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ABSTRACT
A classic stability problem relevant to many applications in geo-
physical and astrophysical fluid mechanics is that of Kolmogorov
flow, a unidirectional purely sinusoidal velocity field written here
as u = (0, sin x) in the infinite (x, y)-plane. Near onset, instabilities
take the form of large-scale transverse flows, in other words flows
in the x-direction with a small wavenumber k in the y-direction.
This is similar to the phenomenon known as zonostrophic instability,
found in many examples of randomly forced fluid flows modelling
geophysical and planetary systems. The present paper studies the
effect of incorporating a magnetic field B0, in particular a y-directed
“vertical” field or an x-directed “horizontal” field. The linear stabil-
ity problem is truncated to determining the eigenvalues of finite
matrices numerically, allowing exploration of the instability growth
rate p as a function of the wavenumber k in the y-direction and a
Blochwavenumber � in the x-direction,with−1/2 < � ≤ 1/2. In par-
allel, asymptotic approximations are developed, valid in the limits
k → 0, � → 0, using matrix eigenvalue perturbation theory. Results
are presented showing the robust suppression of the hydrodynamic
Kolmogorov flow instability as the imposed magnetic field B0 is
increased from zero. However with increasing B0, further branches
of instability become evident. For vertical field there is a strong-
field branch of destabilised Alfvén waves present when the mag-
netic Prandtl number Pm < 1, as found recently by A.E. Fraser, I.G.
Cresswell and P. Garaud (J. Fluid Mech. 949, A43, 2022), and a fur-
ther branch for Pm > 1 in the presence of an additional imposed
x-directed fluid flow U0. For horizontal magnetic field, a branch of
field-driven, tearing mode instabilities emerges as B0 increases. The
above instabilities are present for Blochwavenumber � = 0; however
allowing � to be non-zero gives rise to a further branch of instabilities
in the case of horizontal field. In some circumstances, even when the
system is hydrodynamically stable arbitrarily weak magnetic fields
can give growing modes, via the instability taking place on large
scales in x and y. Detailed comparisons are given between theory for
small k and �, and numerical results.
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1. Introduction

The Kolmogorov flow, a periodic flow forced at a single wavenumber, is a fundamental
flow to study owing to its simplicity and its application to a wide range of geophysical and
astrophysical systems. Its stability to infinitesimal disturbances is a classic problem first
posed by Kolmogorov and studied byMeshalkin and Sinai (1961). These authors made use
of continued fraction expansions to establish properties of the growth rate p(k), where k is
a wavenumber in the streamwise direction, and determined a critical Reynolds number of
Rec = √

2. Close to onset of instability, for Re slightly larger than
√
2, it is large scale modes

that are destabilised; more precisely, for Re = √
2(1 + 3k2 + · · · ) the most unstable mode

has wave number k � 1. This property allows the development of amplitude equations
governing the flow on large space and time scales, derived by Nepomniashchii (1976) and
Sivashinsky (1985). Numerical simulations by She (1987) showed evolution from the most
unstable scale to larger scales via an inverse cascade of vortex pairings, for a large scale
allowed only in the y-direction. Here and elsewhere in the present paper and discussion of
other authors’ work, we adopt the convention of writing the non-dimensional Kolmogorov
flow as u0 = (0, sin x) in the (x, y) plane so that y is the streamwise coordinate. For large
scales in both x- and y-directions, Sivashinsky (1985) showed evolution to a large-scale flow
with chaotic temporal fluctuations, further explored in Lucas and Kerswell (2014, 2015).

The stability problem posed by Kolmogorov is such a basic building block for theory
that it has been elaborated in several studies by incorporating further physical phenom-
ena. Frisch et al. (1996) included a β-effect, giving the gradient of a background planetary
vorticity distribution; the gradient is oriented along the x direction (again following our
conventions rather than those of the original paper), so that it does not interact directly
with the basic state Kolmogorov flow u0, only on k �= 0 linear modes. These authors
derived an amplitude equation near to onset for a large scale in y, which they called the
β-Cahn–Hilliard equation. For β = 0 this reduces to the PDE of Sivashinsky (1985) and
simulations show that the inverse cascade of structures to large scales in y is arrested by the
β-effect. These authors characterise the fundamental instability of the Kolmogorov flow as
due to a negative effective viscosity, in other words that the large-scale y-dependent modes
have growth rate p = −νEk2 + · · · for k � 1, where the effective viscosity (or eddy viscos-
ity) νE changes sign from positive below the threshold Rec = √

2, to negative above. This
destabilises the flow on large scales with the fastest growing modes determined by the next
terms in this series (Dubrulle and Frisch 1991).

In terms of the geophysical motivation for these stability problems, any orientation of
the background vorticity gradient, parameterised by β , with respect to the Kolmgorov
flow is of interest. Manfroi and Young (2002) allow an arbitrary angle α between flow and
gradient in a study of linear stability and nonlinear evolution using amplitude equations
generalising those of Sivashinsky (1985) and Frisch et al. (1996). They find that the lin-
ear problem shows a delicate dependence of critical Reynolds number on angle α when
unstable modes are allowed to adopt arbitrarily large scales in x and y. Another effect of
geophysical relevance that may be included is stratification. Balmforth and Young (2002)
considered the sinusoidal flow in the (x, z) plane with gravity in the −z direction and
the flow directed in x, sinusoidal in z. These authors determined the behaviour of lin-
ear instabilities, depending on Reynolds, Richardson and Prandtl numbers, and derived
an amplitude equation generalising that of Sivashinsky (1985). Simulations show that the



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 3

inverse cascade of She (1987) is arrested by the presence of stratification over a wide range
of parameters.

Relevant to the present paper, in astrophysical applications it is natural to introduce
a magnetic field and study the coupled MHD system; as general motivation we note, for
example, that the interaction betweenmagnetic field, shear, and convection remains poorly
understood in the solar tachocline (Hughes et al. 2007). Boffetta et al. (2000) consid-
ered the case in which a sinusoidal magnetic field (maintained by a source term in the
induction equation) sits in a motionless fluid. This magnetic Kolmogorov system shows
instabilities and an amplitude equation gives an inverse cascade to large scales. Related
work concerns the tearing mode instability (Boldyrev and Loureiro 2018) and parasitic
modes for magnetorotational instabilities, the latter involving a basic state of both sinu-
soidal magnetic and flow fields (e.g. Pessah 2010). The recent paper Fraser et al. (2022)
considers a background uniform magnetic field B0 = (0,B0) that is aligned with the Kol-
mogorov flow; this has no effect on the basic state flow but the elasticity of field lines
affects perturbations depending on y, through the Lorentz force. These authors observe
magnetic suppression of the hydrodynamic instability first analysed by Meshalkin and
Sinai (1961), as one might intuitively expect, but also two new families of unstable modes
which only exist in the presence of magnetic field. One family exists when the magnetic
Prandtl number Pm < 1, for arbitrarily strong magnetic fields, provided the Reynolds
number is above a threshold depending on Pm. Here Pm is defined by Pm = Rm/Re, where
Re is the Reynolds number as above and Rm the magnetic Reynolds number. This fam-
ily is studied numerically and growth rates obtained through asymptotic approximations
for k � 1; these authors refer to the modes as Alfvén Dubrulle–Frisch modes, as the
instability can again be linked to a change of sign of the effective viscosity νE (Dubrulle
and Frisch 1991). The recent thesis of Lewis (2022) considers instabilities of a basic state
of a fluid shear layer or jet (0, u(x)), with a transverse magnetic field (B0, b(x)), shaped
by the fluid flow. Purely hydrodynamic instability of the layer or jet tends to be sup-
pressed by weak magnetic field, while for strong fields, instabilities become magnetically
driven.

Study of Kolmogorov flow instabilities is relevant to the formation of zonal flows in
forced fluid systems, so-called “zonostrophic instability” (Galperin et al. 2006). This pro-
cess of jet formation has now been observed in many simulations, observations and
experiments; see the representative studies: Vallis and Maltrud (1993), Read et al. (2007),
Farrell and Ioannou (2008), Scott and Dritschel (2012), Srinivasan and Young (2012),
Bouchet et al. (2013), Parker and Krommes (2014), Lemasquerier et al. (2023), and the
book Galperin and Read (2019). Related to our work, Tobias et al. (2007) incorporated a
magnetic field aligned with the x-direction of a planar fluid system with a β-effect present,
a vorticity gradient in y (extended to spherical geometry in Tobias et al. 2011). The system
was driven by a body force with a given characteristic spatial scale. These authors observed
the formation of jets in the x-direction for zero magnetic field, but then the suppression
of jets, even at quite weak field strengths B0. For fixed non-dimensional β , forcing and
viscosity ν = 10−4, this process was explored by means of a series of runs with varying
magnetic field strength B0 and magnetic diffusivity η, and evidence for a threshold scal-
ing law of B20 ∼ η was observed. Constantinou and Parker (2018) analysed Kelvin–Orr
shearing wave dynamics for Rossby/Alfvén waves and the interplay between Reynolds and
Maxwell stresses, providing evidence for this B20 ∼ η threshold for jet formation. Durston
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and Gilbert (2016) focused on the couplings between large-scale zonal flow and zonal field
in the presence of waves, calculating an effective viscosity and effective magnetic diffusiv-
ity, plus an effective cross transport term in which current gradients can drive the zonal
vorticity; this and other transport effects are discussed in Chechkin (1999), Kim (2007),
and Leprovost and Kim (2009). Parker and Constantinou (2019) interpret the presence or
otherwise of jets in terms of the competition between a positive magnetic effective diffu-
sivity term and a negative, purely hydrodynamic effective viscosity. Note that while these
studies of zonostrophic instability havemany qualitative features in commonwith the topic
of Kolmogorov flow instability, there are key differences that make any direct comparison
difficult, even of scaling laws. The reason is that the studies referred to in this paragraph
use a forcing which has a given spatial scale but is random in time, and it is the statistics
and strength of the forcing that are kept fixed while other parameters, such as the viscos-
ity, magnetic diffusivity, magnetic field and β , are varied. In non-dimensional terms, the
key control parameter is a Grashof number (formed from forcing strength, length scale
and viscosity) in these systems (Childress et al. 2001, Durston and Gilbert 2016). The
Reynolds number is then a diagnostic parameter, and can vary considerably in different
regimes depending on the dominant balances in the Navier–Stokes equation between the
forcing term, inertial term, viscous term and Lorentz force. However for stability of Kol-
mogorov flow, the basic state is fixed while the forcing is adjusted to maintain this: the
control parameter is a Reynolds number instead.

In the present paper we return to the classic set-up of steady, planar, Kolmogorov flow
u0 = (0, sin x) and consider the effect on its stability from magnetic field in the x- and
y-directions. We find it convenient to refer to magnetic field in the y-direction, parallel
to the flow as “vertical” field and magnetic field in the x-direction, aligned with possi-
ble jet formation, as “horizontal” field (even though gravity/stratification are not involved
in our study). In section 2 we set up the equations to be solved for linear perturbations
with vertical magnetic field and in section 3 present numerical and analytical results,
showing growth rates, thresholds and unstable mode structure. This section has com-
mon elements with the recent paper Fraser et al. (2022) (published while the present
paper was in preparation); however we find it useful to set out the numerical results to
compare with the later horizontal field case, and we present new analytical approxima-
tions in section 3.1 for the “weak vertical field branch”. The “strong vertical field branch”
in section 3.2 is a primary focus for Fraser et al. (2022), and we give an alternative,
matrix-based derivation of the asymptotic growth rate they obtain, but also generalised
for non-zero mean flow U0 as discussed in section 3.3. Section 4 sets up the equations for
horizontal magnetic field, with numerical results supported by analytical approximations
in the limit k → 0 given in section 5, together with the case of non-zero Bloch wavenum-
ber �. Section 6 offers concluding discussion, and further analytical and numerical results
will appear in Algatheem (2023). To keep the main body of the paper compact, we have
developed analytical theory in appendices, building up in order of complexity rather than
in the order in which the results are used. The method employed is perturbation the-
ory for eigenvalues and eigenvectors of a matrix; naturally this is equivalent to methods
used by other authors. However we find that it is a systematic way of handling problems
of increasing complexity, and gives insight both into how couplings between individual
flow and field modes can drive an instability, and into the spatial structure of unstable
eigenmodes.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 5

2. Governing equations: vertical field

Our starting point is the system of equations for incompressible, constant density MHD,
written in the dimensional form

∂t†u
† + u† · ∇†u† = −∇†� † + (∇† × b†)× b† + ν†∇†2u† + f †, (1)

∂t†b
† + u† · ∇†b† = b† · ∇†u + η†∇†2b†, (2)

∇† · u† = 0, ∇† · b† = 0. (3)

Here ν† is the viscosity, η† themagnetic diffusivity,� † the pressure, and themagnetic field
b† is measured in velocity units (so that the “true” magnetic field is b†

√
μ†ρ† in standard

notation). The quantity f † is an externally imposed body force, used to maintain the basic
state for the system, namely the Kolmogorov flow in the (x†, y†)-plane specified by

u†
0 = U†(0, sin(x†/L†)), with f † = ν† U†L†−2(0, sin(x†/L†)). (4)

Note that we drop the z-components of vectors where we can.We will, in the first instance,
include a “vertical”magnetic field in the y-direction as b†

0 = (0,B†
0) and in general also add

a mean “horizontal” flow of the form (U†
0 , 0) to u

†
0 in (4). Thus our problem is specified by

the dimensional parameters {U†,L†, ν†, η†,B†
0,U

†
0 }.

We use the lengthL† and velocityU† as the basis for non-dimensionalisation and define

x† = L†x, t† = T †t, u† = U†u, b† = U†b, f † = UT −1f , � † = U†2� , (5)

where T † = L†/U† is the appropriate time-scale. With this we obtain four non-
dimensional parameters

Re = U†L†/ν†, Rm = U†L†/η†, B0 = B†
0/U†, U0 = U†

0/U†. (6)

The first two of these are the Reynolds number and magnetic Reynolds number. The third
is the inverse magnetic Mach number B0, but for simplicity we will just refer to this as
the imposed or mean magnetic field. The final quantityU0 is the analogous dimensionless
mean flow. Thus the parameter set is reduced to {Re,Rm,B0,U0}.

Rather than vary both Re and Rm it is often useful to fix their ratio and so we define the
magnetic Prandtl number by

Pm = Rm/Re = ν†/η†. (7)

Our key results and calculations (mainly given in the appendices) often involve quite
complicated expressions, and to try to keep the analytical development from becoming
unwieldy we will adopt a “light” notation. We will set

R ≡ Re, ν ≡ R−1, η ≡ R−1
m , P ≡ Pm = ν/η, (8)

using ν, η for detailed calculations and usually ν and P for key results in the main text.
Given this we write the non-dimensional equations as

∂tu + u · ∇u = −∇� + j × b + ν∇2u + f , (9)

∂tb + u · ∇b = b · ∇u + η∇2b, (10)

∇ · u = 0, ∇ · b = 0, j = ∇ × b. (11)
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The non-dimensional Kolmogorov flow and body force are

u0 = (0, sin x), f = ν(0, sin x); (12)

the vertical mean magnetic field is (0,B0) and the additional mean flow field is (U0, 0).
We will consider flows u and magnetic fields b lying in the (x, y)-plane, independent of

z. For this we use a stream function ψ and the magnetic vector potential a defined by

u = (∂yψ ,−∂xψ) = ∇ × (ψ ẑ), b = (∂ya,−∂xa) = ∇ × (aẑ) (13)

(strictly a is the z-component of the vector potential aẑ, or the “flux function”). The gov-
erning equations may then be written in terms of the evolution of a scalar vorticity ω, and
a:

∂tω +J (ω,ψ) =J (j, a)+ ν∇2ω + g, (14)

∂ta +J (a,ψ) = η∇2a, (15)

ω = −∇2ψ , j = −∇2a. (16)

Here J is the Jacobian of two functions in the plane, for example J (a,ψ) =
(∂xa)(∂yψ)− (∂ya)(∂xψ), and g is the z-component of the curl of the body force f .

We begin with the study of the stability of Kolmogorov flow in the presence of a uniform
vertical magnetic field (that is, y-directed field) of strength B0 (Fraser et al. 2022). Aiming
for the most general set-up we also include the uniform horizontal flow of strengthU0. We
therefore adopt the following steady solution of the equations as our basic state,

u0 = (U0, sin x), b0 = (0,B0), f = (0, ν sin x + U0 cos x), (17)

or in our scalar-based formulation

ψ0 = U0y + cos x, ω0 = cos x, a0 = −B0x, j0 = 0, g = ν cos x − U0 sin x.
(18)

The basic state magnetic field is shown in figure 1(a). The stability problem is param-
eterised by the four quantities {ν,B0,P,U0}. Note that while the mean horizontal flow
specified by the parameter U0 could be removed by a Galilean transformation, the Kol-
mogorov flow would then become a travelling wave as the forcing does not travel with the
flow U0. Thus, given we take a steady Kolmogorov flow in the form (17), the effect of U0
cannot be eliminated by this means.

To study the stability of this basic state we linearise, replacing

ψ = ψ0 + ψ1 + · · · , ω = ω0 + ω1 + · · · ,
a = a0 + a1 + · · · , j = j0 + j1 + · · · , (19)

and, droppping the subscript 1, we deduce the linear system

∂tω + U0 ∂xω + sin x (∂yω − ∂yψ) = B0 ∂yj + ν∇2ω, (20)

∂ta + U0 ∂xa + sin x ∂ya = B0 ∂yψ + η∇2a, (21)

ω = −∇2ψ , j = −∇2a. (22)
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Figure 1. The magnetic field basic state for (a) vertical field (in sections 2, 3), (b) horizontal field (in sec-
tions 4, 5), with B0 = 0.7, η = 0.5. In each case field lines are depicted as contours of the corresponding
magnetic potential a0, with b0 = (∂ya0,−∂xa0) (Colour online).

We now expand the fields in Fourier modes in x as

(ψ ,ω, a, j) = ept+i�x+iky
∑
n

(Ψn,Ωn,An, Jn) einx + c.c., (23)

where c.c. denotes the complex conjugate of the preceding expression. Here p is the com-
plex growth rate of the mode, k is the wavenumber in the y-direction with k>0 without
loss of generality, and � is a Bloch or Floquet wavenumber in the x-direction satisfying
−1/2 < � ≤ 1/2.

Substituting these series into the linear equations (20)–(22) results in an infinite system
of equations. For � = 0 these may be written in the form:

pΩn = −[ν(n2 + k2)+ inU0]Ωn + k
2

(
1

(n − 1)2 + k2
− 1

)
Ωn−1

− k
2

(
1

(n + 1)2 + k2
− 1

)
Ωn+1 + ikB0(n2 + k2)An, (24)

pAn = −[η(n2 + k2)+ inU0]An − k
2
An−1 + k

2
An+1 + ikB0

n2 + k2
Ωn, (25)

and for � �= 0 we simply replace n → n + � wherever it appears (except as a subscript).
This provides an eigenvalue problem. We take p to be the leading eigenvalue (or one of
a complex conjugate pair), that is the eigenvalue having the maximum real part, and we
write it with a dependence p(k, �, ν,B0,P,U0) in general. The real part of the growth rate,
Re{p}, is unchanged on the replacement (k, �) → (−k,−�).
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For a numerical solution we restrict−N ≤ n ≤ N for some integerN (typical values are
8, 16, 32) and solve a discrete matrix problem written in the pentadiagonal form

p

⎛
⎜⎜⎜⎜⎝

...
Ωn
An
...

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . . . . . . . .

. . . ⊗ 0 ⊗ ⊗ ⊗ 0
. . .

. . . 0 ⊗ ⊗ ⊗ 0 ⊗ . . .

. . . . . . . . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

...
Ωn
An
...

⎞
⎟⎟⎟⎟⎠ , (26)

where ⊗ denotes the only non-zero entries. At a specified truncation N the (4N + 2)×
(4N + 2) matrix is set up in Matlab, and an eigenvalue p with maximum real part is cal-
culated. For a given parameter set {ν,B0,P,U0} the maximum real growth rate is defined
as

Re{pmax(ν,B0,P,U0)} = max
k,�

Re{p(k, �, ν,B0,P,U0)}, (27)

with the maximum taken over a grid of k and � values.
In what follows we will start by taking U0 = 0, � = 0 and only vary the vertical

wavenumber k. The maximisation is then taken over a finite range of k-values, typically
100 values in the range 0 ≤ k ≤ 1, and any complex eigenvalues appear in complex con-
jugate pairs. We let kmax(ν,B0,P) be the corresponding maximising wave number, and we
attach the appropriate (zero or positive) imaginary part to give pmax(ν,B0,P) as the (max-
imum) complex instability growth rate. In summarising the instabilities of the system it
is often useful to produce colour plots of Re{pmax} as a function in the (ν,B0) parameter
plane for a given P; we will displaymany of these below, supplemented by plots of Im{pmax}
and kmax when these provide further useful information.

3. Numerical and analytical results: vertical field

We use the numerical code as described above to produce eigenvalues so that we can
explore the dependence on parameters. Our starting point is to investigate the effect of
increasing the vertical magnetic field strength B0 on the classic hydrodynamic instability
of Kolmogorov flow. We take the mean flow U0 = 0 in sections 3.1, 3.2, and explore its
effect in section 3.3.

3.1. Weak vertical field branch, U0 = 0

Figure 2(a) shows the real part of the growth rate p(k, ν,B0,P) for ν = η = 0.4 and so
P = 1, plotted against k for given values of the magnetic field strength B0. Here B0 is
increased from zero in steps of 0.05 as we read down the family of curves. The top curve
relates to the purely hydrodynamic case. As we increase B0 we note two effects: first the
peak is reduced, in other words the magnetic field acts to suppress the instability, as found
by Fraser et al. (2022). Secondly, for large scales, namely small k, a new branch of decaying
modes appears, with growth rates largely independent of field strength. Figure 2(b) shows
the imaginary part of the growth rate p. This is zero for the purely hydrodynamic case and
remains zero for this branch as it is suppressed by the field. The new stable branch for low
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Figure 2. Instability growth rate p for vertical magnetic field as a function of wave number k (with
U0, � = 0) for ν = η = 0.4 (P = 1), and B0 = 0 (blue), B0 = 0.05 (red), B0 = 0.10 (green), B0 = 0.15
(purple), B0 = 0.20 (orange) and B0 = 0.25 (dark orange). Panels (a) and (b) show Re{p} and Im{p},
respectively, and dashed curves show the Alfvén wave branch in (28) (Colour online).

k has a non-zero imaginary part which becomes more prominent as B0 is increased and we
read up the curves in panel (b). Some investigation shows that the new branch is in fact a
damped Alfvén wave on the vertical magnetic field. For zero background flow u0, a vertical
field supports Alfvén waves with

p = ±ik
√
B20 − 1

4 (ν − η)2k2 − 1
2 (ν + η)k2, (28)

and the real and imaginary parts of this expression are shown dashed in figure 2. The
real part in panel (a) is the same for all field strengths and is black dashed; in panel
(b) there is a dashed straight line for each B0 > 0, coloured appropriately, and tangent
at the origin to the solid curve for that field stength. Since the Alfvén waves are mod-
ified by the background Kolmogorov flow, the agreement between solid and dashed
curves in panel (a) is not perfect, but this is clearly the origin of these small-k damped
modes.

A typical unstable mode is shown in figure 3 for parameter values corresponding to the
peak k = 0.4 in the lowest curve in figure 2(a), that is for the strongest field B0 = 0.25 used.
We observe the perturbation streamfunction ψ in panel (a) showing clear zonostrophic
jets, and corresponding changes to the magnetic potential in panel (b); Fraser et al. (2022)
refer to these as sinuous Kelvin–Helmholtz modes. Since the instabilities we observe here
are obtained from the hydrodynamic problem as we increase B0 from small values, we
refer to this as the weak vertical field branch, to be contrasted with a strong field branch we
encounter shortly.

Having seen a particular example of how the magnetic field suppresses the hydrody-
namic instability by plotting p(k, ν,B0,P), we now show results where we maximise over k
for each set of the parameters. Figure 4(a) shows numerical results for Re{pmax(ν,B0,P)}
with P = 1 as a colour plot across the (ν,B0)-plane. The white curve shows the threshold
for instability, Re{pmax} = 0; the colour scale shows black for stability and then blue to yel-
low and red for instability and increasing growth rates. The horizontal axis B0 = 0 is the
hydrodynamic case, where the white curve crosses at νc = 1/

√
2. Instability occurs in the

region below the white curve, and we can see that it is suppressed as B0 increases, up to the
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Figure 3. Structure of a typical unstable mode, with B0 = 0.25, ν = η = 0.4, k = 0.4; (a) shows the
stream functionψ and (b) the magnetic potential a (Colour online).

Figure 4. Instability growth rate Re{pmax} for vertical field plotted in the (ν, B0) plane for P = 1, � = 0,
U0 = 0, 0.01 ≤ ν ≤ 0.8. Panel (a) shows the numerical computation of growth rates with the threshold
Re{pmax} = 0 given by a white curve, and panel (b) the analytical maximum growth rate from (30) and
threshold from (31). Black shows zero growth rates (Colour online).

point where B0 � 0.7 and the instability is entirely eliminated. We do not show Im{pmax},
which is zero within the region of instability.

Note that in the limit k → 0 all modes tend to neutral stability, p(k) → 0; thus always
Re{pmax} ≥ 0 because of the maximisation over k and we can never obtain a negative max-
imum growth rate. Thus, strictly speaking setting Re{pmax} = 0 gives not a curve but a
two-dimensional region of the parameter space, that is both the white curve and the solid
black region in figure 4(a). For simplicity, here and onwards, whenwe refer to the threshold
white curve Re{pmax} = 0 we in fact mean the curve separating regions of stability where
Re{pmax} = 0 from regions of instability Re{pmax} > 0. Since numerically we maximise
over a discrete set of k values with 0 < k ≤ 1, a stable parameter set is flagged by a numeri-
calmeasurement of Re{pmax} being small and negative rather than exactly zero. Thismakes
the numerical white contour easy to produce, and then negative values are mapped onto
black on the colour scale, to show stability.

We can develop perturbation theory (as in, for example, Frisch et al. 1996, Manfroi and
Young 2002) to calculate approximate growth rates valid for k → 0. In Appendix C we give
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the details. One key result is the formula (C.20),

p(k, ν,B0,P) = −
√
2 P

1 + P2
B20 + 2

(
1√
2

− ν

)
k2 − 3√

2
k4 + · · · , (29)

giving the growth rate, and showing clearly how the effect of the magnetic field is to sup-
press the hydrodynamic B0 = 0 instability (as seen in figure 2(a)). For unstable modes it
is necessary that ν < 1/

√
2 and in this case maximising the growth rate over values of k

gives

pmax(ν,B0,P) = −
√
2P

1 + P2
B20 +

√
2
3

(
1√
2

− ν

)2
, k2max =

√
2
3

(
1√
2

− ν

)
. (30)

Putting pmax = 0 gives the threshold of instability as the straight line in the (ν,B0)-plane:

B0(ν,P) =
√
1 + P2

3P

(
1√
2

− ν

)
. (31)

Figure 4(b) shows the theoretical growth rate and the threshold marked by a white
(straight) line, showing good agreement with the full numerics. The perturbation theory
is developed about the point νc = 1/

√
2, B0 = 0 of the onset of the hydrodynamic insta-

bility. Hence the agreement is particularly good near this point; elsewhere the theory gives
results that can be seen from the figure to be qualitatively correct only.

The scalings chosen in the theory in Appendix C are aimed at tracking the effect of
magnetic field in suppressing Kolmogorov flow instabilities, which pull the B0 = 0 peak in
figure 2(a) downwards as B0 is increased. The scalings used do not relate to the emerging,
stable Alfvén wave branch seen for low k, approximated roughly by (28) (dashed). It is
worth noting that while the B0 = 0 purely hydrodynamic instability is flagged by a sign
change of the effective viscosity νE at ν = νc and so is of negative effective viscosity type
(Dubrulle and Frisch 1991), this is not the case once B0 > 0. As may be seen from figure
2(a), for any fixed B0 > 0, in the limit k → 0 we have p ∼ −νEk2 with νE = 1

2 (ν + η) > 0
from (28). In other words for any B0 > 0 the instability ceases to be a negative effective
viscosity instability, which explains why our analysis for k → 0 cannot precisely track the
numerical white curve in figure 4(a), except near the point ν = νc, B0 = 0.

The theoretical value of B0 which suppresses instability on the weak field branch for all
ν is given by taking ν = 0 in (31),

B0 � B∗ =
√
1 + P2

6P
, (32)

with B∗ � 0.58 for P = 1 in panel (b), which is a little lower than the actual value B∗ � 0.7
seen for the numerical results in panel (a). However exploring numerically for a range of
Prandtl numbers 0.1 ≤ P ≤ 10, we find that this extrapolated threshold generally shows
poor agreement with the numerical threshold, which remains around B∗ � 0.7 over this
range. This was also observed by Fraser et al. (2022), who calculated B2∗ � 0.5 for the insta-
bility threshold of the vertical field and Kolmogorov flow configuration in ideal MHD,
η = ν = 0.



12 A. M. ALGATHEEM ET AL.

Figure 5. Shown are numerical calculations of (a) the instability growth rate Re{pmax} and (b) the fre-
quency Im{pmax} for vertical fieldplotted in the (ν, B0)plane,withP = 1/2, 0.01 ≤ ν ≤ 0.4. Black shows
zero values and the solid white curve in panel (a) shows the numerical threshold Re{pmax} = 0 for
instability; the dotted white line in (a) shows the theoretical threshold ν∗ from (35) (Colour online).

3.2. Strong vertical field branch, U0 = 0

Although the magnetic field acts to suppress the instability for magnetic Prandtl number
P = 1, this is not the whole picture, and investigations for P<1 show the presence of a
strong vertical field branch, as found by Fraser et al. (2022). Figure 5 shows (a) the real
part and (b) imaginary part of the growth pmax(ν,B0,P) for P = 1/2, that is η = 2ν. The
threshold Re{pmax} = 0 is shown as a white curve in panel (a). Looking from the bottom
of figure 5(a) (increasing B0) we see that the curving white line, showing the weak field
branch in figure 4(a), turns to become a near-vertical line, demarcating a new branch with
non-zero frequency Im{pmax} evident in figure 5(b).

This strong vertical field branch is analysed inAppendix B, using a scaling inwhichB0 =
O(k−1) as k → 0 (and allowing amean flowU0 �= 0). The pertubation theory then involves
a leading order undamped Alfvén wave with frequency p0 = ikB0 = O(1), in other words
thewavewhose frequency anddecay rate are given in (28) in the absence of any background
fluid flow. The coupling of this wave with the Kolmogorov flow field leads to potential
instability with a growth rate given in (B.15) for U0 = 0 as

Re{p} =
1
4νη(η − ν)k2

ν2η2 + k2B20(ν + η)2
− 1

2 (ν + η)k2 + · · · . (33)

An equivalent expression is found in Fraser et al. (2022) by approximating a quartic disper-
sion relation. Evidently we need η > ν for instability, in other words P<1; the instability
of the large-scale Alfvén wave appears to take a double-diffusive form. We can also write a
power series expansion p = −νEk2 + . . . and identify1

− νE = 1
4ν

−1η−1(η − ν)− 1
2 (ν + η). (34)

This in fact simply corresponds to setting kB0 = 0 in (33) above. As explained by Fraser et
al. (2022), the fact that νE changes sign flags the instability as of negative effective viscosity

1 We use the term “effective viscosity” νE but really this quantity involves the viscosity and the magnetic diffusion on an
equal basis, as per the sub-expression 1

2 (ν + η)k2; it is perhaps better described as an effective Alfvén wave damping
rate, in other words a modification to (28).
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Figure 6. Instability growth rate Re{p} for vertical field as a function of (�, k) for (a) ν = η = 0.4 (P = 1)
with B0 = 0.25, and (b) ν = 0.2, η = 0.4 (P = 0.5) with B0 = 0.7. The white contour lines give Re{p} =
0; inside growth rates are positive (Colour online).

type and rearranging νE < 0 gives the stability threshold

ν < ν∗ =
√
P
2
1 − P
1 + P

or R > R∗ =
√
2
P
1 + P
1 − P

. (35)

For example if P = 1/2 then ν∗ = 1/
√
12 � 0.28, shown dotted in figure 5(a), in good

agreement with the numerical vertical solid white line. Thus the instability persists for
arbitrarily large magnetic fields, provided the viscosity is below this Prandtl-number
dependent threshold, in other words provided the Reynolds number R > R∗.

All the above results have been taken for Blochwave number � = 0. Introducing � brings
in an extra degree of freedom and allows the possibility of new instabilities. However in
the vertical field case withU0 = 0, increasing |�| from zero appears to have only a stabilis-
ing effect (Fraser et al. 2022). For example figure 6 shows growth rates in the (�, k)-plane
for weak and strong field cases in panels (a) and (b). The white curves give the thresh-
old Re{p} = 0: inside these curves growth rates are positive. In each case we see that the
instability present on the vertical axis � = 0, for a range of k, extends into islands of unsta-
ble modes including non-zero values of �. However to either side of the vertical axis, the
growth rates are diminished and so allowing � �= 0 has little impact. For this reason we
will not consider � further for the vertical field case, except to mention that the theory in
Appendix B may be extended to incorporate � �= 0, as detailed in Algatheem (2023).

3.3. Instabilities for U0 �= 0

We now consider the effect of a mean flow U0 �= 0 on the instabilities in the vertical field
case, with all four parameters involved, that is {ν,P,B0,U0}. To navigate all the possible
numerical resultswe could present, it is helpful to start from the asymptotic theory and then
select parameter sets to both confirm the results and also to reveal further information.
Note that we have to limit our explorations in view of the dimensionality of the parameter
space and that our focus is on the theoretical predictions. We take U0 ≥ 0 without loss of
generality in our discussion and take � = 0 in this section.

The theory for the weak field branch in Appendix C is based around the point of onset
(νc,B0 = 0) of the purely hydrodynamic instability, with νc = 1/

√
2 forU0 = 0. ForU0 �=
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0 this hydrodynamic threshold is reduced to

νc(U0) =
√

1
2 − U2

0 , for U0 < 1/
√
2, B0 = 0, (36)

with no instability at all if U0 ≥ 1/
√
2. Including a weak magnetic field B0 > 0 gives the

equation for the threshold, accurate in the vicinity of the point of onset (νc,B0 = 0) as

B0(ν,P,U0) =
√

1 + 1
2δ

P(1 + 4ν2c )
2ν2c (νc − ν), δ ≡ P2

ν2c (1 − P2)+ 1
2P

2
, (37)

analogous to (31).
The theory for the strong field branch in Appendix B also includes U0 in the most gen-

eral case. The equation for the growth rate Re{p} (analogous to (33) for U0 = 0) is messy
and unilluminating for U0 �= 0; we give p in (B.16), (B.17). However just as we obtained
(34) from (33) by setting kB0 = 0 to extract the coefficient −νE of k2 in the growth rate p,
here we can do the same to obtain

− νE =
1
4 (η − ν)(νη − U2

0 )

(ν2 + U2
0 )(η

2 + U2
0 )

− 1
2 (ν + η), (38)

from (B.16), (B.17). Looking for where νE changes sign gives a quadratic equation in ν2∗
which may be written as

P
2
1 − P
1 + P

(ν2∗ − PU2
0 ) = (ν2∗ + U2

0 )(ν
2
∗ + P2U2

0 ). (39)

Although this can then be solved to give an explicit formula for ν∗, we do not do so here as
it is unwieldy; for U0 = 0, (39) results in the expression displayed in (35). Equation (39) is
then key to our study of the strong field branch for U0 �= 0. If we vary ν holding P and U0
constant, whenever ν crosses a root ν∗ of the equation then νE changes sign and we are at
the threshold of a negative effective viscosity instability. We will therefore display the real,
positive roots ν∗ of (39) as functions of the parameters {P,U0}.

We consider first 0<P<1. Figure 7(a) shows real positive roots ν∗ of (39) as functions
of P for given values of U0. For U0 = 0 (blue curve) the roots are ν∗ = 0 and the curve
showing ν∗ given in (35). Between this curve and the horizontal axis is an island inside
which νE < 0 and instability is present. AsU0 is increased, we obtain a nested, contracting
family of islands: for any points (ν,P) inside the island for that value ofU0 there is a negative
νE instability. From figure 7(a) it is then evident that asU0 is increased from zero, the range
of values of P supporting instability shrinks down to 0 < P∗1(U0) < P < P∗2(U0) < 1. At
the same time the range of viscosities for instability also decreases and becomes bounded
away from zero, taking the form 0 < ν∗1(P,U0) < ν < ν∗2(P,U0), bounded by two real
roots of (39).

To take a specific example, for say U0 = 0.12, the purple curve in figure 7(a), there are
real roots for ν∗ only in the approximate range 0.05 � P∗1(U0) < P < P∗2(U0) � 0.61,
and it is only in this range of P that the strong field branch can show negative effective
viscosity instability for this value of U0. Focusing now on say P = 0.5 (vertical dashed
line), the instability occurs for 0.11 � ν∗1(P,U0) < ν < ν∗2(P,U0) � 0.23.
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Figure 7. Real positive roots ν∗ of (39) plotted against P for (a) 0 ≤ P ≤ 1 and U0 = 0 (blue), U0 = 0.04
(red), U0 = 0.08 (green), U0 = 0.12 (purple) and U0 = 0.16 (orange), and (b) 1 ≤ P ≤ 5 and U0 = 0.1
(blue), U0 = 0.2 (red), U0 = 0.3 (green), U0 = 0.4 (purple) and U0 = 0.5 (orange). The vertical dashed
line is at (a) P = 0.5 and (b) P = 2 (Colour online).

As U0 is increased further the islands of negative νE shrink in the (P, ν) plane in figure
7(a), until at the valueU0 � 0.164 the range ofP shrinks toP∗1 = P∗2 � 0.23 and the range
of ν to ν∗1 = ν∗2 � 0.15. At this point the mean flow U0 has entirely stabilised the P<1
negative effective viscosity instability for strong vertical field.

To test these results for 0<P<1 and U0 > 0 numerically, we take P = 0.5 and in
figure 8(a) we show growth rates in the (ν,B0) plane for U0 = 0.12. Here as discussed
above, theory gives a negative effective viscosity instability for 0.11 � ν∗1 < ν < ν∗2 �
0.23 and these bounds are marked on the panel by dotted vertical lines. There is instability
present across this range of ν values, and in fact ν2∗ gives good agreement with the upper
limit (in terms of ν) of the strong field branch in figure 8(a). What about the lower limit,
ν∗1 � 0.11? This value gives the lower limit for negative effective viscosity instabilities sig-
nalled by νE < 0, and for ν below ν∗1 theory predicts that νE > 0. However there can be
further instabilities present corresponding to larger values of k and not k → 0, as seen and

Figure 8. Numerical computations of the instability growth rate Re{pmax} for vertical field plotted in the
(ν, B0) plane for P = 0.5, � = 0, 0.01 ≤ ν ≤ 0.5 with (a) U0 = 0.12 and (b) U0 = 0.2. Black shows zero
values and the solid white curve shows the numerical threshold Re{pmax} = 0 for instability; the dotted
white lines in panel (a) show the theoretical thresholds ν∗ from (39) (Colour online).
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discussed earlier for the weak field branch in figure 2. In short, the condition νE < 0 is
sufficient for instability, of negative effective viscosity type, but not necessary for instabil-
ity as other types may be present. Further investigation (which we will not detail here) for
ν < ν∗1 � 0.11 confirms that νE > 0 and Re{p(k)} is negative when k → 0 as indicated by
theory, but the curve Re{p(k)} then rises for increasing k, and instabilities are present for
k = O(1).

Figure 8(b) shows growth rates for P = 0.5 again but now U0 = 0.2, when from figure
7(a) there are no values of ν giving negative effective viscosity instability. In the figure there
are no vertical lines from theory or numerics. Instabilities remain, hugging the vertical
axis, but investigation of p(k) (which we do not detail here) shows that these are not associ-
atedwith negative effective viscosity: the curve Re{p(k)} shows negative values, downwards
quadratic behaviour, for small k, confirming that νE > 0.

Wenow considerP>1 and return to figure 7, panel (b), which shows solutions ν∗ to (39)
plotted against P for various values of U0 in the range 0 < U0 < 1/

√
2. It is evident that

there is a new branch of νE < 0 instabilities present for P > P∗(U0) > 1. For each value
of P in this range, instabilities occur if 0 < ν < ν∗(P,U0). For example, in the concrete
case U0 = 0.2 (red curve) instabilities occur for pairs (P, ν) below this curve. Thus insta-
bility can occur for some viscosity provided P > P∗(U0) � 1.17. If we now specify P = 2
(dashed line) then instabilities are predicted to occur for 0 < ν < ν∗(P,U0) � 0.19.

To test this, figure 9 shows growth rates in the (ν,B0) plane for P = 2. In figure 9(a) we
have U0 = 0.2 and see a strong field branch whose numerical threshold (white curve) is
given accurately by the theoretical value of ν∗ � 0.19 (dashed line). Figure 9(b) shows a
case of U0 = 0.4, where the plot in figure 7(b) predicts instability below a threshold ν∗ �
0.061 (dashed line). Indeed, there is instability for ν below this threshold, confirming the
theory; there is also instability above the threshold, up to ν around 0.15 but dependent on
field strength B0. Again futher investigation of the behaviour of Re{p(k)} confirms that for
ν < ν∗ � 0.061 instabilities are of negative effective viscosity type, while for ν > ν∗ they
are not. For larger values ofU0 the negative νE instability switches off forP = 2; for example
forU = 0.5 (orange curve) in figure 7(b) there is no unstable range of ν with P = 2.We do

Figure 9. Numerical computations of the instability growth rate Re{pmax} for vertical field plotted in the
(ν, B0)plane forP = 2,� = 0,with (a)U0 = 0.2, 0.01 ≤ ν ≤ 0.5 and (b)U0 = 0.4, 0.01 ≤ ν ≤ 0.6. Black
shows zero values and the solid white curve shows the numerical threshold Re{pmax} = 0 for instability;
the dotted white line in each panel shows the theoretical threshold ν∗ from (39) (Colour online).
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not present plots in the (ν,B0) plane for this case, as they simply begin to resemble those
in figure 11(b) below.

An example of the fields from an unstable mode in the strong field branch is shown in
figure 10, forU0 = 0.2, B0 = 0.8, ν = 0.1, P = 2; see figure 7(b). It has a clear Alfvén wave
character, with similar structure for the field and flow indicating motion largely transverse
to the vertical field.

Finally we look at P = 1 and U0 > 0 when theory gives no negative effective viscosity
instabilities, as seen in figure 7, or from (39). Figure 11 shows results for (a) U0 = 0.2 and
(b) 0.5. The region of instability in figure 11(a) extends vertically compared with the corre-
sponding U0 = 0 case in figure 4(a). With increasing U0 this breaks up into two islands of
instability in figure 11(b) (intermediate pictures are similar to figure 9(b) above). Notable
is the pulling in of the purely hydrodynamic B0 = 0 threshold ν = νc(U0) on the horizon-
tal axis (also visible in figure 9(b)), according to (36), and in fact the lower island vanishes
completely if U0 > 1/

√
2 (not shown here). Formula (37) has also been checked to work

in the vicinity of the purely hydrodynamic threshold in these cases.

Figure 10. A typical unstablemode, with U0 = 0.2, B0 = 0.8, ν = 0.1, P = 2, k = 0.08 from the strong
field branch. Panel (a) shows the stream functionψ and (b) the magnetic potential a (Colour online).

Figure 11. Numerical computations of the instability growth rate Re{pmax} for vertical field plotted in
the (ν, B0) plane for P = 1, � = 0, with (a) U0 = 0.2, 0.01 ≤ ν ≤ 0.7 and (b) U0 = 0.5, 0.01 ≤ ν ≤ 0.6.
The numerical threshold Re{pmax} = 0 is given by a white curve and black shows zero growth rates
(Colour online).
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4. Governing equations: horizontal field, with U0 = 0

In this section we study the stability of Kolmogorov flow in the presence of horizontal
field B0, and to reduce the complexity of the problem we restrict to the case of zero hor-
izontal mean flow, U0 = 0. We thus adopt the following basic state, a steady solution of
equations (9)–(11):

u0 = (0, sin x), b0 = (B0, η−1B0 cos x), f = (0, (ν + η−1B20) sin x), (40)

or in the scalar formulation,

ψ0 = cos x, ω0 = cos x, a0 = B0(y − η−1 sin x),

j0 = −η−1B0 sin x, g = (ν + η−1B20) cos x.
(41)

The basic state magnetic field is shown in figure 1(b), with horizontal field lines distorted
by the background Kolmogorov flow, becoming increasingly extended in the limit of small
η. Note, to pick up a comment in the introduction, that the body force required tomaintain
the Kolmogorov flow increases with field strength B0 and withmagnetic Reynolds number
Rm = η−1, unlike in many large-scale simulations of zonostrophic instability, where the
magnitude of a random forcing is held fixed, while other parameters are varied.

The stability problem is parameterised by {ν,B0,P,U0 = 0}. The corresponding linear
system is

∂tω + sin x (∂yω − ∂yψ) = B0 ∂xj + η−1B0 cos x (∂yj − ∂ya)+ ν∇2ω, (42)

∂ta + sin x ∂ya = B0 ∂xψ + η−1B0 cos x ∂yψ + η∇2a, (43)

ω = −∇2ψ , j = −∇2a, (44)

where the fields represent the perturbation to the basic state. The resulting equations for
the Fourier modes in x are

pΩn = −ν(n2 + k2)Ωn + k
2

(
1

(n − 1)2 + k2
− 1

)
Ωn−1

− k
2

(
1

(n + 1)2 + k2
− 1

)
Ωn+1

+ inB0(n2 + k2)An + ikB0
2η

[
(n − 1)2 + k2 − 1

]
An−1

+ ikB0
2η

[
(n + 1)2 + k2 − 1

]
An+1, (45)

pAn = −η(n2 + k2)An − k
2
An−1 + k

2
An+1

+ inB0
n2 + k2

Ωn + ikB0
2η

1
(n − 1)2 + k2

Ωn−1 + ikB0
2η

1
(n + 1)2 + k2

Ωn+1, (46)

for � = 0 and, as elsewhere, for � �= 0 we replace n by n + �. This infinite system of linear
equations may then be truncated and set up as a matrix eigenvalue problem, analogously
to that in (26) for vertical field; the matrix now takes a heptadiagonal form.
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Figure 12. Instability growth rate p for horizontal field as a function of k (and � = 0) for ν = η = 0.1
(P = 1), with B0 = 0 (blue), 0.05 (red), 0.1 (green), 0.15 (purple), 0.20 (orange) and 0.25 (dark orange).
Panels (a) and (b) show Re{p} and Im{p}, respectively (Colour online).

5. Numerical and analytical results: horizontal field

We have used Matlab to obtain growth rates p(k, �, ν,B0,P) (here U0 = 0) and we focus
first on the case � = 0.

5.1. Instability for Blochwave number � = 0

With zero Bloch wave number �, the instability has periodicity 2π in the x-direction and
2π/k in the y-direction. Figure 12 shows plots of the growth rate p(k, ν,B0,P) against k
for ν = η = 0.1 (P = 1) and B0 increasing as detailed in the caption. Focusing on the real
part of p in panel (a) we observe that the magnetic field initially suppresses the instability,
going from the blue B0 = 0 curve to the lower, red B0 = 0.05 curve. However increasing
B0 further, the green B0 = 0.1 curve reveals a double-peaked growth rate and then these
two peaks increase as B0 is increased, as indicated in the figure caption. For these stronger
fields, the second peak is the lower of the two, and is associated with non-zero imaginary
part Im{p} of the growth rate, as shown in panel (b), while the dominant instability of the
first peak has Im{p} = 0.2

To give a more global picture of these results for horizontal field, we now show
Re{pmax(ν,B0,P)} as a colour plot in the (ν,B0)-plane for P = 1 in figure 13(a), with the
white line denoting the instability threshold Re{pmax} = 0. For modest magnetic fields we
observe the suppression of the purely hydrodynamic instability as in the case of vertical
field in figure 4. However as B0 is increased another branch of instability emerges from
the bottom left of figure 13(a) and shows increasing growth rates, particularly for smaller
viscosities ν. The presence of this new branch of instabilities is perhaps not surprising
(Durston and Gilbert 2016, Lewis 2022), given that the basic state horizontal field in (40)
and depicted in figure 1(b) has a wavey structure, and for P = 1 becomes increasingly
convoluted as η = ν is decreased.

2 Further investigation (which we will not detail here) indicates that at, for example B0 = 0.25 (dark orange curve in figure
12(a)), when k is increased from zero the leading real eigenvalue corresponding to the first peak collides at k � 0.35 with
another, subdominant real eigenvalue. To the right of this collision, these two real branches merge to give two complex
eigenvalues that form the second peak. For this second peak the structure of field and flow is similar to that in figure 15
below for the first peak, but up–down symmetry is lost in each of the pair of complex eigenmodes.
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Figure 13. Instability growth rate Re{pmax} for horizontal field plotted in the (ν, B0) plane for P = 1,
� = 0,U0 = 0, 0.1 ≤ ν ≤ 1. Panel (a) shows the numerical computation of growth rateswith the thresh-
old Re{pmax} = 0 given by the white curve and the stable region in black. In panel (b) we show the
analytical thresholds from (48) for the flowbranch (blue), and from (52) for the field branch (red). In panel
(b) the dashed blue line is the threshold (58) for � �= 0 instabilities discussed later. Panels (c, d) show the
same as (a, b) but with axes 0.1 ≤ ν ≤ 1.25 and 0 ≤ B ≤ 5, and in (c) the asymptote ν∗ from (53) is
shown dotted (Colour online).

To gain analytical results and understanding, in Appendix A we discuss perturbation
theory for the horizontal field system, taking the limit k → 0 while retaining B0 and other
parameters of order unity. The resulting leading order equations, involving Ω0, Ω±1, A0
and A±1, split into two independent 3 × 3 matrix systems giving the two branches of
instability evident in figure 13(a). We discuss them in turn.

The first system involves Ω0 and not A0, in other words is dominated by a large-scale
flow and not a large-scale field. We call this the Ω0 or flow branch of horizontal field
instability. Analysis gives equation (A.31), which we reproduce here as

p =
[
1
2ν
ν2 − B20P

2(2 + P)
ν2 + B20P

− ν

]
k2 + · · · ≡ −νEk2 + · · · . (47)

This gives the leading growth rate as a function of the parameters times k2; it represents
an effective viscosity νE seen by large-scale modes and the instability is marked by this
quantity becoming negative. While it is not possible to maximise this expression over k to
gain a complete analysis of the instability, it does give the instability thresholdRe{pmax} = 0
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by setting the quantity in brackets, namely −νE, to zero to obtain

B20 = ν2

P
1 − 2ν2

P(P + 2)+ 2ν2
. (48)

This formula for B0(ν,P) is plotted as the blue curve in figure 13(b) and shows good agree-
ment with the numerical results for the lower branch in figure 13(a). For B0 = 0 we recover
the hydrodynamic result νc = 1/

√
2, and this analysis tells us how the basic hydrodynamic

instability, domimated by the large-scale flow inΩ0, is suppressed by interaction with the
magnetic field. If we maximise B20 as a function of ν in (48), we find that this occurs at

2ν2 = −Q +
√
Q2 + Q , Q = 2P + P2, (49)

and putting this into B20 gives an unwieldy expression for the threshold value B∗, above
which the horizontal field suppresses the Kolmogorov instability. We do not present it here
but give further discussion in section 6.

Note also that from (48),

B0 � ν

P
√
2 + P

, ν → 0, (50)

and so the instability emerges with this slope from the origin ν = 0, B0 = 0 of figure 13(a).
A typical example of the unstable fields is shown in figure 14: the stream function in panel
(a) is typical of a zonostrophic instability giving jets corresponding to a dominant hori-
zontal, Ψ0 component. The magnetic field in panel (b) shows closed loops with significant
A±1 components.

The second system arising from perturbation theory involves A0 and notΩ0: it is dom-
inated by a large-scale magnetic field and so we refer to this as the A0 or field branch of
horizontal field instability. The result of perturbation theory gives (A.37), reproduced here
as

p =
[
P
2ν

−ν2 + 3B20P
ν2 + B20P

− ν

P

]
k2 + · · · ≡ −ηEk2 + · · · . (51)

The onset of instability again can be interpreted as a transport quantity becoming negative;
since η = ν/P, for the field branch we can identify the instability as driven by a negative

Figure 14. A typical unstablemode, with B0 = 0.05, ν = η = 0.1, k = 0.5, from the floworΩ0 branch;
(a) shows the stream functionψ and (b) the magnetic potential a (Colour online).
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effective magnetic diffusivity ηE (see Chechkin 1999). Note that this instability, being a
directly growing instability, is not connected with the strong-field branch of the vertical
field (which is an over-stable wave).

The threshold for instability is found by setting−ηE, namely the quantity in brackets in
(51), to zero giving

B20 = ν2

P
P2 + 2ν2

3P2 − 2ν2
. (52)

The curve for B0(ν,P) is plotted on figure 13(b) in red and again shows good agreement
with the numerical results for the field branch in panel (a). Note that for fixed P, B0 → ∞
as ν → ν∗ with

ν∗ = P
√
3/2, (53)

and so a viscosity larger than this is enough to prevent the field branch instability nomatter
how strong the field. To confirm this, panels (c, d) of figure 13 show the same plots as panels
(a, b) but over larger scales: the asymptote in (53), which is ν∗ � 1.225 for P = 1, is evident
and there is good agreement between theory and numerical calculations.

We also have for small fields and viscosities that the threshold (52) is given by

B0 � ν√
3P

, ν → 0, (54)

and so for P = 1 both thresholds (50) and (54) emerge from the origin with the same
slope, though for general P the slopes are different. A typical example of the unstable fields
is given in figure 15. The perturbation flow now does not have a zonostrophic jet structure,
but shows closed eddies in panel (a) with significant Ψ±1 components. Panel (b) however
shows a banded structure in the magnetic field showing the dominant role of the horizon-
tal A0 component. This indicates a tendency for the background mean field to segregate
into bands of stronger and weaker zonal field, allowing the field mode to be identified also
as a tearing mode (cf. Pessah 2010). Some comments on energetics of the two instability
branches are given in Appendix A.4.

We have explored the instabilities numerically for other values of P with 0.1 ≤ P ≤ 10
for 0.1 ≤ ν ≤ 1.0 and various ranges of B0, but will not present further figures here. For

Figure 15. A typical unstablemode, with B0 = 0.25, ν = η = 0.1, k = 0.25 from the field or A0 branch;
(a) shows the stream functionψ and (b) the magnetic potential a (Colour online).
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P decreasing from 1 down to 0.1 we observe only direct instability (Im{pmax} = 0) and
the flow and field branches show good agreement with theory. For P increasing from 1
we again observe the (direct) flow and field branches accurately outlined by the theoretical
curves. However a small but dominant island of oscillatory instabilities emerges from small
values of ν and B0 for P = 2 and spreads out in the vicinity of the lines (50) and (54). These
instabilities have kmax around 0.5 and are not captured by our perturbation expansions; we
will leave these open to future exploration.

5.2. Instability for Blochwave number � �= 0

Finally, we consider horizontal field for the case of non-zero �. This allows an instability to
take up a scale 2π/k in the y-direction and 2π/�, as � → 0, in the x-direction. It turns out
that instabilities can occur for � �= 0 even when the system is stable for � = 0, in the case
of horizontal field (unlike the situation for vertical field).

Results are shown in figure 16 in which the maximisation in (27) is taken over a range
of k and � values including � = 0; this should be compared with the earlier figure 13(a),
which uses identical parameter ranges to show instabilities with � constrained to be zero.
The new figure 16 indicates considerable further structure across the four panels: depicted
are (a, b) the real and imaginary parts of the growth rate pmax and (c, d) the maximising
values kmax and �max. We discuss the different regions in turn with reference to the white
markers in each colour plot. First note that the prominent white curve in figure 13(a), as

Figure 16. (a) Instability growth rate Re{pmax} and (b) imaginary part Im{pmax} shown for horizontal
field, plotted in the (ν, B0) plane with P = 1, U0 = 0, any � and 0.1 ≤ ν ≤ 1. The maximising values of
kmax and of �max are shown in panels (c, d), respectively. White markers indicate different regions of the
diagrams as discussed in the text (Colour online).
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usual given by Re{pmax} = 0, has all but disappeared from the corresponding figure 16(a).
Instead of clearly demarcating the flow and field instabilities as it does in figure 13(a), the
white curve is reduced to a small triangle at the top right corner of figure 16(a), meaning
that nearly the whole of the parameter space shown is unstable when � �= 0 is allowed.

The flow or Ω0 branch clearly seen in the earlier � = 0 figure 13(a), is still present in
figure 16, near “+” at (ν,B0) = (0.5, 0.1); because of low growth rates it is not really visi-
ble in figure 16(a) but is in figure 16(c) showing kmax. The field or A0 branch in the � = 0
figure 13(a) remains prominent in figure 16(a) (see “×” at (ν,B0) = (0.2, 0.8)), and near
this point the dominant mode has �max = 0, from figure 16(d). However if we move right-
wards then there is a transition seen in figure 16(d) from �max = 0 for the dominantmodes,
to �max �= 0, for example in the region around “�”, (ν,B0) = (0.4, 0.7). We also gain two
new islands of instability attached to the field branch around the points marked by “�”,
(ν,B0) = (0.2, 0.2), (0.6, 0.9), having constant �max = 0.5 visible in figure 16(d), and so
4π periodicity in x; these also have non-zero frequency Im{pmax} in figure 16(c) and are
further investigated in Algatheem (2023).

Finally we now gain a broad region of instability in figure 16(a) around “�”, (ν,B0) =
(0.9, 0.5) (which appears to be a smooth extension of the region around “�” discussed
above). This region was stable in the earlier figure 13(a) and so these modes are reliant on
� �= 0 for their existence. The modes have small values of kmax and �max and low growth
rates, but nonetheless their presence destabilises almost all of the stable region in the ear-
lier figure 13(a), pushing the white curve in figure 16(a) to the top right corner for a tiny
remnant region of stability. To gain further information about this new region of instability
for � �= 0 we therefore turn to theory for � � 1, k � 1, developed in Appendix D, which
gives a growth rate in (D.12) of

p = ±B0�
[

k2

�2 + k2
P[ν2(P + 2)− P2B20]

ν2(ν2 + PB20)
− 1

]1/2
+ · · · . (55)

This approximation reveals an instability that crucially relies on having a non-zero Bloch
wavenumber, � �= 0, with � and k both small. If we fix the parameters ν, P and B0 we can
consider the growth rate p as a function in the (�, k) plane. Setting the quantity inside the
square root to zero to find a threshold, we see that the region of instability is demarcated
by the pair of straight lines given by

k2

�2
= ν2(ν2 + PB20)
ν2(P2 + 2P − ν2)− PB20(ν2 + P2)

. (56)

The formula (55) for p tells us about the instability growth rate as we increase k and � from
zero, but to find how this eventually decreases, we would need to go to next order in per-
turbation theory, which is impractical and unlikely to be informative. To give a qualitative
feel for the growth rate we will add on the diffusive suppression term − 1

2 (ν + η)(k2 + �2)

that is certainly one of those present at next order, and look at

p = ±B0�
[

k2

�2 + k2
P[ν2(P + 2)− P2B20]

ν2(ν2 + PB20)
− 1

]1/2
− 1

2ν(1 + P−1)(k2 + �2)

+ O(k2, �2), (57)

as a simple but crude approximation to p(�, k).
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Figure 17. Instability growth rate p for horizontal field as a function of (�, k) for ν = η = 0.75 (P = 1)
with B0 = 0.2, (a) numerical growth rates and (b) approximate growth rates calculated from (57). In both
panels thewhite curve is givenbyRe{p} = 0,with instability inside this curve, and the straight black lines
emerging from the origin are from the formula (56) (Colour online).

To see how all this fits together, figure 17(a) shows growth rates Re{p(�, k)} obtained
numerically and plotted in the (�, k)-plane for B0 = 0.2 and ν = η = 0.75. These param-
eters correspond to stability for � = 0 as is evident from figure 13(a), the point (0.75, 0.2)
lying in the black, stable region, but unstable for � �= 0 from figure 16(a). The growth rate
colour plot in figure 17(a) shows instability occuring for all (�, k) points lying inside the
region taking a “butterfly” form, outlined by the white curves Re{p} = 0. These curves are
tangential to the vertical axis � = 0 at the origin, confirming that the modes with � = 0 are
stable for any k. The maximum instability growth rate here occurs for (�, k) � (0.05, 0.05).

To compare with theory based on k, � → 0, the straight black lines in figure 17(a) are
given by (56) and are tangential to the white curves at the origin, showing good agreement.
In panel (b) we show an analogous figure for the “fixed up” growth rate in (57). The agree-
ment between the results in the two panels (a) and (b) is excellent near the origin, but then
further out the agreement is only qualitative, and quite rough, as we might expect. This
is because the term − 1

2ν(1 + P−1)(k2 + �2) included in (57) is only one of many which
would appear by rigorous perturbation theory at order k2, �2, and which would have a
further stabilising effect in this case, judging by the figure. For an example of an unstable

Figure 18. A typical unstable mode, with � = 0.05, k = 0.05, ν = η = 0.75, B0 = 0.2; (a) shows the
stream functionψ and (b) the magnetic potential a (Colour online).
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configuration, figure 18 shows the flow and field for the fastest growing mode in figure 17.
We observe what we could term oblique zonostrophic instability: the emergence of a large-
scale jet-like structure but at an oblique angle to the y-direction, this being allowed by the
non-zero Bloch wavenumber �.

Returning to the bigger picture, for instability at a general point in the (ν,B0) plane we
need the quantity inside the square root in (55) to be positive for some values of k and �.
Equivalently, it corresponds to requiring that the straight lines in (56) have a finite slope.
It can be checked that this gives a threshold for instability:

B20 = ν2

P
P(P + 2)− ν2

P2 + ν2
. (58)

Positive values of field smaller than this give instability and so this formula gives the thresh-
old curve in the (ν,B0)plane for this family of � �= 0 instabilities. This threshold is shown as
a dashed curve in figure 13(b): we have instability to � �= 0 modes below the dashed curve
and we still have instability to � = 0 modes above the red curve. We thus see in this panel
that allowing any value of � means that almost the whole of the parameter ranges shown
give instability, all except for a small curved triangular region at the top right, and this is
in agreement with the white curve obtained numerically in figure 16(a). The agreement is
not perfect because the growth rates in the top right corner become small and the unstable
region shrinks away in the (�, k)-plane, as the thresholds are approached, and so the precise
location of the white curve becomes hard to resolve without further work. Note that the
formula (58) does not capture the � = 0.5 instability islands seen in figure 16; all the theory
we have developed involves seeking instability by determining where the growth rate p can
be positive in the limits k � 1 and � � 1. These islands are not detected by this means as
they appear not to be connected to instability in this long-wavelength limit. As we found
in the case of vertical field, theory for k → 0 and/or � → 0 gives sufficient conditions for
instability, but does not rule out further instabilities.

Note that for P = 1, from (58) the � �= 0 instability is cut off at ν∗ = √
3, and in general

the instability requires

ν < ν∗ =
√
P(2 + P). (59)

Numerical experimentation, for cases where only the � �= 0 instability is present, shows
that for ν less than this threshold, the region of instability in the (�, k)-plane becomes
vanishingly small as B0 tends to zero or tends to the value given in (58). The maximum
magnetic field for the � �= 0 instability found here is given by maximising B0 in (58) over
ν: the maximum occurs at

ν2 = −P2 +
√
2P3(1 + P). (60)

To further confirm this analysis, figure 19 shows similar information to figure 16, but over
a larger scale; the dashed curve in panel (b) shows the � �= 0 threshold in (58) and there
is clear agreement between this and the numerical results in panel (a), in particular the
ν∗ = √

3 � 1.73 threshold for P = 1. We make additional points in the final discussion
section 6.
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Figure 19. (a) Instability growth rate Re{pmax} plotted in the (ν, B0) planewith P = 1,U0 = 0, and � �=
0; (b) shows thresholds (52) for � = 0 (red) and (58) for � �= 0 (blue dashed) (Colour online).

6. Discussion

In this study we have explored instability of the classic Kolmogorov flow in the presence
of magnetic field which is either vertical, aligned with the flow, or horizontal, aligned with
possible jet formation. In the first case we have obtained new analytical results for themax-
imum growth rate (30) and magnetic field threshold (31), that show the suppression of the
original zonostrophic instability found byMeshalkin and Sinai (1961) by vertical magnetic
field. For the strong field branch, present when P<1, we have confirmed the numerical
results of Fraser et al. (2022) and provided an alternative derivation of their growth rate
formula (33) and threshold (35), generalised to non-zero mean flowU0 in (B.16) and (39).
We have presented numerical results showing how such a mean flow U0 > 0 can suppress
the hydrodynamic threshold (i.e. for B0 = 0) in (36) and the weak field branch of instabil-
ity (for B0 > 0), modify thresholds ν∗ for the P<1 strong field branch in (39), and lead to
a new branch of instabilities for P>1. We note that Fraser et al. (2022) also find a further
branch of instabilities for P ≥ 1, which they term “varicose Kelvin–Helmholtz” modes,
from Reynolds numbers of the order of a hundred. This branch is not visible in our figures
since in our scans of the (ν,B0) parameter space we have cut off ν at a value of 0.01 or 0.1
(for vertical or horizontal field, respectively), as detailed in each figure caption.

The case of horizontal field, broadly relevant to several studies of jet formation where
the field is aligned with potential jets (Tobias et al. 2007, Durston and Gilbert 2016, Con-
stantinou andParker 2018), showsmore complex structure, unsurprisingly given thewavey
nature of themagnetic field in the basic state, seen in figure 1(b). Nonetheless, theory based
on large-scale perturbations with k � 1, � � 1, although only sufficient for instability, in
reality gives a good guide to most (although not all) of what we have found numerically.
We observe again the suppression of the purely hydrodynamic zonostrophic instability, the
flow or Ω0 branch, when the magnetic field strength is increased. A similar effect is seen
in the shear layer/jet configuration of Lewis (2022). The threshold of B0 = B∗ for complete
suppression is given by substituting ν2 from (49) into (48). For large P, we have ν2 � 1/4
while for small P, ν2 � √

P/2. The value of B∗ for suppression then amounts to:

B2∗ ∼ P−1 = η

ν
(P � 1), B2∗ ∼ P−3 = η3

ν3
(P � 1). (61)
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Interestingly this bears comparison with Tobias et al. (2007) who have ν = 10−4 fixed and
10−1 ≤ η ≤ 10−6 in their runs. For the greater values of η used, P � 1 and so a threshold
B2∗ ∼ η is indicated above, and found in these full numerical simulations. Also, note that
at this threshold we have that the forcing magnitude is fixed in magnitude in (40) and so
there is, at least roughly, a correspondence of working with fixed forcing amplitude as in
their paper and the fixed Kolmogorov flow in ours. However we should remark that these
authors use a stochastic, ring forcing and a non-zero value of β , whereas we have a steady
forcing and have taken � to be zero; thus further work would be needed to make a sound
comparison.

A feature of the horizontal field problem is that for increasing magnetic field strengths
a further branch of instabilities emerges, the field or A0 branch, also seen in Durston and
Gilbert (2016) and by Lewis (2022) in the shear layer/jet geometry; these may be identified
as tearingmodes. An analytical formula (52) for the threshold of instability is given for this
branch, which exists provided the Reynolds number satisfiesR > ν−1∗ with ν∗ given in (53).
Allowing a Bloch wavenumber � �= 0 in the x-direction, in addition to the wavenumber
k in the y-direction, allows a new branch of instabilities, which we have categorised as
oblique zonostrophic instabilities. In particular a magnetic field, no matter how weak, can
destabilise the Kolmogorov flow provided the Reynolds number R = ν−1 > ν−1∗ with ν∗
given in (59). For example at P = 1, the purely hydrodynamic instability is present for
R >

√
2 but the oblique instability is present for arbitrarily weak but non-zero horizontal

magnetic field provided R > 1/
√
3. For sufficiently large magnetic field this instability is

again suppressed, and making use of (60) (with ν2 �
√
2P3 for small P and ν2 � (

√
2 −

1)P2 for large P) we find a threshold

B2∗ ∼ 1 (P � 1), B2∗ ∼ P = ν

η
(P � 1). (62)

Note that the order of limits could be important: in our discussion in this paper we are
fixing any value of P and then allowing k and � to tend to zero. Other limits are possible and
could be explored by appropriate scalings in our calculations. We stress again that all our
theory is based on the limits k → 0, � → 0, and further instabilities can occur that have no
connectionwith this limit, aswe have seen repeatedly.Our theoretical criteria for instability
are always sufficient but not necessary, and while we have given some numerical surveys,
the complete parameter space of {ν,P,B0,U0} is large once one allows both k and � to be
non-zero. It can be enlarged further by including a β-effect of general orientation (Manfroi
andYoung 2002) or an arbitrary angle γ of the imposedmagnetic fieldB0 in the (x, y)-plane
(further studied in Algatheem 2023), generalisations open to future investigation.

Underlying our study is matrix eigenvalue perturbation theory as set out in the appen-
dices, a flexible tool for these types of problems. We find it gives greater clarity than using
a multiple scales formulation or applying perturbation theory to roots of a polynomial,
even though all these methods are ultimately equivalent for linear theory. Note that while
many of the instabilities seen by us and by other authors can be characterised as involv-
ing a negative effective viscosity term, −νEk2 with νE < 0, or a negative effective magnetic
diffusivity term, −ηEk2 with ηE < 0, at large scales, the growth rate p(k, �) in the case of
horizontal field shows a complicated dependence on k and � in (55). Although this � �= 0
instability occurs at arbitrarily large scales, it cannot be categorised as involving a simple
negative effective transport effect. This arises because we are applying perturbation theory
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to a repeated eigenvalue of the limiting k → 0, � → 0 problem. Looking to the future, it
would be interesting to pursue further research on the Kolmogorov flow as an MHD sys-
tem, particularly on the nonlinear evolution of instabilities and inverse cascades (Fraser
et al. 2022, Algatheem 2023), and on the interaction of magnetic field with a β-effect and
Rossby waves.
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Appendix A. Horizontal field, with U0 = 0, � = 0

First, let us outline the general principles of our approximate analysis of growth rates in this and other
appendices. In each casewehave an infinite systemof coupled linear equations, for example (45), (46)



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 31

in the case of horizontal field with U0 = 0 and � = 0. In the limit k → 0 of large-scale modes, we
can reduce the calculation of the growth rate to eigenvalues of a finite matrix. The key point to note
is that the n = 0modesΩ0 andA0 are distinguished from all other modes by being weakly damped,
as pvisc = −νk2 or pdiff = −ηk2 by molecular diffusion with k � 1. On the other hand other modes
with |n| > 0 are relatively strongly damped, with pvisc = −ν(n2 + k2) or pdiff = −η(n2 + k2). So
we need to keep the n = 0 modes as these are most easily destabilised in the system. How are they
destabilised? This is through the coupling from n = 0 to low n �= 0 modes and then back to n = 0,
and via these couplings the unstable fields can draw energy from the basic state Kolmogorov flow
u0 = (0, sin x) or the varying component of the background magnetic field (0, η−1B0 cos x) (in the
horizontal case only). It then follows that we typically expect to see effects only at second order or
beyond in terms of perturbation theory, and this will usually involve Ωn and An for n = −1, 0, 1
only.3 Thus we can truncate the system and then use perturbation theory for the eigenvalues of a
finite matrix, with k � 1 as an expansion parameter.

Thus we set to work on the horizontal system of equations (45), (46) in Fourier space. These are
truncated to just the modesΩ0,Ω±1, A0 and A±1, with

pΩ0 = −νk2Ω0 − k
2

k2

1 + k2
Ω−1 + k

2
k2

1 + k2
Ω1 + ikB0

2η
k2A−1 + ikB0

2η
k2A1, (A.1)

pA0 = −ηk2A0 − k
2
A−1 + k

2
A1 + ikB0

2η
1

1 + k2
Ω−1 + ikB0

2η
1

1 + k2
Ω1, (A.2)

pΩ±1 = −ν(1 + k2)Ω±1 ± k
2
1 − k2

k2
Ω0 ± iB0(1 + k2)A±1 + ikB0

2η
(−1 + k2)A0, (A.3)

pA±1 = −η(1 + k2)A±1 ∓ k
2
A0 ± iB0

1
1 + k2

Ω±1 + ikB0
2η

1
k2
Ω0. (A.4)

We now express these equations in terms ofΩ0, A0 and the fields

Ω± = 1
2 (Ω1 ±Ω−1), A± = 1

2 (A1 ± A−1); (A.5)

we rescale Ω0 = Ω ′
0k

2 and for convenience we set B̃0 = B0/η. The resulting equations then break
up into two uncoupled systems. The first involves onlyΩ ′

0 on the large scale,

pΩ ′
0 = −νk2Ω ′

0 + k(1 + k2)−1Ω− + ikB̃0A+, (A.6)

pΩ− = −ν(1 + k2)Ω− + 1
2k(1 − k2)Ω ′

0 + iB0(1 + k2)A+, (A.7)

pA+ = −η(1 + k2)A+ + iB0(1 + k2)−1Ω− + 1
2 ikB̃0Ω

′
0, (A.8)

while the second involves only A0 on the large scale,

pA0 = −ηk2A0 + kA− + ikB̃0 (1 + k2)−1Ω+, (A.9)

pA− = −η(1 + k2)A− − 1
2kA0 + iB0(1 + k2)−1Ω+, (A.10)

pΩ+ = −ν(1 + k2)Ω+ + iB0(1 + k2)A− + 1
2 ikB̃0(−1 + k2)A0, (A.11)

We deal with these two branches in turn, using eigenvalue perturbation theory.

A.1. Outline of approach

Having reduced the problem to the calculation of eigenvalues p for two systems of equations for
k � 1, one for (A.6)–(A.8) and one for (A.9)–(A.11), we outline the method that is common to

3 We note that this approach is equivalent to quasi-linear theory for weak large-scale (or mean) fields. In our set-up the
n = 0, k � 1 mode can be identified with a large-scale magnetic field and flow, and at first order we are solving for the
n = ±1 fluctuations on the flow generated by the forcing that maintains the Kolmogorov flow. Calculating the second-
order feedback on then = 0mode in perturbation theory,which canhave adestablising effect, is equivalent to evaluating
the mean quadratic terms in quasi-linear theory.
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all the approximations in the paper. In each case we write the governing eigenvalue problem in a
matrix form (see (A.24), (A.32) below) where the matrixM depends on k, v is the eigenvector and
p the eigenvalue:

Mv = pv. (A.12)
Wemay rescale some quantities in thematrixM (using a prime to denote these) andwe then proceed
to expandM in powers of k as

M = M0 + kM1 + k2M2 + · · · , (A.13)

and likewise v and p. For the limit k → 0 we solve

(M0 + kM1 + · · · )(v0 + kv1 + · · · ) = (p0 + kp1 + · · · )(v0 + kv1 + · · · ), (A.14)

order by order in k. Here we set out the first few orders in a convenient form:

p0v0 = M0v0, (A.15)

p1v0 = (M0 − p0)v1 + M1v0, (A.16)

p2v0 = (M0 − p0)v2 + M2v0 + M1v1 − p1v1, (A.17)

p3v0 = (M0 − p0)v3 + M3v0 + M2v1 + M1v2 − p2v1 − p1v2, (A.18)

p4v0 = (M0 − p0)v4 + M4v0 + M3v1 + M2v2 + M1v3 − p3v1 − p2v2 − p1v3. (A.19)

First we choose an eigenvalue p0 and corresponding right (column) eigenvector v0 of M0; at the
level of M0 the mode is undamped and so the real part of p0 is zero. Assuming this is a simple
(non-repeated) eigenvalue there is also a single left (row) eigenvector w0 with w0(M0 − p0) = 0.
With (A.15) thus dealt with, we note that we gain successive eigenvalue terms pj from applying w0
to the left of the remaining equations, so that

p1 w0v0 = w0M1v0, (A.20)

p2 w0v0 = w0(M2v0 + M1v1 − p1v1), (A.21)

p3 w0v0 = w0(M3v0 + M2v1 + M1v2 − p2v1 − p1v2), (A.22)

p4 w0v0 = w0(M4v0 + M3v1 + M2v2 + M1v3 − p3v1 − p2v2 − p1v3). (A.23)

Here w0v0 is the scalar obtained by multiplying the row vector w0 by the column vector v0. In this
way, once having chosen the eigenvalue p0 to perturb from (A.15) together with v0 and w0, we find
p1 from (A.20). We then need v1 from (A.16) and whileM0 − p0 is not invertible, having fixed the
value of p1, there is a solution for v1. It is not unique, but this does not matter as we shall see. We can
then calculate p2 from (A.21) and so forth.Wewill go up to the level of p4 in some of our calculations
below.

A.2. Flow orΩ0 branch

Having set out our general approach we return to the first system (A.6)–(A.8), which involves a
dominant large-scale flow inΩ0 and no large-scale field, with

M =
⎛
⎝ −νk2 k(1 + k2)−1 ikB̃0

1
2k(1 − k2) −ν(1 + k2) iB0(1 + k2)

1
2 ikB̃0 iB0(1 + k2)−1 −η(1 + k2)

⎞
⎠ , v =

⎛
⎝Ω ′

0
Ω−
A+

⎞
⎠ . (A.24)

For this branch we expandM to give:

M0 =
⎛
⎝0 0 0
0 −ν iB0
0 iB0 −η

⎞
⎠ , M1 =

⎛
⎝ 0 1 iB̃0

1
2 0 0

1
2 iB̃0 0 0

⎞
⎠ , M2 =

⎛
⎝ −ν 0 0

0 −ν iB0
0 −iB0 −η

⎞
⎠ . (A.25)
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Note that the inverse of the non-trivial 2 × 2 block ofM0 is( −ν iB0
iB0 −η

)−1
= Δ

( −η −iB0
−iB0 −ν

)
, Δ−1 = νη + B20, (A.26)

where� is the inverse of the appropriate determinant.
We are ready to solve order by order in k. At leading order (A.15) we choose

p0 = 0, v0 = (1, 0, 0)T , w0 = (1, 0, 0). (A.27)

At next order, we use (A.20) and have

M1v0 = (0, 12 ,
1
2 iB̃0)

T , p1 = 0. (A.28)

Given this we now solve (A.16) for v1, to obtain

v1 = 1
2Δ(0, η − B̃0B0, iB0 + iνB̃0)T . (A.29)

Here we have used the inverse (A.26) of the 2 × 2 block of M0 to find a solution for v1. We could
add on an arbitrary multiple of v0 to this, but this would only change the (irrelevant) normalisation
of the eigenvector v in our calculation – any solution is acceptable.

Finally at O(k2) we find from (A.21) the value of p2 and, recalling that B̃0 = B0/η, this gives

p = p2k2 + · · · = [ 1
2Δ(η − 2B20/η − B20ν/η

2)− ν
]
k2 + · · · , (A.30)

which is, with the Prandtl number P = ν/η,

p =
(

1
2ν

ν2 − B20P
2(2 + P)

ν2 + B20P
− ν

)
k2 + · · · . (A.31)

We pick up the discussion in the main part of the paper, at (47).

A.3. Field or A0 branch

In the second system (A.9)–(A.10), the large-scale field A0 is present but no large-scale flow. We
write the system asMv = pv with

M =
⎛
⎝ −ηk2 k ikB̃0(1 + k2)−1

− 1
2k −η(1 + k2) iB0(1 + k2)−1

1
2 ikB̃0(−1 + k2) iB0(1 + k2) −ν(1 + k2)

⎞
⎠ , v =

⎛
⎝A0
A−
Ω+

⎞
⎠ . (A.32)

The matrix series forM now has

M0 =
⎛
⎝0 0 0
0 −η iB0
0 iB0 −ν

⎞
⎠ , M1 =

⎛
⎝ 0 1 iB̃0

− 1
2 0 0

− 1
2 iB̃0 0 0

⎞
⎠ , M2 =

⎛
⎝ −η 0 0

0 −η −iB0
0 iB0 −ν

⎞
⎠ . (A.33)

We have that the inverse of the 2 × 2 block ofM0 is given as in (A.26) with ν and η interchanged and
the same �. The calculation proceeds as before. At leading order in the eigenvalue problem (A.14)
we take the same solution as that given in (A.27). At first order, we have

M1v0 = (0,− 1
2 ,− 1

2 iB̃0)
T . (A.34)

This gives p1 = 0 and we solve (A.16) for v1 as

v1 = 1
2Δ(0,−ν + B̃0B0,−2iB0)T . (A.35)

At the next order (A.21) yields p2 and so

p = p2k2 + · · · = [ 1
2Δ(−ν + 3B20/η)− η

]
k2 + · · · , (A.36)
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or, with P = ν/η,

p =
(

P
2ν

−ν2 + 3B20P
ν2 + B20P

− ν

P

)
k2 + · · · . (A.37)

Further analysis commences from equation (51).

A.4. Energetics

We look briefly at how unstable flow and fieldmodes can draw energy from the basic state, both from
the fluid flow and from the sinusoidal magnetic field.We can define the space averaged perturbation
energy as

Ep = 1
2 〈|∇ψ |2 + |∇a|2〉, (A.38)

where as usual ψ and a are the linear corrections to the basic state and 〈·〉 is an average over the
domain 0 ≤ x ≤ 2π and 0 ≤ y ≤ 2π/k; we take � = 0 andU0 = 0. Applying periodicity of the fields
in both directions and integration by parts we find that

dEp
dt

= 〈(ψxψy − axay) cos x〉 − B̃0〈ψay cos x〉 − ν〈ω2〉 − η〈j2〉. (A.39)

Making use of our expansions we gain(
dEp
dt

)
s
=

∑
n

nkRe{Ψn(Ψ
∗
n−1 + Ψ ∗

n+1)− An(A∗
n−1 + A∗

n+1)} − B̃0
∑
n

k Im{Ψn(A∗
n−1 + A∗

n+1)},
(A.40)

where the “s” subscriptmeanswe have retained only the source terms, dropping the dissipative terms
ν〈ω2〉 and η〈j2〉.We can then substitute the approximate flowbranch eigenvector from (A.27), (A.29)
to find, to O(k2), (

dEp
dt

)
s
� 2kRe{Ψ ∗

0 Ψ−} + 2kB̃0 Im{Ψ ∗
0 A+} (A.41)

� k2Δ(η − B̃0B0)+ k2ΔB̃0(B0 + νB̃0). (A.42)

For the field branch we have instead from (A.27), (A.35),(
dEp
dt

)
s
� −2kRe{A∗

0A−} − 2kB̃0 Im{A∗
0Ψ+} (A.43)

� k2Δ(ν − B̃0B0)+ k2Δ2B̃0B0. (A.44)

If we look at the sources or sinks of energy in (A.42) and (A.44) we observe that in both cases the
background magnetic field acts as an energy source (positive second term in each equation). The
background flow field (first term in each equation) is a source provided the magnetic field is weak,
as is the case for the flow instability branch, but then acts as a sink for strongmagnetic fields, relevant
to the field branch which survives as B0 → ∞ for ν < ν∗ in (35) above.

Appendix B. Vertical strong field, with U0 �= 0, � = 0

In this appendix we turn to the vertical field system. Here there are two types of instability and two
analyses that we will set out in this appendix and the next one. The calculation in this appendix is
designed to capture the properties of the strong field branch seen for η > ν in figure 5. We incorpo-
rate a general mean flow U0 but the calculation for U0 = 0 is equivalent to that set out in Fraser et
al. (2022). Mathematically we need to consider the limit when B0 → ∞ as k → 0, and we find that
relating these via B0 = O(k−1) is most informative. We will set the Bloch wavenumber � = 0.

If we write out the vertical field equations truncated toΩ0, A0,Ω±1 and A±1, rewrite in terms of
Ω± and A± defined in (A.5), then we obtain the equations (without any further approximation) in
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the formMv = pv with

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

−νk2 k(1 + k2)−1 0 ikB0 0 0
1
2k(1 − k2) −ν(1 + k2) −iU0 0 ikB0(1 + k2) 0

0 −iU0 −ν(1 + k2) 0 0 ikB0(1 + k2)
ikB0 0 0 −ηk2 k 0
0 ikB0(1 + k2)−1 0 − 1

2k −η(1 + k2) −iU0
0 0 ikB0(1 + k2)−1 0 −iU0 −η(1 + k2)

⎞
⎟⎟⎟⎟⎟⎟⎠
, (B.1)

v = (
Ω ′

0 Ω− Ω+ A0 A− A+
)T , (B.2)

whereΩ0 = k2Ω ′
0 as usual. Before expanding M in powers of k, for strong vertical field we rescale

B0 = k−1B′
0 with B′

0 fixed in the limit k → 0. Then expandingM gives the matrices

M0 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 iB′
0 0 0

0 −ν −iU0 0 iB′
0 0

0 −iU0 −ν 0 0 iB′
0

iB′
0 0 0 0 0 0
0 iB′

0 0 0 −η −iU0
0 0 iB′

0 0 −iU0 −η

⎞
⎟⎟⎟⎟⎟⎠ ,

M1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 − 1

2 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (B.3)

M2 =

⎛
⎜⎜⎜⎜⎜⎝

−ν 0 0 0 0 0
0 −ν 0 0 iB′

0 0
0 0 −ν 0 0 iB′

0
0 0 0 −η 0 0
0 −iB′

0 0 0 −η 0
0 0 −iB′

0 0 0 −η

⎞
⎟⎟⎟⎟⎟⎠ . (B.4)

For an approximate growth rate p we use the expansion (A.14) and solve order by order. At leading
order (A.15) we focus on the eigenvalues p0 = ±iB′

0 ofM0, corresponding to large-scale undamped
Alfvén waves. We will focus on the upper sign without loss of generality, and take

p0 = iB′
0, v0 = (1, 0, 0, 1, 0, 0)T , w0 = (1, 0, 0, 1, 0, 0), (B.5)

Here w0 is the left eigenvector as usual, with w0(M0 − p0) = 0 and w0v0 = 2.
Moving to the first order, from (A.20), (A.16) we rapidly find

p1 = 0, (M0 − p0)v1 = −M1v0 = (0,− 1
2 , 0, 0, 0,

1
2 , 0)

T , (B.6)

We now need to solve for v1, but before we do this we look ahead and see that

w0v0 p2 = w0M1v1 + w0M2v0, (B.7)

which gives

p2 = 1
2 (v12 + v15 − ν − η), (B.8)

where we are only accessing the following components

v1 = (·, v12, ·, ·, v15, ·)T . (B.9)
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Now, to solve for v1 in (B.6) we need to invert the 4 × 4 matrix from the various blocks ofM0 − p0
omitting the first and fourth row and column. This amounts to using⎛

⎜⎝
α β γ 0
β α 0 γ

γ 0 δ β

0 γ β δ

⎞
⎟⎠

−1

=Δ

⎛
⎜⎜⎝
α(δ2 − β2)− δγ 2 β(β2 − γ 2 − δ2) γ (γ 2 − β2 − αδ) βγ (α + δ)

β(β2 − γ 2 − δ2) α(δ2 − β2)− δγ 2 βγ (α + δ) γ (γ 2 − β2 − αδ)

γ (γ 2 − β2 − αδ) βγ (α + δ) δ(α2 − β2)− αγ 2 β(β2 − γ 2 − α2)
βγ (α + δ) γ (γ 2 − β2 − αδ) β(β2 − γ 2 − α2) δ(α2 − β2)− αγ 2

⎞
⎟⎟⎠, (B.10)

with
Δ−1 = (α2 − β2)(δ2 − β2)− 2γ 2(β2 + αδ)+ γ 4, (B.11)

and in our case
α = −ν − iB′

0, β = −iU0, γ = iB′
0, δ = −η − iB′

0. (B.12)
Putting all this together gives

p2 = 1
4Δ(α − δ)(β2 − γ 2 + αδ)− 1

2 (ν + η). (B.13)

Let us first restrict toU0 = 0 as in Fraser et al. (2022), so that β = 0 (and the original system in fact
only couplesΩ0, A0,Ω−, A−). We haveΔ−1 = (αδ − γ 2)2, and

p2 = 1
4
α − δ

αδ − γ 2 − 1
2 (ν + η) = 1

4
η − ν

νη + iB′
0(ν + η)

− 1
2 (ν + η). (B.14)

Putting back B′
0 = kB0 and p = p0 + kp1 + k2p2 + · · · gives growth rates

Re{p} =
1
4νη(η − ν)k2

ν2η2 + k2B20(ν + η)2
− 1

2 (ν + η)k2 + · · · . (B.15)

This is taken up in the main body of the paper as (33).
Returning to the more general case of U0 �= 0 we have

p = 1
4Δ(η − ν)[νη + ikB0(ν + η)− U2

0 ]k
2 − 1

2 (ν + η)k2 + · · · , (B.16)

with

Δ−1 = ν2η2 + U2
0 (ν

2 + η2 − 4k2B20)− k2B20(ν + η)2 + 2ikB0(ν + η)(νη + U2
0 )+ U4

0 . (B.17)

We pick up discussion in the main body of the paper around (38).

Appendix C. Vertical weak field, with U0 �= 0, � = 0

Wenow continue with our analysis of vertical field instabilities for � = 0 andU0 �= 0.We studied the
strong field branch with B0 = O(k−1) in the previous appendix. In the present appendix we will take
B0 = O(k2): this addresses the branch of vertical field instability as seen in figure 4 and allows us
to resolve the question of how magnetic field suppresses the purely hydrodynamic instability onset
and reduces the critical value of ν below νc = 2−1/2. We will see that our results will be correct
qualitatively for P = 1 even when B0 is as large as order unity while k → 0, though this agreement
becomes poor for large or small P. Since the expansion is about the point (ν,B0) = (νc, 0), we refer
to this as the “weak field branch”, to contrast with the strong field branch in the previous appendix.

We start with the matrix system (B.1) for instability in the presence of vertical field: Mv = pv.
However before expanding M0 in powers of k we first rescale B0 = k2B′

0, and set ν = ν0 + k2ν2 +
· · · , η = η0 + k2η2 + · · · . Here we are going to develop perturbation theory around the critical
point νc(U0) for the purely hydrodynamic problem, with νc(0) = 2−1/2. Expanding in powers of k
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yields

M0 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −ν0 −iU0 0 0 0
0 −iU0 −ν0 0 0 0
0 0 0 0 0 0
0 0 0 0 −η0 −iU0
0 0 0 0 −iU0 −η0

⎞
⎟⎟⎟⎟⎟⎠ ,

M1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 − 1

2 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (C.1)

M2 =

⎛
⎜⎜⎜⎜⎜⎝

−ν0 0 0 0 0 0
0 −ν0 − ν2 0 0 0 0
0 0 −ν0 − ν2 0 0 0
0 0 0 −η0 0 0
0 0 0 0 −η0 − η2 0
0 0 0 0 0 −η0 − η2

⎞
⎟⎟⎟⎟⎟⎠ , (C.2)

M3 =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 iB′
0 0 0

− 1
2 0 0 0 iB′

0 0
0 0 0 0 0 iB′

0
iB′

0 0 0 0 0 0
0 iB′

0 0 0 0 0
0 0 iB′

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (C.3)

M4 =

⎛
⎜⎜⎜⎜⎜⎝

−ν2 0 0 0 0 0
0 −ν2 − ν4 0 0 0 0
0 0 −ν2 − ν4 0 0 0
0 0 0 −η2 0 0
0 0 0 0 −η2 − η4 0
0 0 0 0 0 −η2 − η4

⎞
⎟⎟⎟⎟⎟⎠ . (C.4)

It will be convenient to let
Δ−1 = ν20 + U2

0 , δ−1 = η20 + U2
0 . (C.5)

In keeping with the hydrodynamic case we will be expanding the system about a zero eigenvalue
p0 = 0 of M0 with a flow field specified in Ω0. However we should note that p0 is a twice repeated
eigenvalue and we have two left and two right eigenvectors which we distinguish with † and ‡:

vT0† = w0† = (1, 0, 0, 0, 0, 0), vT0‡ = w0‡ = (0, 0, 0, 1, 0, 0). (C.6)

In the perturbation theory for a general matrix M we would need to take v0 as a general combina-
tion of v0† and v0‡, to be determined further in the expansion. However here, to avoid unnecessary
algebra we will jump to the solution we need, and take

p0 = 0, v0 ≡ v0†, (C.7)

for a flow-dominated eigenfunction. We verify that this works as we delve into the expansion.
Looking to the first-order equation (A.16) we applyw0† andw0‡ to the left-hand side, which only

gives p1 = 0 and we have

p1 = 0, M0v1 = −M1v0 = (0,− 1
2 , 0, 0, 0, 0, 0)

T . (C.8)

However when we solve for v1 we can add not only a multiple of v0 to the solution (which would
have no effect in the calculation) but also a multiple of the purely magnetic eigenvector v0‡. Thus we
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solve for v1 in the form
v1 = (0, 12ν0Δ,− 1

2 iU0Δ, b, 0, 0)T , (C.9)
where b is an unknown constant, to be determined.

At the next order we will aim to take p2 = 0 so as to push various the effects down the series in
powers of k: this is achieved if we fixΔ = 2. Thus at second order we set

p2 = 0, Δ = 2, (C.10)

and note that this then fixes
ν0 ≡ νc(U0) = ( 12 − U2

0 )
1/2. (C.11)

This is the critical value for onset for the pure hydrodynamic case, with a mean flow but with zero
magnetic field. A strong enough mean flow |U0| > 2−1/2 is enough to suppress any instability and
so from now on we take U2

0 <
1
2 so that ν0 is real and positive.

We then need to solve (A.17), which amounts to

M0v2 = (0, 0, 0, 0, 12b, 0)
T , (C.12)

a suitable solution being

v2 = (0, 0, 0, 0,− 1
2η0bδ,

1
2 iU0bδ)T . (C.13)

It turns out that we do not gain any further information in the ensuing calculation if we incorporate
an unknown multiple of v0‡ in our solution for v2 at this order, and so we do not.

At third order, applying w0† and w0‡ to (A.18) gives

p3 = 0, b = η−1
0 (1 + 1

2δ)
−1iB′

0, (C.14)

and we then solve

M0v3 = (0, 12 + 1
2 (ν0 + ν2)ν0Δ,− 1

2 (ν0 + ν2)iU0Δ, 0, 0, 0)T , (C.15)

for v3 with

v3 = (0,− 1
2ν0Δ− 1

2 (ν0 + ν2)(ν
2
0 − U2

0 )Δ
2, 12 iU0Δ+ (ν0 + ν2)iU0ν0Δ

2, 0, 0, 0)T . (C.16)

Finally applying w0† and w0‡ to (A.19) gives our desired growth rate

p4 = −ν2 − ν0Δ+ iB′
0b − 1

2 (ν0 + ν2)(ν
2
0 − U2

0 )Δ
2. (C.17)

We now put p = p4k4 + · · · , and substitute b from (C.14), Δ = 2, B′
0 = k−2B0, η0 = ν0/P, also

replacing U0 in terms of ν0 = νc and ν2 = k−2(ν − νc)+ · · · , to find

p = − P
νc(1 + 1

2δ)
B20 + 4ν2c (νc − ν)k2 − νc(1 + 4ν2c )k

4 + · · · , (C.18)

with

νc =
√

1
2 − U2

0 , δ = P2

ν2c (1 − P2)+ 1
2P

2
. (C.19)

Equation (C.18) provides the general formula for the growth rate p(k, ν,B0, P,U0) including a mean
flow U0 with U2

0 <
1
2 (so that νc is defined as a positive number).

In the case of zero mean flow, U0 = 0, we have νc = 2−1/2, δ = 2P2, and this simplifies to

p = −
√
2P

1 + P2
B20 + 2

(
1√
2

− ν

)
k2 − 3√

2
k4 + · · · . (C.20)

We continue the discussion in themain body of the paper; see equations (29), (36) and beyond. Note
that going to fourth order here suggests that the modesΩ±2 and A±2 might also be needed to give
a correct evaluation of p4; this needed to be checked and was – we found that the couplings are too
weak, in terms of the powers of k involved, to give a contribution to the growth rate to the order
taken above.
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Appendix D. Horizontal field, with U0 = 0, � �= 0

Our final calculation brings in the Bloch wavenumber �. This can be done in the case of vertical field
(Algatheem 2023), but there increasing � from zero seems to have only the effect of suppressing the
� = 0 instability (at least forU0 = 0), so we do not consider this further.We instead study horizontal
field, where having � �= 0 can enhance instability. We takeU0 = 0 to keep the problemmanageable.
We omit straightforward but messy details and in fact will only go up to first order in perturbation
theory.

Our starting point is equations (45), (46) with n replaced by n + �, and we consider only the
modesΩ0,Ω±1, A0, A±1. We set, as in the original horizontal field problem (Appendix A),

Ω0 = k2Ω ′
0, B̃0 = B0/η. (D.1)

Once we have � �= 0 in the problem, we have to ask how � scales as k → 0. It turns out that the
appropriate scaling to gain useful results is

� = k�′ = O(k), (D.2)

so we hold �′ and Ω ′
0 constant while k → 0. We now follow the usual procedure of making these

substitutions, expressing the equations in terms ofΩ0,Ω±, A0, A± and writing the system asMv =
pv andM = M0 + kM1 + · · · with

v =

⎛
⎜⎜⎜⎜⎜⎝

Ω ′
0

Ω−
A+
A0
A−
Ω+

⎞
⎟⎟⎟⎟⎟⎠ , M0 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 2�′iB̃0 2�′
0 −ν iB0 0 0 0
0 iB0 −η 0 0 0
0 0 0 0 0 0
0 0 0 0 −η iB0
0 0 0 0 iB0 −ν

⎞
⎟⎟⎟⎟⎟⎠ , (D.3)

and

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − 3�′2 iB̃0(1 + �′2) iB0�′(1 + �′2) 0 0
1
2 (1 + �′2)−1 0 0 0 iB03�′ −2�′ν

1
2 iB̃0(1 + �′2)−1 0 0 0 −2�′η −iB0�′

iB0�′(1 + �′2)−1 0 0 0 1 iB̃0
0 −iB0�′ −2�′η − 1

2 0 0
0 −2�′ν iB03�′ − 1

2 iB̃0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (D.4)

It is convenient to set

Δ−1 = νη + B20. (D.5)
We are now ready to calculate p. The matrixM0 has lost the attractive block structure present in the
earlier expansions as a consequence of the scaling of �. NonethelessM0 has a double zero eigenvalue
p0 = 0 with right eigenvectors

v†0 = (1, 0, 0, 0, 0, 0)T , v‡0 = (0, 0, 0, 1, 0, 0)T , (D.6)

and left eigenvectors

w0† = (1, 0, 0, 0, 2�′Δη−1iB0(ν + η), 2�′Δη−1(η2 − B20)), w0‡ = (0, 0, 0, 1, 0, 0). (D.7)

In the previous case of a double-zero eigenvalue (in Appendix C) we anticipated the structure of v0
(as dominated by the hydrodynamic fieldΩ0). Here we cannot do so and so we set

v0 = bv0† + cv0‡, (D.8)

for some constants b and c.
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Now, looking at the first-order equation (A.16), namely p1v0 = (M0 − p0)v1 + M1v0 with p0 =
0, we can apply either of the two vectors w0† and w0‡ on the left, to gain two equations,

p1b = w0†M1v0 = iB0�′[1 + �′2 +Δη−2(B20 − νη − 2η2)]c, (D.9)

p1c = w0‡M1v0 = iB0�′(1 + �′2)−1b. (D.10)

Together, these yield

p21 = −B20�
′2[1 + (1 + �′2)−1Δη−2(B20 − νη − 2η2)], (D.11)

and so, putting back �′ = �/k and� we find the growth rate as

p = ±B0�
[

k2

�2 + k2
νη + 2η2 − B20
η2(νη + B20)

− 1
]1/2

+ · · · . (D.12)

We have gained this equation by only going to the first-order matrixM1, but it reveals an instability
that crucially relies on having a non-zero Bloch wavenumber, � �= 0. We continue our discussion in
the main body of the paper, from (55).
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