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Summary

� Pollen and tracheophyte spores are ubiquitous environmental indicators at local and global

scales. Palynology is typically performed manually by microscopic analysis; a specialised and

time-consuming task limited in taxonomical precision and sampling frequency, therefore

restricting data quality used to inform climate change and pollen forecasting models. We build

on the growing work using AI (artificial intelligence) for automated pollen classification to

design a flexible network that can deal with the uncertainty of broad-scale environmental

applications.
� We combined imaging flow cytometry with Guided Deep Learning to identify and accu-

rately categorise pollen in environmental samples; here, pollen grains captured within c. 5500

Cal yr BP old lake sediments.
� Our network discriminates not only pollen included in training libraries to the species level

but, depending on the sample, can classify previously unseen pollen to the likely phylogenetic

order, family and even genus.
� Our approach offers valuable insights into the development of a widely transferable, rapid

and accurate exploratory tool for pollen classification in ‘real-world’ environmental samples

with improved accuracy over pure deep learning techniques. This work has the potential to

revolutionise many aspects of palynology, allowing a more detailed spatial and temporal

understanding of pollen in the environment with improved taxonomical resolution.

Introduction

Pollen and tracheophyte spores are ubiquitous in the environ-
ment and present in air, soil and sediments. Accurate classifica-
tion and quantification of pollen grains is critical for a range of
palynological applications (Edwards et al., 2017) including the
forecasting of aeroallergens, melissopalynology and forensics.
Fossil pollen preserved in sedimentary archives is a powerful
proxy used for palaeoenvironmental reconstructions, informing
ecological succession and responses to climate change (Edwards
et al., 2017; Åkesson et al., 2019), understanding impacts of
human activity (Ledger, 2017; Qiu et al., 2020) and monitoring
biodiversity (van der Kaars et al., 2017).

Palynology relies on highly skilled analysts to manually clas-
sify, identify and quantify intact and partial pollen grains within
background debris, using light microscopy. The analysis of indi-
vidual pollen grains involves characterisation of pollen size,
shape, aperture number and type, and surface texture. Gross mor-
phological variations are used to distinguish between pollen types
(family level); however, differences at species level become more
discrete, complicating the ability of precise taxonomical resolu-
tion. Manual classifications are limited to genus or, at times,
family level (Makela, 1996), subject to human bias and are time
intensive (MacLeod et al., 2010). In palaeoenvironmental studies,
150–500 pollen grains are typically analysed per microscope slide
in 2–10 h (Stillman & Flenley, 1996). Consequently, palynologi-
cal investigations are inherently constrained by sampling size and
frequency (Lacourse & May, 2012) and taxonomical precision,
limiting the quality of spatio-temporal data used in climate
change reconstructions (Lake et al., 2017; Anenberg et al., 2020)
and pollen forecasting (Anenberg et al., 2020).
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Despite these complications, manual microscopic analysis
remains the benchmark method for pollen quantification and
classification (Baksay et al., 2020). Existing alternatives have their
own challenges. Environmental DNA metabarcoding allows
high-resolution, species-level identification; however, it cannot
robustly quantify pollen abundance (Bell et al., 2018). Conven-
tional (nonimaging) flow cytometry and coulter counters have
been used to rapidly analyse high quantities of pollen grains (Mit-
sumoto et al., 2009; Tennant et al., 2013; Heidmann et al.,
2016), however, lack the detailed morphological data that are the
main phenotypic differentiators for pollen.

Recently, deep learning (neural networks) has provided new
possibilities for automated pollen classification (Langford et al.,
1990; France et al., 2000; Zhang et al., 2004; Mander et al.,
2013; Marcos et al., 2015; Daood et al., 2016; Tcheng
et al., 2016; Khanzhin et al., 2018). These AI-mediated analyses
are accurate, exclude human bias and can, for example, distin-
guish obscured pollen on microscope slides, as well as damaged
or partial grains (Holt et al., 2011; Tello-Mijares & Flores, 2016;
Bourel et al., 2020; Olsson et al., 2021). Recent advancements in
microscope slide scanning have allowed higher pollen volumes
and therefore taxa to be rapidly analysed (Olsson et al., 2021;
Punyasena et al., 2022); however, scanning times can vary
between instruments, and optimised pollen concentrations
mounted onto slides are required so that pollen is sufficiently dis-
persed for adequate image capture and minimal obscured images.

An alternative to microscope slide scanning is imaging flow
cytometry (IFC), a multispectral, data-rich technique that allows
rapid acquisition of thousands of images per second. Samples are
hydrodynamically focused during analysis; therefore, image cap-
tures typically containing one object are generated, preventing
object overlap (as experienced using microscope slides), reducing
the need for segmentation processing. High-throughput image
acquisition makes IFC ideally suited to machine learning and
deep learning applications (Doan et al., 2018) since robust train-
ing libraries can be generated to train networks.

A target of 40 taxa in a training library has been suggested for
meaningful applications in palaeoecology (Holt & Ben-
nett, 2014), although the majority of studies are limited to fewer
than a dozen taxa (Langford et al., 1990; Makela, 1996; Bourel
et al., 2020). A recent investigation used a convolutional neural
network (CNN) to classify 426 876 images from a pollen library
containing 35 meadow plant species via IFC at 96% accuracy
(Dunker et al., 2020). However, their algorithm was tested on
pollen samples used to train their network, limiting its scope for
environmental application. Environmental, airborne pollen has
been classified by a CNN trained on 46 pollen types (14 153 pol-
len images) using digitalised microscope slides (Punyasena et al.,
2022). Training data were manually annotated, subsequently
limiting the network due to human bias and restricting taxono-
mical precision to genus and family level. A more robust
approach was adopted whereby digitalised slides of reference pol-
len (83 species; 122 000 images) were used to train a CNN (Ols-
son et al., 2021). Libraries were populated with key pollen
species known to be present in bee pollen samples and classifica-
tions were determined as pollen types which included a mixture

of pollen groups at species, genus and family level (Olsson et al.,
2021). Bee pollen is typically pristine, as indicated by the low
detection of damaged pollen grains, and highly abundant; there-
fore, background (non-pollen) images were not classified (Olsson
et al., 2021).

The ability to train a network on a reference library of pollen
species and then test it on environmental samples containing high
levels of uncertainty such as a broad range of species including
those independent of training libraries and background objects, is
imperative for accelerating exploratory and applied palynology
(Edwards et al., 2017). Therefore, our aim was to construct a
robust, deductive network that could rapidly:

(1) identify pollen against non-pollen (background) objects,
inevitably present in environmental samples,
(2) classify pollen to species and genus level for pollen types of
interest and
(3) predict at order, family or genus level the presence of pollen
types outside predefined classes present in a reference library.

Consequently, we developed a unique version of deep learning,
that we term ‘Guided Deep Learning’ which combined multi-
labels related to pollen morphology and taxonomy, for training
images (Fig. 1). This unique approach differs from previous stu-
dies that have either adopted purely deductive, classical machine
learning techniques (Daood et al., 2016), which require substan-
tial human input and can fail to capture important subtle features
crucial for classification, or purely inductive deep learning net-
works (Sevillano et al., 2020), requiring minimal human input
by creating its own rules for classification, and is therefore
deemed a ‘black box’. Our work sits between these two
approaches, by allowing the expert to include labels deemed
important for classification whilst also taking advantage of fea-
tures extracted by the network, essentially, lifting the lid on the
black box of deep learning. Moreover, the labels used by our net-
work can be assigned in a weakly supervised manner as opposed
to case-by-case annotations, saving time.

Training was split into subtasks that incorporated prior knowl-
edge of pollen morphology with the advantages offered by deep
learning to extract subtle features from the IFC images to phylo-
genetically classify pollen samples. This combination allowed
prediction of pollen abundance across various levels of taxonomy,
even if species were independent from the training dataset. In a
true test, the system successfully classified previously unseen fossil
pollen archived in c. 5500 Cal yr BP lake sediment, which had
been manually classified to genus or family level.

The combination of IFC and flexible AI described here is
widely transferable and will potentially revolutionise many
aspects of palynology, allowing more precise taxonomical classifi-
cations, for example, species level, opposed to family-level detec-
tion, and higher volumes of samples to be rapidly analysed,
therefore improving our understanding of pollen in the environ-
ment. Our network could be applied to enhance data used to
inform climate change and pollen forecasting modelling and
to provide a deeper understanding of exposure to allergenic pol-
len types and subsequent health effects.
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Materials and Methods

Modern pollen reference sample preparation

Pollen standards from 53 plant species (Allergon AB Thermo
Fisher Scientific, Ängelholm, Sweden) were analysed for a broad
range of European and Northern American angiosperms and
gymnosperms (Table 1). Approximately 0.1 g of pollen material
was added to 40 ml of Mili Q water, vortexed, heated at 90°C for
1 h to hydrate pollen grains and remove air within the sample,
and sieved at 100 μm (Corning nylon cell strainer) to prevent
blockage of the IFC instrument.

Palaeoenvironmental sample preparation

Sediment cores were extracted from Mere Tarn, Cumbria, UK
(54°08012.400N, 03°07026.000W), and extruded into 1 cm intervals.
Known amounts of Lycopodium spp. grains (Lund University,
Sweden) were added to samples to enable estimates of absolute con-
centrations (Stockmarr, 1971). Pollen grains were extracted from
background lake sediment via sequential digestion using HCl,
KOH and HF at 90°C, acetolysis and physical separation by sieving
to collect particulate 10–106 μm in size. Samples were stored in
glycerol. Before IFC analysis, glycerol was washed from the

palaeoenvironmental samples via resuspension of 1ml of sample in
Milli Q, centrifugation at 11 337 × g for 5 min, removal of the
supernatant and final storage in 1 ml of Milli Q.

Manual identification of fossil pollen in a
palaeoenvironmental sample

Pollen grains were manually identified and counted using light
microscopy at 400× magnification, aided by a range of pollen
reference material and keys.

Imaging flow cytometry (IFC) data acquisition

Data were acquired using a fully calibrated (ASSIST tool) Image-
Stream X MkII (ISX; Luminex Corp., Seattle, WA, USA) config-
ured with a single camera and 405, 488, 561, 642 and 785 nm
excitation lasers, brightfield (BF) illumination, multi magnifica-
tion (20×, 40× and 60×) and a six-channel detection system.

A hydrodynamically focused stream allowed interrogation of
individual objects by a suite of lasers and BF illumination. Light
emitted from each object was detected on a series of six channels
(Ch01, Ch02, Ch03, Ch04, Ch05 and Ch06), each relating to a
specific bandwidth. Brightfield images were collected on Ch04
(BF, 610/30 nm), side scatter on Ch06 (SSC, 762/35 nm) and

Fig. 1 Flow diagram of our exploratory approach to automated pollen classification combining imaging flow cytometry and deep learning. Imaging flow
cytometry was used to analyse modern pollen and fossil pollen. Individual objects within the sediments were hydrodynamically focused and interrogated
by a suite of lasers. Brightfield, side scatter and autofluorescence images were captured at specific bandwidths via channel detectors. Modern pollen
samples were used to train Deepometry, an open-source workflow based on ResNet50 (Doan et al., 2021). A multi-classification algorithm was initially
implemented (Network 1), trained on images split into classes depending on their species. A second network (Network 2) was trained on images classified
at order level. The accuracy of both networks was tested on hold-out data, and confusion matrices were used to understand misclassifications. The net-
works were also trained to identify and extract ‘background’ or ‘noise’ events. A more flexible approach was necessary to carry out exploratory work on
fossil pollen. Therefore, Network 3 was modified to perform multi-classification, multi-label training. Images present in the modern samples were assigned
labels according to their taxonomy and overall morphology and used to train the modified network. Features learnt by the neural network were extracted
from the training images and a supervised method was used to perform dimension reduction and visualise features in 2D as a UMAP (UniformManifold
Approximation and Projection) plot. Support vector machine learning was then used to learn classifications of test images based on their positions in feature
space.
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Table 1 Reference library of pollen and spore samples used to train the deep learning network.
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Table 1 (Continued).

Order Family Species  Autofluorescence Brightfield Side scatter n
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Table 1 (Continued).

Order Family Species  Autofluorescence Brightfield Side scatter n
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Table 1 (Continued).

Betula  
pendula Roth. 

2224 

Corylus  
avellana L. 8150 

Fagaceae

Quercus  
alba L.

6486 

Quercus  
robur L. 7850 

Juglandaceae 
Juglans  
californica S.
Watson. 8011 

Lamiales

Oleaceae

Fraxinus 
americana L. 4264 

Fraxinus  
excelsior L. 2794 

Plantaginaceae Plantago 
lanceolata L. 3379 

Malpighiales Salicaceae

Populus alba L.
5044 

Salix viminalis L.
2431 

Order Family Species  Autofluorescence Brightfield Side scatter n
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Table 1 (Continued).

Malvales Malvaceae Tilia cordata Mill. 6958 

Myrtales Onagraceae 
Chamaenerion 
angustifolium 
(L.) Holub. 117 

Proteales Platanaceae Platanus x 
hispanica Mill.

6935 

Rosales 

Cannabaceae Humulus  
lupulus L. 3592 

Moraceae
Broussonetia 
papyrifera (L.) 
L’Her. Ex Vent.

1246 

Ulmaceae

Ulmus  
americana L. 3972 

Ulmus glabra L.
4172 

Urticaceae 

Parietaria
officinalis L.

4393 

Urtica dioica L. 5612 

Order Family Species  Autofluorescence Brightfield Side scatter n
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autofluorescence on Ch01 (457/45 nm), Ch02 (533/55 nm),
Ch03 (577/36 nm) and Ch05 (702/85 nm).

For maximum resolution and high sensitivity, fluidics were set
at low speed. Magnification was set at 20× (1 μm2 pixel resolu-
tion) for optimum image capture of objects up to 120 μm in
length to encompass a wide range of pollen types. Brightfield illu-
mination and excitation lasers 488 nm (at 1.00 mW) and 785 nm
(at 2.03 mW) were applied to determine autofluorescence and
side scatter, respectively.

Sample volumes of 200 μl were prepared for analysis. For the
modern pollen standards, images were collected until c. 1000–
20 000 objects of interest were analysed or until acquisition
reached 30 min (sample volume analysed ranged from 42.65 μl
(n = 558; Abies alba Mill.) to 3.66 μl; n= 8150; Corylus avellana
L.). Pollen grains were visually isolated from background material
based on their high SSC and fluorescence properties.

For the palaeoecological samples, a similar acquisition tem-
plate was applied to gate the large, autofluorescent population
within the sample that contained pollen. Data were acquired
for a duration of 30 min to obtain sufficient fossil pollen and
analysed in replicate (n = 4). Approximately 14–47 μl of sam-
ple was analysed. To determine any potential batch effect, we
analysed five different reference pollen types over subsequent
days (Supporting Information Fig. S1). A compensation
matrix was applied to adjust for spectral overlap between

channels, calculated from data acquired excluding BF and
SSC excitation.

Imaging flow cytometry (IFC) data analysis

Postacquisition, data analysis was performed using IDEAS
® soft-

ware (v.6.2; EMD Millipore, Seattle, WA, USA). To ensure
high-quality data, background objects, unfocused images and
images containing multiple objects were excluded from the 53
modern pollen reference samples by setting thresholds for
selected features (Fig. S2). Variations in brightfield pollen images
(focus and rotation) are demonstrated in Fig. S3.

Autofluorescence (Ch01) vs SSC (Ch06) biplots were used to
identify pollen grains against background, non-fluorescent and
small particulate contained within the standardised pollen
extracts (Fig. S2). Compensated image files containing data from
all six channels were extracted; however, we selected BF, auto-
fluorescence detected by Ch02 and SSC images to train our deep
learning networks (Table 1) since they yielded the highest classifi-
cation accuracies on hold-out data.

Fossil pollen was visually isolated (postdata acquisition) from
nonpollen, minerogenic particulate in the environmental samples
based on the high SSC and fluorescence properties of pollen
(Fig. S4). Of the most fluorescent particulate, those with an
aspect ratio> 0.35 contained pollen grains (Fig. S4D) and were

Table 1 (Continued).

Order Family Species  Autofluorescence Brightfield Side scatter n

Sapindales Sapindaceae

Acer 
pseudoplatanus
L. 3617 

Acer rubrum L.
2315 

Aesculus 
hippocastanum 
L.

404 

Acer negundo L. 5286 

Exemplar pollen grains from each of the 53 plant species used to train the network are presented, showing autofluorescence (Ch02: 533/55 nm),
brightfield (BF: 610/30 nm) and side scatter (SSC: 762/35 nm) images. To test the ability of the network to identify a range of pollen types, the library
included species from 18 orders and 26 families to encompass a wide taxonomical range and varied morphological features including shape (spheroidal,
oval and bisaccate), aperture numbers (0–> 6) and aperture types (e.g. colporus, porus and leptoma ulcus; Supporting Information Table S1). To test the
prediction of pollen at both high and low taxonomical resolution, we also included multiple species within the same genus. Our library was also tailored to
represent some of the most abundant pollen types identified manually in the environmental sample. The number of pollen grains analysed for each species
is reported, totalling 595 647 images from 198 549 pollen grains. Bars, 20 μm.
*The Lycopodium spp. standard was derived from a tablet routinely used to spike palaeolimnological samples as a counting estimate.
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analysed by the network, which was also trained to identify back-
ground events, by including nonpollen populations such as speed
beads (small 1 μm plastic beads used during image acquisition
to focus the IFC camera), minerogenic particulate from the sedi-
mentary matrix, fluorescent but nonpollen particulate, and uni-
dentifiable background events.

Deep learning

Dataset Our initial dataset was compiled from analysis of
198 549 pollen grains with three channel (BF, Ch02 and SSC)
images (595 647 images in total) across 58 classifications which
included 53 pollen species (Table 1) and five background types.
A training/validation/test split of 70/20/10 was applied. The test
(hold-out) data were not used to inform training in anyway. All
confusion plots presented were based on hold-out data to assess
the accuracy of the network after training and to detect overfit-
ting. A modified workflow was subsequently developed and
tested on palaeoenvironmental samples to classify fossil pollen.

IFC had been used to broadly gate the pollen from the
palaeoenvironmental samples on which we ultimately tested our
network (Fig. S4); however, background events (e.g. minerogenic
and biogenic particulate) were still present and so our network
was trained to recognise a ‘nonpollen or background’ classifica-
tion by presenting examples of these images to the network dur-
ing training. Preprocessing of the data included normalisation of
images and centre cropping along with augmentation of images
in the form of resizing, rotation and translation to encourage a
robust approach and guard against overfitting.

Our network also mitigates for potential batch effects from
intrainstrument variability. Five reference pollen species were also
prepared using acid digest techniques, replicating the fossil pollen
treatment, to assess effects from sample preparation (Fig. S1).

Network Our network used a modification of Deepometry, an
open-source workflow based on ResNet50, designed to apply
both supervised and Guided Deep Learning analysis to IFC data
(Doan et al., 2021), however, was not pretrained. ResNet-50 is a
deep neural network, which applies residual learning to image
classification. Deepometry formed the basis of our workflow, as
was deemed appropriate for the complex task of learning at dif-
ferent levels of the phylogenetic tree.

Residual convolutional networks have been previously
employed successfully to classify images for a wide range of appli-
cations (Dhungel et al., 2017; Sarwinda et al., 2021; C. Li et al.,
2022). These types of networks use convolutional layers to learn
features from images. Skip connections are used to jump layers,
improving gradient flow through the network during backpropa-
gation. These skip connections help to deal with issues associated
with training deeper networks, for example vanishing gradients,
whilst yielding the benefits of using the additional layers to
extract more complex features from images.

Feature extraction Our workflow used the network to classify
images against a multi-labelling system, whereby each image can
be assigned a number of labels. This guided the network’s

learning process to key parts of feature space, deemed important
yet robust by the expert. The network is made up of multiple
layers and, due to the application of a multi-labelling classifica-
tion system, is trained with a complex loss function (which may
be tuned for a range of purposes, giving higher weighting to some
feature labels over others). The network learns which are the most
informative features during the training stage. Due to the
increased number of layers, the network is capable of learning
more specialised and complex features (likely to be specific to a
particular genus or species of pollen) at the deeper levels of the
network along with more general features such as size and edge
formation, extracted by the top layers (Radovanović & Đukano-
vic, 2020; Tan et al., 2021). Such an approach gives the workflow
necessary flexibility to handle a mixture of testing pollen made
up of previously seen pollen and potentially new pollen only
linked to the training data at higher levels of taxonomy.

The Guided Deep Learning approach we propose can be
applied in place of strongly supervised techniques. Moreover, as
an alternative to manually annotating each image used to train
the network, labels were assigned to subsets of images and there-
fore not typically assigned ground truths. This form of weak
supervision has been found to yield important advantages, not
least the time saved when preparing training data (Xu
et al., 2014; Yao et al., 2016; Y. Li et al., 2022).

For the flexible part of our network, we used a multi-
classification, multi-label approach to train the network. Images
were assigned multiple labels in a weakly supervised way linked to
their taxonomy, for example, order and family labels along with
labels based on morphological features (Table S1). Whilst training
the network, each classification made up its own subtask and was
treated as a binary classification problem. A cross-entropy loss func-
tion is used by the network to combine performance across the var-
ious subtasks and inform the weights of the different layers of the
network:

BCE1 large in sizeð Þ ¼ � p xð Þlog q xð Þ� �þ 1�p xð Þð Þlog 1�q
�
x

� �� ��

BCE2 spherical in shapeð Þ ¼ � p xð Þlog q xð Þ� ��

þ 1�p xð Þð Þlog 1�q
�
x

� �Þ�

BCEN Taxonomy Order Pinalesð Þ ¼ � p xð Þlog q xð Þ� ��

þ 1�p xð Þð Þlog 1�q
�
x

� �� ��

where x is the classification, p is the probability of class x in the
target vector, and q is the probability of class x in the prediction
vector.

The loss functions for each subtask were summed together for
all images in a batch and used to update the weights of the net-
work. Each image may have up to 110 different assigned classifi-
cations to allow the network to learn more flexible features that
could scale well across the different taxonomy levels. Whilst
mutually exclusive implementations were trialled, this network
with the additional flexibility, yielded superior performance and
high accuracy when tested on a typical deep learning hold-out
task (Fig. S5).
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Clustering techniques Clustering and visualisation techniques
were applied to features extracted from images by the network.
Features learnt by the network were extracted from the global
pooling layer by activations. This layer pools input features over
all spatial locations and summarises information learnt by the
whole network. These features were subsequently visualised for
further analysis.

Features learnt by the network were fully analysed for explora-
tory purposes. The ability to visualise high-dimensional features
learnt during training in 2 or 3 D offered important advantages,
particularly when dealing with some of the challenges presented
by our test data, composed of both previously seen and unseen
classifications. Uniform Manifold Approximation and Projection
(UMAP), a dimension reduction technique, was applied (Sto-
larek et al., 2022). Given high-dimensional data, UMAP pro-
duces a lower-dimensional representation for purposes of data
visualisation and exploration. This technique can be used for gen-
eral nonlinear dimension reduction (McInnes et al., 2018) and
allows manifolds in feature space to be modelled with a fuzzy
topological structure. Moreover, whilst an unsupervised approach
can be taken, topological structures were found and plotted based
on external labels or classifications such as pollen order or genus.
This technique was applied to features extracted from the images
by the network trained with our modified version of weak super-
vision. UMAP visualisations were produced based on labels
linked to the order, family, genus and species levels of the taxon-
omy, which allowed us to interrogate the data for clusters and
compare these against classification labels at different levels of the
phylogenetic tree. Support vector machine learning was then used
to classify images based on these representations in low-
dimensional space. Whilst this provided classifications to nearest
neighbours in features space, levels of uncertainty were also
determined and easily visualised for further discussion and
exploration.

Support vector machine learning Support vector machine
learning (SVM) was used to find optimised hyperplanes in N-
dimensional space that distinctly classify the data points. In our
case, this technique was applied to our UMAP representations of
features learnt by the network. Supervised learning according to
various taxonomy labels was used and the models generated were
tested on our hold-out data and palaeoenvironmental samples.

Results

Testing the accuracy of the deep learning network on
training data

A reference library of 53 modern pollen species (Table 1) and
background (nonpollen images) was prepared and manually
annotated by an expert (Table S1). We trained an initial network
(Network 1), which identified pollen with 93% accuracy at the
species level (Figs 2, S6) and successfully identified background
noise, when tested on hold-out data.

Network 1 was trained to extract specifically defined features
to assign species classification. However, to develop a flexible

system to predict unseen pollen that belongs to the same family
or order as species used to train the network, a broader classifica-
tion at higher taxonomy is required. Therefore, we trained Net-
work 2 to identify pollen at order level. The lower accuracy
(67.9% on hold-out data made up of species previously seen by
the network) compared with Network 1 (Figs 3, S7) reflects fea-
ture variability of species within higher taxonomical levels. For
example, some orders were well populated in the training library
(e.g. Poales), whilst others (e.g. Malvales) were represented by
only one species. Therefore, when tested on hold-out data, high
levels of accuracy were achieved for those classifications com-
posed of a single species or several highly similar species. Classifi-
cations containing multiple genera or species, particularly those
from different families, showed higher heterogeneity within the
training data and, therefore, reduced accuracy (e.g. Rosales and
Fagales), highlighting the challenges presented by a dataset with
different classification imbalances at different levels of taxonomy.

Although higher accuracies were achieved at species level by
Network 1, which learnt specific features from the images for the
task of classification, lower accuracy results from Network 2 sug-
gested that more general, flexible features were required to predict
pollen types at higher levels of taxonomy. A flexible approach is
crucial for environmental applications, where unseen pollen types
will be inevitable. We therefore designed a guided version of deep
learning that focused on robust features performing well to iden-
tify pollen across multiple levels of taxonomy, namely genus,
family and order levels (Table 2).

Our Guided Deep Learning utilised broad (species-wide)
labels of morphological features and taxonomy, to train Network
3 which then extracted features from images. UMAP was applied
to this resulting high-dimensional data to visualise a lower-
dimensional representation of these features (Fig. 4a). UMAP is a
popular clustering technique that may be used in a supervised or
unsupervised way. Here, the placement of manifolds (topological
space in which each species is plotted) is guided by order labels
via supervised learning to minimise intravariation of a particular
order whilst maximising intervariations. Exemplar pollen images
(Fig. 4b) demonstrate how orders are represented in the training
set. Whilst Network 3 added flexibility, it did not compromise
on accuracy when performing typical deep learning tasks with
c. 96% classification accuracy of the hold-out data noted (Fig. S5).

Classification of fossil pollen

To demonstrate the applicability of Network 3 to environmental
samples, it was used to classify fossil pollen grains deposited
within c. 5500 Cal yr BP lake sediments (Fig. 5). Results were
compared with classifications by a human analyst (Fig. 6). These
manual counts were performed as standard practice, at genus
level or, for some pollen types, at family level (Poaceae and
Cyperaceae) due to the laborious and difficult task of pollen iden-
tification. The network successfully detected the most abundant
pollen types within the environmental sample such as Corylus,
Quercus and Alnus, as well as relatively rare pollen grains such as
Pinus (Fig. 6a; Table 3). These key pollen types were represented
in the training library and the UMAP demonstrates that fossil
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pollen closely clustered with the modern reference images
(Fig. 5). The network performed very well at order level classifi-
cation (Fig. 6c), demonstrating the ability of the network to
detect at higher taxonomy the presence of pollen types not repre-
sented in the training library at genus level.

The prediction of pollen types at order, family and genus level
by Network 3 when compared to manual counts revealed that
100% of order, 77% of family and 96% of genus types were suc-
cessfully identified. For meaningful comparisons, all taxonomical
labels identified manually but not present in our training set were
removed.

Not represented in the reference library but identified by a
human analyst were Polypodium, Sphagnum, Hedera and Calluna.
As the Network was tasked with classifying all images, these spe-
cies will account for some misclassifications. It is important to
also note that in general, deep learning performs best when classi-
fying high-quality images, in cases where networks successfully
deal with noise, this is often accounted for during training. Net-
work 3, however, was trained on standard images and tested on
data that included some low-quality, noisy data from the envi-
ronment, which may also account for some of the misclassifica-
tions. However, the UMAP visualisation tool clearly indicates the

presence of pollen that fail to cluster with those represented dur-
ing training (Fig. 5).

Our workflow also outputs the probability that an image
belongs to a particular class. An average probability of 0.9714
was achieved for the fossil pollen classifications. Probabilities less
than 0.95 indicate a previously unseen order of pollen failing to
tightly cluster with training images. In the palaeoenvironmental
sample, 9.38% of pollen grains achieved probabilities of less than
0.95. In a practical setting, the probability scores along with the
UMAP visualisation tool would highlight an unseen pollen type
within the sample, indicating the need for further interrogation.
It is important to note that our workflow initially removes images
deemed as background noise or unsuitable for classification due
to poor quality, potentially removing some low-quality pollen
images at this stage.

We also examined the effectiveness of the labels used to train
Network 3 for classification purposes (Fig. S8) and found that
both taxonomy and morphology labels were highly weighted and
thus important to classify pollen at order, family and genus levels.
Moreover, this result demonstrated the need for a deep learning,
as opposed to a classical machine learning approach, to incorpo-
rate both morphological and taxonomical labels.

Fig. 2 Classification accuracy for modern pollen standards at species level using Network 1. In this confusion matrix, the number of correctly identified
images is given in the corresponding rows and columns. Quantities outside of the diagonal represent misclassifications. The dataset was split into training/
validation/test images (70/20/10). Deepometry was trained by a fully supervised method to label images according to their species and tested on hold-out
data, achieving an overall instance-level accuracy of 93%. Matrices depicting class-level accuracies are presented in Supporting Information Fig. S6.
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Discussion

We designed a flexible network that can rapidly analyse and accu-
rately classify a broad range of pollen in ‘real world’ environmen-
tal samples. We applied high-throughput images acquired via
IFC to a modified Guided Deep Learning network to accurately
categorise pollen from sediments c. 5500 Cal yr BP. Previously
unseen pollen species were either identified at higher levels of tax-
onomy (genus, family or order) or noted as belonging to an unre-
presented pollen type based on our visualisation tool and output
statistics.

Fundamental to the success of our network are the highly
robust training libraries of pollen images we acquired via IFC.
Consisting of 595 647 brightfield, autofluorescence and side scat-
ter images from 198 549 individual modern pollen grains, the
library incorporated 53 pollen types from 26 families, spanning
18 orders (Table 1). The high-throughput, rapid analysis of pol-
len performed by IFC is impossible to achieve via human analysts
and is unparalleled by other techniques including light micro-
scopy (Langford et al., 1990; Khanzhin et al., 2018), SEM (Man-
der et al., 2013; Daood et al., 2016) and classifynder (Holt
et al., 2011), and non-image-based techniques such as light

scattering (Miki et al., 2021) and traditional flow cytometry
(Tennant et al., 2013). The high volume of pollen grains ana-
lysed by IFC, addressed issues that complicate pollen classifica-
tion, for example variations in the appearance of pollen grains
due to rotation. Also, IFC was able to distinguish pollen from
background material based on their autofluorescence properties,
further promoting accurate identification by the network.

Our initial, conventional deep learning network (Network 1)
accurately classified 53 modern species and excelled at tasks that
are notoriously difficult for a human operator, for example, suc-
cessfully discriminating between morphologically similar pollen
such as Agrostis capillaris and Agrostis gigantea, and Quercus alba
and Quercus robur (Fig. 2). This further supports the accuracy for
deep learning to perform specific tasks, that is to classify known
pollen types using controlled images (Dunker et al., 2020). Such
a network can be very useful in instances when the classes are
known in advance and are included in training data (Olsson
et al., 2021). However, testing the network using hold-out data
generated at the same time as the library samples, with minimal
experimental variation, although typical for deep learning, is a
key limitation in exploratory analysis and the application of deep
learning to environmental samples with high uncertainty (i.e.

Fig. 3 Confusion matrix for modern pollen standards at order level using Network 2. The number of correctly identified images are given in the
corresponding rows and columns. Quantities off-diagonal are misclassifications. All background images were removed from the training data and the
remaining images were split into training/validation/test images of 70/20/10, achieving an overall instance-level accuracy of 67.9%. Matrices depicting
class-level accuracies are presented in Supporting Information Fig. S7.
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background noise and non-pristine pollen grains). Deep learning
is often criticised for its highly specific approach, and this was
reflected in the inflexibility of Network 1 and Network 2 to suc-
cessfully deal with poor image quality and previously unseen pol-
len types (Fig. S9A).

However, our Guided Deep Learning approach used to train
Network 3 maintains the advantages of a CNN with the addition
of expert knowledge of key morphological features and taxon-
omy. Assigned labels were highly weighted against classification
at all levels of the phylogenetic tree (Fig. S8), making the network
robust to noise and background images, allowing accurate classifi-
cation of pollen in an environmental sample at different taxono-
mical ranks (Fig. 6). The influence of batch effects, often
problematic for networks trained for highly specific tasks (Doan
et al., 2020), were minimal (Fig. S1A–C) as were effects from dif-
ferent sample preparations (Fig. S1D,E). We achieved classifica-
tion accuracies >97% in all cases for a subpopulation of pollen
analysed over different days and therefore conclude that our
approach was robust against intrainstrument variability.
Although reduced, an accuracy of c. 73%, demonstrates the flex-
ibility of Network 3 to accurately classify pollen despite slight
morphological differences resulting from acid treatment
(Fig. S1).

Our Guided Deep Learning algorithm also removed images
identified as background noise or nonpollen events. This is an
important step for all types of work, removing the need for exten-
sive gating via IFC and, therefore, further speeding up classifica-
tion. The inclusion of background reference images helped to

optimise classification and prevent the network forcing erroneous
predictions of unseen (not included in the library) background
objects.

As an exciting exploratory tool, our network can not only accu-
rately predict the presence of pollen types at genus or species level
when represented in the training library, achieving an accuracy of
>96% for such typical tasks (Fig. S5), but crucially predict pol-
len types at family or order level if not included in training data-
sets.

The flexibility Network 3 demonstrates to deal with complex
environmental samples is also superior to supervised machine
learning. Our approach involved labelling images in a weakly
supervised way, with general high-level morphology labels
assigned to all pollen belonging to a particular species. This is
unlike classical machine learning that typically involves the man-
ual inspection of individual images and the generation of stan-
dard features along with feature engineering (Kim & Choi, 2019;
Lv et al., 2022), which can be time consuming, requiring a degree
of a priori expert knowledge and may still fail to capture all infor-
mation. By exploiting the advantages of deep learning, our net-
work can quickly learn a range of features at different
taxonomical resolutions and has the potential to learn subtle
abstract features that would be difficult to summarise as a metric.

Table 3 shows the representation of pollen types in the training
libraries that were manually identified in the environmental sam-
ple. Our training libraries exhibit imbalances in their representa-
tion. Despite this, Network 3 successfully extracted features
flexible enough to disregard subtle differences between species
and correctly identify fossil pollen at genus level in the palaeoen-
vironmental sample when they were represented in the training
set. A key example is Corylus, which was accurately predicted in
high abundance. Moreover, pollen types present in the environ-
mental sample but not represented in our training library were
successfully detected at higher taxa, for example, Carpinus (Betu-
laceae) and Sparganium (Poaceae) were successfully predicted at
family level. Whilst there were no examples of pollen belonging
to the Rosaceae family in our training library, the algorithm cor-
rectly identified the presence of Rosales, the order to which Sor-
bus (Rosaceae) belongs. Furthermore, the network also
successfully detected pollen grains that were present in low abun-
dance in the environmental sample such as Pinus at genus level.
The detection of, for example, Abies alba by the network may
have been a misclassification at species level, however, highlights
a correct classification at family level, indicating the network’s
ability to learn connections between species. Since the truth
populations for the environmental sample are derived from man-
ual classifications (at genus/family level), it is impossible to quan-
tify the accuracy of our network at species level; however, our
work shows the potential for species-level discrimination.

A potential limitation of the network was the use of a modern
pollen reference library for fossil pollen classification; however,
the UMAP visualisation tool revealed that fossil pollen plotted
tightly over the modern reference samples, demonstrating the
suitability of our reference library for palaeoecological classifica-
tions (Fig. 5). Potential alterations of grain morphology during
compaction in the sediment archive and the shrinking or swelling

Table 2 Strategy used to develop a Guided Deep Learning network for the
classification of pollen in palaeoenvironmental samples.

Step Process

1 Images were given multiple labels based on their morphology and
taxonomy. Labels related to morphology provided an opportunity
for the expert to direct training to the most important parts of
feature space whilst taxonomy labels allowed the network to learn
more subtle features, linking images at various levels of the
phylogenetic tree.

2 The network was trained on this multi-label problem using an
adjusted cross-entropy loss function to inform learning of
important features.

3 Features were extracted from the global pooling layer and
visualised via a supervised learning implementation of Uniform
Manifold Approximation and Projection (UMAP). The technique
visualises data, placing manifolds according to external labels and
can preserve both local and global information with manifolds
placed near those with maximum similarity.

4 The process was tested on a range of datasets including
palaeoenvironmental data to explore aspects of our network to
assess the applicability of the method to real life, environmental
samples and exploratory work. The fully trained network was used
to extract features from these images, and UMAP was used to
visualise these features in relation to those extracted from the
training images.

5 Support Vector Machine learning (SVM) was used to learn the
classification of images at various levels of their taxonomy
according to their position in the 2D plot. The model was used to
estimate classifications present in our test mixes.
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of grains from chemical extraction (Makela, 1996) were effec-
tively handled by the flexibility of the network (Fig. S1).

Misclassifications observed in Fig. 6 likely reflect poor image
quality or the presence of an ‘unclassified’ category of pollen.

Our fully trained algorithm did not have such a category since
training a network to identify such a heterogeneous class is chal-
lenging. However, an additional benefit of the UMAP visualisa-
tions is that the presence of unseen pollen types is indicated by

(a)

(b)
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the spread of events across the feature space and confirmed by sta-
tistics related to estimated certainty of classification for each pol-
len image (Fig. 5). This will form the basis of future work which
may also explore different combinations of the features used to
guide learning. We chose features that scaled well across taxa
(Fig. S8); however, these could be refined to prioritise noise
reduction and image quality. Our strategy allows the expert the
unique opportunity to incorporate preferences into training.

Optimal training libraries are crucial for an exploratory net-
work and should be populated with balanced representations of
pollen types at family, genus and species level. We show the

incorporation of sufficient pollen types to reflect heterogeneity
within a family is required for accurate predictions at this level.
The inclusion of new training data may alter the UMAP cluster-
ing as more species are added to the reference library; however,
our network could be quickly retrained for specific applications.
Also, to prevent the network forcing an erroneous prediction of
unseen pollen types or background objects, libraries should also
contain background reference images and include adequate repre-
sentation of pollen types of interest.

Despite some misclassifications, which can be easily identified
and addressed by incorporating pollen types of interest within

Fig. 4 UniformManifold Approximation and Projection (UMAP) plot of features extracted from training images by Network 3. (a) Each point in the UMAP
scatter plot represents an image present in the training data, colour-coded according to the order to which they belong. Each order investigated has a dif-
ferent number of representative samples: Lycopodiales, 1 (highlighted by dotted circle); Arecales, 1; Poales, 8; Asterales, 5; Brassicales, 1; Caryophyllales,
3; Dipsacales, 1; Fabales, 1; Fagales, 6; Lamiales, 2; Malpighiales, 2; Malvales, 1; Myrtales, 1; Proteales, 1; Rosales, 5; Sapindales, 4; Pinales, 7; Equisetales,
1. (b) Selected orders are numbered with exemplar images of the pollen types representing these orders. Family groups are noted, and dashed boxes high-
light species belonging to the same genus. (bi) The seven species representing the Pinales order show morphological variability within the order. The distinct
saccate grains of the Pinaceae family result in a clustering of similar features that are morphologically distinct from the spheroidal grains of the Cupressa-
ceae family, within the same order. (bii) The Poales order is represented by eight species from the Poaceae family, which have spheroidal grains with one
ulcus pore, reflected by a tight clustering of five of these eight species. Distance between the species, therefore, potentially reflects size variations and high-
lights the ability of the network to distinguish between species in the Poaceae family, which is notoriously difficult via manual classification. (biii) The Caryo-
phyllales order is represented by three species from the Amaranthaceae family, that are morphologically similar: spheroidal pantoporate grains with
echinate surface ornamentation. However, the UMAP plots these morphologically similar grains apart, highlighting the potential for deep learning to iden-
tify subtle differences that are not easily detectable by a human scorer. (biv) The Asterales order is represented by five species from the Asteraceae family,
three of which belong to the same genus. Two of these species (Ambrosia psilostachya and Ambrosia artemisiifolia) cluster together, highlighting close
similarities in the grains; however, the network also separates out Ambrosia trifida as being morphologically distinct.

Fig. 5 Classification of fossil pollen within the
sediments of the Mere Tarn core using
Guided Deep Learning. The classification of
fossil pollen is visualised by UniformManifold
Approximation and Projection (UMAP). Black
dots representing fossil pollen are
superimposed over the modern pollen
training dataset. Lycopodiales are highlighted
by dotted circle.
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the training library, our modified network demonstrates excellent
results for exploratory analysis, providing a rapid alternative to
manual classification. Analysts manually identify pollen based on
the similar gross morphologies of pollen types at family level
(Leopold et al., 2012) and painstakingly measure grain size,

surface features and aperture characteristics to discern subtle dif-
ferences between genera or species. At times, manual classifica-
tions can only be resolved at family level (Leopold et al., 2012).
Our network, however, can resolve taxonomical classifications
beyond the ability of a human operator.
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Although improved taxonomical resolution can also be
achieved through eDNA analysis (Brennan et al., 2019; Parducci
et al., 2019), there are several limitations. Firstly, the extraction

of sufficient DNA from samples with low pollen concentrations.
This is especially important for palaeolimnological samples where
pollen grains are heavily diluted within the lake sedimentary

Fig. 6 Comparison of predicted fossil pollen assemblages with manual counts within the sediments of the Mere Tarn core. Pollen grains were classified via
Guided Deep Learning at genus (a), family (b) and order level (c). Manual classifications resolved to genus or family level performed by a human operator
(black bars) are presented alongside the predicted pollen assemblage (green bars) by Network 3. Manual counts could only be resolved to family level by
human analyst for Poaceae and Cyperaceae. Predictions made at genus level for Poaceae are highlighted by *. Of the 21 main pollen types within the
palaeoenvironmental sample (manual pollen count >3 grains), 15 were represented in our training library at genus level. Sorbus, Carpinus and Sparganium

were represented at order level (Rosaceae, Betulaceae and Poaceae, respectively). However, some species (Polypodium, Sphagnum, Hedera and Calluna)
were not represented at genus, family or order level. Classifications of other pollen types predicted by the network but not counted by the human analyst
are presented in Supporting Information Fig. S10. Average level of certainty associated with a particular classification by the system was 97.14%. Some
images achieved as low as 0.216 level of certainty associated with their classification with 9.38% having an estimated certainty of less than 95%, indicating
that previously unseen pollen species are present within the sample. Exemplar images of correct classifications for selected pollen types are presented.

Table 3 Summary of notable results from the classification of fossil pollen in the palaeoenvironmental sample from Mere Tarn, Cumbria, UK by Network 3.

Pollen type detected
by Network 3

Representation in
the training library
(number of references
at taxa-level) Result summary

Genus
Equisetum 1 species Although manual counts of Equisetum spores were relatively low, the network detects high numbers

in the sample. This is likely due to the homogenous morphology of Equisetum spores, with fewer
distinguishing features. Consequently, the network may have confused them with morphologically
similar pollen types (spheroidal, medium sized, one pore) such as those of the Poaceae family. This
misclassification is however tracked across all levels of taxonomy.

Corylus 1 species Identified as the most abundant pollen species by the network (after Equisetum), confirmed by manual
counts.

Alnus 1 species Accurately predicted in relatively high abundance by the network, verified by manual counts.
Quercus 2 species Accurately predicted as the third most abundant pollen type by the network, verified by manual

counts.
Lycopodium 1 genus A Lycopodium spp. spore tablet was added to the sample to estimate pollen concentrations and was

successfully classified by the network at genus level.
Ulmus 2 species Ulmus exhibits a distinct morphology making it readily distinguishable by the network. Identified at

family and genus level at relatively low concentration, reflecting manual counts.
Betula 1 species Accurately detected in relatively low abundance.
Carpinus 0 species Unable to detect at genus level due to poor representation in the training library, however, successfully

predicted at family level (Fagales).
Pinus 2 species Network detects this relatively rare pollen type.

Family
Equisetaceae 1 species Estimated at relatively high concentrations by the network, reflecting the misclassification of grains as

Equisetum (as described above).
Betulaceae 3 species Successfully predicted at high abundance. The network distinguishes between genera within this

family: Betula, Alnus and Corylus.
Fagaceae 2 species Estimated in relatively low abundance indicating that some pollen grains from this family may have

been misclassified.
Poaceae 8 species Grass species could only be resolved to family (Poaceae) level via manual counts due to similarities in

pollen grain morphology. The network successfully classified pollen types belonging to the Poaceae
family and furthermore, resolved identification to genus level, detecting the presence of Agrostis,
Anthoxanthum and Avena.

Order
Equisetales 1 family – 1 species Estimated at relatively high concentrations by the network, reflecting the potential misclassification of

grains as Equisetum (as described above).
Fagales 3 family – 6 species Detected as the most dominant order, mirroring the manual counts. Also, likely to include Carpinus

grains which were not represented in the library at genus level.
Lycopodiales 1 family – 1 genus Successful detection of Lycopodium at order level.
Rosales 4 family – 6 species
Poales 1 family – 8 species Accurate detection at low abundance.
Pinales 3 family – 7 species

The representation of pollen types in the training library (number of species at closest level of taxa) is noted.
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matrix. Taxonomical classifications are then reliant upon incom-
plete reference databases, which are biased towards commonly
used indicator species (Pedersen et al., 2015; Bell et al., 2022)
and are reported as relative abundance. Also, pollen cannot be
discerned from plant debris (Johnson et al., 2019), preventing
the detection of atmospherically derived pollen signals from other
(e.g. catchment) vegetation inputs (Parducci et al., 2019). The
classification of a visual pollen database, however, offers the
advantages of distinguishing between pollen grains from plant
debris and the quantification of absolute pollen counts, as well as
relative abundance.

The Guided Deep Learning network removes human bias and
reduces analysis time when classifying a visual pollen database.
For example, it took a highly skilled expert more than 2 h to
count 1043 pollen grains from one palaeoenvironmental sample.
IFC, however, generated 5415 pollen images in 30 min, which
were then applied to our network, preprocessed and classified in
30 min.

Classification of environmental pollen from digitalised micro-
scope slides via deep learning boasts rapid image capture at higher
magnification than our approach (Olsson et al., 2021; Punyasena
et al., 2022). Punyasena et al. (2022) utilised training datasets
annotated by a human operator and therefore precise, species-
level classifications were limited (Punyasena et al., 2022). High
numbers of pollen reference samples and taxa (83 species,
122 000 images) have been used to classify pristine environmen-
tal samples (bee pollen) that are highly abundant in pollen grains
(Olsson et al., 2021). Although rapid image acquisition is
reported (Olsson et al., 2021), only 2 μl of sample was analysed
per slide (five slides were loaded per scan requiring 30 min analy-
sis time), presumably at an optimal concentration for sufficient
pollen grain dispersal to prevent grains becoming obscured on
the slide. Each digitalised slide required z stacking of five focus
layers (15 min per image) before classification (105 min total for
10 μl). For our environmental samples, 30–47 μl of sample con-
taining relatively rare pollen populations was analysed in 30 min
with no need for object detection via segmentation.

The rapid analysis our technique allows offers the opportunity
for high-resolution spatial and temporal sampling in palaeoecolo-
gical investigations and therefore more robust, replicated histori-
cal reconstructions of human activity (Deza-Araujo et al., 2020;
e.g. occurrence of early agriculture) and climate change through-
out the Holocene (Kaufman et al., 2020). Issues such as low pol-
len concentrations in samples can be addressed by performing
several IFC data acquisitions to produce more statistically reliant
datasets. With inclusion of specific species of interest in our train-
ing libraries, higher taxonomical precision can also be achieved,
for example distinguishing wild grass pollen from domesticated
cereals, which is extremely difficult for a pollen analyst (Joly
et al., 2007). Since most palaeoenvironmental samples are stored
in glycerol, there is potential to rapidly re-analyse fossil pollen
records using our technique, or determine broad pollen assem-
blages down core, from which important stratigraphic horizons
requiring more detailed investigation could be selected. The rapid
generation of multiple down-core pollen records at one site may
also be used as a tool for intrasite core correlation.

Our flexible network could be tasked with additional reference
pollen types to expand classification and resolve regional pollen
signatures. Alternatively, bespoke training libraries that reflect
specific pollen types of interest may also be applied to classify dis-
tinct localised pollen signals comprised of fewer pollen types.
Furthermore, the ability of our network to classify background
(nonpollen) events also suggests that other environmental proxies
such as tephra and diatoms could also be rapidly analysed simul-
taneously by our technique.

The high versatility of our network makes it widely transfer-
able to revolutionise many other aspects of palynology, to
enhance taxonomical precision and provide rapid, high-
resolution temporal and spatial sampling. For instance, resolving
uncertainties currently experienced in aeroallergen forecasting
(Erbas et al., 2012; Lake et al., 2017) and to better understand
spatial and temporal variations in exposure to pollen from highly
allergic grass species that are notoriously difficult to identify
manually (Brennan et al., 2019); forensic applications (Webb
et al., 2018); archaeological reconstructions; or determining pol-
len in honey to assess food quality and foraging behaviour of bees
(Brodschneider et al., 2019; Hoffmann et al., 2020); investiga-
tions into biodiversity (Leontidou et al., 2021); pollination and
the migratory patterns and habitats of pollinators (Doyle et al.,
2020); and the morphological traits of pollen (phenotypes) and
plant evolution (Heinze et al., 2017).
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