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Cooperative edge caching enables edge servers to jointly utilize their cache to store popular contents, thus drastically

reducing the latency of content acquisition. One fundamental problem of cooperative caching is how to coordinate the cache

replacement decisions at edge servers to meet users’ dynamic requirements and avoid caching redundant contents. Online

deep reinforcement learning (DRL) is a promising way to solve this problem by learning a cooperative cache replacement

policy using continuous interactions (trial and error) with the environment. However, the sampling process of the interactions

is usually expensive and time-consuming, thus hindering the practical deployment of online DRL-based methods. To bridge

this gap, we propose a novel Delay-awarE Cooperative cache replacement method based on Oline deep Reinforcement

learning (DECOR), which can exploit the existing data at the mobile edge to train an efective policy while avoiding expensive

data sampling in the environment. A speciic convolutional neural network is also developed to improve the training eiciency

and cache performance. Experimental results show that DECOR can learn a superior oline policy from a static dataset

compared to an advanced online DRL-based method. Moreover, the learned oline policy outperforms the behavior policy

used to collect the dataset by up to 35.9%.

CCS Concepts: · Networks→ Network services; · Computing methodologies→ Reinforcement learning.

Additional Key Words and Phrases: Oline deep reinforcement learning, cache replacement, convolutional neural network,

edge computing, smart city

1 INTRODUCTION

As one of the prominent characteristics of the smart city, the ever-increasing amount of mobile data traic is
constantly being generated by various mobile devices and smart applications from diferent sectors like industry
[43], healthcare [47], transportation [20], and social network [44]. Ericsson predicts that mobile data traic is
expected to grow around 4.2x from 2021 to 2027 [5]. Such a vast amount of mobile data traic poses grand
challenges on the communication network of the smart city, causing a series of problems such as infrastructure
overload and network congestion, which inevitably reduces Quality-of-Experience (QoE) to be perceived by
users.
Mobile edge caching is one of the core technologies of the smart city to solve the above problem by storing

contents in cache-equipped edge servers closer to users [24]. Therefore, users can directly obtain contents from
the nearby edge servers instead of the remote cloud, reducing the transmission delay and improving the QoE.
Due to the limited storage of the edge servers, only popular contents are cached on the edge servers to exploit the
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potential of the mobile edge caching as much as possible. However, the content popularity is usually unknown
in advance and varies with user preferences. Thus the edge servers need to determine how to continuously
replace the cached contents with new popular ones to meet users’ dynamic requirements. Although the cache
replacement problem has been exhaustively studied [36], most of them focus on a single edge server scenario,
requiring each edge server in the smart city executes an independent cache replacement policy. However, such
approaches would result in an insuicient utilization of the limited storage since multiple edge servers may
redundantly store the same popular contents [32]. A practical solution is to enable the edge servers to share the
cached contents with their nearby servers for cooperative edge caching. In this case, an edge server may tend to
cache contents other than the popular contents already cached in a nearby server to meet more requirements [3].
Compared with the single edge cache replacement problem, the cooperative cache replacement problem should
also consider the coordination between servers to avoid caching too many redundant contents, and it is proven
to be NP-hard [39].
Reinforcement learning (RL), developed for solving decision-making problems, is naturally a promising

approach for solving the cooperative cache replacement problem. By introducing deep neural networks (DNNs)
with powerful representation ability [42], deep RL (DRL) can efectively handle the complex communication
network state of the smart city. Recently, online DRL has been proven to automatically learn a cooperative
cache replacement policy by continuously interacting with the environment [27, 30, 35]. However, these works
emphasize the superiority of online DRL but ignore the potential risks brought by the exploration nature of
online DRL. To ind an excellent cooperative cache replacement policy, the online DRL agent would execute
diferent replacement decisions to explore better decisions. During this process, it also inevitably explores poor
decisions, thus degrading the cache performance. In addition, the policy requires a large number of interactions
to be well-trained, and the interaction collection is expensive and time-consuming.

To address the above two challenges, we propose a novel Delay-awarE Cooperative cache replacement method
based on Oline DRL (DECOR). DECOR decouples the interaction phase from the policy training, so no matter
how bad the policy becomes during training, it does not afect the cache performance in the actual environment.
In addition, the policy can be directly trained with historical log data that already existed in the network without
interacting with the environment.

• We develop a powerful and efective scheme named DECOR for cooperative cache replacement scheme,
making use of advanced oline DRL to improve cache performance and enhance user experience. Compared
to the advanced online DRL-based method, DECOR can successfully learn a superior policy from a static
dataset without interacting with the environment.
• We formulate the problem of real-time cooperative cache replacement without prior knowledge of content
popularity as a delay-minimization problem, where the efect of the delayed hits mechanism in reducing
transmission delay is explicitly discussed. To handle the uncertainties and dynamic nature of the environ-
ment, we model the optimization problem as a Markov Decision Process (MDP) to support solving by the
oline DRL.
• We design a multi-head Convolutional Neural Network (CNN) to achieve parallel processing of content
popularity for diferent servers while preventing information interference among them. Each head in the
network is dedicated to extracting temporary features of content popularity from the data associated with
a speciic edge server.
• We undertake extensive experiments to thoroughly validate the eiciency of DECOR. The user requests
and preferences are simulated using a real-world dataset called Movielens. The experimental results reveal
that the oline policy learned by DECOR surpasses both the default behavior policy and the policy learned
by an advanced online DRL-based method in interactions with a static dataset.
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The rest of this paper is organized as follows: The related work on the cooperative cache replacement problem
is reviewed in Section 2. Section 3 briely introduces the background of RL and delayed hits. Section 4 discusses
the system model including three parts: network, fetching delay, and delivery delay models, and then presents
the problem formulation of cooperative edge caching with delayed hits. The details of DECOR are shown in
Section 5. Section 6 describes the experimental setting and gives detailed analysis of the experimental results.
Finally, the conclusion of this paper is presented in Section 7.

2 RELATED WORK

The cooperative cache replacement problem has attracted many researchers to fully utilize the insuicient storage
of edge servers [34]. Since the problem is NP-hard, heuristic-based methods are feasible candidates for solving it in
low time complexity, thus meeting users’ dynamic requirements promptly. Wang �� �� . [28] developed a heuristic
cooperative cache replacement scheme for zone-based cooperative content caching and delivering in large radio
access networks. The scheme divides the edge server storage into two parts to separately cache locally popular
contents and globally popular contents. Zhang �� �� . [38] proposed a greedy cooperative caching algorithm to
proactive replace the cached layered video iles during of-peak hours to reduce the total transmission delay.
However, these works have an impractical assumption that the content popularity is known in advance. Some
researchers tried extracting the content popularity from historical information to address this issue. The solution
developed in [40] predicts user preferences based on the users’ request history and social information, which
is further used to optimize the cache replacement policy into a low-complexity heuristic algorithm. Although
the performance of heuristic-based methods is usually good enough, their design relies heavily on an expert
understanding of the environment and requires too much time and human resources.

DRL has already yielded remarkable results in solving cooperative cache replacement problems in recent years
[7]. It can automatically learn the cooperative cache replacement policy by interacting with the environment
without knowing the content popularity. Xu �� �� . [35] proposed a deep deterministic policy gradient-based
algorithm to decide the cache decisions and plan users’ mobility trajectories inside a cooperative caching domain
in a global view and developed a cross-domain content delivery method. Instead of the content popularity-based
policy, Song �� �� . [25] proposed a QoE-driven cache replacement method based on DRL in the cooperative
edge caching-aided vehicle networks. Unlike the above centralized DRL, a multi-agent DRL is used in [27] to
enable each edge to learn its optimal local policy while cooperating with other edges in a decentralized manner.
Wang �� �� . [30] used a deep Q-learning (DQN) network to jointly decide the cache node selection and content
replacement for a device-to-device assisted collaborative edge caching scenario. The approach incorporates DQN
into a federated learning framework to improve training eiciency. The DRL methods used in the above work
operate in an online fashion, requiring continuous interaction with the environment to sample a large amount
of data for training an ideal agent. Unfortunately, the sampling process is typically costly and time-consuming.
Moreover, the trial-and-error nature of DRL may lead to performing poor cache replacement decisions during the
online training process, thereby deteriorating the performance of the edge caching system.

To cope with the limitations of online DRL, oline DRL has been proposed and has demonstrated excellent and
reliable performance in diferent ields [22]. A decentralized approach based on the oline DRL algorithm has
been proposed in [10] to address the task of cooperative spectrum sensing in a cognitive radio network. In this
approach, each secondary user utilizes a local Conservative Q-Learning (CQL) model to determine the presence
of licensed users based on their local sensing, while a fusion center employs another CQL model to make a global
decision by aggregating the results from all local CQL models. Zhan �� �� . [37] developed a model-based oline
RL framework for optimizing the combustion eiciency of thermal power generating units. The framework
initially trains a simulator oline using real datasets and subsequently utilizes a combination of real and simulated
datasets to train the RL agent oline. Xiao �� �� . [33] formulated the interactive recommendation as a probabilistic
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inference problem. To solve this problem, the authors incorporated several regularization techniques into an
online DRL algorithm to train an RL agent oline. While oline DRL has been successfully applied in various
real-world scenarios, there remains a notable gap in its application to the edge caching replacement problem.

3 BACKGROUND

‘

3.1 Reinforcement Learning

RL has recently shown extraordinary potential in many domains, such as wireless charging [17], video games [18],
task scheduling [45], and computation oloading [23]. The decision-making problem solved by RL is modeled
as an MDP that is denoted as a 5-tuple < �,�,� , �,� >, where � , �, � : � × � → � , � : � × � → R are the
state space, action space, state transition probability matrix, and reward function, respectively. � ∈ (0, 1) is a
discount factor. At each time step � , the RL agent receives a state �� from the environment and follows a policy
� (�� |�� ), which is a probability of taking action �� when receiving the state �� , to produce an action �� to the
environment. The environment executes �� and transits to the next state �� by following the state transition
probability matrix � (��+1 |�� , �� ), then generates an immediate reward �� (�� , �� ) simultaneously. The environment
returns the new state ��+1 and reward �� (�� , �� ) to the RL agent. The RL agent repeats the above interactions
until the decision-making process ends and samples a trajectory �� = (�0, �0, �0, �1, �1, �1). We can obtain the
accumulated reward when starting at the time step � as follows:

�� =

∞︁

�=0

����+� . (1)

The true action value �� (�� , �� ) = E� [�� |�� , �� ] of the policy � , also regarded as the Q-value, is the expected
accumulated reward when following the policy after executing action �� for a given state �� . It evaluates how good
a state-action pair is and can guide how to select actions to achieve the highest accumulated reward. However, due
to a large number of trajectories, it is challenging to compute �� (�� , �� ) directly with them. We use a Q-function
�� (�� , �� ) to approximate �� (�� , �� ) and calculate it through Bellman Operator �� :

���
� (�� , �� ) = E��+1 [�� + ��

� (��+1, � (��+1 |��+1))] . (2)

�� (�� , �� ) eventually converges to the true Q-value �� (�� , �� ) by continually updating using the operator. An
optimal function can be determined by �∗ (�� , �� ) = max� �

� (�� , �� ), and its corresponding optimal policy, which
RL aims to ind, can be obtained by �∗ (�� |�� ) = argmax�� �

∗ (�� , �� ).

3.2 Delayed Hits

The worklow of edge caching is that: when users send requests to an edge server for some contents, if the
contents are cached in the server (regarded as cache hits), the server can return them to users immediately. If the
contents do not exist in the server (regarded as cache misses), the fetching processes for the missed contents are
triggered to retrieve them from the cloud. When the missed contents arrive at the server from the cloud, the
server returns them to the users.
In traditional edge caching-aided network models, the fetching processes triggered by diferent requests are

independent, leading to intense competition for the link resources between the cloud and edge servers, thus
signiicantly increasing the transmission delay of requests. The problem is evenmore severe in a massive explosion
of requests like the smart city. The delayed hits mechanism is a simple but eicient method to solve the problem:
when a request for a missed content triggers a fetching process, all subsequential requests for the same missed
content share the fetching process without triggering new ones before the missed content has been retrieved from

ACM Trans. Sensor Netw.



Intelligent Cooperative Caching at Mobile Edge based on Ofline Deep Reinforcement Learning • 5

Fig. 1. Example of the edge caching with/without delayed hits. Both have the same steps 1-2. Transparent step 3 uses the

delayed hits mechanism, but opaque steps 3-4 do not use it.

the cloud [1]. A simple example of the diferences between edge caching with/without delayed hits is illustrated
in Fig. 1. Suppose that the content size of the red content is �� unit, and the bandwidth of the link between the
cloud and edge server is 1

2�� unit per second. At any given time, each user can only have one request being
served. At time � , a request �1 from one user arrives at the edge server for the red content, triggering a fetching
process. The process is expected to be completed at time � + 2. At time � + 1, before the fetching process triggered
by �1 is completed, a second request �2 from another user arrives at the server, triggering a new fetching process
for the same content if the delayed hits mechanism is not used. The new fetching process competes for the link
resource with the previous one, causing the fetching delay of both to be extended. As a result, the fetching delay
of �1 and �2 is 3. When the delayed hits mechanism is introduced, �2 chooses to wait for the completion of the
fetching process triggered by �1 instead of arising a new one. Then, the red content arrives at � + 2 to serve both
�1 and �2. In this case, the fetching delay of �1 and �2 is reduced to 2 and 1, respectively.

4 SYSTEM MODEL

In this section, we irst present the network model of the cooperative edge caching-aided mobile edge computing
(MEC) network. Then, the fetching and delivery delay models are discussed in detail. Finally, we formulate the
cooperative cache replacement problem as an optimization problem based on the above three models.

4.1 Network Model

As shown in Fig. 2, we consider a fundamental cooperative edge caching-aided MEC network which consists of
a remote cloud with unlimited cache capacity, � base stations (BSs) equipped with cache-aided edge servers,
and multiple users, where the BSs are connected with the cloud via wired backhaul links, the BSs are connected
with others via wired bi-directional links, and the users are communicated with the BSs via wireless fronthaul
links. The topology of BSs is deined as G = {V, E}, whereV = {�1, �2, ..., �� , ...�� } is the set of BSs with size
� , and E = {�1,1, �1,2, ..., ��,�−1, ��,� } is the set of connections between BSs with size � × � . If �� is connected
to �� , ��,� = ��,� = 1 and its corresponding link bandwidth ��,� = ��,� > 0; Otherwise ��,� = ��,� = 0 and
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Fig. 2. Architecture of the cooperative edge caching-aided mobile edge computing network. The dashed arrows represent

the process of content request for light-colored contents, and the solid arrows represent the process of content delivery

for dark-colored contents. The colored arrows represent the request/delivery processes of content corresponding to their

respective colors.

��,� = ��,� = 0. It should be noticed that ��,� = 0. We consider �� and �� are neighboring if ��,� = ��,� = 1.
Each BS covers a speciic area of users to serve them, and the service coverage of all BSs is non-overlapping. The
bandwidth size of the backhaul links is the same as �0,� = ��,0 = �� , where 0 is the index of the remote cloud.

We assume that there is a content library containing a series of contents with diferent indexs C = {1, 2, ...,�}
in the remote cloud, and there are � users requesting the contents in the library. All contents have the same size
as 1 unit [11, 46], and we can divide contents of diferent sizes into multiple small slices with the same size to
achieve this assumption. It is assumed that the limited storage space of all BSs has the same size as � unit, where
� << � indicates that only a small portion of the contents can be cached on the BSs.

The service process of the cooperative edge caching-aided MEC network will last for a long term. During this
term, the contents in the library are constant. To detect changes in MEC network status in real-time, we equally
split the service term into multiple small timeslots, denoted as T = {1, 2, ..., �, ...,� }, and record the network
status at the beginning and the end of each timeslot. This time division method can also be extended to a service
process that does not have an explicit termination time but does have a terminal state. In this case, � represents
the timeslot when the service process reaches the terminal state. At the beginning of the timeslot � , the BS ��
receives some new requests A�,�

= {��,�1,1, �
�,�
1,2, ..., �

�,�
�, � , ..., �

�,�
� ,�−1, �

�,�
� ,�
} from users without knowing the content

popularity, where ��,��, � ∈ {0, 1}. �
�,�
�, � = 1 means that a new request demanding the content � from the user � to the

BS �� is raised in the timeslot � ; Otherwise, ��,��, � = 0. Apart from these newly arrived requests, �� has some old

requests that still need to be processed. We deine an entire request set of �� at the beginning of the timeslot

� to contain all old and new requests as D�,�
= {��,�1,1 , �

�,�
1,2 , ..., �

�,�
�, � , ..., �

�,�
� ,�−1, �

�,�
� ,�
}, where ��,��, � ∈ {0, 1}. �

�,�
�, � = 1

means that a request demanding the content � from the user � exists on the �� at the beginning of the timeslot � .

Similarly, the request set of �� at the end of the timeslot � can be deined as D
′�,�

= {�
′�,�
1,1 , �

′�,�
1,2 , ..., �

′�,�
� ,�
}. In each
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timeslot, only one request per user can be served by the MEC network:
︁

�

︁

�

��,��, � ≤ 1,
︁

�

︁

�

�
′�,�
�, � ≤ 1,∀�, �; (3)

Besides, users can raise new requests only if their existing requests are successfully processed:
︁

�

︁

�

(�
′�,�
�, � + �

�+1,�
�, � ) ≤ 1,∀�, �; (4)

According to the above constraints, we can deduce that:

��+1,��, � = �
′�,�
�, � + �

�+1,�
�, � . (5)

In the timeslot � , the set of contents cached on �� is denoted as�
�,� , which is also regarded as the cache strategy

of �� . If the content � is cached on �� during the timeslot � , then � ∈ � �,� ; Otherwise, content � ∉ � �,� and it is
missed on �� . According to the worklow of edge caching, we can ind that the transmission delay of requests
is divided into three parts: request sending delay, content fetching delay, and content delivery delay. Since the
size of requests is much smaller than the size of contents, compared with the content fetching delay and content
delivery delay, we can ignore the request sending delay.

4.2 Fetching Delay Model

In this model, we explicitly consider the impact of delayed hits. When multiple fetching processes are triggered
for the same missed content, only one fetching process is executed. The current requests and the subsequential
arrived requests for the missed content share this fetching process before the process ends. For each BS, each
content corresponds to one fetching process. Considering that BS can fetch missed contents from the cloud or

the neighboring BSs, we use X�,�� = {�
�,(0,� )
� , �

�,(1,� )
� , ..., �

�,(�,� )
� , ...�

�,(�,� )
� },� ≠ � to indicate where �� fetches the

missed contents from. �
�,(�,� )
� ∈ {0, 1} where �

�,(�,� )
� = 1 means that �� fetches the missed content � from server

�� in the timeslot � . When� = 0, �� fetches the missed content from the cloud. If �� is not connected to �� , it
cannot fetch contents from �� , so we have the following:

�
�,(�,� )
� ≤ ��,� ,∀�, � ; (6)

Since there is at most one fetching process per BS for the same content in each timeslot, we also have:

�≠�︁

�

�
�,(�,� )
� ≤ 1,∀�, �, � ; (7)

The delayed hits mechanism can efectively reduce the frequency of fetching the same content but cannot
avoid the fetching of diferent contents. When multiple fetching processes for diferent contents coexist, they
inevitably compete for bandwidth resources. This problem becomes more complex when cooperation is required
among multiple BSs. Furthermore, over time, some ongoing fetching processes will be resolved while some new
processes are triggered, resulting in dynamic changes in the fetching rate for each process. To solve the above
problems, our model needs to perceive the state of each fetching process in real-time. The fetching process of
content � at the beginning of the timeslot � on the BS �� is recorded by using the remaining size of the content �

that still needs to be fetched, denoted as � �,�� . Meanwhile, we use �
′�,�
� to record the remaining size of the content

� at the end of the timeslot � . � �,�� can be determined according to two diferent cases: in timeslot � , (1) there are

new requests for a missed content � to trigger a new fetching process on the BS �� ; (2) there is no new fetching
process triggered on �� . For case (1), when there does not already exist a fetching process for the content � , the
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Table 1. Summary of Main Notations

Notation Description

I(·) The value is 1 if the condition within parentheses is true; Otherwise, the value is
0.

C The content library in the remote cloud.
� The total number of content types.
� The number of BSs.
� The cache storage size of each BS.

A�,� The set of requests arriving at the BS �� in the timeslot � .

��,��, � The value is 1 if a new request from the user � for the content � arrives at �� at the
beginning of the timeslot � ; Otherwise, the value is 0.

D�,� The set of requests exists on �� at the beginning of the timeslot � .

��,��, � The value is 1 if the request from the user � for the content � exists on �� at the
beginning of the timeslot � ; Otherwise, the value is 0.

D
′�,� The set of requests exists on �� at the end of the timeslot � .

�
′�,�
�, � The value is 1 if the request from the user � for the content � exists on �� at the

end of the timeslot � ; Otherwise, the value is 0.

X �,�� Determine the source node of the fetching process for the missed content � .

�
�,(�,� )
� The value is 1 if �� fetches themissed content � from �� in the timeslot � ; Otherwise,

the value is 0.

� �,� The cache strategy of �� in the timeslot � .

O
′�,� The set of contents fetched from �� ’s neighboring BSs or the remote cloud at the

end of the timeslot � .

� �,�� The remaining size of the content � to be fetched from �� at the beginning of the
timeslot � .

�
′�,�
� The remaining size of the content � to be fetched from �� at the end of the timeslot

� .

� �,�� The average fetching rate from �� to �� in the timeslot � .
� The decision-making policy for replacing cached contents of all BSs with their

newly arrived contents.

�����,��, � The value is 1 if �� delivers the content � to the user � in the timeslot � ; Otherwise,
the value is 0.

� �,��, � The remaining size of the content � to be delivered from �� to the user � in the
timeslot � .

� �,�� The delivery rate from �� to the user � in the timeslot � .

content � is not cached on the BS �� , and new requests for the missed content � arrive at �� , a new fetching

process is triggered, and the remaining size � �,�� becomes to 1:

� �,�� (���) = I(�
′�−1,�
� == 0) × I(

︁

�

��,��, � > 0) × I( � ∉ U �,� ), (8)

where I(·) = 1 if and only if the condition within parentheses is true; Otherwise, it is 0.

ACM Trans. Sensor Netw.
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When a new fetching process for the missed content � is triggered, we must determine where to fetch it. Here,
we provide a simple source node selection method. Since all fetching processes equally share the the BS-to-BS
links between the BSs, we can easily calculate the average fetching rate of all links from �� ’s neighboring BSs to
�� in the timeslot � − 1 by:

� �−1,�� =
��,�

max{
∑
� �

�−1,(�,� )
� , 1}

, (9)

where the max operator ensures that if there is no fetching process from the neighboring BS to �� , the average
fetching rate equals the link bandwidth per timeslot. Then we choose the neighboring BS that owns the highest
average fetching rate in the timeslot � − 1 and has cached the missed content � in the timeslot � as the source
node:

�
�,(�,� )
� =





��,� × I( � ∈ U
�,�) × I(� == argmax�{�

�−1,�
1 , ..., � �−1,�� , ..., � �−1,�

�
}), � � � �,�� (���) == 1;

�
�−1,(�,� )
� , � � �

′�−1,�
� > 0;

0, ��ℎ������ ;

(10)

It should be noticed that the source node does not change during the fetching process. If all neighboring BSs of
�� do not cache the missed content � , the remote cloud is selected as the source node:

�
�,(0,� )
� = I(

�︁

�=1

�
�,(�,� )
� == 0), � �,�0 =

��

max{
∑
� �

�,(0,� )
� , 1}

; (11)

Here, it can be found that the fetching rate of all links is calculated in real-time. When new fetching processes
occur and compete for link resources, the fetching rate of old fetching processes decreases, thus increasing the
fetching delay. When old fetching processes are resolved and the required contents arrive at the target BSs, the
fetching rate of other fetching processes also increases, thus reducing the fetching delay.

Then, we can calculate �
′�,�
� by subtracting the fetching size of the content � during the timeslot � from � �,�� :

�
′�,�
� = max{� �,�� −

�︁

�=0

�
�,(�,� )
� × � �,�� , 0}. (12)

If there is no new fetching process triggered in case (2), � �,�� can be directly determined according to the

remaining size of the content � at the end of the timeslot � − 1, �
′�−1,�
� :

� �,�� (���) = �
′�−1,�
� ; (13)

We use � �,�� (���) to represent that the fetching process for content � is still in resolving. It should be noted that if

there is no fetching process for content � , we can still use the equation to calculate the remaining size of the
content since it always remains 0 until a new fetching process is triggered.

By combing the above two cases, � �,�� can be determined by:

� �,�� = max{� �,�� (���), �
�,�
� (���)}. (14)

When � �,�� > 0 and �
′�,�
� == 0, the fetching process for the missed content � is successfully completed at the

end of the timeslot � , which means that the missed content � arrives at �� from the source node. We deine the set
of all newly arrived contents at the end of the timeslot � as:

O
′�,�

=

1≤ �≤�⋃

� �,�� ×I(�
′�,�
� ==0)>0

{ �}; (15)
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Because the content library is constant during the service term, only the contents that exist in the library can be
fetched. So the range of � is between 1 and � .

After that, we use a cooperative cache replacement policy � to update the cache strategies of all BSs with their
newly arrived contents:

{U �+1,1,U �+1,2, ...,U �+1,� } = � (U �,1 ∪ O
′�,1;U �,2 ∪ O

′�,2; ...;U �,� ∪ O
′�,� ). (16)

4.3 Delivery Delay Model

The delivery delay model is built upon the fetching delay model. The BSs can only deliver contents to the users if
the requests already exist on the BSs and their required contents arrive at the BSs, or if new requests arrive at the
BSs and ind their required contents already cached on the BSs. The BSs do not deliver contents to users if there
are no requests from users or the contents required by requests are in the fetching processes. According to the

above conditions, we set �����,��, � to judge whether �� delivers the content � to the user � in the timeslot � :

�����,��, � =




1, � � (I( � ∈ O
′�−1,� ) × �

′�−1,�
�, � ) ∨ (��,��, � × I( � ∈ �

�,� )) == 1;

0, � � �
′�−1,�
�, � + ��,��, � × I( � ∈ �

�,� ) == 0;

�����−1,��, � , ��ℎ������;

(17)

Here, we use � �,��, � to record the remaining size of the content � from �� to the user � in the timeslot � :

� �,��, � =

{
1, � � ��,��, � == 1;

max{� �−1,��, � − �����−1,��, � × � �−1,�� , 0}, ��ℎ������.
(18)

The delivery rate � �,�� from �� to the user � can be calculated by � �,�� = � log2 (1 + ����
�,�
� ) according to the

Shannon capacity formula [31]. All wireless channels have the same bandwidth B, and �����,�� is the signal-
interference-noise ratio (SINR) from �� to the user � in the timeslot � :

�����,�� =
�� × |ℎ

�,�
� |

2

�2 +
∑
�≠� |ℎ

�,�
� |

2
, (19)

where �� is the transmit power of �� , �
2 is the power of background additive noise, and |ℎ�,�� |

2 is the channel
gain between �� and the user � .

Then, we can deduce the value of �
′�,�
�, � according to � �,��, � :

�
′�,�
�, � =

{
1, � � � �,��, � − ����

�,�
�, � × �

�,�
� > 0;

0, ��ℎ������.
(20)

4.4 Problem Formulation

This paper aims to ind a cooperative cache replacement policy to minimize the transmission delay of requests in
the network over a long term. From the system model, we can ind that the transmission delay is afected by the
subsequential requests and the dynamic channel features, so it is hard to calculate the transmission delay directly.
To solve this issue, we count the number of requests in the network for each timeslot in real-time and obtain
the total transmission delay of all requests during the service term by accumulating the request number for all
timeslots. Therefore, we formulate the cooperative cache replacement problem as an optimization problem as
follows:

ACM Trans. Sensor Netw.



Intelligent Cooperative Caching at Mobile Edge based on Ofline Deep Reinforcement Learning • 11

Fig. 3. DECOR System Framework. The environment component first samples a static dataset using the behavior policy

�� during execution. Then training component trains a policy ofline � based on the dataset. In the training process, the

training component does not interact with the environment component. Finally, the behavior policy �� is replaced with the

well-trained ofline policy � .

min
�

︁

�

︁

�

︁

�

︁

�

��,��, � ,

� .� . �1 : (3), (4), (6), (7),

�2 : � �,� ∩ O
′�,�

= ∅,∀�, �,

�3 : |� �,� | ≤ �,∀�, �,

�4 : |� �,� | + |O
′�,� | ≤ �,∀�, �,

�5 :
∑�
�=0 �

�,(�,� )
� ≤ 1,∀�, �, �

(21)

where constraint 2 ensures that the newly arrived contents of each BS are not already cached on the local
BS; Constraint 3 guarantees that the number of cached contents does not exceed the storage capacity of each
BS; In the cooperative edge caching-aided mobile edge computing network where a massive number of users
simultaneously request diferent contents, the limited cached contents on the BSs are insuicient to meet the
demands of such a substantial user base, necessitating continuous fetching of new contents from the cloud or
neighboring BSs. Constraint 4 emphasizes that the sum of the number of cached content types and the number
of the newly arrived content types is, at most, the number of cloud content types, which enforces that users can
only request the contents that exist in the content library; Constraint 5 enforces that there only exists one source
node for each fetching process on each BS. The main notations of the system model are presented in Table 1.

5 DECOR: A DELAY-AWARE COOPERATIVE CACHE REPLACEMENT METHOD BASED ON

OFFLINE DRL

The delay-aware cooperative cache replacement method based on oline DRL named DECOR is proposed in this
section in detail. First, we outline the DECOR system framework and explain how it works. Next, we model the
cooperative cache replacement problem to an MDP model and discuss our design concept. Then, we present the
structure of the Q-function neural network. Finally, the oline DRL algorithm is presented.
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12 • Z. Wang et al.

5.1 DECOR System Framework

The DECOR system framework is illustrated in Fig. 3, containing two components, an environment component
and a training component. The environment component utilizes a behavior policy to constantly interact with the
cooperative edge caching-aided MEC network to update the BSs’ cache strategies. The behavior policy is deployed
in the cloud. In each timeslot, it receives the local states from all BSs and produces actions for them. Then the
cloud sends the actions to the corresponding BSs. After the BSs execute these actions, they send new local states
and rewards to the cloud. During this process, the cloud stores the states, actions, and rewards in a static dataset.
The training component uses the static dataset to train an oline policy until the policy is well-trained. During
the training process, the training component does not interact with the environment component, which means
that even if the environment component samples new data, these data are not used in the training process [15].
At the same time, changes in the performance of the oline policy during the training process have no impact on
the execution of the MEC network. After the oline policy is well-trained, it will replace the behavior policy to
interact with the MEC network.

5.2 The Cooperative Edge Caching MDP Model

To apply the oline DRL to the cooperative edge caching problem, we should irst model this problem as an MDP.
We should carefully design the state space, action space, and reward function to ensure training convergence
and improve the cache performance. Moreover, the behavior policy is not limited to DRL-based methods, it
can also be heuristic-based or even rule-based methods (e.g., Least Recently Used (LRU), Least Frequently Used
(LFU), First In First Out (FIFO)), which implies that the structure of the collected dataset may not meet the
requirements of an MDP for the state, action, and reward. Therefore, the state space, action space, and reward
function should be designed in a form that can be eiciently extracted from raw data. Furthermore, because the
cloud should frequently communicate with the BSs to exchange states, actions, and rewards, they should be
lightweight to reduce communication costs. Based on the above considerations, the state space, action space, and
reward functions are deined as follows:

• State Space: Local states of all BSs construct the state observed by the decision-making policy �� =

{�1� ; �
2
� ; ...; �

�
� ; ...�

�
� }. The local state design for each BS is similar. First, the local state should contain infor-

mation that can relect the content popularity because caching popular contents can eiciently avoid BSs
frequently fetching contents from the cloud or the neighboring BSs, thus reducing the transmission delay. To
relect content popularity, we use the past requested content history as part of the local state ��� . We deine

the requested history of cached contents asXk
t = (x

k,1
t , xk,2t , ..., xk,lt , ...x

k,L
t ), where x

k,l
t = (��,�� , �

�,�
�−1, ..., �

�,�
�−�+1)

is a vector that records the requested history of �� in past � timeslots of the content cached in the �th loca-

tion, and ��,�� is the number of times the content cached in the �th location of �� has been required by new
requests in the timeslot � . Besides, the policy should also know the popularity of the newly arrived contents
to make cache replacement decisions. Similar to the cached contents, we deine the requested history of the

newly arrived contents as X
′k
t = (x

′k,1
t , x

′k,2
t , ..., x

′k,c
t , ...x

′k,C
t ). Since the amount of new contents is variable

which does not meet the ixed input size of DNN, we record the requested history of all contents instead of

the new contents and set the value of x
′k,c
t as 0 vector, where � ∉ O

′�,� . Apart from the content popularity,
the fetching rate should be considered because it afects the arrival of missed contents, thus inluencing the
cache replacement decision-making. The remaining size of contents to be fetched relects the information

of the fetching rate to a certain, so we use its history Fkt = (f
k,1
t , fk,2t , ..., fk,ct , ...fk,Ct ) as part of the local state,

where fk,ct = (� �,�� , � �−1,�� , ..., � �−�+1,�
� �

). Similarly, because the number of the fetching process is variable, we

record the history of all contents and set the value of fk,ct as 0 vector, where � �,�� == 0. Merging the parts of

the state, We have �� = {(X
1
t ,X

′1
t , F

1
t ); (X

2
t ,X

′2
t , F

2
t ); ...; (X

K
t ,X

′K
t , F

K
t )}.
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Fig. 4. Structure of the Q-function neural network

• Action Space: Local actions of all BSs construct the action produced by the policy �� = {�
1
� ;�

2
� ; ...;�

�
� ; ...�

�
� }.

The local action of each BS has a similar design, and we use the design of ��� as an example: in the timeslot

� , several missed contents O
′�,� arrive at �� . If O

′�,� + U �,� ≤ �, the missed contents can be directly cached
into �� . If O

′�,� + U �,� > �, �� should select some contents from U �,� to evict and choose the same number
of conents from O

′�,� to cache with the objective of minimizing the transmission delay. The eviction and
cache steps can be combined into one step, i.e., selecting � contents from O

′�,� ∪ U �,� to cache. In this case,

the local action space size of ��� is a combination number C
| O
′�,� |+|U �,� |

�
. However, the number of the newly

arrived contents O
′�,� is not ixed, but the output size of DNN is ixed, so we select � contents from the

content library C instead of O
′�,� ∪ U �,� . In this way, the local action space size of ��� is ixed as C�

�
.

• Reward Function: The cooperative cache replacement problem is formulated as an optimization problem
to minimize the total transmission delay of all requests. However, the objective of DRL-based methods is
to maximize the expected return. Thus, we deine the negative value of the number of requests in the BS

�� per timeslot as the local reward ��� (�
�
� , �

�
� ) =

∑
�

∑
� −�

�+1,�
�, � . Then, the reward function is the sum of the

local reward of all BSs:

�� (�� , �� ) =
︁

�

��� (�
�
� , �

�
� ) =

︁

�

︁

�

︁

�

−��+1,��, � . (22)

5.3 Neural Network Structure

According to the MDP model of the cooperative cache replacement problem, it can be easily found that the state
is time series data. How to eiciently extract information about the content popularity, fetching rate, and their
changing trends from the state needs to be considered. In addition, because we extend the action space size from

C
| O
′�,� |+|U �,� |

�
to C�

�
, there exists some invalid actions that cannot be executed in the MEC network. Therefore,

how to ilter invalid actions is another consideration.

ACM Trans. Sensor Netw.



14 • Z. Wang et al.

For the irst consideration, CNN has been proven to eiciently extract the temporary correlation features from
time series data in recent years [6, 12], so we use CNN to extract knowledge about the content popularity and
fetching rate from history. For the second consideration, we construct a mask layer to ilter the invalid actions
based on the information provided by the state. To be more speciic, we construct a multi-head CNN, where each
head processes the local state of one BS for extracting temporary knowledge about its content popularity and
fetching rate. For any of the BS, its local state contains three parts: the requested history of cached contents, the
requested history of newly arrived contents, and the fetching history of missed contents, where the requested
history of cached and newly arrived contents is related to the content popularity and the fetching history of
missed contents is related to the fetching rate. Due to the diference in the feature of the content popularity and
fetching rate, each head uses two 1-D CNNs to extract their knowledge separately, as shown in Fig. 4. Thus, the
number of 1-D CNNs in the Q-function neural network is 2 × � = 2� . For the local state ��� of the BS �� , its

corresponding 1-D CNNs are deined as ������ and �����
�
. We also set the number of input channels for each CNN

to be equal to the number of content types of its input, so the number of input channels for ������ is � +� , and

the number of input channels for �����
�
is � . The temporary knowledge vk,ct and vk,ft are produced as follows:

vk,ct = ������ ( [X
k
t ,X

′k
t ]), v

k,f
t = ������ (F

k
t ). (23)

To ensure that the local actions produced by the Q-function neural network are cooperative, it needs to
aggregate the temporary knowledge of all BSs to capture a global view, then jointly produce the local actions
for all BSs based on this view. Here, we concatenate the temporary knowledge of all BSs into a single vector as
the input of a two-layer fully connected neural network (FCNN), deined as � � , to jointly produce the Q-value
estimations for all actions:

qt = � � ( [v1,ct , v
1,f
t , v

2,c
t , v

2,f
t , ..., v

k,c
t , v

k,f
t , ..., v

K,c
t , vK,ft ]) . (24)

We choose the action with the highest Q-value from the Q-value estimation qt as the output. However, invalid
actions are sometimes estimated with high Q-values, causing the policy to select invalid actions that cannot
be executed. To ilter these invalid actions, we construct a mask layer, deined as����� , according to the state
�� to set the Q-values of invalid actions as −��� but not change the Q-values of valid actions. For any action
�� = {�

1
� ;�

2
� ; ...;�

�
� ; ...;�

�
� }, its Q-value can be updated by:

q
′t (�� ) =����� (q

t (�� )) =

{
qt (�� ), � �

∏
� �

�
� ∈ (O

′�,� ∪ U �,� );
−��� , ��ℎ������.

(25)

Then, we can calculate the probability of each action to be selected by inputting the Q-value estimation vector
qt into a softmax layer:

���� (�� ) =
�q
′t (�� )

∑
�̂� �

q
′t (�̂� ) )

; (26)

The probability of invalid actions is �−��� = 0, meaning that there is no chance of selecting invalid actions.

5.4 Ofline DRL Algorithm

The Q-function can constantly ix its estimated Q-values for state-action pairs < �� , �� > to approximate the true
Q-values using the ground truth rewards of the newly sampled data according to Equation 2. Unfortunately, this
approach does not work well in the oline scenario because only a static dataset, denoted as � , is available for
training, and no new data is provided. As the oline policy is continuously updated, it will gradually deviate from
the state access distribution of the dataset and explore some unseen state-action pairs outside the dataset. Because
the oline policy cannot interact with the MEC network to sample these unseen state-action pairs, it lacks the
ground truth rewards of the unseen pairs to ix their misestimated Q-values. These misestimated Q-values may
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guide the oline policy to select improper actions, thus degrading its performance. Moreover, using Equation 2,
the efect of the misestimated Q-values may be widespread to other estimated Q-values, making the estimated
Q-values of the seen state-action pairs wrong. The shift between the distribution of the oline policy and that of
the dataset caused by the oline policy updates is usually regarded as a distribution shift. It is a critical challenge
that needs to be addressed by the oline DRL.
Recently, many oline DRL algorithms have been developed to solve this challenge from diferent aspects.

However, most of them have a core idea: to require that the state access distribution of the oline policy does not
overly deviate from the state access distribution of the dataset. The authors in [8] use a conditional variational
auto-encoder (VAE) to it the distribution of the dataset and use a perturbation model to control the ofset range
between the distribution of VAE and that of the dataset. Advantage-Weighted Regression [21] adds KL-divergence
into the loss function to constrain the oline policy from deviating too much from the distribution of the dataset.
In this paper, we adopt an advanced oline DRL algorithm improved from CQL [14] to alleviate the distribution
shift. We incorporate the working mechanism of Double DQN (DDQN) [26] into CQL to make the estimates of
Q-values more conservative. The loss function of the improved CQL is presented as follows:

���� = � ¤(E��∼�� ,��∼� (�� |�� ) [�� (�� , �� )] − E�� ,��∼�� [�� (�� , �� )]) + ����� (�, �
−), (27)

where �� represents the distribution of the dataset. ����� (�, �
−) is the loss function of DDQN:

����� (�, �
−) =

1

2
E�� ,�� ,�� ,��+1∼�� [(�� (�� , �� ) − (�� + ��̂�− (��+1, argmax

��+1

�� (��+1, ��+1))))
2]; (28)

DDQN contains two neural networks: a Q-function network and a target Q-function network. It selects the next
state-action pair < ��+1, ��+1 > depending on the highest Q-value estimated by the Q-function network, and uses
the Q-values of the selected next state-action pair < ��+1, ��+1 > estimated by the target Q-function network
to compute the loss and update the neural network parameters. Here is the loss function of DQN used in the
original CQL:

���� (�, �
−) =

1

2
E�� ,�� ,�� ,��+1∼�� [(�� (�� , �� ) − (�� + � max

��+1
�̂�− (��+1, ��+1)))

2]; (29)

It is obvious that the value of the second part of ����� is closer or smaller than the value of the second part of
���� because the target Q-function network of DQN always selects the highest Q-value:

�� + ��̂�− (��+1, argmax
��+1

�� (��+1, ��+1)) ≤ �� + � max
��+1

�̂�− (��+1, ��+1); (30)

Therefore, after several updates, the Q-function network tends to be more conservative in estimating Q-values. In
this way, the estimated Q-values of the state-action pairs inside the dataset are closer to their true Q-values, and
the estimated Q-values of the state-action pairs outside the dataset are more conservative to prevent the oline
policy from exploring them. After that, we can ind the optimal Q-function by minimizing the loss function of
the improved CQL:

�∗� ← argmin
��

���� . (31)

The irst part of ���� enforces that all state-action pairs are estimated with low Q-values. The second part
of ���� encourages the Q-function network to give high Q-value estimates for the state-action pairs inside the
dataset. The third part uses the background truth reward provided by the dataset to approximate the estimated
Q-values to the true Q-values. By combining the three parts, ���� drives the Q-function network to select the
state-action pairs available inside the dataset and avoid choosing the unseen state-action pairs outside the dataset.
The hyperparameter � is a tradeof factor used to adjust the weight of the irst and second parts of ���� .

The details of the oline DRL algorithm are presented in Algorithm 1. At irst, the behavior policy �� deployed
in the cloud constantly interacts with all BSs to collect a static dataset. It should be noticed that �� can be derived
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Algorithm 1 Oline DRL Algorithm

1: Collect a dataset � with a behavior policy �� from the cooperative edge caching-aided MEC network.
2: Create a Q-function neural network � with randomly generated initial parameters � .

3: Create a target Q-function neural network �̂ with parameters �− = � .
4: for step � = 1, 2, 3, ..., � do

5: Randomly sample a minibatch of data from � to update �� using �� gradient steps with Equation. 27:
�� ← ��−1 − � ▽� ���� .

6: Every � steps reset �̂�− = �� .
7: end for

from rule-based, heuristic-based, or DRL-based methods. Then, we initialize the parameters of the Q-function
and target Q-function networks. After that, we constantly sample data from the dataset to compute the gradients
according to Equation. 27. The gradients are used to update the parameters of the Q-function network. The
update process will repeat multiple times until the Q-function network is well-trained. The parameters of the
target Q-function network are assigned with the parameters of the Q-function network at every � steps. The
hyperparameter � is the learning rate.

6 EXPERIMENT

This section evaluates the performance of DECOR and compares it to rule-based, deep learning (DL)-based, and
DRL-based methods, where the rule-based method, LRU, is used as the behavior policy to sample static datasets:

• LRU: In each timeslot, LRU will replace the contents not requested for the longest time with the newly
arrived contents. Each BS independently executes an LRU as its cache replacement policy.
• LFU: LFU will replace the least requested contents with the newly arrived contents.
• FIFO: FIFO will replace the earliest cached contents with the newly arrived contents.
• Belady: Belady [2] holds a view of future requests and will replace the contents not requested in the future
for the longest time with newly arrived contents. Although Belady cannot be perfectly realized in the real
world because we cannot obtain an accurate future view in the real environment, we can achieve a certain
level of Belady by using DL to predict future requests. In this work, we use Belady as the upper bound of
the rule-based methods to evaluate the superiority of our approach.
• DL: DL [16, 41] uses the states in the dataset as input and the actions in the dataset as outputs to learn
their mapping relationship. Here, we use the categorical cross-entropy loss function to minimize the error
between the given actions and the output actions so that the learned policy can be seen as a cloning policy
of the behavior policy. DL does not utilize the rewards in the dataset.
• DDQN: The online DDQN [29] collects data by interacting with the environment and stores them in a
replay bufer. Then, it samples a minibatch of data from the replay bufer to update the learned policy. After
that, the new policy is used to collect new data. The above steps repeat until the policy is well-trained. We
exchange the replay bufer with a static dataset and remove the data collection phase to apply DDQN in
the oline scenario.

6.1 Simulation Setup

We design a MEC simulation environment including a remote cloud and � = 2 BSs. We set the size of 1 unit as 1
GB so that the storage size of the two BSs is � = 3 GB. The number of wired backhaul links between the cloud
and BSs is 5, and the link bandwidth is 256 MB/s. The number of the BS-to-BS links between the BSs and their
bandwidth is set to 1 and 256 MB/s, respectively. For the wireless channel between the BSs and users, we set the
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transmit power of the BSs to �� = 46 dBm, and the channel bandwidth is � = 40 MHz [4]. Recently, video service
has become the major service in mobile networks [5], so we deine the content type as video. There are a total of
� = 10 video contents, and all contents have the same size of 1 GB.

We adopt a real-world dataset, Movielens [9], to simulate the request arrivals and user preferences by assuming
that each movie is one content and each movie rating item corresponds to a request [19]. Thus, a user rates a movie
at a speciic time can be seen as a request arriving at the edge server for the corresponding content simultaneously.
To simulate the explosion of user requests in the MEC network, we scale the time unit of Movielens from the
hourly level to the second level. To avoid losing generality, the two BSs have diferent request arrivals and user
preferences sampled from Movielens, shown in Fig. 5. The distribution of content popularity is calculated by:

ACM Trans. Sensor Netw.



18 • Z. Wang et al.

0

5

10

15

20

25

30

35

40

Av
er

ag
e 

tra
ns

m
iss

io
n 

de
la

y 
(s

ec
on

d)

DECOR
LRU
DDQN
DL
FIFO
LFU
Belady

Fig. 7. The cache performance comparision.

2 3 4 5 6 7 8
The storage size of BSs (GB)

10

20

30

40

50

Av
er
ag

e 
tra

ns
m
iss

io
n 
de

la
y 
(s
ec
on

d)

DECOR
LRU
LFU
FIFO
Belady

(a)

200 300 400 500 600 700 800 900
Wired link bandwidth (MB/s)

50

100

150

200

250

Av
er
ag
e 
tra

ns
m
iss

io
n 
de

la
y 
(s
ec

on
d)

DECOR
LRU
LFU
FIFO
Belady

(b)

Fig. 8. The impact of storage size and wired link bandwidth on the cache performance.
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The content popularity of all contents in distribution 1 is relatively close, which is quite diferent from distribution
2 where users prefer content 7 and 10 over others.

DECOR is based on a PyTorch implementation. The input channel number of 1-D CNN ����� is� + � = 13, and
���� � is � = 10 for each BS. Both CNNs have 2 kernel sizes and 64 output channels, followed by a 1-D MaxPool
layer with padding size 2. Each layer of the two-layer FCNN � � has 64 neurons. We choose ReLU as the activation
function due to its fast updating speed. Moreover, the learning rate of oline training is set to 1 × 10−6. The
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target Q-function network update interval is set to � = 30, and the minibatch size is 128. The parameters of the
Q-function network are optimized via Adam [13]. The history length of states is � = 10 s.

6.2 Results analysis

We irst test the oline training convergence of DECOR, and its learning curve is shown in Fig. 6. It can be found
that although DECOR luctuates between the training epochs 51 and 72, it still successfully converges to a better
point than the behavior policy, LRU, with a delay reduction rate of 33%. In contrast, the online DRL-based method,
DDQN, fails to learn a better cooperative cache policy from the static dataset and even converges to a worse
point than LRU. Besides, since the optimization objective of DL is the distribution divergence between its policy
and the dataset, the DL’s curve only shows the cache performance of its policy. When DL converges, its learned
policy can be seen as a cloning policy for the dataset and has a similar cache performance to LRU. Thus, it cannot
learn a better policy from the dataset either. Fig. 7 compares the cache performance of DECOR to the rule-based,
DL-based, and DRL-based methods. It can be found that DECOR outperforms all other methods, which shows its
superiority. Although Belady maintains a future view with a length of 48 s, since its cache replacement rule is
quite simple, it still loses to DECOR.
Moreover, we investigate the impact of two resource factors, the storage size of BSs and the wired link

bandwidth that are closely related to the cooperative cache replacement policy, on the cache performance, which
is presented in Fig. 8. Since DDQN cannot learn a better policy from the dataset and DL just learns a cloning
policy, we do not evaluate their cache performance. In general, the average transmission delay of all methods
decreases in a rapid and then falt trend as both two resources increase. It is not hard to understand because when
resources are suicient, the most popular contents are cached on the BSs, or the missed contents can be quickly
fetched from the neighboring BSs or the cloud. In this case, the fetching delay is very short, even if no cache
replacement policy is implemented. In Fig. 8(a), DECOR outperforms all rule-based methods in most cases, except
when the storage size is 6 and 8 GB, which is inferior to Belady. The reason is when the storage size is 6 and 8
GB, the most popular contents are cached, and only a small number of unpopular contents need to be replaced.
Belady is suitable for the case because it replaces the contents not requested in the future for the longest time. In
Fig. 8(b), we ind that the improvement rate of DECOR to LRU is 21.7%, 28.9%, 33%, 35.9%, and 34.6% as the wired
link bandwidth increases, showing a trend of growth followed by decline. This is because the fetching process
becomes shorter when the bandwidth increases, resulting in fewer subsequential requests that can share it. In
this case, BSs need to fetch contents to replace the cached ones more frequently, which strengthens the efect
of the cooperative cache replacement policy. However, when the bandwidth is suicient, the fetching delay is
reduced to 0, and the cache replacement policy has no efect.

Finally, we verify whether the cache replacement policy learned by DECOR can coordinate the two BSs. Here,
we test the delay reduction rate of DECOR to LRU on the average transmission delay in three cases: (i) the two
BSs have diferent content popularity distributions 1 and 2 shown in Fig. 5, respectively, (ii) they have the same
content popularity distribution 1, (iii) they have the same content popularity distribution 2. Fig. 9 shows that the
delay reduction rate in three cases is 33%, 37.6%, and 46.4%. It shows that the cache replacement policy of DECOR
can utilize the storage of BSs more efectively when the two BSs have the same content popularity distribution.
This is because when the two BSs have diferent distributions, the cache replacement policy is hard to coordinate
the BSs to cache one content that is popular in one BS but unpopular in another. However, when the two BSs
have the same distribution, the policy can better coordinate them to achieve a higher delay reduction rate, which
veriies that the policy is cooperative. Besides, we ind that the delay reduction rate in case (ii) is lower than in
case (iii). The reason is that the content popularity of all contents in distribution 1 is close, thus degrading the
efect of the cache replacement policy.
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Fig. 9. The impact of content popularity on the cache performance.

7 CONCLUSION

This paper has proposed a novel delay-aware cooperative cache replacement method based on oline DRL, named
DECOR, to coordinate the cache replacement decisions of diferent edge servers for high cache performance in
an MEC network of the smart city. Diferent from the existing online DRL-based methods, DECOR can efectively
exploit the potential of the huge data in the smart city and avoids the learned policy at the early stage of the
training process degrading the cache performance of the actual network. To eiciently extract the knowledge
about content popularity and content fetching history from time series data, CNNs are utilized to improve
training eiciency and cache performance. The experimental results show that DECOR can successfully learn an
oline policy from a static dataset, compared to an online DRL-based method. The oline policy outperforms
the behavior policy used to sample the dataset and can coordinate edge servers to make cooperative cache
replacement decisions.
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