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1   |   INTRODUCTION

Prolonged resistance exercise training increases skele-
tal muscle mass and strength, advantageous adaptive 
responses to support athletic/health goals in a range of in-
dividuals (Damas et al., 2016; Farup et al., 2012). Training-
induced increases in muscle mass are mechanistically 

underpinned by persistent periods of positive net protein 
balance, and therefore protein accretion, within muscle tis-
sue (Fujita et al., 2007). A single bout of resistance exercise 
stimulates muscle protein synthesis (MPS) rates, peaking 
in the immediate hours subsequent (~2–6 h; Moore, Tang, 
et al., 2009; van Vliet et al., 2019) and remaining elevated 
for ~24–48 h (Biolo et al., 1995; Burd et al., 2011; Phillips 
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Abstract
Background: Dietary protein ingestion augments post (resistance) exercise mus-
cle protein synthesis (MPS) rates. It is thought that the dose of leucine ingested 
within the protein (leucine threshold hypothesis) and the subsequent plasma 
leucine variables (leucine trigger hypothesis; peak magnitude, rate of rise, and 
total availability) determine the magnitude of the postprandial postexercise MPS 
response.
Methods: A quantitative systematic review was performed extracting data from 
studies that recruited healthy adults, applied a bout of resistance exercise, in-
gested a bolus of protein within an hour of exercise, and measured plasma leucine 
concentrations and MPS rates (delta change from basal).
Results: Ingested leucine dose was associated with the magnitude of the MPS 
response in older, but not younger, adults over acute (0–2 h, r2 = 0.64, p = 0.02) 
and the entire postprandial (>2 h, r2 = 0.18, p = 0.01) period. However, no single 
plasma leucine variable possessed substantial predictive capacity over the magni-
tude of MPS rates in younger or older adults.
Conclusion: Our data provide support that leucine dose provides predictive ca-
pacity over postprandial postexercise MPS responses in older adults. However, no 
threshold in older adults and no plasma leucine variable was correlated with the 
magnitude of the postexercise anabolic response.
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et al., 1997). However, resistance exercise also stimulates 
muscle protein breakdown (MPB) rates such that, in the 
postabsorptive state, muscle protein net balance remains 
negative (Biolo et al., 1995). As a result, nutrition plays a 
vital role in promoting postexercise net positive protein 
balance in muscle and, therefore, muscle reconditioning.

Protein ingestion before (Burke et al.,  2012; Tipton 
et al., 2007), immediately after (Brook et al., 2021; Moore, 
Robinson, et al.,  2009; Pennings, Koopman, et al.,  2011; 
Tang et al.,  2009), and up to 24-h (Elliot et al.,  2006; 
Holwerda et al.,  2016; Kim et al.,  2016) postresistance 
exercise augments the rise in MPS rates and, albeit less 
potently, inhibits MPB rates (Biolo et al., 1997) resulting 
in a positive net muscle protein balance. The magnitude 
of the (postexercise) MPS response to protein ingestion 
appears to increase in a dose–response manner plateau-
ing somewhere between 20 and 40 g (Moore, Robinson, 
et al.,  2009; Witard et al.,  2014; Yang et al.,  2012), a re-
lationship that shifts to the right in more anabolically 
insensitive older adults (Burd et al.,  2013; Cuthbertson 
et al.,  2005; Rennie & Wilkes,  2005; Wall, Gorissen, 
et al., 2015). However, as opposed to total protein per se, 
this relationship has been suggested to be more contingent 
on essential amino acids (Bohé et al., 2003; Cuthbertson 
et al., 2005; Fujita et al., 2007; Tipton et al., 1999) and, in 
particular, leucine (Phillips, 2016; Rieu et al., 2006), which 
has a well-characterized molecular role in stimulating the 
mTORC1/P70S6K signaling pathway (the major myocel-
lular anabolic cascade; Dreyer et al., 2008; Drummond & 
Rasmussen, 2008; Layman, 2002; Norton & Layman, 2006). 
However, the nature of the relationship between leucine 
and postprandial MPS (particularly when considered in 
the postexercise phase) remains to be fully defined.

Some reports imply that simply the amount of leucine 
contained within the ingested food/meal directly dictates 
postprandial MPS rates (i.e., “leucine threshold” concept; 
Breen & Phillips,  2011). This pragmatic dose–response 
view allows simple recommendations to be made, such 
as ~2 to ~3 g to be consumed for measurable and opti-
mal postexercise MPS responses, respectively (Phillips 
et al., 1997; Volpi et al., 2013). Other reports take account 
of physiological variables such as protein digestion and 
amino acid absorption which, together, dictate peripheral 
leucine availability following protein ingestion and, thus, 
a stimulus actually seen by the muscle (i.e., “leucine trig-
ger” concept; Tang et al., 2009; West et al., 2011). However, 
even within this more sophisticated view, it is unclear 
whether the peak concentration (Tang et al., 2009; West 
et al., 2011), rate of rise (Phillips & Van Loon, 2011; West 
et al.,  2011), or total postprandial availability of plasma 
(Oikawa et al., 2020; or even intramuscular unbound) leu-
cine is the prime “trigger.” A recent qualitative systematic 
review (Zaromskyte et al., 2021) supported the utility of 

the leucine trigger hypothesis within muscle of older in-
dividuals and during studies where crystalline amino acid 
mixtures or isolated proteins were ingested. The predic-
tive value of the hypothesis diminished in younger sub-
jects and/or where protein-rich whole foods (within their 
unique matrices; Beals et al., 2018; Burd et al., 2015; Elliot 
et al., 2006; Van Vliet et al., 2017) and/or mixed meals (Kim 
et al., 2016; Symons et al., 2011) were ingested. However, 
the definition of the leucine trigger in this review was bi-
nary and defined only as a “greater overall plasma leucine 
response,” which did not allow for any quantitative dose–
response relationship to be established.

We conducted a quantitative systematic review with 
the primary aim of refining our understanding of the re-
lationship between ingested leucine and the magnitude 
of postprandial postexercise MPS rates. We compiled data 
from human studies that applied a study design includ-
ing bolus ingestion of amino acids or protein (either alone 
or contained within a food/meal) and the execution of a 
single resistance exercise bout, combined with the parallel 
measurements of MPS rates, and with further inclusion 
criteria applied around postprandial plasma leucine con-
centrations. We clearly demarcated between the leucine 
threshold hypothesis (i.e., leucine dose), and the three 
distinct (sub)variables identified within the leucine trig-
ger hypothesis (i.e., peak magnitude, rate of rise, and total 
availability of plasma leucine) and evaluated their rela-
tionships with the magnitude of postprandial postexercise 
MPS responses in young and older adults.

2   |   METHODS

This study was registered on, and the protocol was up-
loaded to, PROSPERO (CRD42021227295). The review 
was conducted based on PRISMA guidelines 2020, in line 
with quantitative systematic reviews (Moher et al., 2009). 
The primary outcome of this systematic review was to 
refine our understanding of the relationship between 
ingested leucine and the magnitude of postprandial pos-
texercise MPS rates. Heterogeneity in the absolute deter-
mination of MPS rates and plasma leucine concentrations 
between studies, methods, and laboratories was accounted 
for by assessing delta changes on both variables (MPS and 
plasma leucine concentrations) as our primary depiction 
of the data.

2.1  |  Search strategy

A systematic search of the literature was conducted in 
Medline (https://pubmed.ncbi.nlm.nih.gov/), Cochrane 
(https://www.cochr​aneli​brary.com/central), and Embase 

https://pubmed.ncbi.nlm.nih.gov/
https://www.cochranelibrary.com/central
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(https://www.embase.com/) databases on the July 12, 
2022. The medical subject headings (MeSH) “Leucine”, 
“Protein Biosynthesis”, “Dietary Supplements”, “Dietary 
Proteins” and “Muscle Proteins” were utilized. Boolean 
operators “AND” and “OR” were used to combine search 
terms. The following search terms were used (protein OR 
leucine OR amino acid OR supplement* OR diet* OR con-
sume* OR intake* OR ingest* OR powder OR drink* OR 
shake OR isolate) AND (muscle* OR myofibrillar* OR 
mixed OR muscular OR protein synthesis) AND (weight* 
OR resistance* OR strength OR isometric OR train* OR 
exercise OR lift*) AND (randomized OR randomized con-
trol trial).

2.2  |  Eligibility criteria

All randomized controlled trials (RCT) reporting MPS 
rates in healthy human adults after bolus ingestion of an 
amino acid, amino acid mixture, isolated protein source, 
protein containing whole food, or mixed meal in close 
temporal proximity (maximally 1 h before or after) to a 
bout of resistance exercise (exercise against an external 
load) were considered for inclusion. Resistance exercise 
protocols were considered broadly, with a variety of ex-
ercise protocols included, differing in modalities and me-
chanics of movement. All these protocols were designed 
and considered to provide a maximal stimulus, and there-
fore, we assume that this broad study inclusion allowed 
the examination of a “maximal” exercise-induced stimu-
lation of MPS and the further examination of how this is 
modulated by leucine consumption.

Further inclusion was applied whereby studies had to 
report plasma leucine concentrations for at least 1.5 h after 
protein ingestion with time intervals of, at most, 30 min 
to calculate peak plasma leucine magnitude, rate of rise 
to peak plasma leucine magnitude, and total postprandial 
plasma leucine availability. MPS rates needed to be deter-
mined by the primed continuous infusion of stable isoto-
pically labeled amino acid(s) (though specific isotope or 
in which amino acid it was labeled was not required) and 
plasma leucine concentrations via venous or arterialized-
venous blood sampling methods, with quantification of 
amino acid concentrations via gas chromatography–mass 
spectrometry (GC–MS).

2.3  |  Exclusion criteria

Studies that were excluded were as follows: those where 
participants were classified as unhealthy; if a source of 
protein was provided via intravenous infusion or repeated 
doses (as opposed to a single bolus); if more than one 

resistance exercise session was performed; where the pro-
tein bolus was provided more than 1-h pre or postexer-
cise; or, if an acute measurement period of MPS was not 
available.

2.4  |  Data collection

Two reviewers (K.W. and C.P.K.) screened all titles and 
abstracts to identify potentially eligible studies, and full 
papers were obtained and assessed for inclusion inde-
pendently by these authors. Any disagreement regarding 
eligibility was resolved through deliberation or referred 
to a third-party author (A.J.M.), to resolve the decision, 
if necessary. All duplicates were identified and removed. 
Automation tools within the Rayyan software (https://
www.rayyan.ai/) were used to filter key words, to detect 
studies that did not fit the inclusion criteria (i.e., study 
populations in rats, pigs, and children).

2.5  |  Data extraction

Predetermined relevant outcome variables from each 
study were extracted by one reviewer (K.W.) and the 
other reviewer (C.P.K.) revisited all to check for discrep-
ancies. Relevant variables included: number of partici-
pants, participant characteristics (age, sex, and training 
status, if supplied), protein supplementation protocol 
(protein dose and leucine dose), exercise intervention, 
mixed muscle or myofibrillar protein synthesis values 
and plasma leucine concentrations. If protein or leucine 
doses were given relative to body weight, this was cal-
culated with the mean body weight of the participants 
in that group to normalize all data to absolute doses. If 
the study in question did not provide the leucine dose 
within the nutritional content provided for the protein 
source, then manufacturer information was searched 
(Burd, Andrews, et al.,  2012; Burd, Yang, et al.,  2012; 
Chan et al.,  2019; Dideriksen et al.,  2016; McKendry 
et al.,  2016; Mikkelsen et al.,  2015) or corresponding 
authors were contacted to provide manufacturer in-
formation (Agergaard et al.,  2017; Areta et al.,  2014; 
McGlory et al., 2016) or nutritional analysis (Holwerda 
et al.,  2016). If the study included more than one pro-
tein source (e.g., whey and soy), outcome measures were 
taken for both and treated as separate study arms. If the 
study included a placebo or control group that was not 
a protein source, this was not included in data extrac-
tion. Protein sources with additional fortification and co-
ingestion with macronutrients were noted and included. 
Data were further characterized into whole food sources 
(mixed macronutrient nonsupplemental protein) and 

https://www.embase.com/
https://www.rayyan.ai/
https://www.rayyan.ai/
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nonwhole food sources. This is represented visually 
within the presented dataset herein. Data were consid-
ered as a whole dataset and then organized into young 
and older participants. This was based on the descriptive 
statistics of the participants provided. The mean age of 
the younger participants within a given study was re-
quired to be between 18 and 40 years. The mean age of 
the older participants within a given study was required 
to be >55 years. This was to ensure that the threshold 
for the onset of age-related sarcopenia had been met 
(Janssen, 2010). Where numeric data were not reported 
in tables or text, and authors could not be reached, data 
were extracted from charts and figures using Web Plot 
Digitizer (https://autom​eris.io/WebPl​otDig​itize​r/).

2.6  |  Risk of bias

The Cochrane Handbook and tools (Higgins et al., 2011, 
2019) were used for the risk of bias assessment for each 
individual study. The quality of each study was assessed 
by one reviewer (K.W.) and checked by another reviewer 
(C.K.), and any disagreement was resolved through delib-
eration between K.W. and C.K. Six main criteria were as-
sessed, and the quality of each study was based on high, 
low or unclear risk of bias (Supplementary Information—
https://doi.org/10.6084/m9.figsh​are.22203514). Studies 
with a high risk of bias were due to blinding procedures, 
usually in the case of whole food protein sources (Beals 
et al.,  2018; Symons et al.,  2011), where blinding of the 
allocated intervention was not possible. Sequence genera-
tion was considered a high risk of bias when allocation to 
the intervention was based on a criterion such as younger 
or older participants; therefore, assignment to the inter-
vention was nonrandom. Both high risk of bias variables 
were considered satisfactory for this dataset.

2.7  |  Synthesis methods

The main outcome variables used in this review have been 
converted from the data extracted and have been used to 
visually display the data in the figures. Basal [postabsorp-
tive] fractional synthetic rate (FSR) and postexercise post-
prandial FSR (%/h) were used to calculate delta change 
(ΔFSR [%]) for normalization across studies. These were 
then split into early (0–2-h postexercise and/or protein 
ingestion) and the entire postprandial (0–6-h postexercise 
and/or protein ingestion) MPS response. Plasma leucine 
concentrations were displayed as peak plasma leucine con-
centration (highest single mean value reported), rate of rise 
to peak plasma leucine magnitude (peak plasma leucine 
concentration minus basal plasma leucine concentration 

divided by time in minutes to peak plasma leucine concen-
tration), and total postprandial plasma leucine availability 
(incremental area under the curve [iAUC/180 min]). Data 
were analyzed using linear regression; coefficient of deter-
mination (r2), significance (p value), and y-intercept (b0) 
have been presented for interpretation. Subject character-
istics are presented as mean ± SD.

3   |   RESULTS

3.1  |  Literature search and study 
inclusion

Figure  1 shows the process of article selection with 38 
studies ultimately included. Within these 38 studies, 
there were 77 study arms (i.e., total number of eligi-
ble intervention groups), to determine aspects relating 
to the leucine threshold hypothesis  (Supplementary 
Information—https ://doi .org/10.6084/m9.f igsh​
are.22203514, Agergaard et al., 2017; Areta et al., 2014; 
Atherton et al.,  2017; Beals et al., 2018; Borack 
et al.,  2016; Brook et al.,  2021; Bukhari et al., 2015; 
Burd et al.,  2010, 2015; Burd, Andrews, et al., 2012; 
Burd, Yang, et al., 2012; Chan et al., 2019; Churchward-
Venne, Breen, et al.,  2014; Churchward-Venne, Cotie, 
et al.,  2014; Devries et al., 2018a, 2018b; Dickinson 
et al., 2014; Dideriksen et al., 2016; Dreyer et al.,  2008; 
Fujita et al., 2009; Gwin et al., 2021; Hermans et al., 2021, 
2022; Luiking et al., 2014; McGlory et al., 2016; McKendry 
et al.,  2016; Mikkelsen et al.,  2015; Monteyne, Coelho, 
Porter, Abdelrahman, Jameson, Finnigan, et al.,  2020; 
Monteyne, Coelho, Porter, Abdelrahman, Jameson, 
Jackman, et al., 2020; Moore, Tang, et al., 2009; Oikawa 
et al.,  2020; Pinckaers et al.,  2022; Reidy et al.,  2013; 
Reitelseder et al.,  2019; Symons et al.,  2011; Van Vliet 
et al.,  2017; West et al.,  2009; Wilkinson et al.,  2018). 
Studies which met all the inclusion criteria except not 
taking a basal muscle biopsy (i.e., Dideriksen et al., 2011) 
were excluded in order to calculate delta change from 
basal MPS.

Of these 38 identified RCTs, six studies were cross-
over in design (Areta et al., 2014; Brook et al., 2021; Burd 
et al., 2015; Gwin et al., 2021; Van Vliet et al., 2017; West 
et al., 2009), whereas the remainder were parallel design. 
Double-blinding procedures were used in 11 of the 38 
studies, five were single-blinded, and the remainder were 
unblinded. Further exclusion was applied, whereby seven 
studies did not meet the criteria of providing plasma leu-
cine concentrations, leaving 31 studies (61 study arms) in-
cluded in the further analysis to determine aspects of the 
leucine trigger hypothesis (Supplementary Information—
https://doi.org/10.6084/m9.figsh​are.22203514).

https://automeris.io/WebPlotDigitizer/
https://doi.org/10.6084/m9.figshare.22203514
https://doi.org/10.6084/m9.figshare.22203514
https://doi.org/10.6084/m9.figshare.22203514
https://doi.org/10.6084/m9.figshare.22203514
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3.2  |  Participants' characteristics

Of the total 38 studies, five of the studies recruited fe-
males only (Bukhari et al.,  2015; Devries et al.,  2018a, 
2018b; Oikawa et al.,  2020; Wilkinson et al.,  2018) and 
six recruited males and females (Areta et al., 2014; Beals 
et al., 2018; Fujita et al., 2009; Luiking et al., 2014; Reidy 
et al.,  2013; Symons et al.,  2011), with the remainder in 
males only. Of the 77 study arms relating to the leucine 
threshold analysis, 45 studies were of younger adults and 
32 of older adults. The age range of younger participants 
was 19–29 years (23 ± 2.3 years, 409 male and 40 female 
participants), and the age range of older adults was 57–
74 years (68 ± 3.5 years, 142 male and 106 female par-
ticipants). Of the 61 study arms relating to the leucine 
trigger analysis, 35 were studies of younger adults and 
26 of older adults. Eleven study arms defined their par-
ticipants as resistance-trained individuals, while 19 study 
arms stated the participants were recreationally active. 
Furthermore, six study arms recruited low-to-moderately 
active participants with the remainder of the study arms 

reporting healthy individuals with no specific training sta-
tus provided.

3.3  |  Protein sources

Bolus doses of orally administered isolated proteins 
comprised: whey (33 study arms), casein (three study 
arms), milk protein concentrate (10 study arms), crys-
talline essential amino acid mixtures (nine study arms), 
and isolated protein blends (four study arms). Other 
sources included protein-rich foods: pork (two study 
arms; Beals et al.,  2018), beef (three study arms; Burd 
et al.,  2015; Symons et al.,  2011), mycoprotein (two 
study arms; Monteyne, Coelho, Porter, Abdelrahman, 
Jameson, Finnigan, et al., 2020; Monteyne, Coelho, Porter, 
Abdelrahman, Jameson, Jackman, et al.,  2020), protein-
rich meal replacements (four study arms; Atherton 
et al., 2017), cheese (Hermans et al., 2022), meal worms 
(Hermans et al.,  2021), collagen protein, potato protein 
(Pinckaers et al., 2022), egg white (Van Vliet et al., 2017), 

F I G U R E  1   Flow diagram of the 
screening process in accordance with the 
PRISMA guidelines.
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and egg yolk (Van Vliet et al.,  2017), all with one study 
arm each.

3.4  |  Resistance exercise interventions

A unilateral exercise model was used for 27 out of the 38 
studies, with the remaining 11 studies using a bilateral 
exercise model. The exercise protocols consisted of a va-
riety of reps and sets ranging from 1 to 10 sets and from 
8 to 36 reps or to volitional exhaustion/failure. All stud-
ies had a familiarization with the exercise equipment and 
tested for maximum strength to determine the workload. 
The intensity ranged from 16% to 90% of one repetition 
maximum. Within three study arms, maximal leg exten-
sion exercise was on a dynamometer (Monteyne, Coelho, 
Porter, Abdelrahman, Jameson, Finnigan, et al.,  2020; 
Monteyne, Coelho, Porter, Abdelrahman, Jameson, 
Jackman, et al.,  2020). The exercise protocol was either 
leg press (one study arm; Areta et al., 2014), leg/knee ex-
tension (54 study arms), both leg press and leg extension 
(20 study arms), arm cable curl (elbow flexion; one study 
arm; West et al., 2009), or combination of upper and lower 
body resistance exercise session (one study arms; West 
et al., 2009).

3.5  |  Postprandial postexercise periods

The measurement of MPS was taken within the 
mixed muscle protein fraction for four studies (Gwin 
et al.,  2021; Hermans et al.,  2021; Monteyne, Coelho, 
Porter, Abdelrahman, Jameson, Finnigan, et al.,  2020; 
Monteyne, Coelho, Porter, Abdelrahman, Jameson, 
Jackman, et al.,  2020) and the remaining studies meas-
ured MPS in myofibrillar proteins. The basal biopsy was 
conducted preintervention, and the incorporation period 
for the measurement of MPS ranged from 1.5- to 6-h post-
prandial, postexercise. All studies collected muscle biopsy 
tissue from the m. vastus lateralis, except one study with 
measurements of MPS from tissue collected from the bi-
ceps brachii (West et al., 2009).

3.6  |  Leucine dose

A graphical depiction of the relationship between ingested 
leucine dose and the delta change in postprandial, postex-
ercise MPS rates is represented in Figure 2, with data illus-
trated as an early (0–2 h) and entire measurement (>2 h) 
phase, and presented as an entire dataset (A), and for 
young (B) and older (C) adults separately. When consider-
ing the entire dataset (Figure 2a), leucine dose showed no 

relationship to delta change in postexercise MPS rates over 
the early phase (r2 = 0.03, p = 0.33, b0 = 78.43), but a sig-
nificant correlation was observed over the entire measure-
ment period (r2 = 0.05, p = 0.03, b0 = 76.2). The latter was 
mainly driven by data obtained from older adults, given 
divergent responses between the age categories were ob-
served. Specifically, the relationship between leucine dose 
and postprandial postexercise MPS change was not present 
in young adults (Figure 2b) over either the early (r2 = 0.006, 
p = 0.74, b0 = 118.5) or entire (r2 = 0.01, p = 0.51, b0 = 108.1) 
measurement periods, whereas correlations were observed 
over both periods (r2 = 0.64, p = 0.02, b0 = 7.64 and r2 = 0.18, 
p = 0.01, b0 = 42.33 over the early and entire measurements 
periods, respectively) in older adults (Figure 2c).

F I G U R E  2   Delta change (postprandial postexercise increase) 
in muscle protein synthesis rates (MPS), early (0–2 h) and during 
the entirety of the postprandial period, expressed as fractional 
synthetic rate (FSR), in response to a leucine dose in all participants 
(77 study arms) (a), young participants (45 study arms; 19–29 years) 
(b) and older participants (32 study arms; 57–74 years) (c). Squares 
represent whole food sources. Data were analyzed by linear 
regression; coefficient of determination (r2), p value, and y-intercept 
(b0) are presented.
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3.7  |  Leucine trigger hypothesis

A graphical depiction of the relationship between in-
gested leucine dose and the peak magnitude, rate of rise, 
and total postprandial availability of plasma leucine are 
represented in Figures  3–5, respectively, with data pre-
sented as an entire dataset (A), and for young (B) and 
older (C) adults separately. Further graphical depiction 
of the relationship between delta change in postprandial, 
postexercise MPS and peak magnitude, rate of rise, and 
total postprandial availability of plasma leucine are rep-
resented as an entire dataset (D), and for young (E) and 
older (F) adults separately.

3.7.1  |  Peak plasma leucine magnitude

When considering the entire dataset (Figure  3a), the 
leucine dose showed a relationship with peak plasma 
leucine magnitude (r2 = 0.27, p < 0.0001, b0 = 138.4). A sig-
nificant relationship was observed between leucine dose 
and peak plasma leucine magnitude for both younger 
(Figure  3b; r2 = 0.47, p < 0.0001, b0 = 59.57) and older 
(Figure 3c; r2 = 0.24, p = 0.01, b0 = 209.9) adults. However, 
peak plasma leucine magnitude showed no relationship 
to delta change in postprandial, postexercise MPS rates 
when considering the whole dataset (Figure 3d; r2 = 0.02, 
p = 0.18, b0 = 123.7) and this relationship was not altered 
when split for age; leucine dose showed no relationship 
to delta change in postexercise MPS rates among the 
younger (Figure  3e; r2 = 0.00001, p = 0.99, b0 = 121.5) or 
older (Figure 3f; r2 = 0.03, p = 0.35, b0 = 99.52) adults.

3.7.2  |  Rate of rise to peak plasma 
leucine magnitude

When considering the whole dataset (Figure 4a), there was 
a relationship between leucine dose and rate of rise to peak 
plasma leucine magnitude (r2 = 0.19, p = 0.0003, b0 = 0.65). 
When split for age this relationship between leucine dose 
and rate of rise to peak plasma leucine concentration was 
present for both younger (Figure 4b; r2 = 0.39, p < 0.0001, 
b0 = −1.02) and older adults (Figure 4c; r2 = 0.16, p = 0.04, 
b0 = 2.21). However, correlations were not observed be-
tween peak plasma leucine concentrations and delta 
change in postprandial, postexercise MPS across the entire 
dataset (Figure 4d; r2 = 0.01, p = 0.28, b0 = 111.3) nor when 
split into younger and older adults (Figure  4e; r2 = 0.01, 
p = 0.52, b0 = 113.2, Figure 4f; r2 = 0.05, p = 0.26, b0 = 95.52 
for younger and older adults, respectively).

3.7.3  |  Total postprandial plasma leucine 
availability

When considering the entire dataset (Figure 5a), the leu-
cine dose showed a relationship to plasma leucine iAUC 
(r2 = 0.58, p < 0.0001, b0 = −5701). A significant relation-
ship was observed between leucine dose and plasma 
leucine iAUC for both younger (Figure  5b; r2 = 0.74, 
p < 0.0001, b0 = −10,850) and older (Figure  5c; r2 = 0.65, 
p < 0.0001, b0 = −1939) adults. However, plasma leucine 
iAUC showed no relationship to delta change in postpran-
dial, postexercise MPS rates when considering the whole 
dataset (Figure 5d; r2 = 0.02, p = 0.27, b0 = 124.6) and this 
relationship was not altered when split for age; plasma 
leucine iAUC showed no relationship to delta change in 
postexercise MPS rates among the younger (Figure  5e; 
r2 = 0.002, p = 0.78, b0 = 131.7) or older (Figure 5f; r2 = 0.01, 
p = 0.65, b0 = 96.62) adults.

4   |   DISCUSSION

4.1  |  Principal findings

In the present quantitative systematic review, we pro-
vide a detailed examination of the physiological regu-
lation of postexercise MPS rates by leucine ingested 
within dietary protein in younger and older adults. We 
first quantified the predictive capacity of leucine dose 
per se on the magnitude of postexercise MPS rates. We 
then sequentially examined the relationships between 
ingested leucine dose and various aspects of its post-
prandial postexercise availability within the circulation. 
Finally, we assessed the ability of those aspects of post-
prandial plasma leucine availability to predict postex-
ercise MPS rates. We report several novel findings that 
further our understanding of the leucine threshold and 
trigger concepts. First, ingested leucine dose per se is 
associated with the magnitude of the postprandial pos-
texercise MPS response, but this relationship exists only 
in older adults, over both the early and entire meas-
urement periods (Figure  2c). Second, largely irrespec-
tive of age, ingested leucine dose is highly predictive of 
the peak magnitude, rate of rise, and total availability 
of plasma leucine concentrations during the postpran-
dial postexercise period. Finally, when examining these 
discreet aspects of postprandial postexercise plasma 
leucine variables in this reductionist manner, no single 
variable possessed any association with the magnitude 
of postprandial postexercise MPS rates in either young 
or older adults.



8 of 17  |      WILKINSON et al.

4.2  |  Leucine threshold concept

What is generally referred to as the “leucine threshold” 
hypothesis posits a simple dose–response relationship be-
tween total leucine ingested and the postprandial postex-
ercise MPS response, plateauing at around ~2.5 g (Witard 
et al.,  2014). This is aligned with various applied sports 
nutrition recommendations to ingest a protein meal 

containing at least 2–3 g leucine in close temporal proxim-
ity to exercise to maximize the postexercise muscle ana-
bolic response (Collins et al., 2021; Dickinson et al., 2013; 
Katsanos et al., 2006; Morgan et al., 2022; Phillips & Van 
Loon, 2011; Wall, Morton, et al., 2015). Our present data 
do not fully support this concept. There was no correla-
tion between ingested leucine dose and the postexercise 
MPS response over a 6-h period (Figure 2) in the largest 

F I G U R E  3   Peak plasma leucine magnitude (highest mean value reported) in response to a leucine dose provided as a bolus protein 
ingestion within an hour of resistance exercise in all participants (61 study arms) (a), young participants (35 study arms; 19–29 years) (b) 
and older participants (26 study arms; 57–74 years) (c). Delta change (postprandial postexercise increase) in muscle protein synthesis rates 
(MPS), expressed as fractional synthetic rate (FSR) in relation to peak plasma leucine magnitude in all participants (d), young participants 
(e) and older participants (f). Data were analyzed by linear regression; coefficient of determination (r2), p value, and y-intercept (b0) are 
presented.
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cohort of young individuals studied to date. Indeed, the 
lines for both the early and entire phase of postexer-
cise MPS intercept (b0) at around 100% could already be 
maximal (Figure 2b). Some (Atherton et al., 2017; Dreyer 
et al., 2008; Gwin et al., 2021), but not all (Churchward-
Venne, Breen, et al., 2014; Fujita et al., 2009), studies dem-
onstrate an increase in MPS with additional leucine over 

resistance exercise alone, which raises the question of 
whether leucine increases MPS over and above the stim-
ulus of resistance exercise in younger individuals at all. 
Of course, there could be a dose–response effect on sup-
pressing MPB and, therefore, hypertrophy, but this has 
not been investigated to date. This also highlights the dif-
ficulty in providing precise prescriptions based on leucine 

F I G U R E  4   Rate of rise to peak plasma leucine magnitude in response to a leucine dose provided as a bolus protein ingestion within an 
hour of resistance exercise in all participants (61 study arms) (a), young participants (35 study arms; 19–29 years) (b) and older participants 
(26 study arms; 57–74 years) (c). Delta change (postprandial postexercise increase) in muscle protein synthesis rates (MPS), expressed as 
fractional synthetic rate (FSR) in relation to rate of rise to peak plasma leucine magnitude in all participants (d), young participants (e) and 
older participants (f). Rate of rise to peak plasma leucine magnitude determined from the highest plasma leucine concentration minus basal 
plasma leucine concentration divided by time in minutes to peak concentration. Data were analyzed by linear regression; coefficient of 
determination (r2), p value, and y-intercept (b0) are presented.
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alone, especially given the array of differences across sub-
jects and exercise protocols. In contrast, there was a strong 
dose–response correlation between ingested leucine dose 
and postexercise MPS rates in older adults, with overall 
lower increases observed compared with young. Indeed, 
in comparison with younger adults where b0 was around 
100%, MPS did not increase to 100% (i.e., double) at all 
over 2 h, or until around 3–4 g of leucine was ingested 
during the entire postprandial phase. This is in line with 

recent similar investigations into the regulation of MPS by 
leucine in older individuals (Wall et al., 2013) and likely 
reflects age-related alterations in digestion and absorption 
kinetics (Gorissen et al., 2020; Milan et al., 2015), splanch-
nic extraction (Boirie et al., 1997; Volpi et al., 1999), per-
fusion (Timmerman et al.,  2010), and/or a reduction in 
sensitivity (and/or delay in response) of muscle to the 
anabolic properties of dietary protein (all encompassed 
within the term “anabolic resistance”; Burd et al.,  2013; 

F I G U R E  5   Total postprandial plasma leucine availability, represented as incremental area under the curve over 180 min, in response 
to a leucine dose provided as a bolus protein ingestion within an hour of resistance exercise in all participants (61 study arms) (a), young 
participants (35 study arms; 19–29 years) (b) and older participants (26 study arms; 57–74 years) (c). Delta change (postprandial postexercise 
increase) in muscle protein synthesis rates (MPS), expressed as fractional synthetic rate (FSR) in relation to total postprandial leucine 
availability in all participants (d), young participants (e) and older participants (f). Data were analyzed by linear regression; coefficient of 
determination (r2), p value, and y-intercept (b0) are presented.
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Cuthbertson et al., 2005; Wall, Gorissen, et al., 2015). In 
line, older adults showed a slower rate of rise to peak, 
greater variability of peak magnitude and an overall 
“rightward shift” that was lower, particularly in the early 
phase, indicating a greater and faster leucine response is 
required for an equivalent rise in MPS. To a certain extent, 
this shift to the right could explain the significant correla-
tion in the older adults only, given this provides a greater 
spread of the data. Irrespective, our findings extend the 
concept of anabolic resistance to imply that the anabolic 
sensitivity to leucine becomes of more relevance in terms 
of governing postexercise postprandial MPS rates in se-
nescent muscle. However, the linear nature of the rela-
tionship between leucine dose and postexercise MPS rates 
in older individuals, and lack of an obvious breakpoint, do 
not reveal a plateau or “threshold,” unlike previous studies 
that only compare two or three doses (Moore, Robinson, 
et al., 2009; Witard et al., 2014; Yang et al., 2012).

4.3  |  Leucine trigger concept

The utility of comparing leucine dose to postexercise MPS 
responses does not account for the multitude of mediating 
physiological factors that could mechanistically modulate 
this relationship. Attempts have been made to link the 
two, generally encompassed within the umbrella term 
“leucine trigger” hypothesis (Phillips & Van Loon, 2011; 
Witard et al.,  2014; Zaromskyte et al.,  2021). We show 
that leucine dose strongly predicts various postprandial 
candidate “triggers,” such as peak plasma leucine mag-
nitude (Figure  3; Norton et al.,  2009; Pennings, Boirie, 
et al., 2011; Tang et al., 2009; West et al., 2011), the rate 
of rise to peak plasma leucine magnitude (Figure 4; Burd, 
Yang, et al., 2012; Wall et al., 2013), and total postpran-
dial plasma leucine availability (iAUC; Figure 5, Mitchell, 
Phillips, et al.,  2015). However, when comparing these 
variables against postprandial MPS rates, no relationships 
were observed in the entire cohort, nor when younger and 
older adults were considered separately (Figures  3–5). 
This is surprising given the observed association between 
leucine dose and postexercise MPS rates, as well as the 
prevailing wider narrative within the literature where a 
clear manipulation of postprandial leucinemic variables 
per se and an association with the consequent muscle ana-
bolic response are seen. West et al. (2011) reported that a 
more rapid delivery of leucine to the circulation following 
bolus whey ingestion translated to greater MPS rates com-
pared with the same quantity consumed in a pulse fash-
ion. Similarly, by comparing ingestion of prehydrolyzed 
casein with intact casein, Pennings, Boirie, et al.  (2011) 
showed greater leucinemia conferred a more potent MPS 
response in older adults.

The lack of any observed associations, within this sys-
tematic review, may be explained by “noise” in the data 
being too great to pin down one single plasma variable, 
whereas the leucine dose represented a composite of the 
total protein dose and all postprandial leucinemic factors 
thereby revealing the relationship. However, once other 
variables are introduced, such as comparing different pro-
tein sources (Chan et al., 2019; Churchward-Venne, Breen, 
et al.,  2014; Dideriksen et al.,  2011; Reidy et al.,  2013), 
isolated vs whole foods (Burd et al.,  2015; Mitchell, 
McGregor, et al., 2015; Van Vliet et al., 2017), meal inges-
tion (Kim et al., 2016; Symons et al., 2011) or co-ingestion 
with other macronutrients (Gorissen et al., 2014; Hamer 
et al.,  2013; Koopman et al.,  2007; Staples et al.,  2011), 
the relationship is far less clear. We (Monteyne, Coelho, 
Porter, Abdelrahman, Jameson, Finnigan, et al.,  2020; 
Monteyne, Coelho, Porter, Abdelrahman, Jameson, 
Jackman, et al., 2020; West et al., 2022) and others (Burd 
et al., 2015; Chan et al., 2019; Van Vliet et al., 2017) have 
observed a dissociation between circulating leucine con-
centrations and MPS in a series of recent studies, specifi-
cally involving whole food approaches. For example, a 25% 
greater MPS response was observed with ingestion of skim 
milk vs. beef despite a significantly lower plasma leucine 
concentration (Burd et al., 2015). In line, a recent system-
atic review concluded that the leucine trigger hypothesis 
was predictive of subsequent MPS responses only if pro-
tein isolates were consumed on their own (Zaromskyte 
et al., 2021). This may also explain why we only observed a 
relationship between leucine threshold and MPS in older 
individuals, where all the studies to date have involved 
protein isolates.

Collectively, therefore, it appears that postprandial 
plasma leucine responses as the prime determinant of 
the postexercise MPS response may be of most relevance 
when all other factors remain the same, and thus, leucine 
availability is limiting. Once other factors are introduced 
the influence of leucine diminishes and other regulatory 
candidates and limiting factors (e.g., total protein dose, 
other signaling or substrate limiting amino acids, other 
macro/micronutrients, and hormonal/incretin/neural) 
must be considered. However, the total protein dose pro-
vided did not modulate delta change MPS (Figure S1—
https://doi.org/10.6084/m9.figsh​are.22203514), and as 
such, any observed relationships between leucine and 
delta change MPS did not appear to be primarily driven 
simply by a greater dose of leucine also being associated 
with a larger dose of total protein. It is important to note 
that true plasma leucine kinetics, involving multiple pool 
modeling of exogenous and endogenous leucine rates of 
appearance and disappearance, as well intramuscular 
transport, incorporation, oxidation, and efflux, are rarely 
measured. One might hypothesize that protein sources 

https://doi.org/10.6084/m9.figshare.22203514
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“other factors” aforementioned could speed the rate of 
disappearance of leucine into muscle tissue for a greater 
intracellular stimulatory effect on MPS, while also low-
ering peak magnitude, rate of rise, and/or total post-
prandial availability of plasma leucine. Indeed, there has 
been much debate as to where a potential leucine “sen-
sor” may reside (Wolfson et al., 2016), with an intracel-
lular sensor now considered most likely (Taylor,  2014). 
Therefore, using plasma leucine variables (only) as proxy 
markers for MPS triggers may not be an effective tool. 
We and others may be neglecting key variables such as 
changes (independently from plasma concentrations) in 
muscle leucine uptake, intracellular leucine concentra-
tion, and intramuscular leucine incorporation into poly-
peptide chains.

4.4  |  Conclusions and limitations

This systematic review collated all studies, which have 
provided a single bolus of protein within 1 h of a single 
bout of resistance exercise and measured the subsequent 
MPS response. While there is a clear dose–response of 
ingested leucine with postexercise MPS rates in older 
individuals, our data do not identify a precise leucine 
threshold, as no evident plateau was identified, and 
a maximal MPS response appears to be achievable in 
young individuals with protein ingestion per se irre-
spective of leucine content. Moreover, we report that 
the postexercise postprandial MPS response cannot be 
predicted from any single plasma leucine variable and, 
therefore, we cannot confirm the existence (or at least 
primacy) of a specific physiological leucine trigger. As 
such, our results indicate that both leucine dose and 
plasma leucine concentrations only explain part of the 
variability in postexercise postprandial MPS responses. 
Given our data are somewhat at odds with in vitro find-
ings and some individual studies, we leave open several 
possibilities that our conclusions may be obfuscated by: 
lack of data across more diverse leucine doses (most 
studies provided 2–2.5 g leucine) or corrected to total 
body/lean mass; few reports involving true postpran-
dial leucine kinetics; lack of intramuscular leucine 
measurements; altered and/or additional regulation by 
(as yet unidentified) other macro/micronutrients; and 
the availability of other amino acids required as sig-
nal and/or substrate for sustaining optimal MPS rates. 
Nevertheless, this review has again highlighted ana-
bolic resistance in older individuals and the importance 
of study design with older individuals needing to en-
compass a longer postprandial period to ensure that the 
whole MPS response is captured.
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