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ABSTRACT: The Met Office’s atmospheric dispersion model Numerical Atmospheric-Dispersion Modeling Environ-
ment (NAME) is validated against controlled tracer release experiments, considering the impact of the driving meteorolog-
ical data and choices in the parameterization of unresolved motions. The Cross-Appalachian Tracer Experiment
(CAPTEX) and Across North America Tracer Experiment (ANATEX) were long-range dispersion experiments in which
inert tracers were released and the air concentrations measured across North America in the 1980s. NAME simulations of
the experiments have been driven by both reanalysis meteorological data from European Centre for Medium-Range
Weather Forecasts (ECMWF) and data from the Advanced Research version of the Weather Research and Forecasting
(WRF) Model. NAME predictions of air concentrations are assessed against the experimental measurements, using a rank-
ing method composed of four statistical parameters. Differences in the performance of NAME according to this ranking
method are compared when driven by different meteorological sources. The effect of changing parameter values in
NAME for the unresolved mesoscale motions parameterization is also considered, in particular, whether the parameter
values giving the best performance rank are consistent with values typically used. The performance ranks are compared
with analyses in the literature for other particle dispersion models, namely, Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT), Stochastic Time-Inverted Lagrangian Transport (STILT), and Flexible Particle (FLEXPART). It
is found that NAME performance is comparable to the other dispersion models considered, with the different models
responding similarly to differences in driving meteorological data.

KEYWORDS: Dispersion; Mesoscale processes; Global transport modeling; Model comparison;
Model evaluation/performance

1. Introduction

The Met Office’s atmospheric dispersion model Numerical
Atmospheric-Dispersion Modeling Environment (NAME; Jones
et al. 2007) is a Lagrangian model that calculates the transport
and dispersion of pollutants by simulating the trajectories of a
large number of model particles; each model particle represents
a certain mass of the released material. Like other widely used
Lagrangian models, the model is generally driven by meteorolog-
ical data from a numerical weather prediction model and uses a
stochastic parameterization for the effect of unresolved motions
on the trajectories.

Validation of dispersion models against data from disper-
sion events is an important part of model development. Ad
hoc events are valuable case studies (Draxler et al. 2015;
Grant et al. 2012) giving the opportunity to consider the suit-
ability of the model in real-world applications, which, given
the use many are put to in managing hazards, is of critical use
to responders and governments. But the use of controlled-
release experiments is generally advantageous as more accu-
rate release information is available, along with systematic
measurements taken throughout the course of the experi-
ments. This makes such experiments ideal for assessing model
performance. Long-range dispersion experiments are expen-
sive and, as a result, only a small number of such experiments

are available. NAME has previously been evaluated with
other dispersion experiments including the European Tracer
Experiment (ETEX; Ryall and Maryon 1998) and Kincaid
(Webster and Thomson 2002) datasets.

In this paper, NAME is validated against two long-range, con-
trolled tracer release experiments conducted in North America.
The two experiments used are the Cross-Appalachian Tracer
Experiment (CAPTEX; Ferber et al. 1986) and the Across
North America Tracer Experiment (ANATEX; Draxler and
Heffter 1989). These experiments have been used for various
dispersion model evaluations (Ngan and Stein 2017; Loughner
et al. 2021; Hegarty et al. 2013). Several other Lagrangian disper-
sion models have been evaluated in Hegarty et al. (2013),
namely, Hybrid Single-Particle Lagrangian Integrated Trajec-
tory (HYSPLIT; Draxler and Hess 1997), Stochastic Time-
Inverted Lagrangian Transport (STILT; Lin et al. 2003), and
Flexible Particle (FLEXPART; Brioude et al. 2013, 2012). This
gives the opportunity for comparing the performance of NAME
with that of other Lagrangian models that have already been
evaluated against this dataset. To this end, we follow the ap-
proach of Hegarty et al. (2013), with the performance of NAME
being evaluated using a ranking system consisting of four statisti-
cal parameters (Mosca et al. 1998; Stohl et al. 1998; Draxler
2006). We also investigate differences in performance when
NAME is driven by alternative meteorological datasets. These
meteorological datasets include most of those considered by
Hegarty et al. (2013) (viz., various configurations of WRF;
Skamarock et al. 2008), which enables us to directly compare
NAME with other dispersion models, as well as with ECMWF’s
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ERA-Interim dataset (Berrisford et al. 2011). In this, our aim is
to add to the work of Hegarty et al. (2013) assessing whether
skill is dominated by differences in the driving meteorological
data or dispersion model.

As well as parameterizing the effects of turbulence, NAME
represents the effects of atmospheric motions that are larger
than the three-dimensional turbulence but too small to be re-
solved by the NWP model (Webster et al. 2018). We refer to
these as the “unresolved mesoscale motions.” At short distan-
ces from the source, the effect of the parameterization of
these motions is to widen the modeled plume, while at long
ranges, where the dispersion is likely to be dominated by the
resolved scales of motion, the extra dispersion is expected to
smooth out the smaller-scale features in the concentration
field. This is consistent with the idea that the effect of unre-
solved motions is represented in the model as an average over
an ensemble of such motions (and so produces smoothed con-
centration fields), while the effect of the resolved motions is
represented deterministically. This also raises the possibility
of adjusting the parameterization in order to account for how
much small-scale structure is resolved by the NWP model.
Conceptually, this is like altering the subgrid diffusion in
large-eddy simulations, which has the effect of altering the fil-
ter scale of the simulation (Mason and Callen 1986). If the
small-scale features are not well predicted, it is quite likely
that increasing the diffusion}in effect, reducing the resolu-
tion of the model}will improve the performance measures.
We investigate this by examining the sensitivity of the perfor-
mance to the unresolved mesoscale motions parameterization.
We consider how model performance rankings are affected by
changing the parameterization values and compare this with
the optimal parameter values estimated by Webster et al.
(2018) using spectra of observed and NWP winds.

2. Experimental data

CAPTEX and ANATEX were controlled tracer release ex-
periments conducted in the North American region in the 1980s
(Draxler and Heffter 1989; Ferber et al. 1986; Draxler et al.
2001). The tracers used were effectively inert and nondepositing.

CAPTEX consisted of seven ground-level releases (referred to
as CAPTEX-1 through CAPTEX-7) from 18 September to
29 October 1983. CAPTEX-6 was a short release of 30 min and
each of the others was a 3-h release. The first four (CAPTEX-1–4)
and CAPTEX-6 were releases from Dayton, Ohio, and the
other two (CAPTEX-5 and CAPTEX-7) from Sudbury, On-
tario, Canada. The first four releases were separated by peri-
ods ranging from 7 to 12 days and the latter two by 3 days, but
with strong winds, and the tracer clouds were quickly advected
out of the region. As such, the tracer clouds from each release
were well separated, so each release can be treated as a sepa-
rate experiment. A sampling network of 84 sites, 300–800 km
from the source, collected ground-level samples of the tracer,
perflouromonomethylcyclohexane (PMCH). From 19 September
to 30 October, 3- and 6-h averages were retrieved for 48–60 h
after each release. Here, we compare NAME predictions with
data from the 3-h releases and omit the data from the short

CAPTEX-6 release, in line with the work of Hegarty et al.
(2013).

ANATEX consisted of 66 releases, each with a duration of
3 h, from 5 January to 26 March 1987. One-half were releases
of perflourotrimethylcyclohexane (PTCH) from Glasgow,
Montana (GGW), and the other one-half were releases of
perflourodimethylcyclohexane (PDCH) from Saint Cloud,
Minnesota (STC). Material was released at a height of 2 m
above a one-story building. The releases from Saint Cloud in-
cluded releases of PMCH, but these were coincident with
PDCH and, following Hegarty et al. (2013), are not included
in our comparison. The releases were at 2.5-day intervals,
alternating between afternoon and nighttime, and occurred
from both sites at each release time. The sampling network
had 75 sites over the eastern United States and southeastern
Canada, extending to about 3000 km from the source loca-
tions. From 5 January through 29 March, 24-h averaged air
samples were collected at ground level.

Following Hegarty et al. (2013), only the first 10 releases
(spanning 5–16 January) from ANATEX are included. This
period of winter conditions contrasts with the summerlike
conditions during CAPTEX, as well as having a similar number
of measured-predicted data pairs for analysis as the CAPTEX ex-
periments. As each site used a different tracer, releases from each
were treated as separate experiments (called ANATEX-GGW
and ANATEX-STC). However, we treat all the releases from
one site as a single experiment. This is because, with the interval
between releases being generally shorter than for CAPTEX and
the range of the dispersion being longer, the different releases did
not always stay well separated.

3. Dispersion models and meteorological data

As well as evaluating the performance of NAME against
CAPTEX and ANATEX, we compare results with those ob-
tained by Hegarty et al. (2013) for HYSPLIT, STILT, and
FLEXPART. In these four Lagrangian particle-dispersion
models, model particles are released from a source location
and are advected by the mean wind obtained from input me-
teorological data, with random components added by the
model to represent the effects of small-scale atmospheric motions
unresolved by the input meteorological data. Unless otherwise
stated, each CAPTEX release was represented by 50000 model
particles and the ANATEX releases by 25000 particles (Hegarty
et al. 2013). Increasing the number of particles seems to have lit-
tle to no effect on the analyses and the fewer particles released
for the ANATEX releases are compensated for by the longer av-
eraging time for calculating the air concentrations. In the study
by Hegarty et al. (2013), the models were driven by North
American Regional Reanalysis (NARR) meteorological data
and by four different sets of data from the Advanced Research,
version 3.2.1, of the Weather Research and Forecasting (WRF)
Model. We run NAME with the same four WRF datasets gener-
ated by Hegarty et al. (2013) for comparison with other models,
as well as with data from the ECMWF ERA-Interim reanalysis.
We note that since the analysis by Hegarty et al. (2013) was per-
formed, there will have been improvements to the dispersion mod-
els. However, to compare results with the same meteorological
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datasets, we consider the performance rankings obtained by
Hegarty et al. (2013), and limited analyses with previous
NAME versions suggest that the performance rankings of
NAME would not have varied significantly over recent years.
We now discuss the model configurations and meteorological
data sources in more detail.

NAME, version 7.2 (2017), was used, with output calcu-
lated on a 0.258 3 0.258 grid in the latitude–longitude coordi-
nate system and concentrations obtained over the lowest
100 m above ground level (AGL). Particle trajectories are calcu-
lated using the meteorological data’s native horizontal coordinate
system and height above ground, with the height converted to the
native vertical coordinate system of the meteorological data for
the purpose of interpolating the meteorological data. The model
time step was set to 1 min, and a diffusive turbulence scheme with
no velocity memory was used. Dispersion due to both turbulence
and unresolved mesoscale motions was represented, while con-
vection above the boundary layer was not.

The HYSPLIT runs by Hegarty et al. (2013) had the same
output resolution and number of particles as chosen for the
NAME simulations. Trajectory calculations used the same
horizontal coordinate system as the meteorological data.
HYSPLIT uses an internal terrain-following, or s, vertical co-
ordinate system, and meteorological fields are linearly inter-
polated to a grid defined in this coordinate system (Draxler
and Hess 1997; Stein et al. 2015). The lowest vertical grid
level was approximately 10 m above ground level, and the
resolution decreases with height. The time step used in the
HYSPLIT runs is 1 min (Hegarty et al. 2013).

STILT is built upon HYSPLIT and, hence, has many fea-
tures in common, such as the mean advection scheme and the
calculation grid. However, STILT simulates turbulence differ-
ently. The configuration used is the same as HYSPLIT
(Hegarty et al. 2013). Although STILT is primarily used in
backward mode, here we only discuss the performance of all
the models in forward mode.

The version of FLEXPART used by Hegarty et al. (2013) is
one modified to use meteorological data from the WRF model.
Output concentrations were given on a 25 km3 25 km horizon-
tal grid with the same projection as the meteorological data,
which is similar to the 0.258 grid used by the other models. Con-
centrations were again output over the lowest 100 m AGL.
FLEXPART uses the native horizontal coordinate system of the
WRF data and, as for HYSPLIT and STILT, the vertical levels
of the meteorological data are interpolated to an internal grid
defined in a terrain-following coordinate system. The time step
was calculated dynamically with a maximum of 90 s, and each
release was represented by 100000 particles in both CAPTEX
and ANATEX (Hegarty et al. 2013).

ECMWF’s ERA-Interim is a global atmospheric reanalysis
starting from 1979, produced with a 2006 version of the Inte-
grated Forecasting System (IFS; Berrisford et al. 2011). The
horizontal spatial resolution is approximately 79 km with
60 vertical levels, and output is every 3 h.

The meteorological fields from the Advanced Research
version (3.2.1) of the WRF Model (Skamarock et al. 2008)
used in this study were obtained by Hegarty et al. (2013) using
initial and boundary conditions from NARR (Mesinger et al.

2006). The configuration of WRF uses a conformal Lambert
horizontal grid and a terrain-following, hydrostatic-pressure
vertical coordinate system of 43 levels, with the lowest layer
approximately 33 m thick. The model was configured with
two nested horizontal resolutions of 30 and 10 km with one-
way boundary conditions between the two. The dispersion
models use the 10-km WRF data where available and the
30-km data elsewhere. The NAME model runs for the
ANATEX experiments only had the 10-km WRF data avail-
able. This is still comparable to the other dispersion model runs,
as the dispersion predominantly remains within the 10-km data
domain for the duration of the experiment modeled here and
all the measuring stations are well within that domain. Hourly
output from the WRF model with wind nudging toward NARR
in the boundary layer both turned on (denoted WRF pbl1) and
off (WRF pbl0) are used to run the dispersion models. The
WRF output contains instantaneous and (hourly) time-averaged
wind fields, and both of these are used separately to drive
different dispersion model runs. NARR is an extension of the
National Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP–NCAR) global rean-
alysis, which has been run over the North American region. The
reanalysis data span 1979 to 2014 and are on a conformal
Lambert grid with a spatial resolution of approximately 32 km
and 45 vertical levels, with output every 3 h.

4. Statistical measures

Assessing the accuracy of a dispersion model is difficult due
to having both temporal and spatial discrepancies to consider
in the dispersion forecast. Statistical parameters have differ-
ent sensitivities to these variations. We use the ranking system
used by Hegarty et al. (2013), which combines four statistical
parameters to obtain an overall rank. The software used for
the calculations is detailed in Draxler et al. (2001) and pro-
vided by the NOAAAir Resources Laboratory.

The four parameters are Pearson’s correlation coefficient
squared (R2), the fractional bias (FB), the figure of merit in
space (FMS), and the Kolmogorov–Smirnov parameter (KSP).
The correlation coefficient R ranges from 21 to 1, where 1 is a
perfect (positive) correlation between measured and predicted
concentrations. R2 gives the fraction of the variance in the obser-
vations that is explained by a linear regression on the model val-
ues. The FB is the difference between the mean observed and
mean predicted concentrations expressed as a fraction of the av-
erage of the mean observed and mean predicted concentrations.
A positive value indicates an overprediction by the model and a
negative value indicates an underprediction. The FMS is the
area, at a fixed time, with both measured and predicted concen-
trations above some threshold expressed as a percentage of the
area with either measured or predicted concentration above the
threshold. Here, following Stohl et al. (1998) and Hegarty et al.
(2013), we replace the area simply with the number of sampling
locations. The concentration threshold is taken to be zero, fol-
lowing Hegarty et al. (2013). It has been considered that a zero
threshold could cause problems, as changing the number of par-
ticles in a Lagrangian particle dispersion model could, due to
noise around the edges of the plume, change the number of
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nonzero concentrations output. However, with the sampling sta-
tions at fairly large distances from each other and averaging pe-
riods of 3 h or longer, we expect a change in the level of noise in
the model run not to have a significant effect on the FMS, with
the exception of any instances where the edges of the plume re-
main close to a sampling station for a prolonged period. A lim-
ited number of NAME runs with more particles supported this,
so, for more comparable results, we use the same number of par-
ticles for the releases as the HYSPLIT runs by Hegarty et al.
(2013). Similarly, there is a question of when measured concen-
trations would have been reported to be zero. For both experi-
ments, a concentration slightly above estimated background
level was subtracted from the measurements, and measurements
were rounded to account for instrument accuracy (Ferber et al.
1986; Draxler and Heffter 1989). Any negative concentrations
are then set to be zero. Although a high FMS indicates a good
prediction, a low value does not necessarily imply a bad predic-
tion, as the plume could have the correct shape but be slightly
offset in location. This is particularly pronounced with narrow
plumes. The KSP is the maximum absolute difference between
the cumulative distributions of the observations and the meas-
urements (expressed as percentages), so a smaller value implies
a better prediction. FB and KSP depend only on the set of mod-
eled values and the set of measured values considered sepa-
rately, while R2 and FMS depend on the paired values.

These four parameters are equally weighted so that each
contributes a value between zero and one to the final rank.
The final rank ranges from 0 to 4, with a higher rank implying
a better prediction (Draxler 2006). The formula used is

Rank 5 R2 1 (1 2 |FB/2|) 1 FMS/100 1 (1 2 KSP/100):

5. Results

This section looks at the results from the statistical analyses
of the different atmospheric dispersion model simulations.

We consider how different driving meteorological data affect
the performance of NAME, differences between various
models being driven by the same meteorological data, and
how changes in parameterizing the unresolved mesoscale ed-
dies affect the performance of NAME.

a. Driving meteorological data

Here, we consider how NAME performs when driven by
different meteorological fields. The performance of NAME
will be compared with that of other models below, but we
note here that it is similar to the other models. We look at
runs of NAME driven by ECMWF ERA-Interim data and
WRF with WRF pbl1 or WRF pbl0. We also use the WRF in-
stantaneous wind fields and the time-averaged wind fields in
separate runs. From Fig. 1, we can see that, generally, NAME
seems to perform slightly better driven by the lower-resolution
ERA-Interim meteorological data than with the higher-
resolution WRF meteorological data, especially when WRF
has the wind nudging toward NARR switched off. This im-
proved ranking in the dispersion forecast driven by lower-
resolution meteorological data is in contrast to the findings of
Hegarty et al. (2013), where the dispersion models driven by
higher-resolution meteorological data generally performed
better. The improved ranking when NAME is driven by ERA-
Interim data could be due to the NWP model performing better
in some of these particular cases as opposed to a preference for
lower-resolution data. However, it is also possible that, due to
the experiments being long range, the smaller scales of motion
are adding structure to the plume, but not accurately enough to
improve the ranking. The effect of the small-scale structure on
the overall ranking is discussed further in section 5c. The differ-
ence in performance between having the wind nudging switched
on and off is very pronounced in all the experiments apart from
ANATEX-STC, which is the only experiment where NAME
performs better with the wind nudging switched off. We note
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FIG. 1. Rankings of NAME driven by meteorological fields from various sources, showing the contribution of each of
the statistical parameters.
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that this is the experiment in which NAME generally performs
the worst. As this is the case when NAME is driven both by
WRF and by ERA-Interim, this could be due to wind conditions,
which are difficult to predict. In this experiment, we also note
that the contribution to the rank of the correlation coefficient is
almost zero, and this is consistent with the simulations by other
models in Hegarty et al. (2013). We can also see that throughout
the experiments, there is generally very little performance differ-
ence between using the instantaneous and time-averaged meteo-
rological fields with WRF, and this is reflected in the average
performance ranks.

Figure 2 shows NAME-predicted PTCH concentrations for
the ANATEX-GGW experiment, when the model is driven
by various meteorological fields. These plots are for the 24-h
period ending at 1400 UTC 9 January 1987. We can see the
similarities between all of the WRF-driven runs, although
there are some subtle differences that can be seen by eye.
With this particular example, the concentration plot for the
run driven by ECMWF ERA-Interim reanalysis data differs
significantly from all the runs driven by WRF. We see a cloud
of tracer that appears much farther to the west than in the
WRF runs, and this cloud is from the release on 5 January
that occurred a few days earlier. Examining concentration
plots from the day of that release, it is clear that the plume is
advected in very different directions depending on which me-
teorological data are used to drive the model. These indicate
that the ECMWF ERA-Interim data had easterly winds,
whereas that for the WRF data had some easterly and

westerly winds. This initial difference in where the tracer has
been transported then creates legacy differences in the output
at later times. Looking at the rank of the models, however,
the ERA-Interim run is not the outlier despite this clear visual
difference. This is most likely due to the length of experiment
being long enough that this difference for a short period is not
as significant as the smaller differences that are present through-
out the experiment duration. It is, however, an exceptional ex-
ample and, in the other experiments, the concentration plots
when run using ECMWF ERA-Interim reanalysis data look sim-
ilar to those using the various forms of WRF data (see Fig. 3).
When we examine the contributions of the different statistical
parameters to the final rank for the ANATEX-GGW experi-
ment, we do see that the greatest difference between the ERA-
Interim–driven run and the WRF-driven runs is the smaller
correlation coefficient with ERA-Interim. In fact, throughout all
of the experiments, the contribution of the correlation coefficient
generally varies more when considering different driving meteo-
rological data than that of the other statistical parameters, with
the contribution to the overall ranking often being very small.

b. Dispersion models

Figure 4 shows how all the dispersion models perform being
driven by both versions of the instantaneous WRF meteoro-
logical data, with the ranks for HYSPLIT, STILT, and
FLEXPART from Hegarty et al. (2013). In all cases except
ANATEX-STC, NAME and FLEXPART perform better
with WRF pbl1 data in which the wind nudging toward

FIG. 2. ANATEX-GGW simulated average PTCH ground level concentrations (pg m23) for the 24-h period ending 1400 UTC
9 Jan 1987 resulting from tracer releases at Glasgow (blue star) from 1700 to 2000 UTC 5 Jan 1987 and from 0500 to 0800 UTC 8 Jan 1987.
Simulations were run with NAME driven by WRF with wind nudging (a),(d) turned on and (b),(d) turned off and by (c) ERA-Interim,
using (top) instantaneous meteorological fields and (bottom) time-averaged wind fields. Observed concentrations are shown in the circles,
using the same color scale. The “e10X” in the color scale here and in subsequent figures indicates multiplication by 10X.
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NARR is turned on when compared with that when there is
no wind nudging. HYSPLIT and STILT, however, do not
seem to have a preference for one set of WRF meteorological
data over the other and, on average, there is little difference
between the two. Because STILT is built upon the HYSPLIT
model, it is unsurprising that they react to a change in driving
meteorological data in a similar way and, for each experiment,
they both show a similar difference in performance using one
set of meteorological data over the other.

On average, the performances of the various models are
very similar, although there are some differences for individ-
ual experiments. It can be seen that FLEXPART driven by
WRF pbl0 meteorological data generally has a slightly lower
ranking than the other three models, apart from the
CAPTEX-7 experiment in which it performs noticeably better

than all the other models. It is also clear that the
ANATEX-STC experiment seems to have been the most
difficult to predict as this is the experiment where all the
models had the weakest performance. Although this could
be due to the WRF data having errors, we see in Fig. 4 that
NAME runs driven by ERA-Interim show the same low
ranking for this experiment, so it is likely that there were
some difficult conditions to predict over this time and
location.

We see from the previous section that the performance of
NAME when driven with instantaneous meteorological fields
and time-averaged fields is similar on average. Although there
is variation between the experiments, the runs driven with
time-averaged fields show the same preference of wind nudg-
ing being turned on and the average ranks are very similar.

FIG. 3. CAPTEX-5 simulated average PMCH ground level concentrations (pg m23) for the 6-h period ending 2100 UTC 26 Oct 1983.
The CAPTEX-5 release was from Sudbury (blue star) from 0345 to 0645 UTC 26 Oct 1983. Simulations were run with NAME driven by
various meteorological sources as in Fig. 2, with observed concentrations shown in the circles.
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From the work done by Hegarty et al. (2013), we see that
other models show the same behavior on average.

c. Unresolved mesoscale motions

The NAME model has two parameters that determine the
amount of diffusion the model adds to represent the effects of
unresolved mesoscale motions (Webster et al. 2018). These
parameters are the standard deviation s and Lagrangian cor-
relation time scale t of horizontal random fluctuations, which
are added to the particle velocity components. As we are con-
sidering long-range dispersion, it is actually the horizontal
eddy diffusivity K that affects how the particles will be dis-
persed by the model, where K 5 s2t. Increasing K when run-
ning the model leads to a greater spread of the tracer and
smoothing of small-scale features. There is a range of values
estimated to be appropriate when using meteorological fields
on specific temporal and spatial scales, as outlined in Webster
et al. (2018). In this section, we consider the effect of using
different diffusivity values on the performance of the model
according to the statistical parameters used in this validation.

We use six sets of values for the unresolved mesoscale mo-
tions parameters labeled as runs M1–M6, where M1 runs use
the smallest diffusivity values and M6 runs use the largest val-
ues. The unresolved mesoscale motions values used for M1
and M3 in this section are the smallest and largest values that
would be suggested when using meteorological data with
these temporal and spatial scales, based on the analysis of

Webster et al. (2018). The M2 values consist of the average
values of these ranges for both s and t and are the same
values used throughout the comparisons above. We also
consider three sets of larger diffusivity values (M4–M6),
outside of the range recommended in Webster et al. (2018),
and the case of turning the unresolved mesoscale motions
scheme off (M0). The values used are shown in Table 1. We
use these unresolved mesoscale motions parameters with
NAME being driven by WRF meteorological data with time-
averaged wind fields, with both wind nudging turned on
and off.

We can see in Fig. 5 that, generally, the performance of the
model increases as we turn the unresolved mesoscale motions
scheme on and then as we increase the parameter values
within the range recommended in Webster et al. (2018) (i.e.,
an increase in performance fromM0 to M3). This corresponds
to an increased spread of the tracer. This is not always the
case; for example, the simulations of CAPTEX-5 run with
wind nudging toward NARR switched off actually perform
slightly better with smaller values. From Fig. 3, we see that
the CAPTEX-5 predicted plumes match well with the obser-
vations. Therefore, an increase in the spread of the predicted
plume would not have the benefit of smoothing errors. How-
ever, on average, the performance of the model improves as
the unresolved mesoscale motions values are increased within
this M0–M3 range, both when wind nudging toward NARR is
switched on and off. We also note that the improved perfor-
mance with the values increasing up to M3 generally occurs
for all four of the statistical parameters that form the final
rank, but, most notably, the correlation coefficient improves.
The same conclusions are drawn from the results driven by in-
stantaneous wind fields from WRF. Using values for the unre-
solved mesoscale motions parameters larger than recommended
in Webster et al. (2018) was also considered and we see, for the
M4 runs, this increase has resulted in an improved performance
for some experiments, while it had a detrimental effect on
others. For example, CAPTEX-7 shows an improvement in per-
formance as the spread due to mesoscale motions is increased,

TABLE 1. The unresolved mesoscale motions parameter values
used within the NAME simulations.

s (m s21) t (s) K (m2 s21)

M1 0.44 4484 868
M2 0.70 8000 3920
M3 0.94 11 862 10 481
M4 1.18 15 500 21 582
M5 1.42 19 300 38 917
M6 1.66 23 100 63 654

FIG. 5. Rankings of NAME run with WRF time-averaged wind fields using different unresolved mesoscale motions
parameters (see Table 1), with wind nudging toward NARR switched on (pbl1) and off (pbl0). The case of turning
the unresolved mesoscale motions scheme off is designated as M0.
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but only as far as the recommended values, after which the per-
formance of the model suffers. However, in CAPTEX-4, this im-
provement continues a little beyond the recommended values.
The largest values considered (M5 and M6) show that, on aver-
age, the performance of the model decreases, and this decrease
is the case for every CAPTEX experiment for the largest M6
values and most CAPTEX experiments for the M5 values. For
the ANATEX experiments, however, the performance contin-
ues to improve even to these largest values. This is probably be-
cause of the longer range of the ANATEX experiments and the
poor performance generally for ANATEX-STC. This means
that the additional spread compensates for errors in the pre-
dicted location of the plume and the smoothing out of the
smaller features of the plume benefits the performance ranking
of the model.

Figure 6 shows air concentrations from NAME simulations
when the model is driven by WRF pbl1 meteorological data,
using different unresolved mesoscale motions parameters.
The example plots shown here are for the CAPTEX-2 experi-
ment for the 6-h period ending at 1800 UTC 26 September
1983. The increase in the spread of the tracer is clearly seen as
K increases in the unresolved mesoscale motions parameteri-
zation. We note from Fig. 5 that CAPTEX-2 is one of the ex-
periments with the most clear difference as these parameters
are changed, but similar visual differences between the con-
centration plots are seen for all the experiments, even where
there is little difference in the rankings (e.g., see CAPTEX-3
without nudging or, for M0–M3, with nudging). In this case,
Fig. 6 shows that the predicted plume with smaller unresolved
mesoscale motions added appears to be centered slightly too
far south relative to the observations. As the spread of the
predicted plume increases, this positional error has less of an
impact on the ranking as the predicted plume includes more
of the observations. However, as the spread increases farther,
this results in the highest observed concentrations not being

reached in the predicted plume, as well as concentrations be-
ing predicted where zero concentrations were observed.

6. Conclusions

The Lagrangian particle dispersion model NAME was run
to simulate controlled tracer release data from the CAPTEX
and ANATEX experiments. The performance of the model
was evaluated when driven by different meteorological fields
(including ECMWF ERA-Interim reanalysis data and various
configurations of WRF) as well as comparing the performance
with other dispersion models as evaluated by Hegarty et al.
(2013). The impact of changing the parameters within the
NAME unresolved mesoscale motions parameterization on
the performance of the model was also considered. The as-
sessment used a system of ranking consisting of four statistical
parameters to be consistent with the validation of the other
models (Hegarty et al. 2013).

It was shown that the different dispersion models re-
sponded in a similar way to differences in driving meteorolog-
ical data, in particular a tendency to perform better with
WRF winds nudged toward NARR. NAME simulations were
also conducted using ERA-Interim meteorological data,
which generally performed better than the WRF-driven runs
despite the lower resolution of the meteorological data. There
was no distinctive difference in performance for a particular
model, and differences in model performance over the various
experiments were generally consistent (e.g., all the models
achieved lower ranks for the ANATEX-STC experiment). It
was also seen that the increase in the spread of the plume due
to the effects of unresolved mesoscale motions improves the
performance ranking of NAME. This improvement was con-
sistent across the experiments when setting the parameters to
values within the recommended range in Webster et al.
(2018), but increasing the values further did not always im-
prove the performance further and sometimes had a

FIG. 6. CAPTEX-2 simulated average PMCH ground level concentrations (pg m23) for the 6-h period ending 1800 UTC 26 Sep 1983
following a tracer release from Dayton (blue star) from 1700 to 2000 UTC 25 Sep 1983. Simulations run with NAME driven by WRF pbl1
time-averaged fields using increasing unresolved mesoscale motions parameters denoted M1–M6, and with the parameterization off (M0).
Observed concentrations are shown in the circles.
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detrimental effect. However, the primary usage of these mod-
els is often for the response to accidental releases of harmful
material, where both the location and peak concentrations
are of interest. Increasing the spread of the predicted plume
may improve the performance ranking, but decreasing the
predicted peak concentrations and changing the affected area
could result in the population-weighted health effects being
significantly different, with alternative action being taken dur-
ing a dispersion event. As such, caution should be taken, as
improving the ranking of the model performance may not al-
ways lead to more helpful dispersion predictions during emer-
gency events.

Quantitatively evaluating dispersion model performance is
difficult due to both the spatial and temporal differences
needing to be taken into account, although controlled tracer
release experiments such as CAPTEX and ANATEX, where
the source parameters are well known, give the opportunity
for a more thorough evaluation. This study shows that a range
of dispersion models perform similarly for the various tracer
release experiments considered here, and that decisions made
when running the dispersion model, such as the source of
driving meteorological data and parameterization choices for
unresolved motions, play a significant role in the performance
of the model.
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