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Abstract 

Urban water supply is coming under increased pressure due to urbanisation, 

water scarcity and climate change. Efficient urban water management can help 

alleviate this pressure by improving service quality and reducing water loss. 

Accurate demand and consumption forecasting enables expansion planning, 

financing, and operation of water distribution systems. Current research often 

focuses on model-centric approaches where the model is improved to drive 

forecast accuracy; however, more efficient data usage could be realised as an 

alternative to model-centric approaches, without incurring additional computation 

costs. This work investigates the potential of data-centric forecasting approaches, 

focusing on ways to improve the efficiency of data and computation resource 

usage for short-term water demand forecasting. 

To initiate the investigation, several intrinsically different forecasting models are 

analysed. A total of four different forecasting models, i.e., Prophet, 

Autoregressive Integrated Moving Average, Neural Network (NN) and Random 

Forest (RF) are applied to four demand datasets, i.e., one Chinese hourly 

demand dataset and three UK 15-minute demand datasets. Various aspects of 

data and model requirements for optimal performance are investigated. Results 

obtained from the case studies show that prolonging training data may not be 

necessary, and that accurate sub-daily water demand forecasting is possible with 

10 days of past data for model training.  In terms of accuracy, neural network and 

random forest tend to be better suited towards short-term water demand 

forecasting over statistical models.  
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The second part of the work aims to unbox the four black-box machine learning 

methods – NN, Long Short-Term Memory (LSTM), RF, Extreme Gradient 

Boosting (XGB) and explain their inner workings using SHapley Additive 

exPlanations and Local Interpretable Model-Agnostic Explanations, Prophet and 

ARIMA are excluded due to inferior forecasting accuracy. Results have found that 

feature requirement depends on data resolution, the forecasting model used and 

the forecast time of day. Network-based models (NN and LSTM) are more 

temporally dependent and feature intensive, indicating that they require more 

feature inputs to produce equal accuracy compared to tree-based models (RF 

and XGB). High-resolution forecasts can maintain a high level of accuracy with 

only one feature at the previous point.  

The final part of the work analyses the possibility of incorporating Transfer 

Learning (TL) into the context of water demand forecasting. To evaluate the 

potential of TL, 18 UK DMAs water demand datasets are used. Experiments are 

designed to predict water demands in one DMA that has limited or unavailable 

data, with an aim to anaysing the forecasting ability of models built with alternative 

DMA data. Results have found that four and eight external DMA datasets are 

respectively suitable for 15-minute and hourly demand and that limited accuracy 

gains are achieved from samples size larger than 20,000. Finally, TL-

incorporated methods can improve machine learning forecasting accuracy when 

there is limited data availability.  

The results obtained in this study prove the usefulness of data-centric 

approaches’ ability to improve forecasting accuracy. The data-centric approaches 

explored in this thesis can be used to guide the development of machine learning-

based short-term demand forecasting models for researchers, operators, and 
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utilities. Efficient use of forecasting models and demand data holds further 

potential in improving forecast accuracy, reducing computation cost, and 

bettering user confidence in the application of machine learning models.   
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Chapter 1 - Introduction  
1.1. Motivation 

Water demand management is essential for ensuring water security in urban 

centres, which are increasingly coming under threat due to urbanisation, water 

scarcity, ageing infrastructure, and climate change. An effective way to mitigate 

the increasing threat is to make accurate demand and consumption forecasts, for 

short, medium, and long forecasting horizons; these different horizons aid utilities 

with the operation, financing, and planning-related issues (Donkor et al. 2014).  

For operational management, short-term water demand forecasting can improve 

resource allocation, reduce cost and conserve treated water. All the benefits 

relate to minimising waste, whilst ensuring base customer requirements are met. 

For demand forecasting to be effectively used, a high level of accuracy is 

necessary (Wu and Liu 2017). 

A great deal of research effort has gone into improving the accuracy of short-term 

water demand forecasting, though much of the work has focused on using model-

centric approaches (Adamowski et al. 2012; Chen et al. 2017; Chen and Boccelli 

2018; Gagliardi et al. 2017; Herrera et al. 2010; Lertpalangsunti et al. 1999; Liu 

et al. 2022; Sardinha-Lourenço et al. 2018). These approaches focus on 

developing and adapting models to data, through various approaches including 

parameter optimisation, alterations to model structure and ensemble models.  

For machine learning (ML) models with well-defined structures, such as Prophet 

(Taylor and Letham 2018) and Autoregressive Integrated Moving Average 

(ARIMA) (Box E. P. G. et al. 2015), parameter optimisation has been the core 

focus when it comes to model-centric forecasts accuracy improvement (Menculini 
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et al. 2021; Papacharalampous and Tyralis 2018; Weytjens et al. 2021). Whilst 

parameter optimisation is also employed in more complex models, such as 

Neural Networks (NN) (McCulloch and Pitts 1943) and Random Forest (RF) 

(Breiman 2001), it is often not the focus of the investigation, as these models can 

be further improved in the model structure. Examples such as changes in the 

number of hidden layers for NN have shown effective to improve forecasting 

accuracy, but these improvements are gained at the cost of further computational 

complexity (Adamowski et al. 2012; Adamowski 2008; Chen et al. 2017; Ghiassi 

et al. 2008; Toharudin et al. 2023). Alternatively, ensemble modelling combines 

several forecasting models with either equal or different weights for individual 

models, and this approach draws out the advantages of individual models, thus 

achieving higher accuracy compared to individual models (Bata et al. 2020; 

Grover et al. 2015; Lertpalangsunti et al. 1999). 

In contrast to model-centric approaches, data-centric machine learning 

approaches have received limited attention in the field of time series forecasting 

including short-term water demand forecasting (Fu et al. 2022). The idea of a 

data-centric approach has been popularised by Andrew Ng in recent years 

(DeepLearningAI 2021). The Data-Centric AI Competition (DeepLearning.AI and 

Landing AI 2021) followed not long after, where participants were asked to 

improve a dataset using data-centric techniques before it is fed to a fixed model 

and the level of accuracy improvement that can be achieved is evaluated. In the 

research communities, the terms data-centric and data-driven were generally 

used interchangeably before Andrew Ng’s definition in 2021. This is evident from 

many studies that explicitly mentioned the term ‘data-centric’, yet merely used 

data for forecasting purposes, the core research focuses still lies on the model or 

forecasting system (Böse et al. 2017; Faeldon et al. 2014; Grover et al. 2015). 
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More recently, data-centric approaches were demonstrated more distinctly by 

Kang et al. (2021), whereby the research has forgone forecasting models. Instead, 

they used a large pool of real data from multiple sources as reference data. The 

similarity between the target series (series for forecasting) and the pool of 

reference series is measured, and a subset of reference series that is most like 

the target series is chosen for forecasting the target series.  

However, a model-less approach is not the sole data-centric method. Guo et al. 

(2018) have shown that the application of expert knowledge in data type can 

greatly improve forecasting accuracy. This can also be considered a data-centric 

approach, as data input is optimised via expert knowledge to improve forecasting 

efficiency and accuracy. Whilst Guo et al. (2018) understood the data 

characteristics to optimise input, this is not always the case. To overcome this, 

ML model explainability has received an increasing amount of effort recently.  

A wide range of techniques has been developed for machine learning model 

explainability. Barredo Arrieta et al. (2020) recognised that some statistical 

models are explainable due to the simplicity of model structure. More complex 

ML models require post-hoc approaches to become explainable. The post-hoc 

approaches are split into model-agnostic and model-specific approaches. As the 

names suggest, the former works on all machine learning models and the latter 

works on specific models. Specifically, model-agnostic approaches such as Local 

Interpretable Model-Agnostic Explanations (LIME) (Garreau and von Luxburg 

2020) and SHapley Additive exPlanations (SHAP) (Lundberg and Lee 2017) 

calculate individual feature contributions to forecasting accuracy. The former 

does so on a sample-by-sample basis, whilst the latter can produce an overview 

of all features across all samples. To our knowledge, explainability has not been 
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considered in the field of water demand forecasting, the closest research that 

employs an ML model explainer is the work by (Li et al. 2022a), where factors 

that impact beach water quality are analysed and ranked.  

Another approach that optimises the use of available data is Transfer Learning 

(TL). The idea has seen wide adoption in power/electricity forecasting (Fan et al. 

2020; Gao et al. 2020; Le et al. 2020; Ribeiro et al. 2018; Sarmas et al. 2022; Xu 

and Meng 2020; Zhang and Luo 2015), among other fields (Chen et al. 2020; 

Karb et al. 2020; Kimura et al. 2019; Liu et al. 2020; Peng et al. 2022; Zheng et 

al. 2022), though no such efforts are evaluated in the field of water demand 

forecasting. The intuitive idea of TL is that knowledge from alternative datasets 

can be leveraged to improve the forecasting accuracy of a target dataset, this can 

be particularly useful where quality data is scarce. Because water and power 

demand share similar temporal and spatial relationships, transfer learning could 

prove equally useful for short-term water demand forecasting.  

In this thesis, the data-centric approaches encompass all approaches that seek 

to maximise information extraction from available data. Three approaches are 

explored in this thesis, 1) optimise data to models to improve forecasting 

accuracy; 2) determine feature impact to eliminate non-essential feature inputs; 

and 3) investigate transfer learning to evaluate the potential of using external data 

to mitigate the lack of data availability.  

The work presented in this thesis uses real-life water demand data from UK and 

China, to identify more efficient and reliable ways to use past demand data, thus 

improving the accuracy of short-term water demand forecasting. A range of ML 

models is tested, using a variety of input scenarios, as well as feature and data 
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availability scenarios. The results presented could act as a guide to researchers, 

operators, and utilities. 

1.2. Research Questions and Aims 
This work explores the potential of a data-centric approach for short-term water 

demand forecasting. This section starts by outlining several research questions, 

followed by the aims and objectives that will individually address each question. 

1.2.1. Research Questions: 

• How do different data input structures impact different forecasting 

models, and could this be generalised and optimised? 

• Could the use of post-hoc Machine Learning model explainers replace 

human expertise, to improve forecasting accuracy and efficiency? 

• Can the use of Transfer Learning mitigate the impact of quality data 

scarcity, to maintain or improve short-term water demand forecasting 

accuracy? 

1.2.2. Aims and Objectives: 

This work aims to develop data-centric approaches for short-term water demand 

forecasting using historical data. To achieve this, the key objectives are as follows: 

• To collect and process water demand data that will be used for model 

training and testing.  

• To better understand different model requirements by altering input 

features to different forecasting models.  
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• To review the latest machine learning approaches in the literature that 

are used for short-term water demand forecasting. 

• To improve the understanding of the inner workings and different input 

requirements between machine learning models, by applying post-hoc 

model explainers to extract key features.   

• To evaluate Transfer Learning techniques in short-term water demand 

forecasting, to determine its potential for reducing computation cost, 

improving accuracy, and potentially rectifying missing or error data. 

 
Figure 1.1 Illustration of the relationship between main 

research topics. 

Figure 1.1 illustrates how the methodological chapters are connected, as well as 

how it relates to the aims and objectives. Steps 1, 2 and 3 respectively 

correspond with the three research questions asked in subsection 1.2.1. Step 1 

evaluates various forecasting models, it determines the suitability of different 

forecasting models for short-term water demand forecasting, it also evaluates 

model input and training requirements for univariate water demand forecasting. 

This lays the groundwork by determining the optimal performance forecasting 
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class, thus not all forecasting models need to be carried forward for later 

investigation. Step 2 employs post-hoc ML model explainers to reduce input 

feature requirements, this could replace expert knowledge in model and data 

pairing, and the reduced input would improve model efficiency without sacrificing 

accuracy. Step 3 applies transfer learning forecasting techniques to water 

demand forecasting, coupled with the reduced feature requirement determined in 

Step 2, the data requirement could be significantly reduced by the novel 

technique.  

1.3. Thesis Overview 
This thesis is divided into seven chapters. Following this chapter, Chapter 2 

provides a comprehensive literature review of research done in the field of short-

term demand forecasting. Including all approaches and models used, as well as 

some alternatives, to shed light on the reasoning for choosing the models 

evaluated in this thesis. Additionally, the performance indicators and their 

theories are presented in this section to show what has been used, and the 

reasoning behind indicator choice.  

Chapter 3 provides the details of the data used for model development and 

testing. The source and statistical characteristics of all datasets are presented. 

Additionally, data-cleaning techniques performed throughout the thesis are 

presented and discussed.   

Chapter 4 addresses the first objective. By analysing the forecasting accuracy 

impact of input structures, the optimal data length, temporal resolution, and noise 

tolerance for four different forecasting models. This is achieved with three 

experiments the varying input structure, feature length, temporal resolution, and 

data noise level.  
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Chapter 5 addresses the second objective. Two ML model explainers are applied 

to four ML forecasting models, using data of different temporal resolutions. Four 

experiments are designed to divulge how forecasting models use input features 

differently; it focuses on the forecasting models' temporal dependence, individual 

feature dominance and how feature requirements differ for forecasting demands 

at different times.  

Chapter 6 addresses the third objective. Two TL incorporated ML models are 

evaluated. The impact of external DMA demand data for cases with limited data 

availability is measured on two ML models across five different temporal 

resolution and feature pairing combinations. Experiments are designed to reveal 

external data impact and compare how best to select external data.  

Finally, Chapter 7 provides a summary of the experiments performed, including 

key results and findings, as well as the limitations of this study and future research 

recommendations.  

1.4. Contributions 
The key contributions of this thesis are as follows: 

A guide of suitable input structure for different forecasting models. Four 

forecasting models are evaluated, and the result has shown that they require a 

different amount of training data and have different levels of noise tolerance. The 

improved forecasting results act as a guide for forecasters to pair data to models 

more effectively.  

Improved understanding of how ML models use historical water demand 

data to make accurate forecasts. The application of ML model explainers has 

proven useful for short-term water demand forecasting, where previously 
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unknown interactions between data and model have been successfully unveiled. 

This can assist forecasters to decide on the choice of input data, especially in the 

absence of expert data knowledge. 

An insight into contributions of key input features for short-term water 

demand forecasting. The list of key input features in terms of their contributions 

to demand predictions across two temporal resolutions is determined through 

artificial intelligence explanation methods. The finding can be used as a guide to 

bypass the need for expert knowledge of data.  

A new forecasting technique that improves forecasting accuracy, reduces 

the impact of limited data availability, and reduces computation cost. The 

Transfer Learning (TL) technique has proven useful in the field of short-term 

water demand forecasting. Four and eight external DMA datasets have been 

shown to respectively suit 15-minute and hourly demand; limited accuracy gain 

is achieved by samples size beyond 20,000. Correlation-based and quality-based 

TL incorporation have marginal accuracy differences, though the latter requires 

far fewer trained models to forecast all DMA. 

Further insight into the potential of data-centric and model-centric 

approaches. The work has shown that whilst data-centric approaches can 

greatly improve forecasting result, time and effort is still required on the model-

centric approaches, though to a lesser extent.  

1.5. Published papers 
Liu, G., D. Savic, and G. Fu. 2023. “Short-term water demand forecasting using 

data-centric machine learning approaches.” Journal of Hydroinformatics. IWA 

Publishing. https://doi.org/10.2166/hydro.2023.163. 
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Liu, G., G. Fu, D. Savic. “Unboxing black-box machine learning models for short-

term water demand forecasting.” (Submitted) 

Liu, G., G. Fu, D. Savic. “Optimising the Usage of Multiple Short-term Water 

Demand Data via Transfer Learning.” (Submitted)  
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Chapter 2 - Literature Review 
This chapter presents the existing literature in the field of short-term water 

demand forecasting. The chapter is split into five sections. The model-centric and 

data-centric approaches are first discussed in detail, to show that there is a large 

research gap around the data-centric forecasting approach, where accuracy can 

be improved by better use of existing data. The second section looks at the 

machine learning (ML) models that are available for demand forecasting. The 

third and fourth sections respectively present Transfer Learning (TL) and ML 

model explainers, although these methods are yet to be applied to the field of 

water demand forecasting, their successful application and performance in other 

fields are presented and discussed. This is followed by popular performance 

indicators used in the field of water demand forecasting, along with choice and 

reasoning on selected indicators. Finally, the chapter ends with a summary of 

research gaps in the field, to elaborate on how this thesis addresses these issues.  

2.1. Introduction  
Short-term water demand forecasting has received an abundance of research 

attention. Much of the existing research has taken a model-centric approach, 

where efforts are spent on altering models to improve forecasting accuracy; there 

has been limited research effort on data-centric approaches, where forecasting 

accuracy is improved via more efficient use of data. 

2.1.1. Model-centric Approach  

Mode-centric approach refers to approaches where forecasting accuracy is 

improved by developing and adapting models to data. Much of the existing 

research employs this approach (Adamowski et al. 2012; Chen et al. 2017; Chen 
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and Boccelli 2018; Gagliardi et al. 2017; Herrera et al. 2010; Lertpalangsunti et 

al. 1999; Liu et al. 2022; Sardinha-Lourenço et al. 2018). The model-centric 

approaches are applied in various ways, including parameter optimisation, 

alterations to model structure and ensemble models.  

For models with well-defined structures, such as Prophet (Taylor and Letham 

2018) and Autoregressive Integrated Moving Average (ARIMA) (Box E. P. G. et 

al. 2015), parameter optimisation has been the core focus when it comes to 

model-centric forecasts accuracy improvement (Menculini et al. 2021; 

Papacharalampous and Tyralis 2018; Weytjens et al. 2021). 

Whilst parameter optimisation is also employed in more complex models, such 

as Neural Network (NN) and Random Forest (RF), it is often not the focus of the 

investigation, as these models can be further improved in the model structure. 

Examples such as changes in the number of hidden layers for NN have shown 

effective to improve forecasting accuracy, but these improvements are gained at 

the cost of further computational complexity (Adamowski et al. 2012; Adamowski 

2008; Chen et al. 2017; Ghiassi et al. 2008; Toharudin et al. 2023). 

Alternatively, ensemble modelling combines several forecasting models with 

either equal or different weights for individual models, and this approach draws 

out the advantages of individual models, thus achieving higher accuracy 

compared to individual models (Bata et al. 2020; Grover et al. 2015; 

Lertpalangsunti et al. 1999). 

2.1.2. Data-centric Approach 

In contrast to model-centric approaches, the idea of a data-centric approach has 

only been popularised by Andrew Ng in recent years (DeepLearningAI 2021). The 
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Data-Centric AI Competition (DeepLearning.AI and Landing AI 2021) followed not 

long after the initial discussion, where competition participants were asked to 

improve dataset classification using data-centric techniques, the result is fed to a 

fixed model and the level of accuracy improvement achieved is evaluated. 

Before Andrew Ng’s definition in 2021 (DeepLearningAI 2021), the research 

communities used the terms data-centric and data-driven interchangeably. This 

is evident from many studies that explicitly mentioned the term ‘data-centric’, yet 

merely used data for forecasting purposes, the core research focuses still lies on 

the model or forecasting system (Böse et al. 2017; Faeldon et al. 2014; Grover 

et al. 2015). Andres Ng has recognised that whilst data processing takes up 80% 

of machine learning researchers’ time, very few researchers have spent time 

trying to improve it.  

More recently, however, data-centric approaches were demonstrated more 

distinctly by Kang et al. (2021), whereby the research has forgone forecasting 

models. Instead, they use a large pool of real data from multiple sources as 

references. The similarity between the target series (series for forecasting) and 

the pool of reference series is measured, and a subset of reference series that is 

most like the target series is chosen for forecasting the target series.  

In addition to improving forecasting accuracy, this thesis also considers more 

efficient use of data, as another data-centric approach. Data efficiency has been 

applied in the field of marketing (Zhao et al. 2019) and gene selection (Ding and 

Peng 2005), through a known as Maximum Relevance and Minimum 

Redundancy (MRMR). MRMR improves input efficiency by selecting features that 

are most correlated to the output, whilst least correlated to each other, this 

reduces the amount of repeated or useless information. Although similar methods 
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have not been applied to the field of water demand forecasting, Guo et al. (2018) 

have shown that for univariate short-term water demand forecasting, continuous 

past demands are not necessary to all be used as features; instead, they have 

used expert knowledge in data as an alternative to MRMR, to reduce feature 

inputs. This approach improves forecasting model efficiency without sacrificing 

accuracy. Though both MRMR and expert knowledge can reduce feature 

requirements, thus improving feature efficiency; MRMR only offers a guide to 

feature selection, whilst expert knowledge is very case specific. Fortunately, 

developments on explainability in ML models have recently become topical 

(Barredo Arrieta et al. 2020) and would be of great potential to fill in the gap in 

the feature selection dilemma. Details of existing methods and applications are 

presented in Section 2.4. 

Transfer Learning (TL) can also be considered a data-centric approach. It 

improves forecast accuracy and efficiency by leveraging the knowledge learnt 

from external datasets to aid the forecast of a target dataset. Details of its 

progress and application are presented in Section 2.3. Though it has not been 

applied in the field of water demand forecasting, its research progress in other 

fields is presented to shed light on how it could be applied for short-term water 

demand forecasting.  

Whilst this thesis focuses on data-centric approaches, it cannot ignore the 

potential of model-centric approaches. Most of the research effort is on improving 

and better-using data, but model and parameter selection are also investigated, 

albeit not in detail. 
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2.2. Machine Learning Models 
To evaluate the potential of the data-centric approach, several forecasting 

models are discussed and considered. This section categorises popular 

forecasting models into four classes – time-series models, network-based models, 

tree-based models, and ensemble models. Each category is discussed 

independently in the following subsections, Table 2.1 presents a comparative 

overview of all models evaluated and provides the reason for the chosen models.  

2.2.1. Time-series Models 

Amongst time-series forecasting models, Autoregressive Integrated Moving 

Average (ARIMA) has commonly been employed as a benchmark to evaluate 

other forecasting models (Adamowski et al. 2012; Chen and Boccelli 2018; Guo 

et al. 2018; Sardinha-Lourenço et al. 2018; Tiwari and Adamowski 2013). ARIMA 

model was developed by Box and Jenkins in 1970 (Box E. P. G. et al. 2015), it 

combines the autoregressive (AR) and moving average (MA) models with a built-

in differencing term. Additionally, seasonality factors can be incorporated to make 

seasonal ARIMA (SARIMA). Though ARIMA rarely outperforms other existing 

forecasting models, its prevalence makes it the ideal benchmark model to 

evaluate other forecasting models.  

More recently, the Facebook research team have developed a modular 

regression model – Prophet (Taylor and Letham 2018). The original research 

paper evaluated events created on Facebook as source data to compare multiple 

time-series forecasting models, and Prophet has shown superior performance 

compared to ARIMA, Exponential Smoothing and Random Walk.  

Beyond the original paper, other research that compares Prophet to existing 

forecasting models has shown inconsistent results. Examples of accuracy 
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comparisons made between Prophet and Linear Regression (LR), Long Short-

Term Memory (LSTM) and Support Vector Machine (SVM) have shown mixed 

results (Gupta et al. 2021; Rahman et al. 2020; Toharudin et al. 2023). However, 

research that has exclusively used Prophet for forecasting has explored 

additional features within the model (Aguilera et al. 2019; Xie et al. 2021). As it is 

a modular additive time-series model, the forecasts are made up of intuitively 

understandable seasonal components. The seasonal components can be 

analysed individually, the individual results can offer useful insights, in addition to 

accurate forecasts.  

Overall, time-series forecasting models produce more understandable forecasts 

compared to other more complex forecasting models, including network-based or 

tree-based models. Its understandability owes to its simple structures, this allows 

for the model to produce explainable forecasting results. ARIMA achieves this 

from the structural set-up, where the number of AR, MA and differencing terms 

makes clear how the data series relates to its past self; and Prophet achieves this 

by presenting the modular results, where different seasonality can be individually 

examined.  

2.2.2. Network-based Models 

Network-based models have been widely applied to water demand forecasting 

(Boudhaouia and Wira 2021; Fu et al. 2022; Guo et al. 2018; Tiwari and 

Adamowski 2013). The Neural Network (NN) forecasting model was introduced 

by McCulloch and Pitts (1943), prediction can be made by training a model that 

passes training data forward and backwards to optimise model weighting.  
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Figure 2.1 Multi-layer perceptron (Fu et al. 2022) 

The basic three-layered neural network is known as a Multi-Layer Perceptron 

(MLP), its structure is presented in Figure 2.1. MLP has been widely applied in 

the field of short-term water demand forecasting (Fu et al. 2022) and has shown 

superior forecasting ability compared to time-series forecasting models 

(Adamowski et al. 2012; Vijai and Bagavathi Sivakumar 2018).  

Beyond the basic three-layered structure, a variety of alternative network-based 

models have been used for prediction and classification. These included Deep 

Neural Network (DNN)  – where the three-layer model is extended to 4 or more, 

but operates similarly to three-layered networks; Gated Recurrent Unit (GRU) – 

this model improves upon basic NN model by having an update and reset gates, 

this allows for information selection, which solves the vanishing gradient problem 

exhibited by basic NN by retaining long ago information; and Long Short-Term 

Memory (LSTM), presented in Figure 2.2, structurally, LSTM is similar to GRU, 

but instead of having an update and reset gates, LSTM utilises forget input and 

output gates, this structure makes LSTM more complex, but it also allows LSTM 

to handle larger dataset.  
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Figure 2.2 Long short-term memory cell (Fu et al. 2022) 

Amongst the network-based models, the basic NN has seen the widest adoption 

(Donkor et al. 2014) in the field of water demand forecasting, owing to its 

versatility and performance. Whilst NN has shown superior performance 

compared to other widely tested models (Adamowski et al. 2012; Vijai and 

Bagavathi Sivakumar 2018), newer models such as GRU and LSTM can produce 

better forecasts in terms of accuracy (Guo and Liu 2018; Mu et al. 2020; 

Rahimzad et al. 2021).  This thesis evaluates the basic NN and LSTM, the former 

offers comparability due to its wide adoption, whilst the latter may produce more 

accurate forecasts, due to its more complex structure.  

More specifically, LSTM has proven to be the superior forecasting model 

compared not only to network-based models. For hourly demand, LSTM has 

been shown to outperform NN, RF, ARIMA, and Support vector regression (SUV) 

(Boudhaouia and Wira 2021; Mu et al. 2020; Nasser et al. 2020; Pu et al. 2023), 

it is only inferior to a hybrid method that incorporates LSTM (Pu et al. 2023). 

Nasser et al. (2020) have evaluated forecasting models on different aggregated 

dataset sizes, of two, 10 and 20 households; whilst all results have shown that 

LSTM is superior to SVR and RF, the writer has tested additional inputs, and 

each input addition have shown marginal accuracy increase for LSTM. Mu et al. 

(2020) and Pu et al. (2023) have both used 15-minute demand data, the former 
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aggravated it up to daily demand, whilst the latter aggravated the data to hourly 

demand. Mu et al. (2020) have shown that LSTM is superior to other models in 

all temporal resolutions; whilst Pu et al. (2023) have introduced a superior hybrid 

forecasting model that incorporates LSTM, but for both temporal resolutions, 

LSTM still performed better than other non-hybrid models evaluated. 

2.2.3. Tree-based Models 

Tree-based models have proven their forecast ability in the field of water demand 

forecasting (Chen et al. 2017; Herrera et al. 2010; Xenochristou and Kapelan 

2020), though it has received less attention in the field of water demand 

forecasting when compared to network-based and time-series models.  

Tree-based forecasting and classification models evolve from Decision Trees (DT) 

(Tso and Yau 2007). A DT is a tree-like model where leaves are considered final 

decisions, branch splits represent feature grouping that groups sample nearer to 

leaf nodes. A decision is made when all features or a predetermined number of 

features are evaluated.  

The common tree-based models are Decision Tree (DT) (Tso and Yau 2007), 

Random Forest (RF) (Herrera et al. 2010), Gradient Boosting Tree (GBT) (Nie et 

al. 2021), and Extreme Gradient Boosting Decision Tree (XGB) (Xenochristou 

and Kapelan 2020). The DT is made up of one tree, and the samples and features 

can be exhaustively or selectively evaluated; though it makes quick and 

interpretable forecasts, it is very susceptible to noisy data. RF is made up of 

multiple DTs, it overcomes DT’s noise susceptibility by taking an average of the 

forecasts from multiple trees, where each tree is trained using a subset of 

samples, making all individual trees unique; however, the improved noise 

susceptibility does come at the cost of lowered interpretability, as the average 
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outcome from multiple trees trained on subset samples are not as easily 

understandable as single DT.  

GBT for XGB are similar concepts to RF, they all use multiple DTs to improve 

accuracy and noise susceptibility. RF make use of multiple DTs by training 

multiple trees in parallel; whereas GBT and XGB train multiple trees in series, the 

training is done in an iterative process to focus on the errors made by previous 

trees. Both GBT and XGB have proven to improve forecasting accuracy.  

Since XGB’s development by Chen and Guestrin (Chen and Guestrin 2016), it 

has shown successful applications in various competitions. XGB exhibit better 

computational efficiency compared to original GBT for its ability in parallel 

computation, approximate tree matching, effective handling of sparse data and 

improvement for central processing unit and memory. 

XGB has demonstrated strong forecasting ability in the field of energy (Bassi et 

al. 2021; Lu et al. 2020; Sauer et al. 2022), streamflow and groundwater level 

forecasting (Ibrahem Ahmed Osman et al. 2021; Nie et al. 2021) as well as 

market demand forecasting  (Gumus and Kiran 2017; Khaidem et al. 2016). 

Though to date, it has received limited attention in the field of water demand 

forecasting. Xenochristou and Kapelan (Xenochristou and Kapelan 2020) have 

shown XGB to have comparable forecasting ability to other individual machine 

learning forecasting models. 

2.2.4. Ensemble Forecasting Models 

Beyond forecasting with single models, ensemble forecasting models make use 

of multiple different models to achieve forecasts with higher accuracy (Sagi and 
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Rokach 2018). Ensemble models come in four different forms – data 

decomposition, data bagging, model boosting, and stacking.  

Data decomposition is like the modular idea presented by Prophet, where non-

linear time-series data is broken down into components, and forecasts are made 

for all individual components before recombining to give one output. The method 

has been applied in a variety of engineering fields and has shown promising 

results (Ali et al. 2020; Chu et al. 2020; Li et al. 2022b; Liu et al. 2019). 

Data bagging is how RF relates to DT, and model boosting is how GBT and XGB 

relate to DT. The former use multiple simple forecasting models are trained using 

sub-sets of samples, whilst the latter iteratively forecasts prior model errors to 

improve accuracy. Bagged and boosted ensembles can also be built using ML 

models other than DT (Khwaja et al. 2020).  

Finally, stacking is where multiple different models are used, either in parallel with 

different weighting options, in series in a boosted manner, or in a mixture of 

parallel and series formation (Bata et al. 2020; Grover et al. 2015; Lertpalangsunti 

et al. 1999; Li et al. 2022b; Ribeiro and dos Santos Coelho 2020). All stacking 

approaches aim to draw out individual model advantages, thus producing more 

accurate forecasts.   

2.2.5. Model Comparison 

This subsection compares the models used in this thesis. Whilst many models 

are discussed in subsections prior, only six are selected, compared, and 

evaluated in this thesis. The are many models excluded from non-ensemble 

forecasting classes, to evaluate the data-centric forecasting approach, 

forecasting models are not exhaustively investigated. For non-ensemble models, 
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two models are selected from each class, with one widely applied model that can 

act as a benchmark and another novel model that has shown superior 

performance. All ensemble models are excluded altogether because these 

primarily focus on model structure, rather than data efficiency.  

In Table 2.1, six models that are used throughout the thesis are compared using 

four criteria, these include: 1) popularity – how widely applied the method is in 

the field of forecasting; 2) interpretability – how easily models results are to 

interpret; 3) speed – how quick the models are to generate forecasts; and 4) 

parameter – the models’ dependence on parameter selection.  

The comparisons are noted in terms of good, neutral, and bad, to indicate 

comparative advantages and disadvantages between models. For a model to 

have good across all features, it would be a model that is widely adopted, requires 

little parameter selection, is easily interpretable and has fast forecast output. The 

relative judgments are made based on the literature reviewed and experiments 

performed.  

Table 2.1 Model feature comparison 

Class Model  Popularity Interpretability Speed  Parameter 

Time-series 
models 

ARIMA Good  Good  Neutral  Neutral  

Prophet Bad  Good  Neutral  Good 

Network-based 
models 

NN Good  Bad  Bad  Bad  

LSTM Neutral  Bad  Bad  Bad  

Tree-based 
models 

RF Neural  Neutral  Good  Bad  

XGB Bad  Bad  Good   Bad   
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2.3. Transfer Learning 
Transfer learning (TL) implies techniques where ML knowledge is transferred 

from source data to target data. In research, the characteristics of the transfer 

have been thoroughly investigated. It has been shown to help improve data 

availability, reduce the negative impact of poor data, and reduce training or model 

set-up requirements. 

TL applications can be categorised into three methods – relationship 

determination, data decomposition and partial model transfer. These methods will 

be individually discussed in the following sub-sections, along with the latest 

research that shows cases of each method.  

2.3.1. Relationship Determination 

The first TL method focuses on investigating the relationship between source and 

target data. This method makes minimal assumptions around the relationship 

between available source data and target data; the method calculates the 

relationship between source and target data and discards source datasets that 

are deemed too different to the target dataset. A broad spectrum of research 

fields has used the relationship determination method to improve the forecasts, 

these include generic time series data (Ye and Dai 2021), power load (Zhang and 

Luo 2015), energy consumption (Le et al. 2020), sublayer water absorption (Liu 

et al. 2020) and product sales (Karb et al. 2020).  

Ye and Dai (2021) used Dynamic Time Warping and Jenson-Shannon 

Divergence to measure time series similarities. They have shown TL’s ability to 

improve forecasting accuracy through the inclusion of additional selective 

external data. Zhang and Luo (2015) used the electric load data from four nearby 

cities, to investigate the impact TL has on load forecasting. They have applied TL 
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through source data optimisation, where external data is selected for 

incorporation based on the correlation coefficient between source and target data. 

They have emphasised the idea of negative knowledge transfer, the goal of their 

work is eliminating negative knowledge transfer by excluding source data that are 

highly dissimilar to target data. Both measures of similarity used by Ye and Dai 

(2021) and Zhang and Luo (2015) have proven successful in improving accuracy 

levels.  

Le et al. (2020) and Liu et al. (2020) have used Clustering Algorithms to group 

multiple datasets; the proposed methods have been shown to reduce 

computation time and improve accuracy. The former used k-Means Clustering 

Algorithm to group smart building energy consumption, whilst the latter grouped 

different features within the source data. The grouping acts as a different form of 

similarity measure, to select groups of external data used in the source data 

training.   

Liu et al. (2020) have used source and target data with known similarities, but 

different distributions. The source data has more labelled samples than the target. 

Whilst the source and target data are similar, their differences may result in 

negative knowledge transfer. Thus, joint distribution adaption is employed to 

transform source data in aiding sample availability for training.  

Chen et al. (2021) have used transfer learning to fix missing data issues in a 

water quality prediction system. The method employed is like the approach used 

by Liu et al (Liu et al. 2020), but the employment of the concept of data similarity 

does not stop at the data pre-processing stage. The overall concept is that a 

series of weak learners would train using a mixed set of both source and target 

data. The weighting of samples that aid better target test data prediction 
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increases over increasing iteration count, and vice versa. The weighted average 

method is then employed to compute missing data.  

2.3.2. Data Decomposition 

The second TL method is data decomposition, this method assumes some 

existing similarity between source and target data. Xu and Meng (2020) have 

used this method to improve electric load forecasting, and Ribeiro et al. (2018) 

have used the method for cross-building energy forecasting.  

Both Xu and Meng (2020) and Ribeiro et al. (2018) have removed trend and 

seasonal components from the source data, before transferring the source data 

knowledge to the target data. The final model then consists of trend and 

seasonality forecasting trained on target data, and the remaining features trained 

using both the source and target data. The results from Xu and Meng (2020) have 

shown improvements in accuracy and reduced the number of negative 

knowledge transfer occurrences compared to other TL methods. The result from 

Ribeiro et al. (2018) has improved accuracy in most cases and scenarios 

evaluated. 

2.3.3. Partial Model Transfer 

The third TL method is partial model transfer. This method assumes similarities 

between source and target data, it leverages this similarity to pre-train ML models 

on source data, and then refine the forecasting model with target data. This would 

minimise target data requirements and reduce computation costs. This method 

has shown successful application in the fields of energy prediction (Fan et al. 

2020; Gao et al. 2020; Sarmas et al. 2022), ventilation forecasting (Chen et al. 

2020), disaster relief (Zheng et al. 2022), flood prediction (Kimura et al. 2019) 

and long-term water quality prediction (Peng et al. 2022).  
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The application of the fine-tuning process always employs neural network-based 

models, as the network layers and training epochs can be easily sliced. Most of 

the literature reviewed has employed network layer slicing (Chen et al. 2020; Fan 

et al. 2020; Gao et al. 2020; Kimura et al. 2019; Sarmas et al. 2022; Ye and Dai 

2018; Zheng et al. 2022). This method first pre-trains a model on abundant source 

data, then the model is retrained on target data to refine the parameters. The 

research varied on where the pre-training ended, and the retraining began. Chen 

et al. (2020) have illustrated this most distinctly in their research, using two 

datasets, the researchers have compared four forecasting styles: 

• Trained on abundant source data. 

• Trained on limited target data. 

• Transferred model at the model tail (final layer trained on target). 

• Transferred model at the model head (initial layer trained on target). 

Other research has frozen pre-trained model parameters at different stages to 

achieve accuracy improvement. 

Peng et al. (2022) have applied the concept of refining more dynamically. Instead 

of creating a cut-off between pre-training and re-training, the model switches 

between training using the source and target data after each epoch, and the 

parameters are continually updated to fit both datasets. The result showed that 

the TL method has produced more accurate forecasts across all scenarios, but 

the level of accuracy improvement correlates with the size of the history window 

size. Since a longer history window would reduce the number of available training 

samples, this becomes a bigger issue when the target training data is limited. 

Thus, the inclusion of source data for training would have a greater impact.  
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2.4. Explainable Machine Learning Approaches 
Reducing unnecessary data requirements can help models more efficiently 

extract useful information. The first step to reducing input data requirements in 

water demand forecasting is knowing the forecast horizon, as different forecast 

horizons require different input types (Donkor et al. 2014). The data types used 

in water demand forecasting can be categorised into three groups, 

socioeconomic (population and pricing policy), climatic (temperature and rainfall) 

and past demand.  

For short-term demand forecasting, univariate past demand data alone have 

shown to be sufficient in achieving highly accurate forecasting results (Awad and 

Zaid-Alkelani 2019; Bakker et al. 2013; Bata et al. 2020; Cutore et al. 2008; Guo 

et al. 2018; Tiwari et al. 2016). Whilst knowing the demand horizon can reduce 

the need for alternative inputs other than past demand, Guo et al. (2018) have 

further reduced input size by showing that continuous and additional past demand 

is not necessary for aiding high forecasting accuracy; the size of the training input 

data can be further reduced when expert knowledge is incorporated in both model 

development and data processing. 

Whilst ML models consistently achieve highly accurate forecasts, their black-box 

nature makes it difficult for users to explain how these forecasts are generated or 

what features are important in making such forecasts (Fu et al. 2022). This makes 

it difficult to reduce input size without expert knowledge of both the data and 

model type, and it offers little explanation to boost confidence when results are 

presented to decision-makers. The problem is further exacerbated by models 

becoming increasingly more complex in a bid for higher accuracy. To overcome 
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this, research on explainability in ML models has recently become topical 

(Barredo Arrieta et al. 2020).  

To our knowledge, explainability has not been considered in the field of water 

demand forecasting, though applications for some engineering problems such as 

beach water quality prediction (Li et al. 2022a) and energy and heating (Kim and 

Cho 2020, 2021; Kuzlu et al. 2020; Zdravković et al. 2022) have been attempted. 

Explainable machine learning models offer insights into specific forecasting 

results, thus providing ideas for potential accuracy and efficiency improvement. 

The result would also give decision-makers a greater degree of confidence when 

using the forecasting results.  

A wide range of techniques has been developed for machine learning model 

explainability. Barredo Arrieta et al. (2020) recognised that some statistical 

models are explainable due to the simplicity of model structure. More complex 

machine learning models require post-hoc approaches to become explainable. 

The post-hoc approaches are split into model-agnostic and model-specific 

approaches. As the names suggest, the former works on all machine learning 

models and the latter works on specific models. Specifically, two popular model-

agnostic approaches are evaluated in Chapter 5, these are – Local Interpretable 

Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). 

Both approaches explain the ML model by estimating feature contributions. LIME 

does so on a sample-by-sample basis, and SHAP could do individual samples as 

well as a global overview.  

The rest of this section presents the existing research that has employed LIME 

and SHAP, it also touches on the theories and calculations of how both 
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approaches estimate feature impact. The process of how both approaches is 

applied is detailed in Section 5.2.  

2.4.1. Local Interpretable Model-Agnostic Explanations 

Local Interpretable Model-Agnostic Explanations (LIME) (Garreau and von 

Luxburg 2020) is a post-hoc ML model explainer that focuses on individual 

predictions. LIME operates by training the local surrogate models, these are 

trained with the goal of approximating the prediction of the original black-box 

model, around the given sample. Using local surrogate models, input feature 

values are tweaked, and their impact on the output can be measured. The 

surrogate models only aim for accurate approximation locally, i.e., for a particular 

sample; but do not have to be accurate globally, i.e., for other samples. This local 

truthful approximation is called local fidelity. 

Amongst the literature that employs LIME, only the works by Parmar et al. (2021) 

and Zdravković et al. (2022) have used LIME independently, whilst others (Adak 

et al. 2022; Kuzlu et al. 2020) have used LIME alongside SHAP analysis. The 

work by Parmar et al. (2021) used LIME to determine the causes of parking time 

around Delhi, India, it classed different parking periods into groups, making it a 

classification task. This research had 681 effective samples, and the relatively 

small sample size makes individual sample review and analysis possible. Though 

the work by Zdravković et al. (2022) was a regression task on heat demand 

forecasting, it only validated the application of LIME based on a sample feature 

impact without concluding any feature, as no cross-sample feature impact 

comparison was done.  

The work by Kuzlu et al. (2020a) and Adak et al. (2022) used both LIME and 

SHAP, they have applied machine learning to classify the feedback from food 
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delivery service reviews, and detailed insight in each given sample is important, 

thus both LIME and SHAP are applied on a sample-to-sample basis, the global 

classification overview was not taken. Other works (Białek et al. 2022; Kuzlu et 

al. 2020; Li et al. 2022a) that have incorporated SHAP have all made use of its 

global contribution overview, whilst Kuzlu et al. (2020) and Białek et al. (2022) 

also included LIME, both have drawn more results from the global feature impact 

results from SHAP, with few individual samples compared to the limited SHAP 

result. 

2.4.2. SHapley Additive exPlanations  

SHapley Additive exPlanations (SHAP) is a machine learning model explainer 

that employs a game-theory approach, developed by Lundberg and Lee (2017). 

It outputs a measure of individual feature contribution in any ML model, both 

locally and globally. SHAP has received ample research attention. Whilst it has 

not been applied in water demand forecasting, it has proven useful in a variety of 

other fields, including energy (Acuña et al. 2018; Kuzlu et al. 2020; Moon et al. 

2022; Wang et al. 2019; Zhang et al. 2020), finance (Azzuri et al. 2022; 

Bussmann et al. 2020; Sajja et al. 2021) and beach water quality (Li et al. 2022a).   

For energy-related research, SHAP has been evaluated for forecasting energy 

(Kuzlu et al. 2020; Moon et al. 2022) – for both demand and production; profit 

and cost (Acuña et al. 2018; Wang et al. 2019) – for producer, marketer, and end 

users; as well as for power system emergency control (Zhang et al. 2020). For 

profit and cost related works, the researchers employed the game theory aspect 

of SHAP to optimise profit/cost apportioning. The research did not output SHAP’s 

built-in visual analysis but rather used the approach for optimisation.  
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The application of SHAP for forecasting and emergency control has all presented 

SHAP visual analysis. For forecasting purposes, the SHAP analysis has identified 

features that impact electricity production in photovoltaic and buildings' electrical 

load; the results aim to increase the level of integration of smart technologies. 

The SHAP analysis for the emergency control system would improve trust and 

transparency in ML’s decision-making, making it possible for ML’s adoption when 

it comes to safety-related decision-making.  

In finance, the feature impact comparisons uncovered by SHAP can help identify 

driven factors for a price change or potential cost savings. Bussmann et al. (2020) 

have used empirical borrowers' data, grouping them into risk categories based 

on financial characteristics using SHAP analysis. Sajja et al. (2021) have used 

SHAP in fashion retail data, to produce intuitively understandable results for all 

stakeholders, thus bridging competing goals. In addition to determining important 

features, as shown in other finance work that employs SHAP, Azzuri et al. (2022) 

have showcased the potential of using SHAP to analyse cooking oil prices, the 

researcher has exhaustively shown all possible visual results SHAP is equipped 

with.  

The only water-related work that has incorporated SHAP is interpreting features 

for the prediction of beach water quality (Li et al. 2022a). The work performed an 

in-depth analysis of features that impact the beach quality of three locations. The 

resultant forecast aims to determine beach closure, due to potential poor water 

quality. SHAP has been found to aid the forecast by uncovering previously 

unexpected impact factors. Giving decision-makers greater confidence in not 

committing to false closures and evading potential economic loss.  
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Whilst many researchers have compared both LIME and SHAP, the works that 

have incorporated and compared the two have all drawn conclusions from SHAP 

global analysis. The result of local cases may be useful when the sample number 

is small, or when a certain case is of particular interest. The more common goal 

of having explainable AI would be to drive clarity for all samples in each model; 

this means that SHAP global analysis is more useful. However, if computation 

cost is of concern, LIME could be recognised as a fast-paced local alternative to 

SHAP. Kuzlu et al. (2020) have explicitly analysed the computation time 

difference between LIME and SHAP, and LIME is significantly faster (34.3 

milliseconds compared to 9.4 minutes). When several local cases are of concern, 

LIME might be the better option as SHAP would still need to run fully even for 

one local sample analysis.  

2.5. Machine Learning Performance Indicators  
There are many measures to determine the performance of forecasting models. 

Some popular accuracy measures include Root Mean Squared Error (RMSE) 

(Bata et al. 2020; Chen and Boccelli 2018; Guo et al. 2018; Herrera et al. 2010; 

Liu et al. 2022; Tiwari and Adamowski 2013), Normalised Root Mean Squared 

Error (NRMSE) (Bata et al. 2020; Chen et al. 2017), Mean Squared Error (MSE) 

(Fullerton and Molina 2010), Mean Absolute Error (MAE) (Guo et al. 2018; 

Herrera et al. 2010; Tiwari and Adamowski 2013), Relative Error (RE) (Bakker et 

al. 2013) and Mean Absolute Percentage Error (MAPE) (Bakker et al. 2013; Bata 

et al. 2020; Chen et al. 2017; Chen and Boccelli 2018; Guo et al. 2018; Liu et al. 

2022; Sardinha-Lourenço et al. 2018; Wang et al. 2020); some papers have 

respectively used the names of Relative RMSE (Bakker et al. 2013) and Average 

Absolute Relative Error (Adamowski 2008; Jain et al. 2000) in place of NRMSE 

and MAPE, the terms will be jointly discussed due to identical calculation. 
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Additionally, the Correlation Coefficient (r) (Chen et al. 2017; Chen and Boccelli 

2018; Liu et al. 2022), Coefficient of Determination (R2) (Adamowski 2008; 

Bakker et al. 2013; Chen and Boccelli 2018; Tiwari and Adamowski 2013; Wong 

et al. 2010) and Nash-Sutcliffe Efficiency Coefficient (NSE) (Gagliardi et al. 2017; 

Guo et al. 2018; Herrera et al. 2010) have also been applied in water-related 

fields, the latter two are identical in calculation, thus, they will be jointly presented 

and discussed. 

The equations for error measures are shown below: 
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where  is the number of samples,  is the observed values,  is the 

forecasted values,  and  respectively represent the mean observed and 

forecasted values. 

Measures in Equations 2.1 to 2.6 all share similar numerators, either the 

difference between forecasted and observed values squared or the absolute 

difference between the two. Though the denominators differ, the denominators 

only use observed value statistics, thus it could be understood as different scaling 

to the numerators. From these, only one needs to be kept, as all correlate with 

each other. The values of these depend on the sample size and values, thus, 

these findings can only be compared with the same sample group.  

Equations 2.7 and 2.8 respectively denotes the correlation coefficient and 

coefficient of determination, the two measures are related, where the coefficient 

of determination is the square of the correlation coefficient. Unlike previous 

measures, both r and R2 have bounded outcomes. r is bounded between -1 and 

1, it measures a negative correlation as well as a positive correlation. Kvalseth 

(1985) recommends the use of R2 presented in Equation 2.8, the choice of R2 

has an upper limit of 1 and no lower limit; values closer to 1 indicate a closer fit, 

and the value of 0 indicates the same level of fit compared to mean observed 

values and negative values indicate worse fit compared to the mean, which 

renders any model with negative R2 values statistically insignificant. As the 

correlation coefficient and coefficient of determination are correlated, only one is 

kept. 

This work has chosen to use RMSE and R2 to measure model accuracy. Although 

the two measures perfectly negatively correlate with each other, they 

n oy fy

oy fy
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complement each other in what the values mean. Better RMSE can only be 

achieved with both high precision and no systematic error; in comparison, R2 

does not reflect systematic errors. Additionally, as RMSE is scaled by the 

observed values and sample size, it offers an indication for the confidence interval 

of the predicted values, in contrast, R2 allows for cross-sample model comparison.  

Besides accuracy measures, inequality measures are also used in Chapter 5 of 

this thesis, to measure how feature contributions spread. The Gini index (GI) 

(Frank A. Farris 2010) and Theil coefficient (Mookherjee and Shorrocks 1982) 

are commonly used inequality measures. The equations for the two indices are 

as below: 

  
(2.9) 

  
(2.10) 

where  is the feature contribution,  is the total number of features,  and  

are counters to iterate the list of available contribution values and  is the mean 

feature contribution.  

Both indices measure inequality by how actual inequality is compared to perfect 

equality. GI is bounded between 0 and 1, where 0 is perfect equality, and 1 is 

perfect inequality. Theil only has a lower limit of 0, representing perfect equality, 

but no upper limit. Due to its bounded nature, GI is used in the thesis to determine 

feature contribution spread.  
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The chosen accuracy measures are thus R2 and RMSE, these will be used in all 

methodological chapters. The additional inequality index GI will be used only for 

Chapter 5. 

2.6. Summary of Research Challenge 
This thesis aims to explore the potential of data-centric approaches. Most of the 

existing research focuses on model-centric approaches, where model alterations 

are explored to improve forecasting accuracy. As a result, there exists a large 

research gap surrounding data-centric approaches, where data usage efficiency 

can be improved to increase forecasting accuracy.  

Existing research surrounding water demand forecasting has shown the 

importance of data collection. However, quality data may not always be readily 

available. In some research, expert knowledge has been incorporated to reduce 

input data amount, this would increase the number of usable samples within a 

given dataset. Chapter 5 in this thesis seeks to replace the expert knowledge with 

machine learning model explainers, so this level of input reduction can be 

replicated, without expertise in data and model pairing. 

Additionally, the unavailability of prolonged data would also reduce the number 

of useful samples. Chapter 6 in this thesis uses transfer learning to mitigate this 

by incorporating external data.  
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Chapter 3 - Data 
3.1. Introduction 

This Chapter presents the datasets used throughout the thesis. The data includes 

real-world measured demand datasets from two sources. The first is a single set 

of hourly data from university student accommodation buildings in China, and the 

second is 20 sets of 15-minute data from the UK. The following sections in this 

chapter provide an overview and visual information on the Chinese (CHN) dataset 

and UK datasets, and how basic data cleaning is performed. The Chapter ends 

with Table 3.1 detailing statistical information of all datasets used.  

3.2. Chinese Dataset 
The first dataset is of hourly demand, collected from university accommodation 

buildings in China. The data was collected and saved into monthly data files 

corresponding to its measured month and year. The compiled dataset shows the 

total demand of around 20,000 individual students, for 10 months, starting from 

October 2013. The 10 months period incorporates one winter and one summer 

holiday, due to the annual non-repeating nature of the holidays within the dataset, 

any knowledge that can be extracted from training cannot be validated via testing, 

thus those holiday periods are excluded from all experiments. Additionally, the 

spring term data (the period between winter and summer holidays) is inundated 

with recording errors, possibly due to equipment deterioration. The overall used 

data from the Chinese dataset is thus restricted to 10 weeks from term one, 

between October and December, the cut-off was taken a couple of weeks before 

the start of the winter holiday in January, to avoid all holiday impacts.  
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Figure 3.1 Raw data plots of CHN dataset, a) full demand 

data, with moving average of 24 and 168 hours, b) averaged 
weekly demand data, c) daily demand data with median and 

percentiles (25% and 75%) 

Figure 3.1 presents an overview of the CHN data used. Figure 3.1a shows the 

overall used data period, with the addition of daily and weekly moving averages. 

The moving average lines show a slight downward trend, indicating slightly 

reduced water usage towards the winter months. Figure 3.1b shows the average 

day-of-the-week demand. The weekend usage shows a slightly different trend to 

weekday demand, and Mondays have a slightly smaller morning peak compared 

to other weekdays. Figure 3.1c shows daily demand variation. Morning peaks 

show the largest range of varying demand, while daily troughs show that the 

minimum demand remains consistent.  
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3.3. UK Dataset 
The second dataset is from an unspecified UK water supply area. The entire 

dataset contains demands for 20 district metered areas (DMA). Of the 20 DMAs, 

two DMAs are completely excluded from any experiment, due to them having little 

to no continuous quality data. The remaining 18 DMAs are labelled UKn, where 

n is numbers 1 to 18.  

From the 18 UK datasets, three (highlighted in Table 3.1) are used throughout 

the experiments for having the longest uncorrupted data recordings. The 

remaining DMAs from the UK are used for experiment three only, where data 

quantity mattered more than quality. 

 
Figure 3.2 Raw data plots of UK dataset (UK11), a) full 
demand data, with moving average of 24 and 168 hours, b) 
averaged weekly demand data, c) daily demand data with 

median and percentiles (25% and 75%) 
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Figure 3.2 shows the longest uncorrupted period of UK11 demand (second 

highlighted DMA in Table 3.1). Like the CHN dataset, the UK demand also has 

consistent daily and weekly moving averages, as evidenced by Figure 3.2a. 

Figure 3.2b shows the average weekly demand to be more consistent, with 

weekend peaks appearing to be slightly less pronounced compared to weekdays. 

In terms of daily demand variation, the range falls into two groups, where the 

demand range is identically high during the day, and identically low at night.  

3.4. Data Cleaning 
The datasets used throughout the thesis are cleaned in two ways, 1) quality data 

extraction, and 2) corrupted data exclusion. The different method is applied in 

different chapters.  

For Chapters 4 and 5, quality data is extracted, as data quality is paramount. For 

the CHN data used in Chapter 4, the first 10 weeks are extracted, as the 

remaining contains non-repeating holidays and corrupted recordings. Similarly, 

the first 30 weeks of data are extracted in UK4, UK11 and UK12, for experiments 

in Chapters 4 and 5. The periods extracted contain the longest uninterrupted 

uncorrupted recordings.  

For Chapter 6, data quantity is favoured over quality. For this reason, corrupted 

recordings in the UK datasets are excluded based on visual inspection. Figure 

3.3 presents an example, using data from UK7. Figure 3.3a shows the dataset 

before data cleaning, there is a peak around the 10000th point and a trough at 

around the 25000th point. The peak and trough appear to be singular based on 

initial visual inspection, but detailed inspection reveals that the peaks and troughs 

are continuous. Basic exclusions are performed on all UK datasets, where a 

maximum and minimum range is set per DMA based on visual inspection, the 
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minimum is set to zero for all DMAs, and the maximum allowed per DMA is shown 

in the Cap column in Table 3.1. Any value beyond the allowed range is set to 

zero. When training samples are formed in later experiments, samples with 

zeroes are excluded.  

 
Figure 3.3 Data cleaning example (UK7) 

3.5. Data Statistics 
Table 3.1 shows basic statistical information regarding the datasets used. The 

user recording differs for CHN and UK data, where the former shows the total 

number of estimated individuals of 20,000, and the latter shows the number of 

properties supplied, between about 300 and nearly 2,000. The highlighted data 

are of DMA recordings that contain the longest uncorrupted data, and these 

datasets are used in all experiments. Finally, the maximum and minimum 

recordings shown are of post-cleaning whilst excluding zeroes. The minimum 

recordings of zeroes shown in Table 3.1 are from rounding, where all recordings 

are presented to 2 decimal places.  
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Table 3.1 Basic statistical information of the DMA data 
used. (Highlighted datasets contain the longest uncorrupted 
data, it is used in all experiments) 

Data Users Start date 
Data length 
(Points/Days) Cap Max* (l/s) Min* (l/s) 

CHN  20,000  2013-10-01 7296 / 304 N/A 110 3 

UK1 1048 2016-07-01 28512 / 297 25 22.7 0.01 

UK2 683 2016-07-01 26496 / 276 15 13.51 0.92 

UK3 961 2016-06-01 31056 / 323 20 19.36 2.67 

UK4 461 2016-06-01 30382 / 316 20 16.74 0.14 

UK5 673 2016-06-01 27840 / 290 20 19.07 1.94 

UK6 1243 2016-06-01 27168 / 283 35 34.89 0.7 

UK7 965 2014-03-31 102240 / 1065 25 24.43 1.04 

UK8 485 2016-07-01 26304 / 274 25 20.08 1.8 

UK9 169 2016-06-01 28512 / 297 25 10.12 0.26 

UK10 550 2014-03-31 103991 / 1083 14 12.68 0 

UK11 351 2016-06-01 28512 / 297 25 9.56 1.04 

UK12 669 2016-07-01 26304 / 274 25 12.44 1.2 

UK13 1861 2014-03-31 105408 / 1098 25 23.44 3.26 

UK14 291 2014-03-31 103296 / 1076 14 12.95 0.03 

UK15 948 2014-03-31 103680 / 1080 30 23.85 0 

UK16 266 2014-03-31 72335 / 753 14 10.09 0 

UK17 972 2014-03-31 73006 / 760 40 39.7 0.01 

UK18 313 2014-03-31 74349 / 774 30 13.24 0.94 
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Chapter 4 - Short-term Water 
Demand Forecasting Using Data-
centric Machine Learning 
Approaches 

4.1. Introduction 
Much of the effort aiming to improve the accuracy of water demand forecasting 

has been using model-centric approaches (Adamowski et al. 2012; Chen et al. 

2017; Chen and Boccelli 2018; Gagliardi et al. 2017; Herrera et al. 2010; 

Lertpalangsunti et al. 1999; Liu et al. 2022; Sardinha-Lourenço et al. 2018). 

These approaches focus on developing and adapting models to data, through 

various approaches including parameter optimisation, alterations to model 

structure and ensemble models.  

In contrast, data-centric machine learning approaches have received limited 

attention in the field of time series forecasting including short-term water demand 

forecasting (Fu et al. 2022). This Chapter evaluates the potential of data-centric 

approaches, using four machine learning forecasting models, and compares the 

result to model-centric approaches. The forecasting models used are 

Autoregressive Integrated Moving Average (ARIMA) (Box E. P. G. et al. 2015), 

Neural Network (NN) (McCulloch and Pitts 1943), Random Forest (RF) (Breiman 

2001) and Prophet (Taylor and Letham 2018). The background and comparative 

works used in the models are presented in the Literature Review in Chapter 2. 

The implementation of the models for this chapter is presented in Section 4.2.  

The final sections present the results and summary. The findings have shown 

that 1) data-centric machine learning approaches offer promise for improving 
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forecast accuracy of short-term water demands; 2) accurate forecasts are 

possible with short training data; 3) RF and NN models are superior at forecasting 

high temporal resolution data; and 4) data quality improvements can achieve a 

level of accuracy increase comparable to model-centric machine learning 

approaches.  

4.2. Methodology 
This section details the implementation of the four forecasting models, and how 

the experiments are set up.  

4.2.1. Autoregressive Integrated Moving Average 

Autoregressive Integrated Moving Average (ARIMA) is a statistical model for time 

series, developed by Box and Jenkins in 1970 (Box E. P. G. et al. 2015). ARIMA 

combines autoregressive (AR) and moving average (MA) models with a built-in 

differencing term. 

The AR model assumes that the current state of a time series depends linearly 

on its past states plus error, and the MA model assumes that the current state of 

a time series depends linearly on its current and past errors. The combination of 

the two models is known as the ARMA model: 

  (4.1) 

where  is the information state at different time ,  is error,  and  are 

autoregressive and moving average parameters,  and  are the total number 

of autoregressive and moving average terms. Equation 4.1 can be simplified as: 
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where  is the backshift operator, it shifts  and  backwards in the temporal 

space.  

ARMA models only work on stationary data, where stationarity is defined by data 

having constant mean and variance. Non-stationary data can become stationary 

by differencing data points. This differencing function can be integrated into the 

ARMA model, and the result is known as an ARIMA model: 

  (4.3) 

where  is the differencing factor, and  is the degree of difference. This 

integrated component represents the ‘I’ in ARIMA, is models the series as the 

difference between the current and previous value, this difference can be 

modelled multiple times based on the degree of difference required to achieve 

stationarity.  

The basic ARIMA model is presented in the form of ARIMA(p,d,q), where ,  

and  respectively represent the number of past data points, the order of 

differencing and the total number of current and past error terms. 

For data with a strong sense of seasonality or trend, seasonal ARIMA (SARIMA) 

can be employed, and the parameters are expanded to include seasonal factors: 

  (4.4) 

where  is the period of a known seasonality, and , , and  respectively 

represent the autoregressive, differentiation and moving average terms of the 

seasonality, like their respective lowercase counterparts. The SARIMA model is 

presented in the form of SARIMA(p,d,q)(P,D,Q)s. 
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The seven parameters for SARIMA can be estimated through a series of visual 

and statistical tests. An initial autocorrelation and partial autocorrelation plot for 

the case studies confirm the strong daily data periodicity, thus daily seasonal 

factor is chosen for all case studies. To eliminate the seasonality, the seasonal 

differencing factor  is chosen to be 1. The visual analysis shows that there is 

strong stability in the daily moving average in all case studies, suggesting that 

the seasonal autoregressive and moving average factors  and  are not 

necessary, thus both are 0.  

Once the seasonal parameters are determined, the lower-case parameters can 

be estimated. Data stationarity first needs to be confirmed by reviewing the 

presence of unit roots in data (Gupta et al. 2009). The respective Augmented 

Dicky-Fuller (ADF) values for the four case studies after seasonal differencing 

are -11.7, -20.6, -22.2 and -19.4, all values are well below the ADF critical value 

of -3.4 at 1%. The p-values are 0 for all case studies. The ADF test shows that 

all four case studies are stationary, and thus  is estimated to be 0. The 

autoregressive and moving average factors can be estimated by data 

autocorrelation and partial autocorrelation plots. The plots suggest that the  

and  values should be 3 and 0, respectively, for all case studies. 

The SARIMA (3,0,0)(0,1,0)24/96  model is tested in Python using the ‘SARIMAX’ 

from the ‘statsmodels’ library (Seabold and Perktold 2010), the estimated the  

and  terms will be further tested through grid search using the Chinese (CHN) 

dataset to confirm these are the optimal pair.  

4.2.2. Prophet 

Prophet is a modular regression model for time series forecasting, developed by 

the Facebook research team (Taylor and Letham 2018). In their original paper, 
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the number of events created on Facebook is used as source data to compare 

the forecast performance of Prophet, ARIMA, Exponential Smoothing and 

Random Walk. The results have shown that Prophet is superior to all other 

models tested.  

Prophet works by decomposing any given time series into three main 

components, including trend, seasonality, and holiday effects: 

  (4.5) 

where  is the demand,  is the trend,  is the seasonality,  is the holiday 

effect and  is the error associated with each time step. 

The trend can be modelled as a linear function (Equation 4.6) or a non-linear 

saturating growth (Equation 4.7): 

  (4.6) 

 
 

(4.7) 

where  is the growth rate,  is a binary value indicating the presence of the 

effect from the change point ,  is the change rate adjustment,  is the offset 

parameter and  is the continuation factor. The nonlinear saturating growth 

model of trend is an extension of the linear trend with the addition of a carrying 

capacity . 

The seasonality is modelled using Fourier Series. It is incorporated as an additive 

component, but can be modified to be a multiplicative component through the log 

transformation of the original data as below: 
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(4.8) 

where  is the regular data period and the choice of  for different periods is 

automatically selected through the built-in selection procedure. 

The holiday components are fitted as lists of dates with predictable changes. The 

dates for recurring events without regular periods are given as lists, and each 

holiday is given a parameter to signal its effect. The chosen case studies are all 

without holiday impacts, thus no date is given.  

In terms of input parameters, Prophet can make forecasts without any parameter 

inputs. However, the key parameter - the number of change points and its scale 

- will be tested through grid search using the CHN dataset to determine its impact 

and the optimal pairing. The Prophet package is available in both R and Python, 

and the Python Prophet package (Taylor and Letham 2018) is used in this 

research.  

4.2.3. Neural Networks 

Neural Networks (NNs) and their variations have been widely applied to water 

demand forecasting (Guo et al. 2018; Tiwari and Adamowski 2013). The most 

common NN consists of three layers and is trained through iterations of feed 

forward and back propagation processes.  

The three layers structure consists of an input layer, a hidden layer, and an output 

layer; each layer consists of a set number of neurons and each layer is connected 

to the subsequent layer via a transfer function: 
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  (4.9) 

where  represent neurons of the middle or output layer,  is the neuron of the 

previous layer,  and  are connecting weights and bias between  and , 

while  signifies the transfer function between the layers.  

The NN model used in this research is a three-layer feed-forward model with 

backpropagation. The model is applied using ‘MLPRegressor’ from the ‘sklearn’ 

library in Python (Pedregosa et al. 2012). Available numerical parameters are all 

investigated using the CHN dataset, to determine optimal parameter settings for 

further experiments.  

4.2.4. Random Forests 

A Random Forest (RF) model is formed by combining multiple tree predictors and 

it can perform classification and regression predictions (Breiman 2001). When 

RF is applied to regression tasks, the result is the mean output amongst all trees 

in the forest. Individual trees differ from each other because of the bootstrap 

sampling process. A forest of multiple trees can reduce overfitting, and is less 

prone to noise, due to the Law of Large Numbers. 

Because of the bootstrap sampling process, each tree predictor is trained on a 

unique subset of data, thus predicting different results from each other. Individual 

trees are grown through an iterative node splitting process, each node split 

divides samples (bootstrapped subset) into two regions. The goal of each node 

split is to minimise the errors ( ) in the resultant binary regions, and the error 

can be calculated as below:  
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(4.10) 

where  and  correspond to individual binary regions after a node split;  are 

all present feature values within each corresponding binary region;  and  

are the mean feature values in the corresponding binary region. The order of 

features selected for node split is based on the features’ impact on . The node-

splitting process is repeated until all features are used or until a pre-determined 

condition is met.  

The RF model used in this research is the ‘RandomForestRegressor’ from the 

‘sklearn’ library within Python (Pedregosa et al. 2012). Available numerical 

parameters are first investigated using the CHN dataset, to determine optimal 

parameter settings for further experiments. 

4.2.5. Experimental Set-up 

To evaluate the practicality of data-centric machine learning approaches, four 

experiments are designed to determine different aspects of its performance.  

The first experiment aims to establish the effect of basic model-centric 

approaches on forecast accuracy, which addresses the first research question. 

This is done by evaluating model parameters available for tuning. Prophet and 

Seasonal ARIMA have a limited number of parameters available for tuning – 

Prophet has four parameters, but three overlap with each other, thus, only two 

parameters warrant investigation. Seasonal ARIMA has seven parameters, but 

the seasonality, differencing, and seasonal differencing factors are fixed, and the 

seasonal AR and MA factors are 0 as all case studies have a near-constant 

moving average, thus only two parameters warrant investigations. In comparison, 

NN and RF have multiple tuneable numerical parameters. Therefore, all 
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numerical parameters for NN and RF are first tested individually, using the 

Chinese dataset; from these results, two crucial parameters are selected for 

having the most significant effect on forecast accuracy. As this paper focuses on 

data-centric approaches, only two parameters are selected for each model for 

sampling analysis to demonstrate the effect of the basic model-centric machine-

learning approach. 

The two selected parameters for NN and RF are carried forward and further 

investigated through sampling, along with two parameters each from Prophet and 

SARIMA, using the case of the CHN dataset and data from UK11, UK11 is 

chosen as the representative UK dataset due to it having the longest uncorrupted 

demand recording following a visual inspection.  

 
Figure 4.1 Illustration of rolling window forecast 

To ensure the same training conditions for all models evaluated, a moving 

window is employed to move along the training and forecasting data, based on a 

given forecast horizon. Figure 4.1 demonstrates how the rolling window method 

is implemented. First, the data is split up into training and testing sections, where 

the 60% is reserved for training only, and the rest for testing. The reason for the 

split size is that 60% of data is sufficient for repeated training of sub-hourly data 

with daily forecast horizon, this allows for more data (40%) to be used to evaluate 
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model performance. Once the data is split, the 60% training data is used to train 

models to forecast the established forecast horizon. The training data then moves 

forward by the length of the forecast horizon to retrain the model multiple times, 

until the entire testing section is forecasted. The accuracy is calculated by how 

well the combined forecasted section match the testing section.  

The forecast horizon for experiment one is set to one day, that is 24 points for the 

CHN dataset and 96 for the UK dataset, and the number of repeated trainings is 

28 and 84 for CHN and UK dataset, respectively. Whilst Prophet and SARIMA 

use the continuous 60% training data for each training, NN and RF use the same 

training data to form samples of input and output pairs, the input of each sample 

is a full day’s demand, that is 24 or 96 features for CHN and UK dataset, 

respectively.  

The second and third experiments aim to establish the effect training data length 

and data resolution have on the forecast accuracy of different models, which are 

related to the second research question. This could eliminate the need for 

potentially large training data sets and define optimal model choice based on data 

type and accuracy requirement.  

For experiments two and three, the setup used is the same as for experiment one. 

The total data length used is 10 weeks for CHN data and 30 weeks for others; 

the forecast horizon is one day; the testing period is 40% of the total data; and 

lastly, a moving window is used to maintain consistent training length for each 

forecast. 

Experiment two will investigate the effect of increasing the training data length. 

Instead of the 60% of total data for training, the training data is reduced, whilst 



64 
 

other conditions remain the same. Starting at two days, with an increment of one 

day each time, up to 28 days of training data. This will determine if forecast 

accuracy correlates with training data length, or if less can be beneficial. 

Experiment two will be applied to the CHN dataset and the three highlighted (in 

Table 3.1) UK datasets, the three chosen DMAs have the longest uncorrupted 

demand recording amongst all UK DMA data.  

Experiment three will investigate the effect of data resolution. This experiment is 

only applied to the highlighted UK datasets, as the CHN dataset involves lower-

resolution data. For the case studies tested, the data is aggregated using 30-, 60- 

and 120-minute-long steps by taking the sum of the raw data, at the required 

number of steps. Forecasts are made for each new dataset, and the average 

forecast accuracy is compared with the original data. Though the coefficient of 

determination is unitless, and can be compared across all resolutions, the RMSE 

accuracy needs to be divided by number of points summed, as the raw data has 

unit of litres per second, the summed data would be litres per n seconds, where 

n is the number of data points summed.  

The final experiment aims to determine how well each model tolerates noise; this 

will address the third research question. A scaled Gaussian noise is added to the 

training data, the scale is set to be between 0 and 50% of the average data value. 

The number of forecasts made is significantly higher for this experiment because, 

1) each model is repeated for each noise level, and 2) each noise level is 

repeated ten times, due to the random nature of the added noise. To reduce the 

computation time, the forecast horizon is increased to seven days, and the noise 

scale increment is 5% for the case studies. The accuracy reduction resulting from 

prolonging the forecast horizon can be overlooked, as the focus of this 
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experiment is to compare how each model tolerates noise, the forecast with no 

noise therefore can be used as a reference point for each model.  

Table 4.1 Overview of the experimental set-up 

Experiment Data  Forecast horizon Variable factor 

1 CHN and UK11 1 day Parameters 

2 CHN and UK4, 11, 12 1 day Training length 

3 UK4, 11, 12  1 day Data resolution 

4 CHN and UK4, 11, 12 7 days Noise 

4.3. Results and Discussion 
4.3.1. Parameter Analysis 

Using the Chinese dataset, the numerical parameters for RF and NN are 

considered for evaluation. The choice of evaluated numerical parameter range is 

designed to go up to or around the default values, to determine various 

parameters impact on accuracy. Based on this result, the two parameters with 

the most significant effect on accuracy will be selected for detailed sampling 

analysis.  

As Prophet and ARIMA have only two core parameters each, they can be subject 

to sampling without initial parameter analysis.  

Table 4.2 Random Forest initial parameters test parameters 

Parameter Default Min  Interval  Max 

n_estimators 100 1 200 1001 

max_depth 24 2 20 102 

min_samples_split 2 2 40 202 
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min_samples_leaf 1 1 20 101 

min_weight_fraction_leaf 0 0 0.002 0.01 

min_impurity_decrease  0 0 20 100 

max_leaf_nodes Unlimited  2 40 202 

ccp_alpha 0 0 20 100 

max_features 24 2 4 22 

max_samples 984 84 180 984 

Figure 4.2 shows the effect different numerical parameters have on forecast 

accuracy for NN and RF. In all figures, the y-axis shows the forecast accuracy, 

and the x-axis shows the selected parameter orders, detailed selection of 

parameter scale and values is provided in Tables 4.2 and 4.3. 

Table 4.3 Neural Network initial parameters test parameters 

Parameter Default Min  Interval  Max 

hidden_layer_sizes 100 1 20 101 

alpha 0.0001 0.0005 0.0005 0.003 

batch_size 200 10 100 510 

learning_rate_init 0.001 0.0005 0.0005 0.003 

power_t 0.5 0.1 0.2 1.1 

max_iter 200 10 100 510 

beta_1 0.9 0.74 0.05 0.99 

beta_2 0.999 0.974 0.05 1.224 

epsilon 1e-08 (1e-8)/4 (1e-8)/4 (3e-8)/2 
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From Figure 4.2, the top panels show accuracy results for NN, and the bottom for 

RF; the left is R2 accuracy, and the right is RMSE accuracy levels. The y-axis of 

the R2 accuracy result is limited between 0 and 1, as beyond these limits is either 

impossible or insignificant. The examinable feature results from the right (R2) and 

comparable result from the left (RMSE) are all in agreement, where the R2 and 

RMSE result negatively correlate with each other. This suggests that poor-

performing results are both less accurate in terms of correlation and bias and 

residual. 

 
Figure 4.2 Initial parameter analysis of all available 

numerical parameters for NN and RF (parameter orders given 
in Tables 4.2 and 4.3) 
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The list of numerical parameters analysed in Figure 4.2 can be separated into 

two categories – model complexity and early stopping mechanism. Most 

parameters produce the highest accuracy with default parameter values, only the 

parameter that relates to model complexity (maximum feature for RF and hidden 

layer size for NN) varies significantly around default values, suggesting a need 

for further investigation. Along with this, the maximum depth for RF and maximum 

iteration for NN are also selected as the representative early stopping 

mechanisms. These two parameters are chosen because 1) these two 

parameters did not peak at the default value, as seen in Figure 4.2; and 2) 

compared to other early stopping mechanisms, these two parameters are 

comprehensible.  

Table 4.4 Parameter choice and analysed values for 
different models 

Model Parameter Chinese dataset UK dataset 

Prophet Number of 
change points 

1,2,3,6,42 1,2,3,18,126 

Changepoint 
prior scale 

0.0005, 0.005, 0.05, 
0.5, 5.0 

0.0005, 0.005, 0.05, 
0.5, 5.0 

ARIMA p 0, 1, 2, 3, 4 0, 1, 2, 3, 4 

q  0, 1, 2, 3, 4 0, 1, 2, 3, 4 

RF Maximum 
feature 

1, 6, 12, 18, 24 1, 24, 48, 72, 96 

Minimum 
sample split 

2, 4, 6, 8, 10 4, 13, 22, 31, 40 

NN Hidden layer 
node count 

12, 24, 48, 96, 192 24, 48, 96, 192, 384 
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Maximum 
iteration 

50, 100, 200, 400, 800 50, 100, 200, 400, 800 

From the results of the initial parameter analysis, the selected parameters for 

sampling analysis for NN are the hidden layer size and maximum iteration, and 

for RF the maximum feature count and maximum depth. The main parameters 

for sampling analysis for ARIMA are  and  coefficients relating to the moving 

average parameter and autoregressive parameter, and for Prophet are the 

number of change points and the change point scale. 

 
Figure 4.3 Sampling analysis for CHN data and UK11, the 

shading corresponds to forecast accuracy, the squares with 
bold texts are the most accurate forecasts 

p q



70 
 

Table 4.4 shows the selected sampling parameters and the chosen investigation 

range for the two case studies (as UK datasets are similar in resolution and data 

length, thus investigation on parameter choice is only performed on UK11). 

There are several differences between the ranges of selected parameters for the 

two case studies: 1) the number of change points for Prophet is lower for the CHN 

dataset because the data record is shorter; the two maximum numbers of change 

points are set to be the number of days and weeks within the training data, setting 

the change points to be intuitively understood; 2) both parameters for RF and the 

hidden layer size for NN are lower for the Chinese dataset because the size of 

these parameters correlates with the input of each training model, whilst both 

models consider a full day’s data as input, the number of points in a day in the 

Chinese dataset is 24, compared to 96 in UK datasets.   

Figure 4.3 shows the accuracy results for parameter sampling for the CHN 

dataset and UK11 dataset. The heading above each figure in the top panels 

indicates the model used across the column, and the left headings for each figure 

in the left panels indicate the case study and accuracy measure across the row. 

The axis headings and values for each panel show the feature and values 

sampled, as detailed in Table 4.4. The shading corresponds with accuracy levels, 

where lighter colour corresponds with higher accuracy and vice versa. The text 

in each panel shows the accuracy values, rounded to two decimal places. Each 

panel also has three highlighted (bold) values, these correspond with the three 

most accurate forecasts within each panel. Though there appears to be more 

than three of the same high accuracy value, this is the result of rounding to two 

decimal places, all accuracy values differ from each other if not rounded.  
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The sampling analysis finds that R2 and RMSE show agreeable findings, where 

the parameter pair that produces higher R2 accuracy also produced lower RMSE 

accuracy, this suggests that forecasts are accurate both in terms of correlation 

and bias.  

The panels in the first and second columns show that for short-term water 

demand data, Prophet and ARIMA produce consistent forecasts, independent of 

parameter pairings. Only extreme parameter choices have a slightly negative 

impact on accuracy for these models. RF too is not overly dependent on 

parameter choice, though a feature count equal to half of the features available, 

and a small minimum sample split tend to produce slightly better results. The 

parameters in NN play a more significant role, where the higher computational 

complexity results in more accurate results, but the accuracy plateaus for all case 

studies when the maximum iteration is 800 and the hidden layer size is more than 

double the number of features.  

The parameter analysis results from the two case studies show that the model-

centric approach of optimising parameters for datasets has a limited effect, or 

when it does, the optimal values can be generalised, this holds for stable data 

such as short-term water demand.  

4.3.2. Training Data Length Analysis 

Whilst there are sufficient quality data available in all case studies analysed, this 

may not be the case for all real-life forecasting situations. Experiment two aims 

to establish a baseline for data required for each model to make a sufficiently 

accurate forecast.  
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The parameter values used are selected from experiment one. The effect of 

training data length can be visualised by varying the amount of training data used, 

starting at two days with an increment of one day each time, up until 28 days. 

This is applied to the CHN dataset and three UK datasets. 

The experiments are repeated 10 times each for RF and NN, as these models 

are initialised with random weights. The repeats aim to identify and exclude 

outliers. With the 10 repeated results, a boxplot is drawn for RF and NN to show 

both the accuracy increase and variance decrease in response to the increased 

training length. Prophet and ARIMA achieve the same forecasts with the same 

parameters, thus they often overlap for each training set.  

Figure 4.4 shows how the forecast accuracy reacts to reduced training data 

length for the CHN and three UK datasets. The x-axis represents the length of 

data used for training, measured in days, and the y-axis represents the forecast 

accuracies (left panels for R2 and right for RMSE). The grey line in all figures 

corresponds to the accuracy level achieved by a naïve method, where all 

demands in the forecast period are assumed to be equal to the demand from the 

same time on the previous day. It needs to be noted that ARIMA has similar 

forecast accuracy to the naïve method, in most cases, thus the lines overlap once 

ARIMA plateaus. 

Like experiment one, the R2 and RMSE negatively correlate with each other, 

suggesting that forecasts with low accuracy are underperforming in both 

correlation and bias. Because of this correlation, all accuracy discussions 

followed will not distinguish R2 and RMSE, unless specific accuracy values 

required discussion.  
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Figure 4.4 Training data length analysis 

From Figure 4.4, the results from the top panels for the CHN dataset show that 

all models approach their optimal accuracy level with 10 days of training data, 

with only NN showing a significant further improvement, both in terms of accuracy 

and model stability (variance decrease). Prophet and ARIMA produce similar 

forecast accuracy when plateaus are reached.  

Panels from rows 2, 3 and 4 show that there is a periodicity in how result accuracy 

changes with increased training length in all models for UK datasets. The period 

identified is seven days, and the first peak appears on day eight or nine 

depending on the forecasting model. 
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RF and NN have reached their first local peak on day nine, then each subsequent 

local peak is reached seven days after the previous peak. The improved results 

for two days beyond n whole weeks could be explained by the importance of 

weekend information. As Saturday and Sunday have slightly different demand 

patterns, two additional days of training data can improve the weekend forecast, 

especially when the training data is short. The accuracy oscillation effect 

diminishes with longer training data. Overall, RF has shown to be more accurate 

and stable compared to NN, and it has reached a stable peak at nine days 

compared to 25 days for NN.  

In contrast, Prophet has reached global optimum at first accuracy peak at eight 

days. The accuracy then oscillates around the naïve method level, peaking every 

seven days after day eight; however, the average accuracy slowly decreases with 

increased training data length. This effect can be explained by reviewing the 

Prophet model structure. Due to Prophet’s additive nature, the seasonal trends 

remain consistent. The overall trend change in the testing period follows the trend 

change frequency detected in the training period. Since short-term water demand 

does not experience significant overall trend change, prolonged training data 

would introduce unnecessary change points and could cause overfitting in the 

testing data. Additionally, a shorter training record means that the training data 

more closely relates to the testing data in the temporal space. The first local peak 

in forecast accuracy for Prophet should be taken as the global peak.  

For ARIMA, all results lie closely to the naïve method, suggesting its seasonal 

factor played the most significant role in the forecast model, and the remaining 

parameters had little effect. 
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The oscillation effect in Prophet, NN and RF suggests that when facing limited 

training data availability, more data is not always conducive to higher forecasting 

accuracy. Although more training data usually benefit model performance, a cut-

off should be recognised, that splits data availability into sufficient and insufficient 

groups. The former would benefit from ever more training data, and the latter may 

benefit from using strategic training length based on availability. The result here 

shows that strategic training length choice would benefit models that are trained 

using less than three weeks of training data. This analysis suggests that weekly 

or less frequent data features have a minimal impact on model forecast accuracy. 

Models that consider these features such as ARIMA and Prophet show no 

advantage over models that do not. 

4.3.3. Temporal Resolution Analysis 

Another point of interest is to review how different models react to decreased data 

temporal resolution. Since decreasing data resolution is done by taking the 

moving average of the original data, the new low-resolution demand record is a 

smoother version of the original demand series. The results shed light on how 

each model would react to extreme points in data. As the Chinese dataset already 

has lower data resolution and a shorter total data length, it is excluded from this 

experiment. The other three case studies are analysed here by aggregating every 

 demand value (  values of 1, 2, 4 and 8 correspond to 15-, 30-, 60-, and 120-

minute sample rates). The lowered resolution data series are forecasted and 

compared to the original data.  

Figure 5 shows how the forecasting models react to reduced data resolutions for 

case studies 2, 3 and 4. The R2 measure is unit free, but the RMSE does have a 

unit, which correlates with the size of the measured demands. Since the lower-

n n
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resolution datasets are generated by aggregating high-resolution data, the RMSE 

values at different resolutions cannot be directly compared. As a result, each 

RMSE result shown in the right panels of Figure 4 is divided by the number of 

aggregating points, namely 1, 2, 4 and 8, for 15-, 30-, 60-, and 120-minute sample 

rates, respectively.  

Like previous experiments, the R2 and RMSE results negatively correlate with 

each other, thus, the R2 and RMSE results in Figure 4.5 will be jointly discussed. 

The results all show that the forecast accuracy increased with decreased data 

resolution for Prophet, ARIMA and naïve method forecasting (accuracy overlaps 

with ARIMA results); and the opposite is true for RF and NN.  
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Figure 4.5 Data resolution analysis 

The model reaction difference to resolution can be explained by reviewing the 

model structural differences. Prophet and ARIMA can both be viewed as holistic 

forecasting models, where an overview of the data is drawn and used, whereas 

RF and NN build models by reviewing data relationships modularly, without any 

overview. Lower resolution demand is generated by taking the moving average 

of the original demand; thus, the peaks and throughs are less pronounced. 

Modular forecasting models such as RF and NN allow more flexibility in 

forecasting data peaks and throughs. As a result, RF and NN are better at 

forecasting high-resolution data compared to Prophet and ARIMA.   

It is worth noting that whilst the forecast accuracy improved for Prophet and 

ARIMA when the resolution is decreased, it is at best on par with the naïve 

method, still far worse than RF and NN. This analysis indicates that the holistic 

models (ARIMA and Prophet) are inferior for short-term water demand 

forecasting. Combining this with the results from the previous experiment, it can 

be generalised that for sub-daily water demand forecasting, the daily data feature 

plays a key role, while features that are weekly or less frequent have minimal 

impact. However, the impact of less frequent seasonal factors increases with the 

decrease in data temporal resolution.   

4.3.4. Data Uncertainty Analysis 

The final experiment aims to determine the impact of data uncertainty. This is 

done by forecasting using noisy data for training. The noise is added by 

generating Gaussian noise to the training data, with the mean noise zero and a 

varied scale (between 0 and 50% of average demand).  
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Figure 4.6 shows the impact of noisy data on all case studies. The left panel 

shows R2 accuracy whilst the right panel shows RMSE accuracy. As it has been 

with R2 and RMSE comparisons in previous experiments, the R2 and RMSE 

accuracy negatively correlate with each other, suggesting that better forecasting 

results are superior in both correlation and residuals. Therefore, subsequent 

discussions of accuracy will be done in terms of more and less accuracy when 

comparing methods or case studies. 

 
Figure 4.6 Uncertainty analysis 

The uncertainty results from Figure 4.6 shows that the impact of data noise differs 

greatly between models, with the most significantly affected being ARIMA and 
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the least being Prophet. All figures show that Prophet can maintain the same level 

of accuracy regardless of noise, albeit the accuracy variance slightly increases 

towards a higher noise level. Whilst Prophet made inferior accuracy using training 

data without noise, its robustness allows it to eventually outperform all other 

models.  

Whilst RF and NN eventually fall below Prophet, the rate of accuracy reduction 

differs for RF and NN. RF models show consistent accuracy decrease regardless 

of the noise level. In contrast, NN models’ performance drops slowly at low noise 

levels, and then the rate of drop accelerates rapidly when the noise level is high 

than 20%. Both models show significant forecast variance at high noise levels.  

The findings show that data quality is of great importance to most forecasting 

models. For NN and RF models, a 10% data quality improvement would raise the 

R2 accuracy level by 0.05. This shows that superior forecasting models are 

sensitive to data quality.  

4.4. Summary 
Short-term demand forecasting is particularly useful for operation management 

and, for example, could be used for leak detection. In this work, four models 

including three often used models – ARIMA, RF and NN, and one relatively new 

model – Prophet, are compared to determine the advantages of data-centric 

approaches in the field of short-term water demand forecasting. 

The results show that all models can make highly accurate forecasts both in terms 

of R2 and RMSE. Whilst all models have proven their ability in their application in 

the field of short-term water demand forecasting, the performance of different 

models varies with the same data set, with RF consistently producing forecasts 
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with the highest R2 and lowest RMSE. This implies that whilst data-centric 

approaches deserve more research attention, model-centric approaches cannot 

be omitted, as the appropriate model choice is an important first step in ensuring 

accurate forecasts.  

The parameter analysis has shown that most models are insensitive to 

parameters in most cases. This is especially true for Prophet, ARIMA and RF; for 

ARIMA and RF, knowing the data seasonality is more important than searching 

for optimal parameter values. Whilst NN is shown to be significantly affected by 

the number of neurons in the hidden layer, its choice can be generalised to twice 

the number of inputs. These results imply that efforts in model calibration can be 

minimised for short-term water demand forecasting. The high accuracy and lack 

of parameter effects confirm that data-centric approaches warrant more 

investigation than model-centric approaches.  

The training data length analysis has shown that more data does not necessarily 

provide better forecasts. This is especially true when using Prophet to forecast 

short-term water demands. The accuracy oscillations in Prophet, RF and NN 

suggest that when using shorter training data, high accuracy can still be achieved 

when using the right amount of training data. This study found that when using 

small training datasets, the optimal training data length is one day more than n 

whole weeks for Prophet and two days more than n whole weeks for RF and NN. 

Prophet performs better with shorter training data, for cases where data has little 

long-term value shift, such as short-term water demands.  

When considering data temporal resolution and forecasting model pairing, RF 

and NN are better for high-resolution data, whilst ARIMA and Prophet are better 

for low-resolution. Due to the data used in this research, the resolution effect is 
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present but varies for different models. This implies the significance of analysing 

data temporal resolution in the development of machine learning. This finding 

needs to be further confirmed by doing similar tests on short- to medium-term 

water demand predictions. 

The findings from training data length analysis and data temporal resolution 

analysis show that daily data feature plays the most significant role in short-term 

water demand forecasting with data features that are present with a weekly 

frequency having minimal impact. Therefore, the models such as Prophet and 

ARIMA that consider longer-term seasonal factors have no advantage over other 

models. 

Lastly, data quality is shown to have a significant impact on forecast accuracy in 

most models.  Although Prophet has shown that it is immune to data noise, it has 

produced lower accuracy forecasts compared to other models with uncorrupted 

data. RF and NN data uncertainty test has shown that 10% data quality 

improvement can improve R2 by 5% This shows that higher accuracy forecasting 

models are sensitive to data quality, and data quality improvement can offer 

similar accuracy improvement to that of complex model-centric approaches.  

Overall, data-centric machine learning approaches hold great potential in 

improving the accuracy of short-term water demand forecasting. In addition to 

improving data quality, a data-centric approach also considers how to make the 

best use of data. In this research, training data length, data resolution and data 

uncertainty are analysed under the data-centric approach framework. The results 

have shown that these aspects have a greater impact compared to model tuning 

which is an aspect of the model-centric approach. Further research could 

investigate other aspects of data-centric machine learning approaches to improve 
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forecast accuracy and reduce computation costs. Whilst all forecasting models 

have proven capable of forecasting short-term water demand, further research 

should focus on machine learning forecasting models, as Prophet and ARIMA 

have shown inferior performance capability,    
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Chapter 5 - Unboxing Black-box 
Machine Learning Models For 
Short-term Water Demand 
Forecasting 

5.1. Introduction 
Machine learning (ML) models have long been used for water demand 

forecasting with a generally high accuracy achieved. The forecasting models 

investigated in the previous Chapter have shown that ML models are superior in 

terms of forecasting accuracy, compared to statistical models. However, the 

black-box nature of ML models produces forecasts with unexplainable results; 

unlike statistical models such as Prophet and ARIMA, where the forecast 

components are intuitively comprehensible and readily presentable. It would be 

ideal to produce forecasts with ML models, whilst retaining the explainable 

components of statistical models.  

Recently, explainable AI has received ample interest to overcome the black-box 

nature of ML models. Techniques such as Local Interpretable Model-Agnostic 

Explanations (LIME) (Garreau and von Luxburg 2020) and SHapley Additive 

exPlanations (SHAP) (Lundberg and Lee 2017) offer a post-hoc add-on to ML 

models, to determine how much each input feature contributes to forecasts. The 

goal would be to maintain the forecasting accuracy achieved by ML models, 

whilst making the results more explainable.  

This Chapter aims to investigate the impact of input features on machine learning 

(ML) models, for short-term water demand forecasting. To achieve this, explainer 

models LIME and SHAP are applied to four different ML models – NN, RF, XGB 
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and LSTM. The following sections review the background and application of the 

explainers and ML models. The final sections present the results and summary.  

5.2. Methodology 
This section starts with an overview of LIME and SHAP. The two explainer 

models are selected as they work as post-hoc methods that can be applied to 

existing ML models, and they have been applied in other forecasting fields and 

have produced useful findings. Whilst both are useful in determining the feature 

contribution, SHAP can offer both individual sample analysis and overall feature 

impact overview, though it is slower. Whilst LIME calculates feature impact much 

more quickly, it can only produce results for one sample at a time.  

After an overview of the explainer models, the section presents a brief 

explanation of the four forecasting models and the choices of accuracy and 

performance indicators. Finally, this section ends with the experimental setup.  

5.2.1. Local Interpretable Model-Agnostic Explanations 

Local Interpretable Model-Agnostic Explanations (LIME) (Garreau and von 

Luxburg 2020) is a post-hoc machine learning model explainer that focuses on 

individual predictions. LIME operates by training the local surrogate models, 

these are trained with the goal of approximating the prediction of the original 

black-box model, around the given sample. Using local surrogate models, input 

feature values can be tweaked, and their impact on the output can be measured. 

The surrogate models only aim for accurate approximation locally, i.e., for the 

given sample; but do not have to be accurate globally, i.e., for other samples. 

This local truthful approximation is called local fidelity.  

The mathematical equation for the LIME explanation is the following: 
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  (5.1) 

where  is the local sample interested;  is the original black-box model (e.g., 

RF or NN); is the explainable model used (e.g., linear regression model);  are 

all potential explainable models, i.e., if  is a linear regression model,  would 

be all possible linear regression models;  measures the size of the 

neighbourhood around sample  that is considered for an explanation;  is the 

local fidelity, it can be calculated by how accurate surrogate models  

approximate original model , for the given sample; and lastly,  is model 

complexity.  

When applied, model complexity  is determined by users. It correlates to 

the number of features required for consideration by the surrogate model . 

Thus, LIME focuses on minimising the local fidelity  from Equation 5.1.  

The application of LIME starts with choosing the sample of interest. The sample’s 

feature values are perturbed, around a neighbourhood of size . Black-box 

predictions are made for the perturbed samples using the original model . The 

new samples are weighed based on their proximity to the sample of interest. An 

interpretable surrogate model can be formed by training the weighted model 

using the perturbed dataset. Finally, the surrogate model can be explained, 

though only accurately reflecting the forecasting result for the initially selected 

sample.  

LIME is implemented in Python, using the ‘lime.lime_tabular’ package (Ribeiro 

2021), for all forecasting models. Within this, ‘LimeTabularExplainer’ is applied to 

NN, RF and XGB, and ‘RecurrentTabularExplainer’ is applied to LSTM. The 

difference between LIME explainer choices is based on the expected model 
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inputs. LSTM expects an input of shape (n_samples, n_timesteps, n_features), 

whilst the other models expect inputs of shape (n_samples, n_features). The 

LIME explainer, therefore, builds surrogate models differently for LSTM 

compared to other forecasting models.  

5.2.2. SHapley Additive exPlanations  

SHAP is a machine learning model explainer that employs a game-theory 

approach, developed by Lundberg and Lee (Lundberg and Lee 2017). It outputs 

a measure of individual feature contribution in any ML model, both locally and 

globally.  

The SHAP method determines feature impact contribution by finding features’ 

Shapley values. Shapley values represent a distributed contribution among the 

features, and they are computed using coalitional game theory. Like LIME, the 

goal of making a black-box model explainable can be achieved by determining 

individual feature impact; but unlike LIME, SHAP could determine feature impact 

globally, and then individual feature impacts are weighted to be comparable.  

SHAP determines individual feature impact by calculating the average marginal 

change in prediction for feature combinations with and without the given feature. 

The idea can intuitively be understood by considering the average predictions 

with all possible feature combinations excluding feature , and all combinations 

including feature . The Impact of the feature  is the difference between the two 

prediction classes. The mathematical definition of Shapley value is as below: 

  (5.2) 
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where is the Shapley value for feature  of model  built via features . 

 is the total number of input features,  is all possible feature combinations 

that include feature , is the number of features in combination , and 

 are unique models trained on and ( without feature ).  

The application of SHAP can be further clarified by considering an ML model with 

three features, named ‘A’, ‘B’ and ‘C’. To determine the Shapley value of feature 

‘A’, the following feature combinations must be considered: 

• B 

• C 

• B & C 

The above feature combinations are considered both with and without feature ‘A’, 

the difference in the average of feature ‘A’ inclusion and exclusion is the individual 

impact of feature ‘A’.  

SHAP is implemented in Python (Lundberg and Lee 2017), using the ‘shap’ 

package. The ‘shap’ package has different explainers for different forecasting 

models. The basic ‘KernalExplainer’ works on all models, though it is slower and 

only offers an approximation of the SHAP value. The explainers used in this study 

are ‘TreeExplainer’ and ‘DeepExplainer’, as the name suggests, the former 

focuses on tree-based models and the latter on deep learning models. 

5.2.3. Neural Network 

The theory behind Neural Network is discussed in Chapter 4.2.3, the following 

will discuss the implementation of NN that are specific to the experiments 

designed in this chapter.  
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The NN model used in this work is a four-layer feed-forward model with 

backpropagation. The choice of the four-layer NN model is used instead of the 

basic three-layer model is due to the nature of different SHAP packages. Whilst 

SHAP is model agnostic, only the ‘KernalExplainer’ can be applied to all models, 

the ‘KernalExplainer’ operates like LIME, using regression models to approximate 

predicted outcomes. But as SHAP must calculate feature contributions on a 

global scale, the rate of contribution calculation is very slow.  In comparison, 

‘DeepExplainer’ aggregate many background sample data to speed up the 

approximation process, and this explainer works on both LSTM and DNN.   

The model is built using the ‘Keras’ package in ‘TensorFlow’ in Python 

(Goodfellow et al. 2016). The model consists of an input layer, which varies in 

size based on the experiments; this is followed by two hidden layers of size 12 

and 8, both using Rectified Linear (relu) activation function, this activation function 

is used here due to its simple and effective nature, it outputs zero when input is 

negative, and outputs linear values when input is positive, this is suitable as all 

inputs are normalised between 0 and 1. The parameter choices are all standard 

choice taken from other examples, the training accuracy is saved to show that 

the models are well trained, thus, the parameter choices are not altered. The 

output layer consists of one node and uses the sigmoid function as an activation 

function (Goodfellow et al. 2016). The model is compiled using the ‘adam’ 

optimiser, as it is faster and requires fewer parameters for tuning, compared to 

other optimisers. Each layer is densely connected to the adjacent layers, meaning 

all nodes from one layer connects to all nodes from the adjacent layers. The 

choice of parameters is taken from example forecast models in the reference and 

has been shown to produce a comparable accuracy level to other models. As this 
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work focuses on feature contribution analysis, the parameter choice is not 

exhaustively studied.   

5.2.4. Long Short-Term Memory  

LSTM is a specific type of Recurrent Neural Network (RNN), which is a category 

of NN. LSTM has been applied (Mu et al. 2020; Nasser et al. 2020) and compared 

to NN (Boudhaouia and Wira 2021). Recurrent Neural Networks (RNNs) are 

designed to improve upon NN by having the ability to learn long-term data 

dependencies, where the current event depends on successive past events. The 

model uses memories to learn long-term events and, as a result, deeper RNNs 

are better as they can remember more past information. However, due to its 

architecture, RNN suffers from the vanishing gradient problem (Mu et al. 2020), 

where knowledge from long-term dependencies fails to register an impact on (Fu 

et al. 2022)current forecasts. LSTM is designed to overcome this limitation of 

RNN by having the ability to retain longer periods of information.  

 
Figure 5.1 LSTM structure (Fu et al. 2022) 

Figure 5.1 illustrates the structure of LSTM. The model contains three parts, 

which are the input gate, forget gate and output gate, each processed by a 
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sigmoid neural network layer ( ) and a multiplicative unit ( ). The equations for 

how LSTM connect input and output are shown below, and further details can be 

found in (Gers et al. 2000):  

  (5.3) 

  (5.4) 

  (5.5) 

  (5.6) 

  (5.7) 

  (5.8) 

where  denotes the multiplication between two vectors;  and are 

sigmoid and  activation functions, respectively, the sigmoid activation 

function outputs values between 0 and 1, whilst the tanh activation function 

outputs values between -1 and 1; t is the current time;  and  are weights; b 

are biases at different processes; ,  and  correspond to the input, forget and 

output thresholds, respectively;  is the candidate cell state generated by the 

neural network layer;  is the cell state; and  is the output vector.  

The LSTM model used in this work is built using the ‘Keras’ package within the 

‘TensorFlow’ library in Python (Goodfellow et al. 2016). All LSTM models used 

have been initialised with the relu activation function and have employed ‘adam’ 

and mean squared error (MSE) respectively as the optimizer and loss function 

(Goodfellow et al. 2016). The reason for using relu and ‘adam’ for LSTM is due 

to their suitability, simplicity, and performance, the same as it is for NN. No further 
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analysis is done on the subject as these choices produced comparable forecast 

accuracy to other models.  

5.2.5. Random Forests 

The theory behind Random Forest is discussed in Chapter 4.2.4, the following 

will discuss the implementation of RF that are specific to the experiments 

designed in this chapter.  

The RF model used in this research is the ‘RandomForestRegressor’ from the 

‘sklearn’ library within Python (Géron 2017). Most parameters take default values 

since alternative parameter values offered no gain in forecast accuracy. All 

available features are considered, as the goal of this work is to determine the 

impact of available features.  

5.2.6. Extreme Gradient Boost 

Extreme Gradient Boost is a scalable tree-boosting system, which uses Gradient 

Boosting (GB) methods to improve the decision tree model’s speed and accuracy. 

The method was developed by Chen and Guestrin (Chen and Guestrin 2016) and 

has shown successful applications in various competitions. XGB exhibit better 

computational efficiency compared to original GB methods for its ability in parallel 

computation, approximate tree matching, effective handling of sparse data and 

improvement for central processing unit and memory. The goal of XGB 

optimisation is to minimise the objective functions ( ). The objective function for 

XGB is shown in Equation 5.9: 

  (5.9) 
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  (5.10) 

  (5.11) 

where  is the forecasted output;  is the observed output;  is the input vector; 

 represent the kth regression tree;  is the total number of available trees;  

is the regularisation term used to penalise model complexity to avoid overfitting, 

where , ,  and  respectively represent the complexity of each leaf, the 

total number of leaves, a trade-off parameter to scale the penalty and the vector 

of scores on leaves. 

The XGB model used in this work is the ‘xgboost’ package within Python (xgboost 

developers 2022). All parameters take default values as alternative parameter 

values offering no gain in forecast accuracy. The sole inputs to the XGB model 

are the features (past demand) with the expected outputs.  

5.2.7. Experimental Set-up 

To evaluate feature contribution and requirements, four experiments are 

designed to evaluate explainer models for different forecasting scenarios. The 

data used for the experiments in this Chapter are of the three highlighted UK 

datasets from Table 3.1, further mentions of the data will reference their individual 

DMA numbers.  

The first experiment aims to create an overview of the four models’ performance, 

and then use LIME and SHAP to determine feature contribution rankings. The 

forecast horizon is set to 15 minutes or one hour for high- and low-resolution data, 

respectively. Resolutions lower than hourly demand is ignored in this chapter to 

preserve high sample availability during training, the focus in this chapter is to 
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determine key feature requirements in short-term water demand data, to replace 

expert data knowledge. Similar effort was only shown to have been made towards 

sub-daily demand, thus, the resolutions investigated are of 15-minute and hourly 

demand. The total data length is 10 weeks and 80% of the data is selected for 

training and the remaining 20% for testing. Compared to Chapter 4, the ratio of 

training data is increased, this is done because the focus in this chapter is on 

feature contribution, as opposed to forecasting accuracy, and feature contribution 

is viewed using the training data as samples, thus, longer training set means 

more samples to review. The R2 and RMSE accuracy are recorded for both the 

training and testing periods, and the LIME and SHAP explainer models are 

applied to the training data. The accuracy results will demonstrate model 

forecasting ability, and the LIME and SHAP results will show an overview of 

feature contributions. The contribution ranking comparison between LIME and 

SHAP will reveal the differences between models. The overall feature 

contribution results from SHAP will be further analysed via Gini Index (GI) to 

determine the contribution spread between all features and the difference in 

contribution spread between varying data resolutions. The number of features 

used in each model is the number of demands at previous time steps up to a 

whole day. This experiment is done on all three DMAs for both high- and low-

resolutions. The bi-resolution analysis aims to identify different feature 

requirements due to resolution differences. 

The second experiment aims to determine the effect of having longer forecast 

lead times. As some models are more reliant on forecasting features being 

temporally close to the point of the forecast, this experiment will demonstrate the 

scale of models’ temporal dependency. The experiment will be done by using the 

same forecast horizon as experiment one (one point) but adding a temporal gap 
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between the final feature and the point of the forecast. The gaps analysed are 

between 0 and 23, where a temporal gap of 23 is equal to forecasting one day 

ahead. The results are expected to show how the GI of feature contributions and 

forecast accuracies react to the increasing temporal gap between features and 

the point of the forecast. 

The third experiment aims to show the accuracy impact of primary essential 

features on different models, where the primary essential features are those with 

the highest SHAP rankings. This experiment would numerically show the amount 

of information different models can extract from fewer input features. The 

experiment is done by training forecasting models with reduced features, starting 

from one feature, with an increment of one feature at each step, up to two days 

of features. The features reintroduced in each feature addition are selected from 

SHAP analysis, where the highest contributing features are reintroduced to 

training each time. The result should show an accuracy increase with the 

increasing number of features, but the rate of increase could differ for models due 

to differing feature dominance.  

The second and third experiments will use only low-resolution data, but the 

temporal length of features is extended to two days from one. The reason that 

the high-resolution data is not investigated here is a result of experiment one, 

where high-resolution data all showed identical primary dominant features 

between DMAs. 

The final experiment aims to discover how feature impacts compare based on the 

resulting daily peaks and troughs. This is done by first locating the morning peaks, 

afternoon peaks and daily troughs; the contribution plot is then shown for each 
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point of interest, alongside the all-sample contribution plot. The result could reveal 

varying feature impacts for different times of the day.  

5.3. Results and Discussion  
This section presents the results relating to the application of LIME and SHAP. 

The two explainer models are applied to NN, RF, LSTM and XGB. The data used 

are the non-corrupted sections of three UK DMAs – UK4, UK11 and UK12. 

The four experiments respectively look at 1) an overview of the feature impact; 2) 

the impact on accuracy when forecasting n-hours ahead; 3) the impact on 

accuracy when the features are reduced; and 4) the feature requirements for 

different times of the day. 

5.3.1. Model Performance and Feature Importance Analysis 

The first experiment aims to provide an overview of feature requirements and the 

forecasting ability of different models for all DMAs across two resolutions. The 

forecast accuracy can be examined from Table 5.1, while feature impact can be 

visually analysed from Figures 5.2 and 5.3. The feature impact spread can be 

seen in Table 5.2.  

Table 5.1 shows the forecast accuracy for both training and testing data, for all 

datasets across the four models. The accuracy measures of R2 and RMSE 

display a negative correlation, suggesting that superior forecasting models 

achieve both better correlation and lower residual. As there is a negative 

correlation between the two accuracy measures, further discussions of accuracy 

will be done without referencing specific accuracy indicators, and the term 

‘accuracy’ will encapsulate both R2 and RMSE.  

Table 5.1 Model forecast accuracy 
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   UK4 UK11 UK12 

   High 
res 

Low 
res 

High 
res 

Low 
res 

High 
res 

Low 
res 

NN 

Train 
R2 0.970 0.964 0.966 0.956 0.973 0.969 

RMSE 0.040 0.048 0.037 0.047 0.037 0.041 

Test 
R2 0.966 0.956 0.959 0.952 0.971 0.964 

RMSE 0.043 0.051 0.041 0.051 0.037 0.043 

LSTM 

Train 
R2 0.968 0.951 0.966 0.957 0.977 0.958 

RMSE 0.042 0.056 0.037 0.047 0.034 0.047 

Test 
R2 0.967 0.949 0.960 0.966 0.977 0.962 

RMSE 0.043 0.056 0.039 0.045 0.034 0.045 

RF 

Train 
R2 0.996 0.994 0.995 0.993 0.997 0.994 

RMSE 0.015 0.020 0.015 0.019 0.013 0.018 

Test R2 0.968 0.953 0.964 0.951 0.977 0.969 

 RMSE 0.042 0.053 0.039 0.052 0.035 0.040 

XGB 

Train 
R2 0.997 1.000 0.997 1.000 0.998 1.000 

RMSE 0.012 0.004 0.012 0.004 0.010 0.003 

Test 
R2 0.965 0.957 0.960 0.949 0.975 0.970 

RMSE 0.044 0.051 0.041 0.053 0.036 0.040 

All forecasting models have produced results of similar accuracy in the testing 

data. The tree-based models (RF and XGB) tend to be superior with training data 

forecasting compared to network-based models (NN and LSTM). They achieved 

exceptionally high accuracy during training periods, though this superiority fades 
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when facing unknown (testing) data and approaching those of network-based 

models.  

The comparison between training and testing data accuracy shows that most of 

the training accuracy is higher than testing accuracy, this is intuitively 

understandable as the forecasting models are fitted to the training data. However, 

the training and testing accuracy difference is far greater for tree-based models 

compared to network-based models. This suggests that the tree-based models 

tend to overfit training data, and their forecasting accuracy for testing data drops 

to the same level as network-based models. Additionally, the four models used 

forecast high-resolution data slightly better than low-resolution data, which holds 

for most forecasts (all but for RF in training data forecast).  

Feature impact is first analysed via LIME, and sample ranking examples are 

shown in Figure 5.2. Due to the nature of LIME analysis, only sample rankings 

can be extracted and viewed, thus example results are taken from UK11, and 

three examples are presented for each model and resolution combination. The 

top three panels in Figure 5.2 show the high-resolution results and the bottom 

three show the low-resolution results. The order of models from the left panel to 

the right is – NN, LSTM, RF, and XGB. For each resolution, the three results are 

of the top three samples. The sample selection is randomised, but the example 

rankings can be compared. 
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Figure 5.2 LIME feature impact analysis for DMA 1 between 

two resolutions (hourly and 15-minute) 

Within each sample result in Figure 5.2, the y-axis corresponds with the feature 

and its value range that generates the shown impact; the x-axis represents the 

relative feature impact size; the coloured bars show whether the given feature 

positively (green) or negatively (red) correlates to the point of the forecast. The 

y-axis translates directly between NN, RF and XGB results, where -n represents 

the past n point’s demand; however, the y-axis labels for LSTM differ from others 

due to its 3-dimensional input structure. For LSTM, the y-axis labels of ‘-1_t-n’ 

can be understood as follows: the initial ‘-1_t’ is the past point behind the point of 
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the forecast, and the following ‘-n’ is the number of points behind ‘-1_t’. Thus, the 

label ‘-1_t-n’ represent –(n+1) point’s demand.  

Feature impacts are further analysed via SHAP, Figure 5.3 shows the SHAP 

results for feature impact ranking on different models, DMAs, and resolutions. 

Figure 5.3 is split into six panels, each containing the SHAP feature results for a 

particular DMA with a particular resolution. Each panel contains SHAP results of 

four forecast models shown in the order of – NN, LSTM, RF and XGB.  

Within each result, the blue/red lines are made up of multiple dots, with each dot 

representing a particular scaled feature contribution. The colour of the dot 

corresponds to the specific feature value (blue - low, red - high). The horizontal 

location of each dot indicates the feature contributions (x-axis, bottom) 

corresponding to a respective ranked feature (y-axis, left). It is important to 

distinguish between the feature value (colour) and the feature contributions 

(horizontal location, x-axis). The feature values are scaled per feature, using the 

UK11 high-resolution NN result as an example, the top two features are demands 

from the previous one point (-1) and the previous one hour (-4), respectively; 

whilst both lines contain the same red and blue, the same colour does not mean 

the same feature value, as the feature values are scaled per feature. However, 

the x-axis locations are uniform for all features, where the middle black line 

corresponds to zero, indicating no contributions and the left and right of the line 

correspond to negative and positive impacts, respectively.  
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Figure 5.3 SHAP value analysis for all DMAs between two 

resolutions (hourly and 15-minute) 

The comparison of impact analysis between LIME and SHAP shows general 

agreement between the impact rankings. For high-resolution results, the primary 

dominant feature shows a significantly larger impact size compared to others, the 

degree of this size difference is more prominent for tree-based models (RF and 

XGB) compared to network-based models (NN and LSTM), and this holds for 

both explainer models. For low-resolution data, there appear to be two dominant 

impacting features, the impact contribution is for the primary two features are 

more evenly split for tree-based models, compared to network-based models. For 

tree-based models, the two primary features are the previous one hour and the 



101 
 

previous day’s demand; whilst network-based models show preference towards 

previous demands that are closer to the point of forecast in the temporal space.  

One day of features is used for both high- and low- resolution datasets, which 

corresponds to 24 points for low-resolution data and 96 points for high-resolution 

data. The high-resolution results from Figure 5.3 (left panels) show that the 

primary dominant feature is consistent between all four forecasting models - the 

dominant feature is the previous one point. All remaining features have a 

relatively minor impact compared to the primary, the visual results from Figure 

5.3 suggest that feature inclusion beyond one point may not be necessary for 

high-resolution data.  

Whilst the visual result shows agreement of one dominant feature for high-

resolution results in all models, the impact spread can be further analysed via the 

GI. The theory and calculation of the GI are presented in Chapter 2.4, it is 

commonly used to measure wealth inequality, here it is used to measure feature 

contribution difference. The GI result from Table 5.2 shows that the NNs have 

achieved a comparatively low GI compared to other forecasting models. This 

suggests that NN requires more input data compared to other models to achieve 

optimal accuracy.  

 

Table 5.2 Gini index result 

Model Data type UK4 UK11 UK12 

NN High res 0.551 0.535 0.603 

Low res 0.540 0.555 0.510 
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Change 0.011 -0.021* 0.093 

LSTM High res 0.846 0.782 0.807 

Low res 0.690 0.770 0.778 

Change 0.156 0.012 0.029 

RF High res 0.888 0.884 0.902 

Low res 0.807 0.778 0.803 

Change 0.081 0.106 0.099 

XGB High res 0.728 0.712 0.741 

Low res 0.705 0.676 0.717 

Change 0.022 0.036 0.024 

Results from low-resolution SHAP (Figure 5.3 – right panel) show feature ranking 

disparities between models. Tree-based models have two similarly important 

features, demand from the previous 24 hours (-24) and demand from the previous 

one hour (-1); whilst network-based models have the previous one hour as the 

primary dominant feature, the subsequent ranked features vary, though -2, -3, -

23 and -24 repeatedly appears in the top five of the network-model SHAP 

rankings. The results suggest that the network models tend to rely on a longer 

temporal dependency for demand predictions. This dependency will be further 

investigated in experiment two, where a temporal gap is created between the 

point of forecast and the features used as input. 

Table 5.3 High-res forecast accuracy comparison between 96 
and 1 feature 

   UK4 UK11 UK12 
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   One 
day 

One 
point 

One 
day 

One 
point 

One 
day 

One 
point 

NN 

Train 
R2 0.970 0.948 0.966 0.940 0.973 0.941 

RMSE 0.040 0.053 0.037 0.050 0.037 0.054 

Test 
R2 0.966 0.945 0.959 0.934 0.971 0.935 

RMSE 0.043 0.054 0.041 0.051 0.037 0.056 

LSTM 

Train 
R2 0.968 0.950 0.966 0.940 0.977 0.959 

RMSE 0.042 0.052 0.037 0.050 0.034 0.045 

Test 
R2 0.967 0.947 0.964 0.935 0.977 0.957 

RMSE 0.043 0.053 0.039 0.051 0.034 0.046 

RF 

Train 
R2 0.996 0.959 0.995 0.949 0.997 0.966 

RMSE 0.015 0.047 0.015 0.046 0.013 0.0410 

Test 
R2 0.968 0.936 0.964 0.924 0.977 0.949 

RMSE 0.042 0.058 0.039 0.055 0.035 0.050 

XGB 

Train 
R2 0.997 0.958 0.997 0.948 0.998 0.965 

RMSE 0.012 0.048 0.012 0.047 0.010 0.041 

Test 
R2 0.965 0.940 0.960 0.927 0.975 0.953 

RMSE 0.044 0.056 0.041 0.054 0.036 0.048 

From Table 5.2, the feature impacts’ GIs have shown to decrease from high- to 

low-resolution cases, which is true for all cases but one (starred). The high-

resolution results in Figure 5.2 show the previous data point to be overwhelmingly 

dominant for all models. The GI results from Table 5.2 show that the feature 

contributions are more concentrated in a few features in high-resolution 

forecasting, as shown by higher GI values in high-resolution forecasting 
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compared to low-resolution. Based on these observations, it can be concluded 

that high-resolution data can be forecasted to a high degree of accuracy using 

solely the demand from the previous data point. The accuracy established using 

only the previous data point as a feature can be examined in Table 5.3, where 

each left column under the corresponding DMA shows forecasts made using one 

day (96 points) of data as input features and the right shows forecasts made using 

only the previous data point. The results show that for high-resolution data, 

reducing the features used from one day to one point only has a marginal impact 

on forecasting accuracy. 

5.3.2. Forecasting Feature Analysis for n-hours Ahead 

This experiment shows how different forecasting models react to a varying 

temporal gap between the point of forecast and the feature data. The R2 and 

RMSE accuracy is measured for both the training and testing for low-resolution 

data, along with the GI to show feature impact spread. For this experiment, a 

varying temporal gap is generated between the point of forecast and the final 

feature, whilst the forecast horizon is kept as one. The result reveals the temporal 

dependency differences between forecasting models. 

Figure 5.4 shows the forecasting accuracies and GI. Each column corresponds 

to one DMA data (labelled above the top panel), and each row corresponds to an 

index type (labelled to the left). Within each plot in Figure 5.4, the x-axis 

corresponds to the size of the temporal gap, and the y-axis corresponds with 

each measure of interest. Like the previous experiment, the R2 and RMSE 

accuracies negatively correlate with each other and thus will be discussed jointly 

in this section.  
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Figure 5.4 N-hour ahead forecasting for temporal dependency 

analysis 

In terms of forecasting accuracy, all models experience a slight accuracy decline 

when forecasting with a larger temporal gap, for both training and testing results. 

But interestingly, tree-based models are more accurate when forecasting training 

data, compared to network-based models. This superiority fades when facing 

new data (testing data). Additionally, network-based models show a more erratic 

change in forecasting accuracy on training data when facing a longer temporal 

gap.  

When comparing the GI for different models, RF models have produced the 

highest GI values, which is consistent throughout, suggesting that the feature 
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impact spread is not affected by the temporal change. XGB models show similar 

results, though their GI values do show a slight decline. Network-based models, 

however, experienced more significant changes in feature impact spread. Even 

though NNs have produced GI values all in a similar range, their values varied 

throughout changing temporal gaps; LSTMs have shown to be the most affected 

model, with GI values dropping significantly after a temporal gap of one, then 

slowly recovering after a temporal gap of 10. The GI results suggest that network-

based models are more temporally dependent, and LSTM is the most affected 

model by the presence of a temporal gap.  

5.3.3. Optimal Feature Inclusion 

This experiment looks at how features dependent the forecasting models are. 

Conversely, the results show models’ ability to extract the maximum amount of 

information from the minimum number of input features, whilst maintaining high 

forecast accuracy.  

Figure 5.5 shows how forecasting accuracy changes for training and testing 

datasets when the number of features is increased. The features reintroduced in 

each forecasting model are the highest-ranked features based on SHAP values. 

This experiment imagines having the knowledge of feature contribution rankings 

for short-term water demand forecasting, and the degree of each additional 

feature contributions can be visualised its impact of accuracy. Figure 5.5 is 

arranged as Figure 5.4 where each column corresponds with a DMA (labelled 

above the top panel) and each row corresponds to an index result (labelled on 

the left). Within each plot, the x-axis represents the number of top features used 

for forecasting, and the y-axis represents the corresponding index value. The 

SHAP feature ranking is performed once for each model, but the training and 
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forecasting are repeated 10 times each to show how accuracy results spread. 

The R2 and RMSE indices show a negative correlation again, thus discussions of 

accuracies will encapsulate both measures in this section. 

 
Figure 5.5 N-feature inclusion forecast for information 

extraction analysis 

In Figure 5.5, the training data accuracy confirms that of previous experiments, 

where tree-based models produce near-perfect forecasts judging by result 

accuracy, though this superiority is not repeated in testing data. The testing data 

results show that RF and XGB can produce forecasts with near-optimal accuracy 

using around 10 features. Adding more tends to have minimal or even negative 

impact, suggesting that full features may cause overfitting in these models. NN 
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can reach near-optimal accuracy with 10 features (for UK4), but this result is not 

repeated in all DMAs, nor is this level of accuracy consistent. Therefore, NN can 

be said to reach consistently accurate near-optimal forecasts with around 25 

features. LSTM has shown to be the worst performer among the four models, as 

it requires around 30 features for the median forecast to be of near-optimal 

accuracy. Its forecast accuracies are significantly more varied compared to other 

models.  

5.3.4. Peaks and Trough Feature Impact Analysis 

The final experiment looks at the feature requirements for specific times of the 

day. The times of interest are the morning and afternoon peaks and daily troughs. 

These three are selected as knowing the demand at these times is more 

important for short-term water management than for other times.   

The feature impact of a specific time of day is investigated by extracting the time 

of the morning peaks (highest demand between mid-night and noon), afternoon 

peaks (highest demand between noon and midnight) and daily troughs (lowest 

demand of the day), then using the time to locate and plot the SHAP values (same 

as Figure 5.3). The SHAP value plot for all times of day is shown next to individual 

SHAP value plots for the times of interest. All DMAs have shown to agree on 

dominant feature rankings for high- and low-resolution data, thus, the SHAP 

values plots are combined for all DMAs. The combined results are shown in 

Figure 5.6, where the middle line splits the results into high- (left) and low- (right) 

resolution panels, each row corresponds to a given forecasting model (labelled 

on the far left), and each column corresponds to a time of interest (labelled above 

the first row). 
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For high-resolution data, where the primary dominant feature (previous point) 

was shown to overshadow all other features in terms of impact, the scale of this 

impact correlates positively with the size of the feature. While the previous data 

point is the dominant feature for all models, network-based models show weaker 

primary feature dominance, particularly for daily troughs. Additionally, the 

subsequently ranked features in network-based models show a gradient decline 

in SHAP value compared to tree-based models, further revealing the models’ 

temporal dependency. 

 
Figure 5.6 Daily peaks and trough feature impact 

contribution analysis 
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For low-resolution data, the feature impact differs for morning and afternoon 

peaks. Whilst the previous data point is important for both the morning and 

afternoon peaks, its scale and direction of impact differ based on time and 

forecasting model.  

For morning peaks, extreme demands from the previous data point have a high 

impact on the current point for all models, with high values having a positive 

impact and low values having a negative impact. In contrast, tree-based models 

have found the demand from the previous day to be more impactful. The impact 

of the previous day's demand is strongly positive regardless of the feature value.  

For afternoon peaks, the previous day's feature impact for tree-based models is 

the same as the previous day's impact for morning peaks. However, the previous 

data point impact differs from morning peaks for all models. The impact of 

demand from the previous data point correlates well with the actual demand size, 

where low demand from the previous data point has a smaller impact (in contrast 

to a negative impact for morning peaks).  

The disparity of the previous data point impact on morning and afternoon peaks 

suggests that morning peak demand varies more greatly and is more closely 

correlated with the previous data point demand, whilst afternoon demand has a 

more stable minimum usage and can only be driven up by higher previous data 

point demand.  

For daily troughs, most high-ranking features have a high negative impact 

regardless of feature value. However, like its high-resolution counterpart, the 

dominant features (top two) for tree-based models show that the top two ranked 
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features are the sole impacting features. This contrasts with network-based 

models where each feature in a long list has an impact on the forecast result.  

5.4. Summary 
This Chapter investigated the varying feature contributions to short-term water 

demand forecasting, across different forecasting models and data resolutions. 

Four forecasting models are applied to 15-minute and hourly data, across three 

DMAs. SHAP is then applied to each model to determine the feature contribution 

rankings. The key conclusions are: 

The previous data point is the dominant feature for all models when forecasting 

high-resolution data. Further testing where only the previous data point is used 

for forecasting high-resolution data shows that extending to the previous day (96 

data points) of features only achieved a marginal gain in predictive accuracy 

compared to the previous data point forecast. 

Network-based models are more temporally dependent and feature intensive 

compared to tree-based models. They have stronger adverse reactions to 

temporal gaps between features and the point of the forecast, both in terms of 

accuracy and GI. Network-based models have also shown a significant accuracy 

drop from having a reduced number of features compared to tree-based models.  

Forecasting morning peaks, afternoon peaks and daily troughs depend on 

different past features. Whilst the previous data point is important for both peak 

demands, the previous data point influences morning and afternoon peaks 

differently. The previous data point can influence morning peak demand in both 

directions, suggesting a lack of minimum in the morning peak; in contrast, the 
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previous data point can only cause the afternoon peak to go higher, suggesting 

a more stable minimum for afternoon demand.  

The application of SHAP in the field of water demand forecasting could be 

developed further to evaluate its use in medium- to long-term demand forecasting 

where more input variables (such as climate and social-environmental input 

variables) are often included. SHAP can be used to determine key contributing 

features to water demand forecasting across various forecast horizons. 

Additional investigation on RF and XGB could also be done using longer training 

datasets, to see if additional training could improve model performance when 

facing testing data; the result would determine whether the models are overfitting 

training data.  
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Chapter 6 - Optimising the Usage of 
Multiple Short-term Water Demand 
Data via Transfer Learning  

6.1. Introduction 
This chapter looks at the application of transfer learning (TL). The experiments 

are designed to explore TL’s impact across different temporal resolutions, 

different data availability scenarios, different feature inclusions and different 

models. A literature review on transfer learning is presented in Chapter 2. The 

rest of this Chapter is laid out as follows: the following subsection reveals how TL 

is applied and the details of the experiment design; then results and discussions 

are presented; finally, conclusions are drawn to complete the Chapter.  

6.2. Methodology 
This section gives an overview of how TL is applied in this thesis, via the form of 

a flowchart with a detailed description; then it presents the layout and parameters 

of the experiments that are designed to evaluate the performance of transfer 

learning across different scenarios.  

6.2.1. Transfer Learning 

In this section, target data refers to the data from the DMA to be forecasted, whilst 

source data refers to data from DMAs other than the target data DMA. The 

assumed possibility of cross-DMA data knowledge transfer is due to the nature 

of the data used. The data used in this thesis is 18 DMA datasets of short-term 

water demand data, collected by the same supply company, all at 15-minute 

temporal resolution.  
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Figure 6.1 is a flow chart that illustrates how TL-incorporated ML is applied and 

compared to traditional ML forecasting in this thesis. The TL approach employed 

starts with source and target data. The datasets are first transformed into samples 

of input and output pairs that can be used for ML training. The data is then pre-

processed to eliminate all zero and negative values, as well as extremely high 

values based on visual inspection (detailed in Chapter 3, Section 4). The data is 

then aggregated into a different temporal resolution, i.e., original 15-minute 

demand and hourly demand. 

After both source and target samples are temporally aggregated, training 

samples for traditional and TL-incorporated ML forecasting models are formed. 

An example of the training sample difference is given using DMA UK1 as target 

data, and the remaining DMAs as source data. First, UK1 data is split into training 

and testing samples (80% training and 20% testing); the 80% training samples 

from DMA UK1 are used to train the traditional ML model. The training samples 

from all other DMAs (source data) are added to the 80% samples from DMA UK1, 

to form a far larger training sample for the TL-incorporated ML model. The goal 

is to uncover positive knowledge that could be leveraged from DMAs UK2 to 

UK18, to assist with forecasting DMA UK1. 

6.2.2. Machine Learning Models 

The ML models employed for TL evaluation are XGB and LSTM. The reason for 

using these models are as follows: LSTM and NN are both network-based models, 

LSTM have shown superior forecasting accuracy; XGB and RF are both tree-

based models, though both achieved similar results in terms of accuracy, XGB 

can be trained much faster. The theory and implementation of both models are 
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detailed in Chapter 5, under Sections 5.2.4 and 5.2.6. The implementation of both 

models remains the same in this chapter as they are in the previous chapter.  

  

 

Figure 6.1 Flowchart of how Transfer Learning is applied 

6.2.3. Experiment Set-up 

To evaluate the impact TL has on ML forecasting, three experiments are 

designed to test the TL approach under different scenarios. All experiments are 

done across two temporal resolutions with different feature pairings. Table 6.1 

details the temporal resolution and feature pairings. All experiment results are 

split into four performance categories, these are split between training and testing 

Target data 

Data transforming Data transforming 

Training samples  
(target) 

Testing samples  
(target) 

Machine learning  
model training  

(unified) 

Data pre-processing Data pre-processing 

Training samples  
(source + target) 

Machine learning  
model training  

(individual) 

Traditional ML forecasting Transfer learning ML forecasting 

Source data 

Forecasting result comparison 
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data, between R2 and RMSE. From here on, individual and unified forecasting 

will be used to respectively denote traditional ML models and TL-incorporated ML 

forecasting models.  

 

Table 6.1 Temporal Resolution and feature pairings 

Temporal 
resolution 

Feature 
count Label Features 

15 minutes 
1 15-minute 1 feature Past 1 point (continuous) 

12 15-minute 12 features Past 12 points (continuous) 

1 hour 

2 Hourly 2 features Past 2 points (continuous) 

2 Hourly 2* features Past 1 point and past 24th 
point (discrete) 

24 Hourly 24 features Past 24 points (continuous) 

The first experiment will use XGB to exhaustively determine the impact of 

different amounts of source data inclusion on source forecasting. Source data are 

selected for each target DMA from the 17 other DMAs, and the number of source 

data included increases from 0 (represented by the individual model) up to 17 

(where all other DMA data are included). The order of source DMA inclusion is 

based on the correlation between source and target data, with the most correlated 

DMAs included first. 80% of the target data will be used for individual model 

training, with the remaining 20% used for testing for all models. The unified model 

will be trained in two ways – with or without target training data (80%). The unified 

model trained with target data represents the impact source data has on target 

DMA forecasting when target data are abundant, and the unified model trained 

without target data represents how TL can be used in extreme cases where there 
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is no target data available. The training accuracies measure how well each model 

fits the samples supplied for model training, and the testing accuracy measures 

how well each model fits unknown target data. Finally, each model is retrained 

10 times to show the result variance. The first experiment is done using only XGB 

because of the large number of model training and sample count in unified 

models, LSTM is far slower to train thus it is excluded from this experiment.  

The second and third experiments will investigate the impact of source data 

selection. Both experiments will simulate scarce target data availability by limiting 

the target data training sample count to 100, 500 and 1000. The two experiments 

differ in the choice of source data. The second experiment will select source data 

in the same manner as the first experiment, where the source data is selected 

based on its correlation to target data, and the number of source DMAs kept is 

based on the result from the first experiment. The third experiment will select 

source data based on data quality, the uncorrupted periods (30 weeks) from the 

three DMAs (UK4, UK11, UK12) used throughout Chapters 4 and 5 will be used 

as ideal source data.  

The individual models in the second and third experiments will be trained using 

limited target data samples, whilst the unified models will add source data 

samples to target training samples. Like the first experiment, the training accuracy 

will measure how well each model fits its given samples, and the testing accuracy 

will measure how well the models fit 20% of unknown target data. Both 

experiments will be done on LSTM and XGB.  

6.3. Results and Discussion 
This section presents the results of the TL application under different scenarios. 

The TL approach is applied to XGB and LSTM, using 18 UK DMA demand 



118 
 

datasets. Three experiments are designed to reveal 1) the ideal amount of 

external data; 2) how correlated source data impact target forecasting; 3) how 

high-quality source data impact target data forecasting; and 4) the best way to 

select source data to aid target data scarcity.  

6.3.1. Source Data Class Determination 

The first experiment uses XGB to draw an overview of the impact increasing 

source data amount has on target forecasting. The conclusions are drawn from 

two scenarios – 1) abundant target data; and 2) zero target data. Figure 6.1 

shows the forecasts in different resolutions and feature pairings. There are 20 

plots in Figure 6.1, and each plot contains two lines. The blue is the unified model 

with abundant target data, and the orange is the unified model with zero target 

data. Each point on the line is made of the average accuracy of 10 repeated 

forecasts of all 18 DMAs, under the two scenarios, with varying amounts of 

source data inclusion. The x-axis represents the number of source datasets 

incorporated, starting from 0, this represents the forecast accuracy of target data 

without any source data; the x-axis values increase up to 17, showing the impact 

increasing the number of source data has on target data forecasting accuracy. 

The x-axis value for the orange line starts at 1, as no forecast can be done without 

both source and target data training samples. The y-axis differs in each row, 

where each row corresponds to different accuracy measures, starting from the 

top, each row shows the result for training R2, testing R2, training RMSE and 

testing RMSE. The training result indicates how the models fit the training data 

samples, which differs for each group; and the testing result shows how the 

models forecast 20% of the unseen target data. The columns correspond to 

results from different resolutions and feature pairings, the column orders are the 

same as the labels shown in Table 6.1, starting from the left column.  
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The results in Figure 6.2 show that R2 and RMSE are inversely related, thus they 

will be jointly discussed in the following. From the training results, the accuracy 

comparison between the two scenarios shows that training sample forecasting 

accuracy is dependent on the number of DMAs included as the accuracy from 

the orange line (zero target data) is one DMA behind the blue line (full target data). 

The training accuracy lines overlap beyond 4 to 8 DMA inclusions.   

 
Figure 6.2 The impact of source data class on forecasting 

accuracy, using the XGB forecasting model 

For scenario one, the testing forecast accuracy decreases with an increased 

number of source data. This is to be expected as the target forecasting should 

achieve the highest accuracy if trained using target data samples only. Additional 
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source data reduces the ratio of target data samples in the overall training set. 

However, the level of accuracy drop is minuscule (0.02 drop in R2 for the largest 

drop), suggesting that additional source data inclusion has a minimal negative 

impact.  

For scenario two, the testing forecast accuracy increases with an increased 

number of source data. However, the rate of increase and point of plateau differs 

for different temporal resolutions of forecasting. The 15-minute forecasts plateaus 

at four source datasets, whilst the hourly data plateaus at eight. The difference in 

the amount of source data requirement suggests that additional source data does 

positively compensate for reduced training sample size, as hourly demand has 

less than four times the sample count compared to the 15-minute demand. 

Additionally, the overall increase in accuracy when increasing source data 

amount has shown that poorly correlated source data can still improve target data 

forecasting accuracy, this emphasises the significance of source data quantity, 

when forecasting with minimal target data samples.  

Further feature analysis from Figure 6.2 affirms the findings from Chapter 5, 

Section 1. The Section has shown that hourly demand forecasts require more 

features, compared to 15-minute demand forecasts, as the SHAP analysis of low-

resolution data has achieved a lower Gini index, compared to the high-resolution 

result. Figure 6.2 shows that whilst reducing feature count to dominant features 

only has a limited impact on accuracy, the impact on hourly demand is more 

significant.   

6.3.2. Source Data Length Determination 

The second experiment aims to determine the minimum source data length 

required. Using the ideal number of source datasets, determined by the previous 
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experiment – four datasets for 15-minute demand and eight for hourly. The 

resultant plots for this experiment are presented in Figure 6.3 like experiment one. 

The y-axis in all plots is of accuracy measures, with each row corresponding to 

training R2, testing R2, training RMSE and testing RMSE; the columns represent 

the temporal resolution and feature pairing; the blue and orange lines respectively 

represent accuracy with and without target training samples.  

The only difference is the x-axis, as the number of source datasets is set, the x-

axis now represents the number of source data samples used. The number of 

samples evaluated ranges between 5,000 and 75,000, with 5,000 increments. In 

cases where the evaluated training sample count is lower than the available 

sample count, the number of samples is capped at the maximum number of 

available samples.  

Like experiment one, experiment two is only performed on XGB, due to the slow 

model fitting exhibited by LSTM. The goal of the first two experiments is to 

optimise the sample class and size, for later experiments that use LSTM. Thus, 

reducing the need for repeated forecasts, and significantly reducing computation 

costs.  

From Figure 6.3, the training result of forecasts with and without target data 

closely align with each other, with decreasing training accuracy (for both R2 and 

RMSE) as the number of samples increased. This is to be expected as ML models 

can better fit smaller training samples compared to larger samples. For testing 

accuracies, however, the accuracy increases with increased training samples, 

but accuracy levels plateau at about 20,000 samples. Further accuracy gains can 

be achieved beyond this sample count, but further gains beyond 20,000 training 



122 
 

samples are insignificant. Thus, 20,000 samples will be used as a training sample 

size cap for the next experiment.  

 
Figure 6.3 The impact of source data length on forecasting 

accuracy, using the XGB forecasting model 

6.3.3. Correlation-based Source Data Inclusion 

The first two experiments have determined the ideal training class and size – the 

ideal class has shown to be four and eight source datasets for 15-minute and 

hourly demand, respectively; and the source sample size larger than 20,000 have 

shown to have an insignificant impact on accuracy.  

The third experiment employs the previous findings, to determine TL’s 

performance when there is a limited number of target samples, using both XGB 
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and LSTM. The target sample availability is set to 1000, 500 and 100, to simulate 

diminished sample availability. The forecasts are made using both XGB and 

LSTM.  

As previous experiments have proven models' ability to fit training data, the 

results for experiments three and four will focus on testing accuracy. Figures 6.4 

and 6.5 show the testing accuracy for correlation-based source data inclusion, 

the figures are split by the testing accuracy indicators; Figure 6.4 shows the R2 

result for both XGB and LSTM, and Figure 6.5 shows RMSE. Within each figure, 

the columns correspond to resolution and feature pairing; the top three rows are 

for XGB forecast accuracies under three different data availability scenarios, and 

the bottom three rows are for LSTM forecast accuracies under three scenarios. 

All y-axis correspond to accuracy values, and the x-axis corresponds to different 

DMA representing target data.   

The results from Figures 6.4 and 6.5 show that the R2 and RMSE result agrees 

with each other, where higher R2 correlates with lower RMSE. Thus, the two 

accuracy indicators will be jointly discussed. For both figures, the y-limits are the 

same for all plots, for ease of comparison between models and resolutions.  

Within each plot, the box plots show the spread of forecast accuracies across 10 

repeats, and the lines represent the mean accuracy across all DMAs. The blue 

results show TL-incorporated forecasts, and the red show traditional ML forecasts.  

For forecasts with 100 target training samples (rows 1 and 4), the individual ML 

forecast repeats have shown that the forecasts are unstable. Although this is 

expected as the 100 samples are randomly selected from all available samples, 
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the difference in accuracy range between XGB and LSTM forecasts indicates that 

LSTM requires more training samples for consistent forecasts. 
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Figure 6.4 Transfer learning analysis using correlation-
based source data inclusion (R2) 

 
Figure 6.5 Transfer learning analysis using correlation-

based source data inclusion (RMSE) 
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The correlation-based source data inclusion shows that TL-incorporated ML 

forecasts achieve comparable or higher forecasting accuracy compared to 

traditional ML models. The accuracy improvement is most evident for the 100 

samples scenario and for the hourly demand forecast with 24 features. The 

improvement for the 100 samples scenario is intuitively understood as traditional 

ML samples cannot successfully train models with too little data. But for hourly 

demand forecasting with 24 features, the large accuracy improvement with 

abundant data with numerous features suggest that there is ample positive 

knowledge stored in external DMAs. 

The comparison of feature impact for 15-minute demand forecasting shows that 

additional feature inclusion has limited impact on TL-incorporated ML models but 

has improved forecasting accuracy for traditional ML. This suggests that for 15-

minute demand resolution, abundant features or training samples (even external 

samples) can both improve forecasting accuracy.  

The impact of feature increase is more significant for hourly demand forecasting. 

The 24 feature forecasts have shown to be superior for both TL-incorporated and 

traditional ML models. The choice of which two features to include (continuous 

past two demand points or discrete past point and past 24th point) have little 

impact on TL incorporated ML model, but traditional ML model have been shown 

to favour past two continuous points. For hourly demand, feature amount and 

training sample amount are both shown to have an impact on forecasting 

accuracy. 

The comparison of target training sample availability shows that both models can 

make consistent forecasts with 500+ training samples. The increased amount of 
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target samples have zero impact on all TL-incorporated forecasting cases. The 

only exception is shown for hourly demand with 24 features.  

For all TL-incorporated forecasting cases, the target training samples are first 

combined with all source training samples, and then 20,000 samples are selected 

for training from the large sample pool. As a result, the number of target samples 

that are selected for training varies, but the probability of target sample inclusion 

increases with the increase of available target samples. Though the increase of 

target samples for training should train models that fit the target group more 

closely, the result has shown target data increase has a limited impact on TL-

incorporated forecast accuracy for most resolution cases. The only resolution 

where this impact is evident is forecasting hourly demand with 24 features. This 

suggests increasing target data is only useful when ample features are used. This 

affirms the usefulness of TL incorporation, as increasing features increase both 

computation cost and data quality requirement, in the event where both are 

limited, ample source data would be useful to improve forecasting target data.  

6.3.4. Quality-based Source Data Inclusion 

The previous experiment has selected source datasets based on their correlation 

to target data, whilst this has proven to be useful in improving accuracy, the 

selected source datasets have varying amounts of corrupted data. As discussed 

in Chapter 3, Section 4, only basic data cleaning is performed on all datasets, to 

only exclude zeroes, negatives, and extreme measures.  

Amongst the DMAs, there exists a varying length of corrupted data that falls 

between zero and post-cleaning maximum. Examples of this are shown in Figure 

3.3, where the black and red boxes pinpoint the periods. The black-boxed section 

shows the demand dropping significantly compared to the remaining sections, 
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whilst there may be a cause for this uniform drop, its variation from prior 

measurements nevertheless makes the section useless, once the measures are 

normalised. The red-boxed section shows an extended period where the demand 

remains consistent for several continuous points, and the whole corrupted section 

looks like a prolonged daily demand; the only explanation is that the 

measurement date for this period is off (i.e. the month and date values are 

switched).  

Instead of delving into each DMA and fixing issues on a case-to-case basis, the 

alternative to correlation-based source data inclusion would be quality-based 

inclusion, where source data with no visible corruption are kept. The UK DMAs 

sections used in Chapters 4 and 5, namely – UK4, 11 and 12 are used for this 

experiment, and results will be compared to the previous experiment.  

The final experiment is designed and presented the same as experiment three. 

Three limited target data scenarios are analysed (100, 500 and 1,000 samples). 

XGB and LSTM are both used for forecasting. Instead of picking top correlated 

source datasets, the first 30 weeks of demand from UK4, 11 and 12 are used as 

source training samples, in addition to the limited target samples. Like experiment 

three, a cap of 20,000 samples is placed on the unified training samples, to obtain 

comparable results between the two experiments. Figures 6.6 and 6.7 presents 

the results of the three limited target data scenarios. The layouts are identical to 

that of Figures 6.4 and 6.5.  
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Figure 6.6 Transfer learning analysis using quality-based 

source data inclusion (R2) 
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Figure 6.7 Transfer learning analysis using quality-based 

source data inclusion (RMSE) 

The quality-based source data inclusion has shown similar results to that of 

correlation-based results from the previous sub-section. The only significant 
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difference is in the forecasting accuracy of hourly demand with the past two 

continuous features. The average accuracy is significantly lower for TL-

incorporated ML models for quality-based source data inclusion compared to 

correlation-based inclusion. This is mainly lowered by DMA 16 and 18. Further 

visual analysis of demand patterns and correlation shows no discernible features 

for these two DMAs; the lowered accuracy could only be concluded as two 

outliers. 

The average forecasting accuracy from quality-based source data inclusion is 

marginally lower compared to correlation-based selection. Though this slight 

accuracy drop means the difference between having 18 individual models and 

only having one model for all 18 DMAs. The former would prove useful when 

computation cost is of concern.  

6.4. Summary  
This chapter investigates the impact Transfer Learning has on short-term water 

demand forecasting. Tests are done on different models, temporal resolutions, 

and feature pairings. Different target data availability and source data choice are 

evaluated in detail. The key findings are: 

External DMA past demand data can be used as training samples to successfully 

forecast demands at a specific DMA with no available training data. The accuracy 

of forecasts made with external training samples increases with an increasing 

number of external DMA datasets included. The level of accuracy improvements 

achieved with further DMA inclusion diminishes beyond four DMAs for 15-minute 

demand forecasts, and eight DMAs for hourly demand forecasts.  
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When forecasting with external DMA training samples, more data can increase 

accuracy, but the level of accuracy gained becomes insignificant when the 

training sample size increases beyond 20,000 samples.  

TL-incorporated ML forecasting can help mitigate data availability issues. The 

performance of correlation-based and quality-based source data inclusion have 

both been shown to improve forecasting target data accuracy under limited data 

availability scenarios.  

Accuracy comparison between correlation-based and quality-based source data 

inclusion shows that correlation-based source data choice achieves marginally 

better forecasting accuracy. Additionally, an increased number of target training 

samples has achieved a limited impact on accuracy for TL-incorporated ML 

forecasting models. Whilst quality-based source data inclusion is inferior, the 

reduction in forecasting accuracy is only marginal, and it can be used as a 

forecasting model across all DMAs. The resultant forecasting model could 

significantly reduce both data requirements and computation costs, as the 

quality-based TL incorporation would train one model for all DMAs, whereas 

correlation-based TL incorporation would train one model per DMA.  
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Chapter 7 - Conclusions 
This work investigates the potential of data-centric forecasting approaches for 

short-term demand forecasting. The approach is evaluated against the commonly 

employed model-centric approach, and it has been tested from a variety of 

different aspects. This study has found that data-centric holds further potential, 

as there is untapped knowledge within available data. Two new techniques are 

also presented. The first employs machine learning (ML) model explainers to 

identify dominant features, thus reducing feature requirements, and subsequently 

computation costs. The second technique shows the possibility of applying 

Transfer Learning (TL) across different DMA forecasting, thus drastically 

reducing the model and data requirements from individual DMAs. 

7.1. Summary 
This section summarises all main experiments and analyses carried out during 

this work, and it outlines a brief overview, including the aim, method, and findings.  

7.1.1.  Data-centric water demand forecasting 

Short-term water demand forecasting is vital to ensure urban supply quality and 

has the potential of improving leakage detection. In this work, four forecasting 

methods are tested to forecasting real short-term demand data, three well-

established methods and one novel method. The application of these models and 

their optimal pairing with training data is considered. The results found that for 

short-term demand forecasting, near-term past demand played a more significant 

role, and long-term trends and seasonality had little impact. Consequently, 

models that consider longer-term seasonality, such as Prophet and ARIMA, have 
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shown inferior performance compared to models that focused on near-term 

demand impacts, such as NN and RF.  

7.1.2.  Machine learning explainability and feature importance 

Data and computation requirements for demand forecasting can be significantly 

reduced by the presence of expert knowledge, in both the forecasting model and 

the data. However, whilst model employment can be generalised based on data 

type, the data input choices cannot be generalised so easily. The work carried 

out in Chapter 5 looks at the application of ML model explainers – SHAP and 

LIME. The explainers unveiled the inner workings of machine learning models, 

by presenting key features that are impacting results. The findings show that high-

resolution data forecasting depends heavily on the past-point demand, for all 

models. Whilst for low-resolution data forecasting, tree-based models (RF and 

XGB) favour the demand from the past-point and past-day nearly equally, as 

evident from Figure 5.3, where the SHAP values for the past-point (-1) and past-

day (-24) are near equal; network-based models (NN and LSTM) favour the past-

point demand the most, though this favouritism is not as dominant as it is for tree-

based models, and other near-term demand also have a significant impact on 

demand forecasting.  

7.1.3.  Transfer learning to tackle data scarcity 

Data quality and availability can create unnecessary difficulties when forecasting 

univariate short-term water demand. The incorporation of external datasets has 

proven useful in the field of energy forecasting, its application in forecasting water 

demand is evaluated in Chapter 6. The result has shown that TL incorporation 

can help improve forecasting accuracy, in cases where there is zero or little target 

training data. Correlation-based and quality-based source data inclusion have 
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shown comparable accuracy improvements, though correlation-based inclusion 

is marginally superior in accuracy improvement, quality-based inclusion can 

result in significant computation cost savings.  

7.2. Research Limitations and Recommendations 
This research reveals the potential of optimising data usage for short-term water 

demand forecasting. Whilst useful findings and conclusions are drawn, the work 

can be extended in future research projects.  

First, a limited number of forecasting models are reviewed in this thesis, and the 

methods employed focus on more efficient use of existing data. Further work 

could extend the range of forecasting models, particularly to evaluate alternative 

deep learning models. The impact of explainer modules and Transfer Learning 

can be tested on deep learning models that are optimised by hyperparameter 

tuning.  

Second, the forecasting models in this thesis are trained solely using past 

demand data.  Whilst the results in this thesis and from other research have 

shown this to be sufficient for short-term water demand forecasting, the impact of 

alternative data (non-demand data) on accuracy can be numerically determined 

via machine learning model explainers.  

Third, whilst the models have shown to make accurate forecasts, the work 

focuses on the theoretical potential of univariate short-term demand forecasting, 

without considering other types of demand forecasting which are faced by water 

utilities in practice. One major example for this is how one past point is sufficient 

feature for high-resolution demand forecasting. Whilst the results have shown 

good accuracy levels, common sense was overlooked in the face of high 
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accuracy. In some cases, one past point might not be suitable since it gives ML 

models no indication of the direction of travel following the one point, regardless 

of the accuracy level. 

Fourth, the findings from the TL forecasting approaches show promise in the 

technique’s employment in water demand forecasting. However, the method can 

be further validated with more data. Whilst 18 DMA demand data are used, they 

belonged to the same area. Further testing can see the same method applied to 

separate DMA cases, or if there is an abundance of DMA datasets, clustering 

techniques can be used to separate DMA into groups.  

Finally, the usefulness of ML explainers and ML can be evaluated by applying 

both methods jointly for particular use cases, e.g., operation planning and 

leakage detection cases. The goal of making accurate forecasting for short-term 

water demand data is to improve supply operation or improve leakage detection. 

The improved forecasting methods can be jointly used as a first step to operation 

improvement purposes, the resultant accuracy gain can be compared to cost 

reduction, to determine the significance of forecasting accuracy improvement.  

Overall, the work in this thesis can be expanded and improved with more data, 

finer tuned models, and better consideration on practical implication of result. 

Future work needs to exercise a balance between data-centric and model-centric 

approaches. 

7.3. Research implementation  
The work presented in this thesis can help current industry in various ways. The 

UK Water Industry Research have listed 11 big questions that are challenging the 
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current water industry, better use of data and improved forecasting accuracy of 

water demand can help with reducing leakage and interruptions.  

The recognition of the essential nature of data in this thesis should increase its 

industry awareness, and thus, dedicate more resources to data capture, storage, 

and utilisation. To make demand forecasts accurately and efficiently, data 

monitoring is the first step. In the UK, smart water meter role out has been done 

by most major water utilities. The storage of mass consumer data needs to be 

done correctly, to both be secure for privacy reasons, and be accessible by 

people that needs it; most water utilities hold data in dated systems, guarded by 

IT departments, where accessibility is difficult and inefficient. More up to date 

methods of storage are being implemented in recent years, and with the 

recognition of data importance, extensive data utilisation across the industry 

would improve water supply, wastewater treatment, and asset management, for 

a sustainable water future.  
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