
error, the MLP models showed better performances
on the test data compared to the SVR. For situations
where both displacement and acceleration were mea-
surable, the displacement-based models outperformed
the acceleration-basedmodels. These results thusmake
capsule displacement and MLP network the first-line
choices for the proposed bowel lesion characterisation
and early bowel cancer diagnosis.

Keywords Bowel cancer · Self-propelled capsule ·
Biomechanical properties · Signal analysis · Machine
learning

1 Introduction

Bowel cancer (BC), also referred to as colorectal can-
cer, affects the large bowelwhich consists of both colon
and rectum. It is widely believed to have emerged from
the adenoma-carcinoma sequence duringwhich benign
(i.e., adenoma) lesions mutate to become malignant
(i.e., adenocarcinoma) and might also spread to other
parts of the body, like the liver or lungs. BC ranks as
the second most deadliest cancer accounting for about
a million deaths globally [22] with new cases expected
to reach 3.2 million in 2040 [67]. In the UK, about
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268,000 persons are currently living with BC while
about 43,000 new cases and 16,500 deaths are recorded
every year. 94% of these new cases are diagnosed in
people over the age of 50 years while the remaining
6% amounts to about 2,600 cases in people under the
age of 50 [9,12]. In England, the five-year survival rate
ofBCstood at about 58.7% for diagnosismade between
2014-2018and followedup to2019 [49].Between2013
and 2017, England cancer treatment data showed that
patients have 98%, 93%, 89% and 44% survival rate
within a year of treatment, if diagnosis is made at Stage
I, II, III and IV, respectively [6]. The afore-stated thus
makes early diagnosis very crucial to BC treatment and
survival.

Several methods are currently employed for BC
screening, and these include rectal examination, fae-
cal immunochemical test, complete blood count, com-
puted tomography colonography, magnetic resonance
imaging, positron emission tomography scan and
endoscopy [13]. Results from some screenings can
sometimes point to other diseases; hence, endoscopy
which could be colonoscopy, sigmoidoscopy or cap-
sule endoscopy is often the gold test for BC diagno-
sis. Colonoscopy examines the whole inside of large
bowel while sigmoidoscopy examines just the lower
part, both using a flexible tube with light and camera at
its end. The tube is passed into the bowel through the
back passage and it is gently pushed through. Inside
pictures of the bowel are then viewed on a TV monitor
while notable observations are being recorded. With
these methods, advanced stage cancer lesions are eas-
ily detected by the endoscopist while early stage can-
cers are quite difficult and burdensome to detect as
they often appear as subtle mucosal lesions [19]. Due
to increasing demand, associated discomfort, risk of
infection, the difficulty in advancing far into the bowel
and the vigorous training requirement of colonoscopy,
alternative and less invasive capsule endoscopy were
developed [73]. Capsule endoscopy (CE) makes use of
a wireless pill sized video camera to examine the inside
of the bowel. The patient swallows the capsule con-
taining a small disposable camera which takes series
of pictures as it travels through the digestive tract. The
pictures are either stored on-board or are wirelessly
transmitted to a worn external recorder. CE has led to
increased patients participation in BC screening [24]
and has aided the detection of polyps that are greater
than 6mm [35].

Amongst the current clinically available CEs, we
have those propelled by peristalsis and those propelled
using external magnetic drag force. The peristalsis-
based capsule lacks flexibility in their control and take
about 10 to 12h to traverse the entire gastrointesti-
nal tract. Examples include PillCam from Medtronic
Ltd [45], Capsocam plus from CapsoVision Inc· [14],
C-Scan cap from Check-Cap Ltd [16] and the Cap-
sules Endoscopy Systems from Jimhans Medical [32].
The magnetic prototypes are propelled by the interac-
tion between an embedded inner magnet and an exter-
nal magnetic field from a coil or permanent magnet
[68]. To a certain degree, they allow for some con-
trol, however, it is yet to be ascertained if the external
drag force poses danger to the delicate intestinal wall.
They are sometimes known to be limited to the patient’s
body mass index [4]. Examples include the EndoCap-
sule fromOlympus Corp. [50], OMOMrobotic capsule
from Jinshan Group [33], Mirocam from IntroMedics
Co., Ltd [30], Navicam from AnX Robotica Corp. [4],
and Dasheng Capsule from JIFU Medical Technology
Co., Ltd [31]. Another propelling mechanism is the
use of embedded actuators with locomotive legs [57],
and this is sometimes combined with magnetic field
to form the hybrid capsules [62]. However, a major
drawback to commercial locomotive capsules is that
the independently moving legs can be endangering to
the gastrointestinal tract while for the hybrid capsules,
the required power source is difficult to be integrated
into a swallowable pill.

To address the drawbacks of existingCEs, the Exeter
Small-Scale Robotics Laboratory at the University of
Exeter is currently developing a self-propelled vibro-
impact capsule (SP-VIC) system [38]. Using internally
generated vibro-impacts, the capsule is capable of both
forward and backward progressions that allow physi-
cians to revisit areas of interest during endoscopy. The
driving and frictional forces are very minimal and thus,
pose no treat to the intestinal wall. During a typical pro-
cedure, the SP-VIC is operated in two modes, progres-
sion and diagnostic modes. In progression mode, the
capsule is driven to places of interest within the bowel,
while in diagnostic mode, it is stabilised on a lesion of
potential concern for further diagnosis. In both modes,
the capsule is guided through the bowel using an exter-
nal coil panel while relying on the live feedback from
an affixed camera. At each point, the prevailing mode
is dependent on the parameters of the coil (i.e., forcing
parameters). The clinical illustration of the proposed
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early bowel cancer detection is presented in Fig. 1. This
novel approach is expected to foster the detection of
hard-to-visualise early bowel cancers for the purpose
of improving treatment and increasing survival rate.

The rest of this paper is organised as follows. Sec-
tion2 discusses the current use of machine learning in
BC while Sect. 3 introduces the mathematical model,
operational modes and accompanying dynamics of the
capsule. In this section, measurable capsule dynamics
and extractable features are also described for the sim-
ulation and experimental prototype of the capsule. In
Sect. 4, the preliminaries of the utilised predictivemod-
els are discussed. The results and performances of the
two-stage machine learning models in characterising
the lesion are presented in Sect. 5 for both simulation
and experimental data. Derivable conclusions about the
entire study are presented in Sect. 6.

2 Machine learning and bowel cancer diagnosis

Machine learning (ML) as a sub-field of artificial intel-
ligence, uses computational algorithms to find patterns
from large-scale data and build models that can be used
for future prediction and forecasting.ML thus provides
computers with the ability to learn and improve from
data without being explicitly programmed. As earlier
stated, most of the currently existing BC screening
methods rely on visual examination and often produce
huge volume of images that can be cumbersome and
time consuming for the endoscopists to analyse. With
the recent advancement in computer image processing,
ML—especially deep learning—has been integrated
into BC screening for easy interpretation and improved
accuracy. While relying on shape, colour, and textural
information, convolutional neural networks have been
widely used for the detection and classification of BC
from endoscopy images and videos [56,59,77]. Other
artificial networks such as K-Nearest Neighbour, Sup-
port Vector Machine, Random Forest, XGBoost, Mul-
tilayer Perceptron, Tree Classifiers and Naive Bayes
have been used with extractable image features, vita-
min D levels and laboratory data like complete blood
counts have been used to do the same [7,36,55,58,75].
In BC treatment, aside from being used for diagnosis,
ML has also found use in treatment response monitor-
ing [21,60], prepared bowel quality assessment [71]
and survival rate prediction [72].

Over the years, the integration of ML into BC diag-
nosis has evolved into two major components, the
computer-aided detection and the computer-aided diag-
nosis systems [65]. Computer-aided detection systems
are useful for locating lesions in the endoscopy images
while computer-aided diagnosis systems are useful for
characterising the lesions into benign and malignant
lesions. A major drawback to the use of existing BC
screening methods and their ML-based models for
early BC detection is their reliance on visual examina-
tion.Diagnosis is often dependent onpost-development
or late-stage features, thus impeding efforts to improve
BC treatment and survival rate via early detection.

The early stage of BC development has been known
to be characterised with changes in the biomechani-
cal properties of affected tissues [51]. These character-
istic and intrinsic changes are however obscured and
unquantifiable to the endoscopists using visual exami-
nation. A typical biomechanical property that tends to
increasewhen bowel lesions become infectedwith can-
cer is stiffness [2,20]. This increase has been attributed
to the overproduction of collagens, pathological colla-
gen crosslinking and alignment of fibres [11]. Being a
measure of resistance to deformation under an applied
force, stiffness has often been denoted asYoung’smod-
ulus (E) in most literature. Stiffer materials tend to
have higher E-values and will only elastically change
their shape slightly under an applied load. Studies
such as [10,20,34] have demonstrated the use of tis-
sue biomechanical changes including stiffness to dis-
tinguish between healthy and cancerous bowel tissues.
These previous studies however had to carry out inva-
sive endoscopic biopsy and rigorous soft tissue charac-
terisation ex-vivo. In this current study, an AI-assisted
and non-invasive dynamic method of in-vivo soft tis-
sue characterisation is investigated for the purpose
early BC detection. The proposed method explores
biomechanical tissue characterisation using the exhib-
ited dynamics of the SP-VIC system [38] travelling and
encountering lesions in the bowel. On encountering a
lesion, the capsule’s responses become greatly influ-
enced by the surrounding tissue’s biomechanical prop-
erties, including the mucosal friction and elastic mod-
ulus. Based on this, the measurable capsule dynamics
are envisaged to carry intrinsic information about the
biomechanical properties of the encountered lesions.
However, with no established mathematical relation-
ship between the measurable dynamics and the tissue’s
biomechanical properties, the present study utilises a
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Fig. 1 Clinical illustration of the proposed early bowel can-
cer detection, where a capsule prototype (26mm in length and
11mm in diameter) was designed for experimental testing. The
prototype contains a T-shaped permanent magnet for vibration,
a helical spring for reverting the magnet’s position and a capsule
shell with a primary and a secondary constraints for restricting

the vibration of the magnet. Once the magnet is excited by an
external coil using a square wave signal, it may impact with the
constraints, so the prototype can progress either forward or back-
ward. During endoscopic procedure, a clinician will hold the coil
panel above the capsule, and the capsulewill be excited and travel
from the patient’s rectum to the cecum for examination

data driven approach to extrapolate the relationship.
Measurable dynamic variables of the capsule travel-
ling and encountering lesions in the bowel are anal-
ysed for features that may be indicative of changes in
their biomechanical properties. Obtained features are
used to develop artificial intelligence models that are
capable of biomechanical tissue characterisation.

3 The self-propelled vibro-impact capsule

The drawbacks of peristalsis dependent CEs have been
stated in Sect. 1 and these include long travelling hours
and lack of flexibility. Also, for those that depend on
external magnetic drag, manoeuvring can be difficult
and patients under the age of 22 years or with body
mass index greater than 38 are often not recommended
[4]. The cohesion and dragging of the capsule against
the intestinal walls may result in intestinal tears and
wears while larger body mass may mask the magnetic
interactions. To overcome these limitations while also
enabling bettermanoeuvringofCEs, theSP-VIC [38] is
currently being developed by the Small-Scale Robotics
Laboratory at theUniversity ofExeter. The capsule nav-

igates the bowel via series of vibro-impacts resulting
froman externally excitedmagnetic innermass situated
in the capsule [38,39]. The principle of utilising vibro-
impacts as driving mechanism in engineering systems
has been in existence for a while and was first iden-
tified in 1928 at the University of Gottingen in Ger-
many when a vibratory driver was used to install tim-
ber piles [63]. Recent applications are seen in ground
moling [54,63], percussive drilling [52] and pipeline
inspection [69]. From the nonlinear dynamics point
of view, the major differences between the SP-VIC
and the ground moling (or percussive drilling) system
are twofold. (1) The ground moling system, such as
[53,54], requires a static and a dynamic force to be
applied to the system for progression, while the SP-
VIC only requires a dynamic force. (2) The moling
system has a unidirectional locomotion, while the SP-
VIC has a bidirectional locomotion. According to [37],
the SP-VIC has more complex phenomena and is more
challenging to be controlled. However, both systems
achieve their best performances in term of progression
rate at their period-one motions [39,53].
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Fig. 2 Physical model of the SP-VIC system [1] and an
approached bowel lesion with a width wp and height h p

3.1 Physical model of the SP-VIC

The physical model of the SP-VIC system is shown in
Fig. 2, having a cylindrical bodyof length L , radius of R
and massmc. It is driven by an externally excited mag-
netic inner mass mm which vibrates to impose impacts
on the primary and secondary constraints of stiffnesses
k1 and k2, respectively. A damped spring with stiffness
k and damping c connects mm to the capsule shell. k1
and k2 are separated frommm bygaps g1 and g2, respec-
tively. The conceptual design shown in Fig. 1 shows a
T-shaped permanent magnet acting as the inner mass
(mm) and a helical spring that acts as the damped spring
(k) that reverts the inner mass position.

The magnetic inner mass is subjected to periodic
excitations using an external non-sinusoidal force Fe,
in this case a square waveform signal, and given as

Fe =
{
Pd, mod (t, T ) ∈ [0, DT ],
0, otherwise,

(1)

where Pd, T and D ∈ [0, 100%] are respectively
amplitude, period, and duty cycle representing the exci-
tation force parameters, andmod (t, T ) indicates t mod-
ulo T .

The capsule is respectively driven forward or back-
ward when the inner mass impacts the forward and
backward constraints k1 and k2. Based on the cap-
sule’s free-body diagram and acting forces, its dynam-
ics while traversing the bowel can be modelled as [70]

{
mm ẍm = Fe − Fi ,

mc ẍc = Fi + Fx + Ff ,
(2)

where Fi represents the interactive driving force
imposed on the capsule by the impacting inner mass
and it is given as

Fi =
⎧⎨
⎩
kxr + cvr + k1(xr − g1), if xr > g1,

kxr + cvr , if − g2 � xr � g1,

kxr + cvr + k2(xr − g2), if xr < −g2.

(3)

where xr = xm − xc and vr = ẋm − ẋc, and both rep-
resent the relative displacement and velocity between
the inner mass and the capsule shell, respectively. Fx
is the horizontal reaction from the lesion while Ff is
Coulomb friction accounting for the tangential contact
force between the capsule shell and the lesion. Provided
the vertical reaction force, Fy on the capsule from the
tissue is cancelled out by gravity G, the overall fric-
tional force is given as

Ff =
⎧⎨
⎩

−sign(ẋc)μG, if ẋc �= 0,

−sign(Fi + Fx )μG, if ẋc = 0 & |Fi + Fx | ≥ μG,

−Fi − Fx , if ẋc = 0 & |Fi + Fx | < μG,

(4)

where μ is the frictional coefficient and Ff has been
proven to be a good representation of the friction
between the capsule and the intestinal walls [25]. A
detailed study of Fx is outlined in Yan et al. [70].

While operating the SP-VIC, Pd, T and D are often
alternated in order to impose either the diagnostic or
progression mode. In diagnostic mode, the parame-
ters are carefully selected such that mm is restricted
to forward impacts that causes the capsule to move
but sticks and vibrates on any encountered lesion. In
progression mode, utilised parameters produce either
forward or backward impacts that are strong enough to
respectively cause the capsule to move either forward
or backward without being stuck at lesion points.

3.2 Measurable dynamics and feature extraction

3.2.1 Simulation capsule dynamics

For a dynamically impacting engineering system like
the SP-VIC, measurable dynamical variables include
displacement (x), velocity (v) and acceleration (ẍ) sig-
nals. Their measurement is often considered to be valu-
able for understanding the prevailing dynamics of such
system. For simulation, it is possible to measure all the
dynamic variables including x , v and ẍ . However, this
may not be possible during experiment due to restricted
size and space or unavailability of necessary sensors.
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Table 1 Capsule
parameters for the dynamic
simulation

Parameters Symbols Units Values

Capsule length L mm 26

Capsule radius R mm 5.5

Capsule mass mc kg 0.00167

Inner mass mm kg 0.0018

Primary stiffness k N/m 62

Secondary stiffness k1 N/m 27900

Tertiary stiffness k2 N/m 53500

Gap to k1 g1 mm 0.8

Gap to k2 g2 mm 0.8

Damping c Ns/m 0.0156

Duty cycle ratio D – 0.5

Excitation period T s 0.05

Lesion height hp mm 2

Lesion width wp mm 8

Excitation amplitude Pd mN 12

Table 2 Simulated lesion
categories and ranges of
E-values

Categories Ranges (kPa)

SimDat-1 SimDat-2 SimDat-3

S1 10–15 10–15 20–25

S2 35–40 35–40 45–50

S3 60–65 60–65 70–75

S4 85–90 85–90 95–100

S5 110–115 110–115 120–125

S6 135–140 135–140 145–150

S7 160–165 160–165 170–175

S8 180–185 180–185 –

Total samples 1480 640 567

For the SP-VIC, xc and ẍc will be explored during simu-
lation but only xc will be explored for the experimental
validation due to the above mentioned restrictions.

Being a highly sensitive non-smooth dynamical sys-
tem, resulting xc and ẍc signals are expected to have
intrinsic but complex nonlinear correlation with the
capsule’s operating parameters and the conditions of
its surrounding environment. It is on this basis that the
dynamic signals are proposed for the biomechanical
characterisation of encountered lesion using ML mod-
els which are capable of modeling complex nonlinear
problems [5]. The simulation signals were generated

by numerically solving Eq. (2) using the Runge-Kutta
method of solving differential equations at a constant
step-size. During the numerical solution, the Young’s
modulus (E) of the encountered lesions were varied
while the capsule’s forcing parameters were kept con-
stant as listed in Table 1.

Three sets of data listed in Table 2, SimDat-1,
SimDat-2 and SimDat-3 representing dynamic capsule
signals from three different patients were simulated.
Each patient’s data consisted x , v and ẍ measurements
resulting from the capsule’s interaction with different
categories of lesions. SimDat-1, SimDat-2 andSimDat-
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Fig. 3 E-values variation in the three sets of simulation data

3 differ based on the ranges of E-values defining each
lesion category as well as the step-size at which the
ranges were sampled, see Table 2 and Fig. 3. The E-
values ranges for SimDat-1 were sampled at a step-
size of 0.027 while those of SimDat-2 and SimDat-3
were sampled at 0.062. This way we ensured that no
same E-value is repeated in any of the three data set.
The remaining parameters of the capsule as defined in
Table 1 were carefully selected to ensure that the inner
mass only exhibit forward impacts which do not cause
the capsule to cross over the lesion. In all, 1480, 640
and 567 signal samples were simulated for SimDat-
1, SimDat-2 and SimDat-3, respectively, and the inner
mass was seen to relatively exhibit period-one motions
with one impact per period of excitation. Typical dis-
placement and acceleration signals of the inner mass
and the capsule are shown in Fig. 4 alongside their
representative phase portrait on the x–v plane. The
impacts of the inner mass on the forward constraint
are well obvious from the acceleration signals shown
in Fig. 4b. As expected, the impacts decelerate the inner
mass but accelerate the entire capsule, and the two phe-
nomena are well represented as peaks in the accelera-
tion signals. For the simulated data, the imposed cap-
sule acceleration was seen to be almost equal to the
inner mass deceleration as the amplitudes of both phe-
nomena showed correlation coefficients, R ≥ 0.99.

The variation of xc and ẍc signals for different E-
values are presented in Fig. 5. The differences in the
E-values were more observable from the xc signals
compared to ẍc signals, especially for the lower E-
values. The capsule showed higher displacement mea-
surements for softer lesions and lesser displacement
measurements for the stiffer lesions, see Fig. 5a. This
is likely due to its ability to impose a greater push on
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Fig. 4 a Typical displacement and b acceleration signals of the
inner mass and the capsule alongside their representative phase
portrait on the x–v plane. The solid red lines are the impact
boundary representing the locations of the forward and backward
constraints. The red circle indicates the position of the system
after each period of oscillation thus implying period-one oscil-
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Fig. 5 Variation of a xc and b ẍc for different E-values
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Fig. 6 a Schematic and b photograph of the experimental setup for a prototype SP-VIC. The impacts of the T-shaped magnetic inner
mass on the forward and backward constraints aids the capsule’s locomotion

Table 3 Resulting
E-values of the Ecoflex
materials mixed with
different percentages of
thinner

Ecoflex Thinner (%) E (kPa) Categories

00–10 0 79.8 E3

6 68.8 E1

00–30 0 83.3 E4

6 74.1 E2

00–50 0 120.4 E6

6 110.1 E5

the softer lesions compared to the stiffer lesions pro-
vided an equal driving force is used. For the parame-
ters defined in Tables 1 and 2, the relative motion of
the capsule was found to exhibit period-one oscillation
with one forward-impact.

3.2.2 Experimental capsule dynamics

To validate the use of the SP-VIC for dynamic biome-
chanical lesion characterisation, a laboratory experi-
ment whose schematics and set-up are described in
Fig. 6 was carried out. The prototype capsule described
in Fig. 1 is made to move and vibrate on synthetic
lesions lying along an intestine-like Ecoflex material
supported in an half-opened tube. Themovement of the
capsule is made possible by the impact actions of the
T-shapedmagnetic innermass on the forward and back-
ward constraints. The impacts are produced as a result
of the interaction between the excited magnetic inner
mass and the restoring helical spring. The inner mass
excitation is induced intermittently by an on-again-off-
again external electromagnetic field �B from the coils.
A signal generator which produces pulse width mod-

ulation signals (in this case square wave signals) via a
power amplifier is used to power the coil. The amplifier
controls the voltage to the coils producing the external
electromagnetic field via the DC power supply unit.
The intestine-likeEcoflexmaterial supported in anhalf-
opened tube is placed along the central axis of the coils
alongside the prototype SP-VIC. Once the magnetic
inner mass is excited by the external electromagnetic
field using the square wave signal, it can either impact
the forward or backward constraints, causing the cap-
sule to either progress forward or backward. As the
capsule traverses the bowel, its displacement (xc) being
the only experimentally measurable dynamics is mea-
sured using a laser displacement sensor. Hence, as ear-
lier stated, only xc signals resulting from the capsule’s
interaction with the synthetic lesions were utilised for
the current experimental validation.

Ecoflex 00-10, 00-30 and 00-50withmanufacturer’s
E-values of 55.16, 68.95 and 82.74 kPa respectively
were utilised in fabricating the synthetic lesions. In an
attempt to further increase the possible number of sam-
ples and the ranges of experimental E-values, another
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Fig. 7 Typical experimental xc signals from the capsule inter-
acting with lesions mixed with a 0% and b 6% thinner

set of lesions were fabricated by mixing each of the
Ecoflexmaterials with 6% byweight of thinner. The E-
values of the fabricated lesions as found via quasi-static
deformation test using INSTRON 3367 are presented
in Table 3. For each of the Ecoflex materials, lesions
resulting from their mixture with thinner showed low-
ered E-values.

The capsule’s operating parameters were kept the
same as those reported in Table 1 except for Pd. Given
that the distance between the endpoint of mm and the
mid-width of the coils is xmd, Zhang et al. [74] estab-
lished that the exerted Pd is dependent on �B and xmd.
For the coil utilised in this study, they established a
nonlinear relationship between Pd and xmd and they
verified it analytically (using established mathematical
formula), numerically (using ANSYS Maxwell) and
experimentally (using a weighing scale). Based on this
established relationship, for xmd = 35mm as used in
this study, a Pd of 21.64 mN is estimated to be exerted
on mm.

Bymeans of repetition, 600 experimental data (Exp-
Dat) were collected for the six synthetic lesions using
the set-up in Fig. 6b. 70%of these data (ExpDat-1)were
used for training the experimental MLP and SVRmod-
els while the remaining 30% (ExpDat-2) were used as
the out-sample testing data. Typical xc signals resulting
from the capsule’s interactionwith the synthetic lesions
of different E-values are shown in Fig. 7.

3.2.3 Dynamic feature extraction and selection

Dynamic systemswith real-life applicationusually pro-
duce timestamped data which are initially large and
unwieldy. Aside requiring huge computing resources
and time, they often produce poor performing ML
models. To produce improved and robust ML mod-
els, feature extraction and selection are employed as
preliminary techniques to compact the initial data into
a lower dimensional space. Feature extraction trans-
forms the original raw data into numerical features that
are representative of the central information carried
in the original data set. Feature selection on the other
hand, selects a subset of the extracted features that best
map the response variable depending on the utilised
selection algorithm. This is because too many features
may increase computational cost and as well degrade
the performance of the ML model even though they
bear relevant information about the response variable.
For continuous regression problems, the final features
should be quite representative of the response vari-
able(s) and be more discriminating for classification
problems. Feature extraction can be manual, requir-
ing the calculation and identification of relevant fea-
tures for the problem or automated, requiring the use
of specialised algorithms or deep networks to auto-
matically extract features from signals or images with-
out human intervention [42]. For this study, a manual
feature extraction that yielded forty-one features was
carried out. The features include time and frequency
domain statistical features, nonlinearity features and
waveform features as listed in Table 4.

Each feature in Table 4 is expected to be indica-
tive and representative of the biomechanical variations
in the lesions, hence, they were further analysed to
identify those that best indicate biomechanical vari-
ations. Coefficient of determination (R2) from corre-
lation analysis and average silhouette value (AvSlh)
from silhouette analysis were used to evaluate the fea-
tures. R2 was used to evaluate the proportion of the
variance in E-values that is explained by each feature
value [47]. R2 ranges between 0 and 1 and features
that showed higher R2 values on correlation with the
targeted E-values stand the chance of being better pre-
dictors compared to those with lower R2 values. Sil-
houette analysis on the other hand,was used to examine
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Table 4 Extracted dynamic signal features

Time domain features: 15. Root-sum-of-squares (RSSq)◦� 29. Mean frequency◦

1. Mean◦ 16. Crest factor◦ 30. Median frequency◦

2. Minimum◦ 17. Mean absolute value◦ 31. Band power

3. Maximum◦ 18. Form factor◦� 32. Occupied bandwidth

4. Standard deviation◦� 19. Impulse factor◦ 33. Power bandwidth

5. Range 20. Mean square root of absolutes◦ 34. Peak amplitude

6. Kurtosis◦ 21. Kurtosis factor◦ 35. Power spectral density

7. Variance◦� 22. Margin factor◦ Nonlinearity features:

8. Skewness◦� 23. Skew factor◦� 36. Lyapunov exponent

9. Covariance◦� 24. Shape factor◦� 37. Correlation dimension

10. Mean normalised frequency◦ 25. Signal-to-noise ratio (SNR) � Waveform features:

11. Avg cumulative maximum◦ 26. Total harmonic distortion (THD) 38. Approximate entropy

12. Avg cumulative minimum◦ 27. SNR-to-THD ratio� 39. Mean of peaks◦

13. Maximum absolute value-to-RMS ratio◦ 28. Clearance factor◦ 40. Average peak separations

14. Root-mean-square (RMS)◦ Frequency domain features: 41. Area under curve◦

the potential of the features to pair-wisely partition the
data into clusters that match their actual categories (see
Table 2). The silhouette value for i th data point (Si )
is a measure of how similar the feature value for that
data point is to other feature values in the same cluster,
compared to feature values in neighbouring clusters.
Silhouette values range between −1 and 1 with values
close to 1 indicating well separated data point and val-
ues close to 0 indicating very close points.−1 indicates
data points that could not fit into any of the pre-defined
clusters. The averages of the silhouette values (AvSlh)
resulting from each evaluated feature pairs was used
alongside R2 for the feature selection. Features show-
ing R2 and AvSlh ≥ 0.6 were categorised as good
indicators and predictors of biomechanical properties.
Features with both R2 and AvSlh ≥ 0.6 using xc and
ẍc signals are indicated with ◦ and � respectively in
Table 4. The xc signals were found to show more and
better correlated features (indicated with ◦) compared
to ẍc signals ((indicated with �). For N observed sam-
ples, R2 is given as

R2 = 1 −
∑N

i=1(yi−ŷi )2∑N
i=1(yi−y)2

(5)

with yi being the i th feature variable, ŷi the i th E-value
and y the mean of the feature variables. AvSlh, on the

other hand is given as

AvSlh = 1

N

N∑
i=1

(Si ) = 1

N

N∑
i=1

(
bi − ai

max(bi , ai )

)
(6)

with ai representing the average distance between the
i th feature value(s) and the other feature value(s) in the
same cluster as i , while bi is the minimum average dis-
tance between the i th feature value(s) and the other fea-
ture value(s) in different clusters, minimised over the
clusters. Figure8 shows the variation of some resulting
xc-based (a–c) and ẍc-based features (d–f) alongside
their R2 correlation with corresponding E-values in an
increasing order. Figure 9 on the other hand, shows the
scatter plots and the silhouette plots of feature-pairs
exhibiting high and low AvSlh-values..

4 Predictive models

For early BC diagnosis, the current study proposes
a non-invasive biomechanical evaluation of bowel
lesions using machine learning models. To build the
models, features that may be indicative of changes
in the tissue biomechanical properties (e.g., Young’s
modulus) are extracted from the dynamic signals. The
features are used to build ML models that are capa-
ble of detecting early and hard-to-visualise malignant
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Fig. 10 Schematic of the two-stage machine learning model

lesions. MLmodels were adopted as there are no estab-
lished mathematical models explaining the relation-
ship between the extracted features and the correspond-
ing E-values of their parent signals. The E-values of
benign and malignant lesions often tend to vary among
patients due to their differences in age, ethnicity and
nutritional background. Despite the great ability of
ML models to model complex and nonlinear prob-
lems [5], the aforementioned makes it challenging to
build a single ML model that can generalise for all
patients. To circumvent this challenge and to build a
more generalised lesion categorisation model, a two-
stage prediction ML model has been proposed. The
first stage involves a supervised and continuous predic-
tion of lesion E-values from features computed from
the dynamics (xc and ẍc) of the SP-VIC encounter-
ing lesions in the bowel. The second stage involves
an unsupervised clustering of the lesions into subsets
of different categorical ranges using the predicted E-
values. This way, the stiffer and malignant lesions are
well separated from their benign counterpart for each
patient irrespective of age, ethnicity and nutritional
background. Going by our previous study [1],MLP and
SVRwere chosen for the supervised continuous regres-
sion. On the other hand, K-means clustering using the
Squared Euclidean distance metric was utilised for the
unsupervised categorisation. The schematic layout of
the two-stage machine learning model for the proposed
early bowel cancer detection is described in Fig. 10.
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4.1 Supervised regression models

4.1.1 Multi-layer perceptron networks

As feed-forward neural networks, MLP networks tend
to pass and evaluate input information in a single for-
ward direction via series of interconnected neurons
organised in layers. These include an input layer, an
output layer, and a single or multiple hidden layers
[46]. The input and output layers usually take up fixed
numbers of neurons that are equal to the number of
features in the input and output data, respectively. On
the other hand, the hidden layer and its number of neu-
rons are usually adjustable in order to make the net-
work perform better. However, excessive numbers of
neurons may increase the network training time and
also cause it to over-fit while inadequate neurons will
cause it to under perform. MLPs are usually fully and
hierarchically connected, and the values of the neurons
starting with input values propagate to the next layer
neuron values via weighted connections. The weights
(w), indicates the importance of a neuron value to its
next connected neuron value. For a layer, its neuron
values are weighted, summed, and transformed using
their activation functions, to arrive at new values [23].
Aside w, bias (b), is another element taken into con-
sideration in each layer. The bias elements represent
the threshold used in shifting the activation functions
in order to condition neuron outputs in both the hidden
and output layers [23]. The output variables (yk) of a
two-layeredMLP network for input variables xi can be
written as [8]

yk = f o

⎛
⎝ M∑

j=1

w
(2)
k j f h

(
N∑
i=1

w
(1)
i j xi + b(1)

j0

)
+ b(2)

k0

⎞
⎠ ,

(7)

where M and N respectively represent the number of
hidden neurons and input data samples (xi ). wk j is the
weight parameter between the kth output neuron and
j th hidden neuron,wi j is theweight parameter between
the i th input data and j th hidden neuron while b j0 and
bk0 respectively denote the j th hidden neuron and kth
output neuron bias parameters. f h and f o are respec-
tively the hidden and output layers activation functions,
and were respectively represented with a hyperbolic
tangent and linear function.

During training, the output values are comparedwith
the actual target values, to compute the network’s per-
formance measure as mean squared errors (mse). The
mse is minimised by adjusting the networkweights and
biases using a gradient descent-based backpropaga-
tion algorithm, in this case the Levenberg–Marquardt.
By back-propagation of network error, Levenberg–
Marquardt updates the network weights and biases in
the directionwhich the performance function decreases
most rapidly [26,44] using

Xk+1 = Xk−
[
H + μI

]−1
g, (8)

where H = J T J and g = J T Er , represent an approxi-
matedHessianmatrix and the network gradient, respec-
tively. Xk is a vector of currentweights and biaseswhile
I is the identity matrix. J is a Jacobian matrix con-
taining the first derivative of the network errors with
respect to the weights and biases, and Er is a vector
of network errors. The scalar value μ is step-wisely
decreased when an iteration results into a successful
reduction in mse and only increased if mse increases
only increases if there had been an increase in mse. The
iteration continues until the network converges.

4.1.2 Support vector regression

SVR, the numeric prediction version of support vector
machines, are forms of kernel-based supervised learn-
ing models which compared to neural networks are
non-parametric, requiring no pre-defined topology or
parameters. First discovered by Vapnik [64], support
vector machines are assumed to have better generalisa-
tion and less susceptible to over-fitting owing to their
ability tomodel complexnonlinear decisionboundaries
[28]. During training, SVR learns to fix a function f (x)
in a higher dimensional feature space such that its out-
puts are at most, ε deviation from all the actual targets
yi , and at the same time as flat as possible. This thus per-
mits the flexibility of presenting SVRs with acceptable
model error while finding an appropriate hyperplane
in high dimensions to fit the data. Again, unlike neu-
ral networks training, no attempt is made at reducing
the training errors as long as they are less than ε, how-
ever, a larger value will not be accepted. For a pair of
input and target vectors,

{
(xi , yi )

}N
i , the generalised
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nonlinear regression function is given as

f (x) = 〈w,�(xi )
〉 + b, (9)

where�(x) is the nonlinear mapping function whilew

and b are vectors of weight coefficients and bias con-
stants, respectively. Keeping Eq. (9) as flat as possible,
means w is kept as small as possible and this can be
achieved by minimising the norm thus giving rise to a
convex optimisation problem

Minimise 1
2‖w‖2,

subject to

{
yi − (〈

w,�(xi )
〉 + b

) ≤ ε,(〈
w,�(xi )

〉 + b
) − yi ≤ ε.

(10)

The feasibility of the above convex optimisation prob-
lem assumes that the function f (i.e.,

〈
w,�(xi )

〉 + b)
actually exists and approximates for all pairs of (xi , yi )
with ε precision. To cope with possible infeasibility,
non-negative loose variables ξi +ξ∗

i are introduced into
the convex optimisation problem [18] to give

Minimise

[
1

2
‖w‖2 + C

N∑
i=1

ξi + ξ∗
i

]
,

subject to

⎧⎪⎨
⎪⎩

yi − (〈
w,�(xi )

〉 + b
) ≤ ε + ξi ,(〈

w,�(xi )
〉 + b

) − yi ≤ ε + ξ∗
i ,

ξi , ξ
∗
i ≥ 0,

(11)

where
∑N

i=1 ξi + ξ∗
i represents an error term and C is

its penalty factor that determines the trade-off between
the flatness of f (x) and the extent to which deviations
larger than ε are tolerated.

The resulting dual convex optimisation problem
shown in Eq. (11) can be transformed into a dual
Lagrangian problem as

f (x) =
N∑
i=1

(ϒi − ϒ∗
i )

〈
�(xi ),�(x)

〉 + b (12)

by replacing the dot product
〈
�(xi ),�(x)

〉
with a non-

linear kernel function κ(xi , x), the above can be solved
into a regression function as

f (x) =
N∑
i=1

(ϒi − ϒ∗
i )κ(xi , x) + b. (13)

The parametersϒi andϒ∗
i represent the Lagrangemul-

tipliers while the kernel function κ(xi , x), helps to map
the nonlinear separable feature space to a linear sepa-
rable feature space [15]. For this study, the radial basis
kernel function was utilised.

κ(xi , x) = exp
( − γ ‖xi − x‖2), (14)

where γ is the kernel function parameter, and ‖xi − x‖
is the Euclidean distance between xi and x .

While training an SVR model, its hyperparameters,
including C, γ and ε, are usually varied to optimise its
performance [3]. For a set of chosen hyperparameters,
the SVR is trained on the training dataset to extrapolate
the model parameters ϒi ,ϒ∗

i and b. The trained model
defined by its extrapolated parameters is evaluated on a
set of never seen test data. For an SVR model, the pro-
cess of hyperparameter optimisation simply involves
selecting the best set of hyperparameters using a brute-
force search technique. In this study, hyperparameter
optimisation via a five-fold cross-validation procedure
was carried out on the training data. For a chosen set of
hyperparameters, the network is trained on four folds
of the training data and tested on the remaining one fold
until all folds have been used as the out-of-sample test-
ing fold. The set of hyperparameters that yield the min-
imumfive-fold cross-validation loss (measured asmse)
are selected as the optimised parameters. The eligible
range of values for C and γ is given as [0.001, 1000]
while that of ε is given as [0.001, 1000] × Yiqr

1.349 with
Yiqr being the interquartile range of the response vari-
able. The sequential minimal optimisation solver as
available in MATLAB was used as the optimisation
routine.

4.2 Unsupervised clustering model

4.2.1 K-means clustering

Data cluster analysis, also referred to as segmenta-
tion, is a type of unsupervised ML, and it is often
used to draw inferences from unlabelled data. Dif-
ferent types of clustering methods exist in literature,
however, they are basically categorised into partition-
ing, hierarchical and density-based methods [28]. In
this study, K-means clustering (or Lloyd’s algorithm
[40]) belonging to partition clustering method was
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utilised. First introduced byMacQueen in 1967 [41],K-
means clustering has been used in many applications.
These include cancer detection and survival prediction
[48,76], image and text pattern recognition [17,66],
delineating zones of mineralisation [61] and food qual-
ity inspection [29]. For a predefined k number clus-
tering, K-means randomly selects k subsets of objects
from the N observed samples as the initial clusters
(Ci ) and computes their centroids. The remaining data
are assigned to these clusters based on their distance
to the centroids. A new set of clusters are selected
and the process is repeated until the resulting clusters
attainmaximum inter-cluster similarities andminimum
intra-cluster similarities. Different distance metrics are
available for computing the distance between the cen-
troids and the cluster objects [43], but depending on
utilised distance metric, K-means computes centroids
differently. For this study, the Squared Euclidean dis-
tance which uses the mean of the cluster objects (c̄i )
as centroid was used. The distance between an object
p ∈ Ci and c̄i is thus an Euclidean distance given as
(dist (p, c̄i ) and the quality of cluster Ci is measured
as [27]

E1 =
k∑

i=1

∑
p∈Ci

dist (p, c̄i )2 , (15)

where E1 is the sum of squared error between the
objects in Ci and the centroid c̄i .

Due to the medical importance of current study and
the fact that labels are available, aside the use of average
silhouette (AvSlh) values, the clustering of each data
set was further evaluated based on the percentage of
rightly clustered samples (i.e. accuracy (%)).

5 Two-stage lesion categorisation and results

In this study, a two-stage ML model has been inves-
tigated for the the purpose of bowel lesions charac-
terisation. It involved the training and development of
regression models capable of predicting lesion stiff-
nesses from dynamic signals features and the cluster-
ing of the predicted stiffnesses into categorical ranges.
MLP and SVR networks have been used for the pre-
diction models while K-means has been used for the
clustering models. The MLP and SVR were trained to
predict lesion E-values from selected dynamic signal

features while K-means was used to unsupervisedly
group the predicted E-values into clusters with maxi-
mum intra-cluster similarities and inter-cluster dissim-
ilarities. Table 5 shows the analysed capsule signals,
the feature selection measures and the notation used to
represent the utilised feature data.

5.1 Stage 1: Biomechanical stiffness prediction

The results of the biomechanical stiffness prediction
including the training and testing of the MLP and SVR
networks using the selected feature data are presented
in Tables 6 and 7, respectively. The networks perfor-
mances have been reported in relations to the actual
target E-values using coefficient of determination (R2)
and normalised mean absolute error (NMAE). These
are respectively given in Eqs. (5) and (16).

NMAE = MAE

y
=

N∑
i=1

| yi − ŷi | / N∑
i=1

yi , (16)

where yi is the i th value of the actual target variables
y, ŷi is its corresponding value in the model predic-
tions ŷ, y is the mean of y, and N denotes number of
observations.

In this case, R2 represents the proportion of the vari-
ation in the actual target E-values that is captured in
the models predictions. It thus points to how well the
trained model predicted E-values match the actual E-
values. Values closest to 1 indicate better matching and
better network models. NMAE on the other hand, is
a measure of the average error between the network
predictions and the actual targets normalised with the
mean of the actual targets. Normalisation is used to
cancel out any probable effect that the diverse scale of
the investigated E-values (Fig. 3) may have on the net-
work errors. The closer NMAE is to zero, the better the
model and its predictions.

For the simulation data, the performance metrics
showed that the xc-based networks outperformed the
ẍc-based networks (Tables 6, 7). The MLP networks
are seen to slightly outperform the SVR networks both
during training and testing despite their shorter training
times. Reducing the dimension of the features via fea-
ture selection did not always translate to improved net-
work performances. However, it yielded lower NMAE
values for all the MLP models and the xc-based SVR
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Table 5 Notation of the
selected feature data

Signal type Feature selection Notation

xc All All–xc
xc Rsq Rsq–xc
xc AvSlh AvSlh–xc
ẍc All All–ẍc
ẍc Rsq Rsq–ẍc
ẍc AvSlh AvSlh–ẍc

Table 6 Performances of MLP network on simulation feature data

Simulation feature data Training Testing

SimDat-1 SimDat-2 SimDat-3

R2 NMAE Time (s) Epochs R2 NMAE R2 NMAE

All–xc 0.9999 0.0034 4 34 0.9999 0.0038 0.9998 0.0062

Rsq–xc 0.9999 0.0034 2 37 0.9999 0.0037 0.9999 0.0049

AvSlh–xc 0.9999 0.0034 2 15 0.9999 0.0034 0.9999 0.0050

All–ẍc 0.9987 0.0143 1 17 0.9974 0.0208 0.9930 0.0357

Rsq–ẍc 0.9988 0.0140 0 35 0.9972 0.0191 0.9954 0.0290

AvSlh–ẍc 0.9992 0.0115 1 135 0.9989 0.0129 0.9878 0.0123

Table 7 Performances of SVR network on simulation feature data

Simulation feature data Training Testing

SimDat-1 SimDat-2 SimDat-3

R2 NMAE Time (s) R2 NMAE R2 NMAE

All–xc 0.9999 0.0044 139.4 0.9996 0.0067 0.9978 0.0172

Rsq–xc 0.9999 0.0032 106.5 0.9999 0.0038 0.9992 0.0104

AvSlh–xc 0.9999 0.0035 73.1 0.9999 0.0036 0.9994 0.0093

All–ẍc 0.9984 0.0157 71.6 0.9972 0.0214 0.9969 0.0268

Rsq–ẍc 0.9969 0.0216 34.5 0.9958 0.0268 0.9943 0.0317

AvSlh–ẍc 0.9986 0.0135 68.1 0.9975 0.0193 0.9874 0.0573

models. It also reduced the training time of the MLP
models to about half. On the overall, the average (R2,
NMAE) values were respectively (0.9974, 0.0131) for
the MLP networks and (0.9971, 0.0195) for the SVR
networks. Based on the utilised dynamical signal, the
average (R2, NMAE) values for using the xc signals
with the MLP and SVR networks were respectively
(0.9999, 0.0045) and (0.9993,0.0085). Using ẍc sig-
nals, the average (R2, NMAE) values were (0.9950,
0.0216) and (0.9949, 0.0306) for the MLP and SVR
networks, respectively.

The performance plots of using the networks on
Rsq−xc and Rsq−ẍc feature data from the test data sets

are presented in Figs. 11 and 12, respectively. Typical
distribution of prediction errors from networks built
with xc and ẍc feature data are respectively shown in
Fig. 13a, b. For both networks, a greater percentage
of the errors were found to be distributed around the
zero error line. However, it is observed that the ẍc-
based network showed higher and wider errors rang-
ing between −18.4 to 16.59, compared to the xc-based
network whose errors were lower and ranged between
−1.97 to 3.23.

The results of using the MLP and SVR networks
on experimental data in the same manner as described
above are presented in Tables 8 and 9, respectively. As
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Fig. 11 Actual-vs-predicted plots for (i) MLP and (ii) SVR on
Rsq–xc feature data from a SimDat-2 and b SimDat-3

Fig. 12 Actual-vs-predicted plots for (i) MLP and (ii) SVR on
Rsq–ẍc feature data from a SimDat-2 and b SimDat-3
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Fig. 13 Typical distribution of prediction errors resulting from
networks built with simulation a xc and b ẍc feature data

earlier stated, only xc signals could be measured dur-
ing the experiment. Similar to simulation results, the
MLP network showed better performances on the out-
of-sample test data compared to the SVR. However,
both networks performed best when used alongside the
Rsq–xc feature data. The actual and predicted E-values
for the experimental Rsq–xc feature data during train-
ing and testing are present in Fig. 14 for both the MLP
andSVRnetworks.Their respective histogramof errors
over 20 bins for the test data sets are shown in Fig. 15.
It can be seen that the SVR once again showed higher
and wider errors ranging between−8.19 to 12.68 com-
pared to the MLP whose errors ranged between −1.84
to 1.36.

5.2 Stage 2: Biomechanical stiffness categorisation

The second stage of the proposed bowel lesions char-
acterisation involves an unsupervised categorisation of
the lesions into multiple subsets or clusters such that
lesions within a cluster have high biomechanical sim-
ilarity, but very dissimilar to those in other clusters.
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Table 8 MLP
performances on
experimental feature data

Experimental feature data Training (ExpDat-1) Testing (ExpDat-2

R2 NMAE R2 NMAE

All–xc 0.9990 0.0021 0.9982 0.0045

Rsq–xc 0.9999 0.0014 0.9997 0.0021

AvSlh–xc 0.9997 0.0022 0.9995 0.0028

Table 9 SVR performances on experimental feature data

Experimental feature data Training (ExpDat-1) Testing (ExpDat-2)

R2 NMAE R2 NMAE

All–xc 0.9991 0.0024 0.9904 0.0117

Rsq–xc 0.9991 0.0021 0.9906 0.0095

AvSlh–xc 0.9985 0.0072 0.9886 0.0132

Fig. 14 Actual-vs-predicted plots for (i) MLP and (ii) SVR on
experimental Rsq–xc feature data during a training and b testing

This way the less stiffer benign lesions are well dif-
ferentiated from the stiffer malignant lesions of differ-
ent cancer stages. An unsupervised categorisation have
been adopted for this final stage to allow a more gener-
alised qualitative characterisation rather than a quanti-
tative characterisation. This thus annuls the problem of
varying background stiffness of the bowel tissue across
patients of different age, ethnicity and diet. The similar-
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Fig. 15 Histogram of the errors from testing aMLP and b SVR
on experimental Rsq–xc feature data

ities or dissimilarities between the lesions is assessed
based on the regression models’ predicted E-values.
Each resulting cluster thus comprises E-values with
closer inter-point distances compared to those in other
clusters. For this study, K-means clustering as available
in MATLAB Statistics and Machine Learning Tool-
box was utilised for the unsupervised clustering. For
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N observed data samples, the two sets of N -predicted
E-values arising from using MLP and SVR on each
selected feature data (see Table 5) are presented to the
clustering algorithm as a N -by-2 datamatrix. This way,
the prediction power of both the MLP and SVR mod-
els are combined to cluster the lesions into different
categorical ranges. With clustering being a learning by
observation approach rather than learning from exam-
ples, effort is oftenmade at selecting efficient and effec-
tive parameters. Such parameters include the optimal k
value and the distance metric that perfectly cluster the
data into their correct categorical ranges. For the sim-
ulated and experimental test data, including SimDat-
2, SimDat-3 and ExpDat-2, their categorical ranges as
well as their optimal k values are observably 8, 7 and
6, respectively. However, assuming that these optimal
k values are unknown, silhouette evaluation criterion
described in Sect. 3.2.3 is used to determine the opti-
mal k-values. For each of the test data, k is varied from
2 to 10 during silhouette evaluation and the k value
that yields the maximum AvSlh is taken as the opti-
mal k value. The maximum AvSlh defined k values
were found to be consistent with the known categori-
cal ranges of the data sets as presented in Fig. 16. By
trial and error, the Squared Euclidean as a distancemet-
ric was found to yield the best clustering results, hence,
was adopted for the clustering.

The results of the K-means clustering of the N -by-2
MLP-SVR predicted E-values are shown in Tables 10
and 11 for both simulation and experimental data,
respectively. The results have been reported based on
the resulting average silhouette (AvSlh) values and the
percentage of the rightly clustered samples for each fea-
ture data (i.e. accuracy (%)). For the simulated data sets,
the E-values predicted from xc-based features showed
optimal clustering with AvSlh values ≥ 0.99 and 100
% accuracies, outperforming those predicted from the
ẍc-based features. It was also observed that most of
the simulation data clustering yielded AvSlh values
greater than 0.90 and accuracies greater than 99 %.
Figure17 shows the clustering of the MLP-SVR pre-
dicted E-values using Rsq–xc and Rsq–ẍc feature data
from SimDat-1, SimDat-2 and SimDat-3. The wrongly
clustered samples are indicatedwith red circles and this
mostly occurredwhen there is a narrowmargin between
the network predicted E-values for samples of different
categories. The E-values predicted for different sam-
ple categories using xc-based feature data were found
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Fig. 16 Resulting AvSlh for different k-values for SimDat-2,
SimDat-3 andExpDat-2 using aALL–xc bRsq–xc and c AvSlh–
xc feature data

to exhibit wider margin compared to those predicted
using ẍc-based feature data.

The results of clustering the MLP-SVR predicted
E-values from experimental feature data is shown in
Table 11. The best clustering is seen to be obtained
using the Rsq–xc feature data yielding Avslh values of
0.988 and 0.931, and accuracies of 100 % and 99.4
% for the experimental ExpDat-1 and ExpDat-2 data,
respectively. For the experimental validation, aside the
clustering of the MLP-SVR predicted E-values, the
clustering of individual network predicted E-values
was also carried. This is reported in Tables 12 and 13
for both the MLP and SVR predictions, respectively.
The MLP predicted E-values are seen to show better
clustering and will probably be the first-line network
for the proposed lesion characterisation compared to
SVR. Figures18 and 19 show the clustering results
of the MLP-SVR, MLP and SVR predicted E-values
using experimental Rsq–xc feature data. In both cases,
the wrongly clustered samples have also been indicated
with red circles.
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Table 10 Clustering results of the MLP-SVR predicted E-values from simulation data

Simulation feature data Training Testing

SimDat-1 SimDat-2 SimDat-3

AvSlh value Accuracy (%) AvSlh value Accuracy (%) AvSlh value Accuracy (%)

All–xc 0.990 100 0.990 100 0.990 100

Rsq–xc 0.990 100 0.989 100 0.991 100

AvSlh–xc 0.990 100 0.991 100 0.991 100

All–ẍc 0.977 100 0.959 99.8 0.933 99.8

Rsq–ẍc 0.961 99.8 0.946 99.1 0.936 100

AvSlh–ẍc 0.980 99.9 0.972 99.7 0.858 97.4

Table 11 Clustering results of the MLP-SVR predicted E-values from experimental feature data

Experimental feature data Training Testing

ExpDat-1 ExpDat-2

AvSlh value Accuracy (%) AvSlh value Accuracy (%)

All–xc 0.976 99.5 0.907 98.9

Rsq–xc 0.988 100 0.931 99.4

AvSlh–xc 0.963 99.8 0.887 97.2

Fig. 17 Clustering results of the MLP-SVR predicted E-values using a Rsq–xc and b Rsq–ẍc feature data from (i) SimDat-1 (ii)
SimDat-2 (iii) SimDat-3
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Fig. 18 Clustering of the MLP-SVR predicted E-values using Rsq–xc feature data from a ExpDat-1 and b ExpDat-2

Fig. 19 Clustering of the a MLP and b SVR predicted E-values using Rsq–xc feature from (i) ExpDat-1 and (ii) ExpDat-2
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Table 12 Clustering results of the MLP predicted E-values from experimental feature data

Experimental feature data Training Testing

ExpDat-1 ExpDat-2

AvSlh value Accuracy (%) AvSlh value Accuracy (%)

All–xc 0.961 99.5 0.947 99.4

Rsq–xc 0.992 100 0.982 100

AvSlh–xc 0.979 99.1 0.968 100

Table 13 Clustering results of the SVR predicted E-values from experimental feature data

Experimental feature data Training Testing

ExpDat-1 ExpDat-2

AvSlh value Accuracy (%) AvSlh value Accuracy (%)

All–xc 0.988 99.8 0.870 97.2

Rsq–xc 0.983 99.5 0.903 81.7

AvSlh–xc 0.950 100 0.881 78.3

6 Conclusions

For the purpose of early bowel cancer diagnosis using
the SP-VIC, a two-stage machine learning (ML) pro-
cedure has been explored. As the first stage of the pro-
cedure, multi-layer perceptron (MLP) and support vec-
tor regression (SVR) networks have been used to pre-
dict lesion stiffnesses frommeasurable capsule dynam-
ics including acceleration and displacement. Using
K-means clustering, an unsupervised categorisation
of predicted stiffnesses into clusters of high intra-
cluster similarity but low inter-cluster similarity has
been carried out as the second stage of the procedure.
Based on the performance metrics including coeffi-
cient of determination (R2) and normalisedmean abso-
lute error (NMAE), the MLP models showed better
performances on the test data compared to the SVR.
For situations where both displacement and acceler-
ation signals are measurable, the displacement-based
models outperformed the acceleration-based models.
For both the simulation and experimental test data, the
displacement-based MLPs were found to achieved R2

values greater than 0.9980 and NMAE values lesser
than 0.0062. During the experimental validation, the
predicted E-values from the displacement-basedMLPs
outperformed the displacement-based SVRs yielding
clustering accuracies and average silhouette (AvSlh)
values of at least 99.4% and 0.947, respectively. This

makes the displacement-based MLPs more preferable
for the proposed bowel lesion characterisation. On the
overall, both the simulation and experimental valida-
tion indicate that the proposed method has the capac-
ity to characterise bowel lesions as low as 2mm. Thus
indicating the huge potential of the method in reveal-
ing hard-to-visualise bowel cancers for the purpose of
improved treatment and increased survival rate. Based
on this current study, the detection of lesions ≤ 2mm
will probably require a smaller sized SP-VIC. It was
also noticed that the use of Eco-flex as the intestinal
material further subjected the capsule to intense fric-
tional reaction. As future works, we hope to establish
a threshold for which the difference between the E-
values of resulting clusters raises a concern while also
carrying out an in-vivo testing of the proposed method.
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