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Abstract

Several competing neuro-computational theories of autism have emerged from predictive

coding models of the brain. To disentangle their subtly different predictions about the nature

of atypicalities in autistic perception, we performed computational modelling of two sensori-

motor tasks: the predictive use of manual gripping forces during object lifting and anticipa-

tory eye movements during a naturalistic interception task. In contrast to some accounts, we

found no evidence of chronic atypicalities in the use of priors or weighting of sensory infor-

mation during object lifting. Differences in prior beliefs, rates of belief updating, and the pre-

cision weighting of prediction errors were, however, observed for anticipatory eye

movements. Most notably, we observed autism-related difficulties in flexibly adapting learn-

ing rates in response to environmental change (i.e., volatility). These findings suggest that

atypical encoding of precision and context-sensitive adjustments provide a better explana-

tion of autistic perception than generic attenuation of priors or persistently high precision

prediction errors. Our results did not, however, support previous suggestions that autistic

people perceive their environment to be persistently volatile.

Author summary

Predictive processing theories of the brain propose that the brain is fundamentally a pre-

diction machine, constantly generating expectations about incoming sensory information.

According to these theories, perception and cognition involve the brain’s efforts to mini-

mize prediction errors by updating internal models and refining predictions based on

incoming sensory data. Several competing accounts of autism have hypothesised that key

features of autistic behaviour can be explained through differences in these predictive

mechanisms. But these theories propose only subtle differences in predictive mechanisms

so are hard to distinguish between. To compare them, we performed computational

modelling of two data sets–grip forces during object lifting and eye movements during

interception–to understand the differences in prediction between autistic and neurotypi-

cal participants. We found no evidence for generic difficulties with prediction but found
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that individuals with autism face challenges in adaptively adjusting learning rates in

response to environmental changes (volatility).

Introduction

There is substantial evidence of atypical sensory processing in autism (for review see [1]). Dis-

turbances to sensory perception affect the majority of autistic people [2] and have been

observed across auditory, visual, and tactile modalities [3]. Additionally, autistic people often

have difficulties with performing motor skills. Such movement-related features were initially

reported as a general ‘clumsiness’ in children [4,5], yet an array of long-term issues with motor

planning and execution have since been identified [6–11]. Although sensory and motor differ-

ences can contribute to significant daily living difficulties in autism, the precise mechanisms

that underlie these features remain unclear.

In recent years, a number of promising hypotheses based on the Predictive Processing

Framework (PPF; [12–14]) and predictive coding theories of neuronal message passing [15–

17] have emerged. These ideas have significant potential for advancing our understanding of

clinical neuropsychology (see [18]). Work within the PPF has shown that sensorimotor behav-

iours are guided by generative models and the drive to minimise prediction error (e.g., [19–

21]). Probabilistic inferences about the causes of sensory inputs are made by combining

descending (top-down) predictions with ascending (bottom-up) prediction errors that signal

deviations from those predictions [17,21–24]. In addition to minimising prediction errors by

constantly revising internal models of the world, agents will also act on their surrounding envi-

ronment to reduce its uncertainty and/or fulfil prior expectations [22,24]. This extension of

predictive coding is known as active inference and effectively reframes motor control as the ful-

filment of counterfactual proprioceptive predictions [25,26].

Several theoretical accounts of autism have adopted this framework to explain sensory atyp-

icalities in autism (for review see [27]). We focus on the following three approaches:

i. Pellicano and Burr’s [28] attenuated-prior account suggests that perceptual differences in

autism result from atypicalities in either the construction of prior expectations about sen-

sory input or in the combining of priors with new sensory information. In essence, priors in

autistic people are seen to be overly flat or weak and therefore have an attenuated impact on

sensory processing. A similar description is provided in Brock’s [29] bottom-up account,

which claims that the weight afforded to sensory information is atypically high (i.e., precise)

in autism. This gives rise to similar predictions as the attenuated prior account, with percep-

tion heavily influenced by current state observations, so for simplicity was not included as a

separate theory.

ii. Van de Cruys et al [30]. argue that there is a uniformly high and inflexible level of precision
assigned to prediction errors in autism. These imbalances are said to stem from neurophys-

iological differences in the extraction of goal-relevant contextual information (i.e., the sen-

sory cues that are used to estimate precision).

iii. Lawson et al [31]. propose that the encoding of precision is aberrant in autistic people due

to impaired neuro-modulatory gain control. Instead of having persistently attenuated

prior beliefs or uniformly high prediction errors, suboptimal control of precision can affect

how prediction errors are adjusted in a context-sensitive and iterative manner. Lawson

et al [32]. further built upon this idea to propose that autism is characterised by overestima-
tions of environmental volatility. At an implicit level, autistic individuals are seen to treat
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their surroundings as more unstable than neurotypical individuals, leading to atypical sen-

sory perception.

Although these accounts are all plausible from behavioural and neurological perspectives, it

is empirically challenging to isolate many of their claims [27]. For instance, it can be difficult

to distinguish attenuated priors from increased sensory precision [29], or atypical prediction

error signalling from impaired contingency learning [33]. Moreover, recent attempts to evalu-

ate these models have returned inconsistent results, with many studies reporting that predic-

tion-related functions are not impaired in autism (e.g., [34–37]). Indeed, prediction-related

differences in autism are typically consigned to more complex or uncertain conditions [33,38].

To date, however, studies testing these theories have tended to use simple associative learning

tasks that inadequately capture the complex and dynamic associations that exist within natural

environments [27]. Therefore, it is unknown whether these proposed mechanisms are driving

autism-related sensory and motor behaviours in more complex movement tasks.

To untangle these competing theories of autism, we adopted computational approaches

that are becoming increasingly influential within clinical neuropsychology [39–41]. Construct-

ing generative models to explain the underpinning mechanisms of a system allows us to draw

additional inferences from observed behaviours. Instead of merely measuring motor atypicali-

ties in autism, we can estimate the inference processes that may be responsible for those differ-

ences. To this end, we describe modelling results from two previously reported data sets that

examined sensorimotor atypicalities in autism [42,43]. These two data sets–examining predic-

tive grip forces during object lifting and anticipatory eye movements during manual intercep-

tion–were chosen as they represent realistic movement skills with important predictive

elements that allowed us to probe the mechanisms of active inference (i.e., role of prior beliefs

and precision weighting) across visual and motor modalities.

Experiment 1 –object interaction

The size-weight illusion (SWI) is a paradigm that allows us to observe the influence of predic-

tions on perception and action [44,45]. Due to the feedforward, predictive nature of how we

grip and lift objects [46], learned associations between an object’s size and weight bias predic-

tive fingertip and lifting forces. As a result, heavy-looking objects are lifted with more force

than novel light-looking objects, irrespective of how much they actually weigh [44,45]. SWI

studies typically involve collecting both verbally reported perceptions of weight and predictive

patterns of fingertip grip and lifting force activity (e.g., [47]). Here we focused solely on the

peak rate of change of the application of grip force, which occurs prior to any experience of

object weight and therefore provides an uncontaminated index of participants’ expectations

about object weight that can be used to model active inference. To investigate the mechanisms

through which autistic people process and act upon sensory information, we modelled the

dynamic updating of motor predictions across each trial of a SWI experiment. In this task,

beliefs about the relationship between object size and weight would be updated iteratively over

time, enabling the extraction of key parameters relating to active inference theories (e.g., prior

beliefs, precision estimates, and multi-level prediction errors).

Previous object lifting studies have returned conflicting results regarding predictive pro-

cessing theories of autism. Buckingham et al [44]. reported correlations between autistic-like

traits and reduced sensorimotor prediction, but these effects did not replicate in Arthur et al.

[48] when predictions were related to material properties, rather than object size cues. Further-

more, a follow-up study by Arthur et al [42]. found that autistic individuals did not differ from

neurotypical participants in their anticipatory fingertip force profiles, suggesting that there

were no generic attenuations in the use of sensorimotor predictions. Further investigation into
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the precise mechanisms that underpin these effects is, therefore, required. We modelled the

trial-to-trial updating of predictive lifting forces to examine if any differences in belief updat-

ing, rates of learning, and perceptions of volatility were present in this dataset that could differ-

entiate between competing theories in the field.

Materials and methods (Expt 1)

Ethics statement

The study received approval from the School of Sport and Health Sciences Ethics Committee

(University of Exeter, UK) and Department of Psychology Ethics Committee (University of

Bath, UK). Written informed consent was obtained in accordance with British Psychological

Society guidelines, and the study methods closely adhered to the approved procedures and the

Declaration of Helsinki.

Methods and procedures are as described in Arthur et al [42]. and summarised below.

Participants

Fifty-eight participants, 29 with a clinical diagnosis of autism (19 male, 10 female; 21.28 ± 3.63

years; 25 right-handed), took part in the study. Additional details of diagnostic and inclusion

criteria are outlined in Arthur et al [42]. The autism group was compared to a group of neuro-

typical participants (19 male, 10 female, 21.31 ± 3.30 years; 25 right-handed) that were individ-

ually matched based on age, gender, and dominant hand. Three participants in the autism

group were excluded from analyses because of invalid grip force data.

As the required sample size for the current analysis could not be determined a priori, a sen-

sitivity analysis was run to estimate the types of effect we were powered to detect. The sensitiv-

ity analysis suggested that for the independent group comparisons we had 85% power for

effects of d = ~0.8, but only 50% power for smaller effects of d = ~0.5, given the 55 participants

included in the analyses (plotted power curves are available from: https://osf.io/5k48n/). The

effect sizes that we observed (see Results and Discussion) were mostly much smaller than d =

~0.5. It is therefore possible that some differences may have emerged in a much larger sample,

but the practical significance of differences of this magnitude is not clear.

Apparatus and stimuli

Participants lifted four 7.5-cm tall black plastic cylinders using an aluminium and plastic lifting

handle fitted with an ATI Nano-17 Force transducer (recording at 500Hz). Objects had two

levels of physical diameter (small: 5 cm, large: 10 cm) and two levels of mass (light: 355 g,

heavy: 490 g), creating four ‘test’ items. An additional medium-sized ‘control’ object (diameter:

7.5 cm; mass: 490 g) was used for practice trials.

Procedures

Participants were asked to lift and hold the object at a comfortable height above the table sur-

face, using the thumb and forefinger of their dominant hand. The onset (cue to lift) and offset

(cue to put down) of each trial was indicated by two computer-generated auditory tones, sepa-

rated by 4 seconds. Participants were instructed to lift objects in a ‘smooth, controlled and con-

fident manner’, and to ‘gently place the object back on its starting platform’. Firstly,

participants completed five ‘baseline’ trials with the medium object, followed by 32 ‘test’ trials

with the four experimental stimuli in one of three pseudorandomized orders (i.e., eight lifts

per object). These predetermined trial sequences ensured that each ‘heavy’ item was lifted at

least once before any ‘light’ trials. Objects were concealed during the resetting of each trial.
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After each lift, participants were asked to verbally report a numerical judgement representing

how heavy the object felt (larger numbers indicating heavier weights). Following Buckingham

et al [44]. no constraints were placed on these values to minimize ratio scaling biases.

Measures

Perceived heaviness scores. Heaviness ratings were converted to z-scores to place all par-

ticipants’ responses on a common scale (as in [44]).

Force data. Data from the force transducers attached to the top of the objects was used to

index the implementation of predictions by the motor system, with stronger grip forces taken

to be indicative of an expectation of heaviness, as extensively shown in previous literature

[45,47]. Forces perpendicular to the surface of the handle were defined as ‘grip force’ and were

smoothed using a 14-Hz Butterworth filter and then differentiated with a 5-point central dif-

ference equation to determine peak grip force rate (pGFR). For the purposes of fitting the

learning models, pGFR was then discretised. Grip force rate on each trial was subtracted from

the final lift of the baseline trials so that greater forces were taken as an expectation of heavi-

ness and vice versa. We report only the pGFR, not the load force rates, based on the reporting

of Arthur et al [42]. that the pGFR outcome was more sensitive to prediction-related

differences.

Computational modelling. Over successive lifts, peak grip force rates vary as expectations

about p(weight|size) are updated. Fitting learning models enables us to infer the relative bal-

ance of priors to new sensory observations during this process. While the principles of hierar-

chical Bayesian learning are well-founded [23] we first tested whether Bayesian inference

provided a good description of grip force updating in our participants, or if it could be more

parsimoniously explained by simple associative learning (as in [32,49]). To do this, we com-

pared two families of learning model based on either associative learning (Rescorla-Wagner or

Sutton K1) or Bayesian inference (the Hierarchical Gaussian Filter [HGF]; [50]; see Fig 1). We

adopted the meta-Bayesian “observing the observer” framework [51] which uses two model

components (see Fig 1A)–the perceptual model, and the decision or response model. The per-

ceptual model estimates the agent’s perception of their environment (posterior estimates),

while the response model estimates the mapping between beliefs and observed actions. Using

Bayesian model inversion, the competing learning models were fitted to the trial-to-trial grip

force data. We then formally compared the plausibility of the various models using random

effects Bayesian model selection (BMS) to identify a generative model which may underlie

active inference in our paradigm. Finally, we compared parameter estimates extracted from

the winning model between autistic and neurotypical groups.

Hierarchical Gaussian filter models. The HGF model is conceptually related to the

“Bayesian brain” hypothesis [23] which proposes that neural and cognitive processing princi-

ples should approximate the statistical optimum, i.e., Bayesian inference. In dynamically

changing environments, the brain must infer not only the hidden states of the world and how

they generate sensory input, but also how those relationships might change over time. This is

achieved through hierarchical representations of probability that encode beliefs about the

world, the (un)certainty of those beliefs, and how likely the world is to change [54]. The HGF

is a generative model in that it attempts to describe the intervening processes that explain how

an agent receives a time series of inputs to which it reacts by emitting a time series of responses

[50,53]. Crucially, when both inputs and responses are known, the parameters of the percep-

tual and the response models can be estimated by inverting the model to infer participant-spe-

cific parameters and belief trajectories [50]. In the perceptual model, agents make an inference

about some parameter x from a series of observations (u(1), u(2),. . .,u(n)) that provide
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information about the hidden state. Here, x relates to the unknown weight of the object and

u(n) are observed weights. Beliefs about the state x are modelled as a ‘Gaussian random walk’,

which describes the evolution of a time series via a Gaussian probability distribution over x.

The values of x can be described as follows:

xðkÞ � Nðxðk� 1Þ; WÞ; k ¼ 1; 2; . . .

Where k is a time index, x(k-1) is the mean of the distribution at the preceding timepoint

and ϑ is the variance of the random walk. The HGF perceptual model assumes that this vari-

ance is is determined by beliefs at the next highest level. For instance, the variance in a partici-

pant’s belief about the likely weight of an object, after seeing its size, is controlled by a higher

level belief about how variable the relationship between size and weight typically is. The cou-

pling between levels is controlled by parameters that shape the influence of uncertainty on

learning in a subject-specific fashion. Updates to beliefs about x then proceed according to

Bayes theorem, where the prior belief over x is updated with new observations, weighted by

their precision. The response model simply contains a constant free parameter (z) that repre-

sents the ‘inverse decision temperature’. This parameter controls the extent to which mapping

from beliefs to responses is fully deterministic or highly exploratory (z equates to the shape of

the sigmoid mapping from μ2 to y, i.e., p(y = 1) = s(μ2
(k-1), z)). Additional details of the

mechanics of the model are described in the supplementary files (see: https://osf.io/5k48n/) or

in[50].

Associative learning models. While there is good evidence that people engage in approxi-

mate Bayesian inference, it is important to consider that learning could be better explained by

a simpler model. We therefore assessed two simple associative learning models which postulate

that agents learn to take actions that maximise the probability of future rewards [55]. These

Fig 1. Basic HGF framework. Panel A shows the conceptualisation of an agent connected to the world by the sensory information it receives

(u) and the actions it takes (y), as described in active inference. Beliefs about the world depend on inferences about true states (x) based on

sensory input. The sensory (u) and active (y) states correspond to the ‘Markov blanket’ which connects the agent with, but also distinguishes it

from, the surrounding environment [52]. Panel B shows the basic structure of the HGF. The HGF estimates the inference processes that best

explain the behavioural responses of an agent given a time series of inputs [50,53]. Model parameters can be estimated by inverting the model to

infer participant-specific parameters and belief trajectories [50]. The perceptual model (χ in Panel A) is described via beliefs (x) represented at

multiple layers that evolve across time (k), scaled by variance parameters (ω, ϑ). In B, the variance parameter ϑ controls the rate of change of

change in x3, while ω controls the rate of change in x2.

https://doi.org/10.1371/journal.pcbi.1011473.g001

PLOS COMPUTATIONAL BIOLOGY Modelling of active inference in autism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011473 September 11, 2023 6 / 23

https://osf.io/5k48n/
https://doi.org/10.1371/journal.pcbi.1011473.g001
https://doi.org/10.1371/journal.pcbi.1011473


were the commonly used Rescorla-Wagner (R-W) learning rate model plus the Sutton K1

model [56]. R-W learning models propose that predictions about a value (v) are updated over

trials (k) in proportion to the size of the preceding prediction error (δ) and a stable learning

rate scalar (α):

Dvk / adk

While the RW model assumes fixed domain-specific learning rates, the Sutton K1 model

assumes variable learning rates that are scaled by recent prediction errors [56]. In these mod-

els, the impact of the prediction error is dependent on the magnitude of the error (and previ-

ous errors for Sutton K1), rather than flexible precision-weighting based on the strength of

priors, likelihoods, or volatility beliefs.

Model fitting and comparison. The model building process consisted of first determin-

ing starting parameters for the possible models, fitting the data to all possible models and com-

paring the fits, then extracting the parameters of interest from the winning model. The open

source software package TAPAS (available at http://www.translationalneuromodeling.org/

tapas; [57]) and the HGF toolbox [50,53] were used for both model fitting and comparison.

For modelling, observations (u) were coded to correspond to p(weight|size) (a similar

approach to [49]), such that large heavy-feeling and small light-feeling objects indicated that size

did predict weight, while large light-feeling or small heavy-feeling objects were deviations from

this relationship. Grip forces (y) were then median split, such that higher pGFR for larger objects

and lower pGFR for small objects indicated an expectation that weight was determined by size.

All models contained free parameters that could vary to accommodate the observed data

that we wished to estimate. These parameters were optimised using maximum-a-posteriori

estimation to provide the highest likelihood of the data given the model and parameter values.

For associative learning models, the free values were beliefs about p(weight|size) and learning

rate, which were set at a neutral starting value and given wide variance. For un-bounded

parameters in the HGF models we chose prior means that represented values under which an

ideal Bayesian agent would experience the least surprise about its sensory inputs, based on a

running a simulation with the real sequences from the experiment. The priors were given a

wide variance to make them relatively uninformative and allow for substantial individual dif-

ferences in learning (for additional details on starting priors, and tests of parameter recover-

ability and identifiability, see https://osf.io/rbtqp).

After each of the possible models had been fit to the observed participant data, they were

compared via Bayesian model selection [58], using spm_BMS.m routines from the SPM12

toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Bayesian model selection treats

the model as a random variable that could differ between participants, with a fixed (unknown)

distribution in the population. It provides an estimate of the probability that a given model

outperforms all others in the comparison (the ‘protected exceedance probability’).

Results and discussion (Expt 1)

Model comparison

We examined four types of learning model: two versions of the HGF (3-level [HGF3] and

4-level [HGF4]) were compared to two associative learning models (Rescorla-Wagner and Sut-

ton K1). We also computed a second subtype of all four models, using ‘felt’ inputs instead of

‘veridical’ inputs. Grip and lifting forces are believed to be distinct from the perceptual illusion

of felt heaviness in the SWI paradigm [45,47,59]. We therefore assumed that veridical inputs

(i.e., the true weight of the objects) would provide the best model of predictive grip forces.

However, as subjective heaviness ratings (i.e., ‘felt’ inputs) could potentially provide an
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explanation of fingertip forces, we also created models with heaviness ratings as the input (u).

While these two versions could not be compared directly, if log-model evidences for veridical

inputs were consistently higher than for felt inputs, then this would provide some confirma-

tion that veridical inputs allowed a better model of changes in fingertip forces.

As predicted, results of the model fitting and comparison showed that the veridical input

variants had higher log-model evidence than the felt model in all cases (Fig 2A–2C). Parameter

comparison (below) was therefore conducted on the veridical type models. Results strongly

indicated that the HGF4 was the most likely model (for both veridical and felt types), with a

protected exceedance probability of 1.00 in both cases (see also plot of model probabilities in

Fig 2C). This winning model contained an additional level of hierarchical beliefs compared to

the more common HGF3, which could reflect the highly uncertain task environment. In this

task, participants did not know what kinds of objects to expect or in what order they might be

received. Indeed, participants are often unsure how many different objects they have been lift-

ing in SWI experiments, so their beliefs about volatility may well have been unstable, hence the

need for the additional level in the model.

Notably, plots of log model evidence (see Fig 2A) indicated that both the 3- and 4-level

Bayesian models provided a better explanation of the data than the two associative learning

models. This indicates that participant’s trial-by-trial object lifting behaviours were success-

fully explained via the general principles of active inference and hierarchical predictive pro-

cessing. Parameters of the winning HGF4 model could next be compared between groups, to

examine how underlying sensorimotor control mechanisms may differ in autistic individuals.

Parameter comparison

Model parameter comparisons generally did not show any autism-related differences in the

dataset (see Fig 3D). Independent t-tests showed no significant differences in beliefs about p

(weight|size) [t(53) = 1.37, p = .18, d = 0.37] and no differences in the decision temperature

parameter zeta [t(53) = 0.07, p = .95, d = 0.02]. This lack of differences in the use of prior

expectations supports the main findings reported in Arthur et al [42]. and adds to growing evi-

dence that sensorimotor difficulties cannot be accounted for by Pellicano and Burr’s [28]

‘hypopriors’ theory (e.g., see [37,60–62]).

Secondly, the present results suggest that there were no atypicalities relating to autistic

learning rates (i.e., the way in which prior expectations about p(weight|size) were updated

over time). There were no differences in the parameters governing the random walk at level

two (i.e., ω2) [t(53) = 0.55, p = .59, d = 0.15] or level three (i.e., ω3) [Welch’s t(39.4) = 0.33, p =

.74, d = 0.09]. There was no variance in ω 4 so no comparison was run. There was also no dif-

ference in learning rates (α) at the second [Welch’s t(42.7) = 1.29, p = .21, d = 0.35], third [t
(53) = 0.57, p = .57, d = 0.15], or fourth [t(53) = 0.25, p = .80, d = 0.07] model levels. This sug-

gests that the way in which autistic individuals weighted new sensory evidence (relative to pri-

ors) was consistent with patterns shown by neurotypical individuals, contrary to the high and

inflexible precision of prediction errors hypothesis [30].

In contrast to Lawson et al. [32], we found no evidence that autistic individuals perceived

the volatility of their environment differently from their neurotypical counterparts. Indeed,

independent t-tests showed no significant between-group differences in beliefs about volatility

(μ3) of p(weight|size) [t(53) = 0.55, p = .59, d = 0.15], or volatility of the volatility (μ4) [Welch’s

t(40.3) = 0.29, p = .77, d = 0.08]. We cannot, however, draw firm conclusions about volatility

beliefs at this stage, given that there were minimal changes in environmental contingencies

within this experiment. As such, we now turn to the issue of perceived volatility and context

sensitivity in experiment 2, to directly examine Lawson’s conceptual model.
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Experiment 2 –interceptive actions

Experiment 2 applied a similar modelling approach–this time using eye movement data during

interceptive actions–to further examine autistic sensorimotor behaviours. Arthur et al. [43]

report data from a virtual reality (VR) tennis task in which participants were required to

Fig 2. Results of the model fitting. Panels A-C show the results of the model fitting and comparison procedures, illustrating the log-

model evidence (LME) for all models (A) and for the veridical compared to felt models (B). Panel C illustrates the probabilities of the

different models in the participant population based on Bayesian model selection, where HG4 was the most likely generative structure.

Panel D shows a schematic of the winning HGF4 model. Panel E shows the parameter identifiability matrix for the HGF4, which shows

that no model parameters were highly correlated (i.e., one could not simply be substituted for another). Panel F shows a comparison of

the log model evidence per participant between the veridical and felt versions of the HGF4, illustrating the veridical version was better

for most participants.

https://doi.org/10.1371/journal.pcbi.1011473.g002
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intercept a ball that bounced in front of them. In this task, the relative weighting of prior beliefs

and prediction errors can be uniquely assessed by controlling the presentation order of balls

with more or less predictable post-bounce trajectories. In contrast to Expt 1, the authors

manipulated these features over time, creating experimental conditions that fundamentally dif-

fered in terms of stability and volatility. As such, this data set allowed us to model active infer-

ence and volatility processing in a more complex movement skill that is representative of the

tasks that autistic individuals might find difficult in the real-world.

In active inference, vision is used to reduce expected prediction errors by actively sampling

the visual scene to minimise surprise [21], with fixations and saccades cast as experiments

driven by our hypotheses about the world [63]. During the interception of a bouncing ball, a

visual fixation is generally directed towards the bounce point of the oncoming projectile [64].

The exact spatial location of this fixation is known to be sensitive to prior beliefs about ball

bounciness, as it is shifted to a higher location when higher bounces are expected [65]. The

position of this fixation is also sensitive to wider probabilistic context (volatility) of the envi-

ronment [19,43]. Much like predictive gripping forces in Expt 1, the way in which the fixation

location is adjusted and updated over sequential trials is, therefore, indicative of beliefs about

outcomes and can be used to model active inference. Notably, Arthur et al. reported that both

Fig 3. Results of the parameter comparison. Panel A: Illustration of grip and load force on the force transducers. Panel B: The stimulus

objects. Panel C: Illustration of the relationship between mass and volume in the stimuli. Panel D: Plots show individual data points with

mean and 95% confidence intervals for comparisons of model parameters between autistic and neurotypical groups.

https://doi.org/10.1371/journal.pcbi.1011473.g003
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autistic and neurotypical participants used prediction-driven strategies in this task, by antici-

pating the future bounce location of the ball. Neurotypical individuals were found to adjust

their gaze location between stable and volatile conditions, but autistic participants did not dis-

play these context-sensitive behaviours and effectively treated the stable and volatile conditions

as similarly uncertain.

In their original analysis, Arthur et al [43]. interpreted the above findings as evidence that

autistic individuals overestimate the volatility of their environment, as suggested by Lawson

et al [32]. The precise mechanisms that underpinned these effects did, however, ultimately

remain unclear, as no direct measures of volatility beliefs were taken. We therefore used

computational modelling approaches to better understand the generative processes underlying

these findings and directly test competing predictive coding theories of autism. In relation to

the theories discussed previously, Pellicano and Burr’s [28] attenuated-prior account suggests

that autistic eye movements should be less driven by previous experiences for all trials in this

task. Van de Cruys et al.’s [30] hypotheses would additionally imply that, due to increased pre-

cision of prediction errors, autistic individuals should consistently update their beliefs (i.e., the

spatial location of predictive bounce fixations) more readily than neurotypical individuals.

Although increased learning rates could also be explained by Lawson et al.’s [31] theoretical

account, this hypothesis does not predict generic differences in prior beliefs or prediction

error weighting, as differences in predictive processing are context-dependent. Instead, atypi-

cal adjustments in sensory sampling behaviours would be expected under conditions of vary-

ing uncertainty or volatility. Moreover, on the basis of Lawson et al. [32], we would expect

autistic individuals to increasingly attribute unexpected events to changes in their surrounding

environment (i.e., they should show increased learning rates at higher levels of the HGF).

Materials and methods (Expt 2)

Participants

The sample (described in [43]) was made up of 90 participants, 30 with a clinical diagnosis of

autism. A large neurotypical sample was recruited in the original study to provide sufficient

power for correlational analysis (e.g., as in the Supplementary Materials), hence the inequality

in the group sizes. This ratio of autistic to neurotypical participants aligns with clinical

research recommendations (i.e., between 1:2 and 1:4) where a larger control group can help

improve statistical power (see [66]). For the present analyses, a series of further criteria were

applied to ensure we were using accurate and reliable gaze recordings for the modelling. Indi-

vidual datasets were re-inspected and participants who were missing >15% of gaze fixation

values (due to missing trials, loss of tracking, or a lack of predictive eye movements) were

excluded from analyses. A sample of 59 participant datasets were subsequently deemed appro-

priate for the modelling (36 male, 23 female; 21.73 ± 4.54 years; 51 right-handed); 17 had a for-

mal diagnosis of autism, and the remaining 42 were age-matched neurotypical controls.

As the required sample size could not be determined a priori for the current modelling

work, we conducted a sensitivity analysis to estimate the types of effect we were powered to

detect. The sensitivity analysis suggested that to detect an interaction effect in a 2 (group:

autism v neurotypical) x 2 (condition: stable v volatile) ANOVA we had 85% power for con-

ventionally large effects of f = ~0.4, but only 50% power for more moderate effects of f = ~0.25,

given the 59 participants (plotted power curves are available in the supplementary files: https://

osf.io/r9gxf). Many of the effect sizes that we observed (see Results and Discussion) were in this

medium to large range, so we were adequately powered for many of these tests.

Participants were naïve to the aims of the experiment and reported no prior experience of

playing VR-based racquet sports. The study received approval from the School of Sport and
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Health Sciences Ethics Committee (University of Exeter, UK) and Department of Psychology

Ethics Committee (University of Bath, UK). Informed consent was obtained in accordance

with British Psychological Society guidelines, and the study methods closely adhered to the

Declaration of Helsinki.

Apparatus and stimuli

A full description of the experimental set-up and materials can be found in [43]. To summa-

rise, we developed a VR simulation of a racquetball court, using the gaming engine Unity

(Unity Technologies, San Francisco, CA). This environment was presented on an HTC Vive

VR system (HTC Inc., Taoyuan City, Taiwan), which recorded movements of a headset and

hand controller at 90 Hz. The VR headset included a Tobii eye-tracking system, which

employs binocular dark pupil tracking to monitor gaze at 120 Hz (spatial accuracy 0.5–1.1˚;

latency 10 ms). To establish tracking accuracy, gaze was calibrated over five virtual locations.

These calibration procedures were performed before both study conditions and upon any

obvious displacement of the headset during the experiment.

During each trial, a ball was launched from a height of 2m at the front of the virtual racquetball

court (see Fig 4A), which was just above an aiming target of five concentric circles. Participants

stood in the centre of the court, approximately 9m from the front wall. They then attempted to

hit the projected balls, which looked like real tennis balls (5.7 cm in diameter), back towards the

target using a virtual racquet that was animated in the virtual world by tracking the hand-held

VR controller. The virtual racquet was 0.6 × 0.3 × 0.01 m, but the collision area associated with it

was exaggerated by 20 cm to enhance the detection of ball-to-racquet collisions.

Procedures. After arriving at the laboratory, participants provided informed consent and

completed the Autism Spectrum Quotient questionnaire (AQ-26; described in supplementary

materials: https://osf.io/6szf5). Next, they were introduced to the VR and completed six famil-

iarisation trials. Individuals were instructed to hit virtual balls back towards the centre of the

projected target, and that the appearance of the balls would be cued by 3 auditory tones. They

were told that the ball should bounce once, but that they were free to intercept it at any point

after this event. All shots were forehand swings and ball bounces were accompanied by audi-

tory feedback. No visual, proprioceptive, or verbal feedback was available on racquet-ball con-

tact. Instead, a neutral ‘pop’ sound was incorporated to minimise the impact of feedback on

performance.

Crucially, the projected balls had two distinct physical profiles which permitted precise con-

trol over participants’ experience of expected and unexpected events. All balls followed the

same pre-bounce trajectory and speed along the midline of the room (vertical speed: -9 m/s at

time of bounce), but ball elasticity was either consistent with the ‘tennis ball-like’ appearance

(elasticity set at 65%) or was unexpectedly high (set at 85%). Unexpected trials consisted of an

abrupt change in ‘bounciness’ that would deviate from any real-world prior expectations about

natural ball materials. The expected and unexpected trial events were ordered into two distinct

blocks, to generate either stable (in which balls were presented in ‘predictable’ serial orders), or

volatile (where the ground truth probability regularly switched) conditions. Both contained

the same number of expected (n = 30) and unexpected (n = 15) trials. However, under stable

conditions, the marginal likelihood of facing a ‘normal’ ball remained fixed at 67.67%. Con-

versely, these likelihoods were unstable in the volatile condition, and switched irregularly

between highly- (83%), moderately- (67%) and non-predictive (50%), in blocks of 6, 9 or 12

trials (presentation sequences are available at https://osf.io/ewnh9/). Each condition was sepa-

rated by a short break, with the order of the stable and volatile blocks counterbalanced across

participants.
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Fig 4. Results of the model fitting. Panel A shows the task environment and Panel B shows the winning HGF3

model structure. Panels C and D illustrate the log-model evidence (LME) for all models and the probabilities of the

different models in the participant population as indicated by Bayesian model selection. Panel E shows the belief

trajectory of the fitted model for a single participant. In the bottom section, observed outcomes are shown in green

(1 = normal ball, 0 = bouncy). The inferred posterior belief about the likelihood of a normal or bouncy ball (i.e., s(μ2))
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Measures. Gaze Pitch Angle. A range of measures were reported in the original study [43].

Here, we only report the ‘gaze pitch angle’ as an indicator of prior beliefs, for the purposes of

modelling predictive sensorimotor behaviours (as in [19]). As discussed, individuals generally

direct a single fixation to a location a few degrees above the bounce position of an oncoming

ball [67,68]. The vertical position of this fixation (the gaze pitch angle) is sensitive to beliefs

about likely ball trajectories, with fixations directed to a higher location when larger bounces

are expected. As the fixation occurs before the bounce is observed, the fixation location is

driven by an agent’s predictions about ball elasticity and thus provides an indicator of their

prior beliefs over time.

A single unit gaze direction vector was extracted from the inbuilt eye-tracking system in the

VR headset, with features defined according to head-centred, egocentric coordinates. The

extracted gaze vector and the ball-relative-to-head position were then plotted in 2D space, to

create relative ‘in-world’ angular metrics. All trials were segmented from the moment of ball

release until the time frame corresponding to ball contact. Trials with> 20% missing data, or

where eye-tracking was temporarily lost (> 100 ms) were excluded. Gaze coordinates were

treated with a three-frame median filter and a second-order 15 Hz Butterworth filter [69,70].

A spatial dispersion algorithm was then used to extract gaze fixations [71]. These were opera-

tionalised as portions of data where the point of gaze clustered within 3˚ of visual angle for a

minimum duration of 100ms [72]. We extracted the fixation position at the moment of bounce

(expressed as gaze-head pitch angle). Data values that were> 3.29 SD away from the mean

were classed as outliers (p< .001), and participants with> 15% of data identified as missing

and/or outliers were excluded.

Computational modelling. We adopted the same framework to model the inference pro-

cesses associated with the updating of the bounce fixation over successive trials as we did for

grip forces in experiment 1. To determine whether Bayesian inference or simple associative

learning was the more likely generative process, we again compared the fits of two HGF mod-

els (HGF3 and HGF4) against two associative learning models (R-W and Sutton K1). To fit

learning models to the behavioural data from the interception task, the pitch angle variable

(eye position just before the bounce point) was converted into a discrete variable: when gaze

was shifted to a higher location than on the previous trial (>1SD change) this was taken as a

shift towards higher p(expected) and vice versa. This approach was chosen to mirror i) the

approach taken in Expt 1 and ii) that taken in a previous paper using this task [19]. Eye posi-

tion can alternatively be modelled as a continuous variable, and simply requires a different

linking function between beliefs and actions in the HGF [50]. Recent work has also begun to

model complex motor actions (e.g., arm movements) using a continuous active inference

approach (see [40]).

Results and discussion (Expt 2)

Model comparison

We evaluated the fits of the four models to the behavioural data across all participants using

Bayesian model selection [58]. As in experiment 1, LMEs were higher for both the HGF3 and

HGF4 compared to the two associative learning models (see Fig 4C). This showed that the

models adopting flexible hierarchical weighting of prediction errors better explained partici-

pants’ gaze data than simple associative learning computations. The HGF3 (see Fig 4B) was

is in red and the binary distributed response variable (pitch angle: above or below median) in pink. The thin black line

shows the learning rate. Mean and 95% CIs for μ2 and μ3 are shown in blue in the middle and top panels.

https://doi.org/10.1371/journal.pcbi.1011473.g004
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deemed to be the most likely model, with a protected exceedance probability of 1.00 (Fig 4D).

This model was therefore chosen as the most likely generative process and the participant-wise

parameter estimates were extracted to examine how active inference processes may differ

between autistic and neurotypical individuals. The fact that the HGF3 outperformed a HGF4

model solution in this experiment suggests that beliefs about volatility were relatively stable

within the two study blocks. When compared to the illusory object lifting conditions in Expt 1,

we speculate that participants were more certain about the variety of ball bounce outcomes

and trial order changes in the virtual racquetball task.

Parameter comparison

As is evident in Fig 5, there were differences in variance between the Autism and Neurotypical

groups for some parameters. As ANOVA is typically described as robust to deviations from

normality [73], we retained a parametric approach for the omnibus test for most variables.

Non-parametric tests were used for α3 which was visibly strongly skewed. For follow-up com-

parisons we used non-parametric Welch’s t-tests where there were between group differences

in variances.

The first parameter of interest was z, the decision rule parameter, which indicated the

degree to which responses were determined by beliefs or more noisy/exploratory policies. A 2

(group) x 2(condition) mixed model ANOVA showed no significant group [F(1,57) = 0.01, p =

.91, ηp
2 = 0.00], condition [F(1,57) = 0.39, p = .54, ηp

2 = 0.01], or interaction [F(1,57) = 1.52, p
= .22, ηp

2 = 0.03] effects, suggesting no differences in participants’ response models.

Next, we examined the posterior state estimates for x2 and x3 (μ2 and μ3). ANOVA indi-

cated no significant condition [F(1,57) = 0.45, p = .45, ηp
2 = 0.01] or interaction [F(1,57) =

0.01, p = .91, ηp
2 = 0.00] effects for μ2, the posterior expectation of ball outcome. There were,

however, group differences in μ2 [F(1,57) = 6.60, p = .01, ηp
2 = 0.10], with higher values in the

neurotypical group (Fig 5C) indicating that autistic individuals held weaker expectations

about receiving a ‘normal’ ball than their neurotypical counterparts (in line with [28]).

There was no group level difference in μ3 [F(1,57) = 2.28, p = .14, ηp
2 = 0.04], the posterior

state estimate of environmental volatility. There was, however, an overall effect of condition [F
(1,57) = 5.37, p = .02, ηp

2 = 0.09] and the interaction effect was close to the significance thresh-

old [F(1,57) = 3.84, p = .055, ηp
2 = 0.06]. Follow-up Welch’s t-tests with Holm-Bonferroni cor-

rection indicated that there was no significant difference between groups in the stable

condition [t(56.7) = 0.77, p = .44, d = 0.19], but large differences during the volatile trials [t
(57.0) = 3.00, p = .008 d = 0.72] (see Fig 5D). In these trials, neurotypical participants appeared

to perceive greater volatility than their autistic counterparts, following context-sensitive adjust-

ments in their posterior state estimates. As illustrated in Fig 5D, the autism group did not dis-

play these contextual adjustments, indicating that they were less inclined to update their state

beliefs between stable and volatile conditions.

Next, we examined rates of belief updating (learning) at levels x2 and x3, referred to as α2

and α3 (see Fig 5E and 5F). For α2, there were clear group level differences [F(1,57) = 6.40, p =

.01, ηp
2 = 0.10], but condition [F(1,57) = 0.73, p = .40, ηp

2 = 0.01] and interaction effects [F
(1,57) = 1.46, p = .23, ηp

2 = 0.03] were not statistically significant. Although the interaction was

not statistically significant, there appeared to be a divergence pattern in the plot (Fig 5E) so we

performed post-hoc tests to check if the group differences were similar across conditions.

Welch’s t-tests with a Holm-Bonferroni correction, confirmed that there was no significant

difference between groups in the stable condition [t(49.7) = 1.31, p = .20, d = 0.34], but a signif-

icant difference was present in volatile trials [t(52.8) = 3.09, p = .006, d = 0.73]. Here, a much

higher learning rate was observed for neurotypical participants, indicating that volatility-
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related increases in learning rate were not displayed by autistic individuals. For α3, a Fried-

man’s test showed no effect of condition [χ2 = 1.37, p = .24], but a Kruskal-Wallis test indicated

an overall effect of group [H(1) = 3.90, p = .048]. Follow-up Mann-Whitney tests indicated

that there was no difference between groups for the stable condition [z = 376, p = .76, rrb =

Fig 5. Mean and 95% CIs of model-derived estimates. Figures show the decision parameter, z, (panel A), the random

walk variance parameter, ω, (panel B), posterior beliefs about x2 (ball bounciness; panel C) and x3 (environmental

volatility; panel D), and learning rates at levels 2 (panel E) and 3 (panel F) of the HGF. Thicker significance bars

indicate group-level effects and thinner bars indicate pair-wise differences. *p< .05, **p< .01, ***p< .001.

https://doi.org/10.1371/journal.pcbi.1011473.g005
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.05], but that learning rate was higher for neurotypical participants in the volatile condition

[z = 238, p = .047, rrb = 0.33].

Next, we examined ω (Fig 5B) and ϑ, the variance parameters in the random walk at x2 and

x3. For ω, effectively an estimate of environmental volatility, ANOVA showed an overall effect

of group [F(1,57) = 4.75, p = .03, ηp
2 = 0.08], but no effect of condition [F(1,57) = 0.13, p = .72,

ηp
2 = 0.002], and no interaction [F(1,57) = 1.30, p = .26, ηp

2 = 0.02]. Welch’s t-test showed no

significant differences between autism and neurotypical groups in the stable condition [t(56.2)

= 1.13, p = .26, d = 0.28], but a large difference in the volatile trials [t(57.0) = 3.00, p = .008,

d = 0.72]. Specifically, the high levels of environmental instability on these trials were detected

less readily by autistic compared to neurotypical individuals. For ϑ, the variance in the disper-

sion of the volatility state estimate (x3) (i.e., the volatility of volatility), ANOVA showed null

group [F(1,57) = 1.84, p = .18, ηp
2 = 0.03], condition [F(1,57) = 0.01, p = 0.91, ηp

2 = 0.00], and

interaction [F(1,57) = 0.03, p = .86, ηp
2 = 0.00] effects.

As autism is generally viewed as a spectrum disorder, we also conducted a supplementary

analysis (available in the online files: https://osf.io/6szf5) to examine the relationship between

model parameters and autistic traits as measured by Autism Spectrum Quotient questionnaire.

Correlations were weak suggesting the observed effects were related to diagnostic status more

than behavioural traits.

General discussion

Recent neuro-computational theories have identified a variety of mechanisms that could

explain atypical sensory processing [1] and movement control [8] in autism, but these theoreti-

cal accounts are yet to be adequately tested using the types of naturalistic behavioural tasks

that autistic people find challenging (but see [74] for comparison of Bayesian theories of

autism in a purely perceptual task). To probe the generative processes responsible, we applied

a generative modelling approach to active inference behaviours from both an object lifting par-

adigm and an interceptive movement task. Our results have important implications for each of

the main theoretical explanations of autism, which we outline below.

The attenuated-prior account [28,29] characterises perceptual and behavioural differences

in autism as resulting from overly flat or weak priors, which exert a chronically diminished

influence on sensory processing. Contrary to these claims, our models of predictive grip force

rates (Expt 1) indicated no difference in beliefs about the relationship between the size and

weight of objects. Findings from other perceptual and motor tasks have also questioned the

‘hypopriors’ hypothesis (e.g., [37,42,48,60–62]). We did, however, observe weaker expectations

about ‘normal’ ball bounce profiles in autistic individuals during the more dynamic intercep-

tive task (Expt 2) and weaker priors have been reported in some settings (e.g., [75,76]). These

context-dependent results support the generally inconsistent study findings in the field (see

[27,33] for reviews) and align with our previous observations [42,43,48,77]. Indeed, although

the location of predictive gaze fixations may generally be atypical in autistic individuals during

interceptive motor tasks, their visual sampling behaviours are still strongly driven by prior

expectations [43] and are sensitive to explicit cues about likely ball bounciness [77]. Hence,

there is growing evidence that diminished use of priors is not a satisfactory explanation for the

totality of autistic perceptual and motor behaviours. While the integration of prior beliefs and

sensory observations is undoubtedly atypical in some tasks or environments, the contextual

factors and mechanisms that moderate these hierarchical predictive processes must be

accounted for in future theoretical work.

The high and inflexible precision of prediction errors account [30] proposes that bottom-

up information from sensory input (and the deviation of sensations from expectations) is
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afforded a high and fixed level of precision in autistic people. Consequently, perception is

dominated by incoming sensations and internal predictive models are updated at a persistently

faster rate. We did not, however, find evidence to support this hypothesis. Firstly, the trial-by-

trial updating of predictive grip forces in Expt 1 did not appear to be accelerated or atypical in

autism. Secondly, during the interceptive task (Expt 2), there was also no evidence of acceler-

ated updating of anticipatory eye movements in autistic participants. Instead, estimated learn-

ing rates at both levels 2 and 3 of the learning model were lower than neurotypical equivalents,

which suggests that autistic individuals were actually resistant to updating their beliefs in

response to precision-weighted prediction errors. Such findings are consistent with recent

observations that learning rate is not persistently elevated in autistic people [62,78], and indi-

cates that the high precision of prediction errors account may be limited in explaining sensori-

motor atypicalities.

Finally, Lawson and colleagues [31,32], have proposed that autism-related differences in

sensory processing stems from atypical precision encoding in the brain. Generic strength of

priors or weighting of prediction errors are not proposed to be different, but rather it is the

context-sensitive mechanisms that regulate how these belief signals are dynamically adjusted
over time. Notably, Expt 2 revealed clear differences between autistic and neurotypical individ-

uals in this regard. Firstly, while neurotypical participants perceived our volatile study condi-

tions to be more changeable than their stable trial equivalents, autistic individuals’ beliefs

about environmental volatility were not adjusted between experimental blocks (Fig 5D). Fur-

thermore, under volatile conditions, functional adaptations to learning rate at level 2 (about p

(normal)) and level 3 (about volatility) were not evident for autistic individuals, despite being

displayed by their neurotypical counterparts (Fig 5E and 5F). These results align with previous

observations that sensorimotor processing is insensitive to varying levels of environmental

uncertainty in autism [32,42,79]. However, while these results support the idea that context-

sensitive modulation of prediction errors and learning rate is atypical in autistic individuals,

the effects we observed were in the opposite direction to that predicted by Lawson et al [31].

who claim that autistic individuals tend to process sensory environments as persistently vola-

tile. In Expt 1, we found no evidence of differences in volatility estimations between autistic

and neurotypical individuals, although the analyses were limited by the restricted variation in

volatility in this task. In Expt 2, our model parameters (μ3 and ω) indicated that posterior esti-

mates of volatility were actually lower in the autism group, compared to neurotypical controls

(see Fig 5D). One reconciling explanation, is that if autistic adults perceive the world as persis-
tently changeable and unpredictable, they may be less inclined to update their beliefs in

response to volatility (i.e., beliefs about volatility could be weighted with atypically high preci-

sion). Consequently, Lawson’s claim that autistic individuals process the world as persistently

volatile could still hold. Given that similar types of ‘hyperpriors’ have already been proposed as

a critical element of mood disorders [80], further research into sensorimotor skills could

examine the persistence of participants’ volatility beliefs (e.g., volatility of volatility) and/or the

mechanisms that underpin precision encoding functions (e.g., using computational modelling

or neuro-imaging methodologies).

Nevertheless, some key theoretical issues relating to predictive processing accounts of

autism require further examination, and additional questions remain about the applicability of

these frameworks across wider daily living behaviours and social domains (for further discus-

sions, see [27,81]). The accounts examined in this paper are primarily rooted in traditional

Bayesian brain and predictive processing theories rather than active inference per se. In this,

and previous [43,48], work we have attempted to apply these theoretical ideas to more complex

motor actions, but there is still work to be done to formalise these theories in terms of free

energy minimization and epistemic reward. One option to more directly probe atypicalities in
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prediction error signalling while maintaining more naturalistic movement tasks is the use of

EEG (e.g., see [82,83]). Such future enquiries are not just significant from a conceptual per-

spective; they could also implicate future practical support for the autism community. Indeed,

by better understanding how sensory information is processed during naturalistic tasks, and

by identifying precise neuro-computational differences that underpin autistic-like behavioural

traits, one can augment the development of evidence-based support tools and learning provi-

sions (see [84]).

Conclusions

This paper sheds new light on the underlying mechanisms responsible for sensorimotor atypi-

calities in autism. Here, the use of computational modelling techniques has added a useful per-

spective to existing research findings in the field, allowing us to disambiguate between

competing theoretical hypotheses. We provide evidence that some key features of autistic sen-

sorimotor behaviour can be effectively explained via the general principles of active inference.

Such results contribute to the scientific and aetiological understanding of autism and could

represent an important step towards developing appropriate practical support. Specifically,

our analysis suggests that autism research must account for differences in the context-sensitive

modulation of prediction error in the brain (e.g., [31,32]). This account may be compatible

with attenuated priors which are observed in some tasks/contexts. Our results also raise further

questions about how autistic people process sensory information in dynamic and uncon-

strained movement tasks.

Author Contributions

Conceptualization: Tom Arthur, Sam Vine, Gavin Buckingham, Mark Brosnan, Mark

Wilson.

Data curation: Tom Arthur, David Harris.

Formal analysis: Tom Arthur, David Harris.

Methodology: Tom Arthur.

Supervision: Sam Vine, Gavin Buckingham, Mark Brosnan, Mark Wilson.

Visualization: David Harris.

Writing – original draft: Tom Arthur, David Harris.

Writing – review & editing: Sam Vine, Gavin Buckingham, Mark Brosnan, Mark Wilson.

References
1. Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017; 18: 671–684.

https://doi.org/10.1038/nrn.2017.112 PMID: 28951611

2. Crane L, Goddard L, Pring L. Sensory processing in adults with autism spectrum disorders. Autism.

2009; 13: 215–228. https://doi.org/10.1177/1362361309103794 PMID: 19369385

3. Kern JK, Trivedi MH, Grannemann BD, Garver CR, Johnson DG, Andrews AA, et al. Sensory correla-

tions in autism. Autism. 2007; 11: 123–134. https://doi.org/10.1177/1362361307075702 PMID:

17353213

4. Kanner L. Autistic disturbances of affective contact. Nerv Child. 1943; 2: 217–250.

5. Damasio AR, Maurer RG. A Neurological Model for Childhood Autism. Arch Neurol. 1978; 35: 777–786.

https://doi.org/10.1001/archneur.1978.00500360001001 PMID: 718482

6. Coll S-M, Foster NEV, Meilleur A, Brambati SM, Hyde KL. Sensorimotor skills in autism spectrum disor-

der: A meta-analysis. Res Autism Spectr Disord. 2020; 76: 101570. https://doi.org/10.1016/j.rasd.2020.

101570

PLOS COMPUTATIONAL BIOLOGY Modelling of active inference in autism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011473 September 11, 2023 19 / 23

https://doi.org/10.1038/nrn.2017.112
http://www.ncbi.nlm.nih.gov/pubmed/28951611
https://doi.org/10.1177/1362361309103794
http://www.ncbi.nlm.nih.gov/pubmed/19369385
https://doi.org/10.1177/1362361307075702
http://www.ncbi.nlm.nih.gov/pubmed/17353213
https://doi.org/10.1001/archneur.1978.00500360001001
http://www.ncbi.nlm.nih.gov/pubmed/718482
https://doi.org/10.1016/j.rasd.2020.101570
https://doi.org/10.1016/j.rasd.2020.101570
https://doi.org/10.1371/journal.pcbi.1011473


7. Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH. Motor Coordination in Autism Spectrum Disor-

ders: A Synthesis and Meta-Analysis. J Autism Dev Disord. 2010; 40: 1227–1240. https://doi.org/10.

1007/s10803-010-0981-3 PMID: 20195737

8. Gowen E, Hamilton A. Motor Abilities in Autism: A Review Using a Computational Context. J Autism

Dev Disord. 2013; 43: 323–344. https://doi.org/10.1007/s10803-012-1574-0 PMID: 22723127

9. Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, et al. Impairment in movement skills

of children with autistic spectrum disorders. Dev Med Child Neurol. 2009; 51: 311–316. https://doi.org/

10.1111/j.1469-8749.2008.03242.x PMID: 19207298

10. Mari M, Castiello U, Marks D, Marraffa C, Prior M. The reach–to–grasp movement in children with

autism spectrum disorder. Philos Trans R Soc Lond B Biol Sci. 2003; 358: 393–403. https://doi.org/10.

1098/rstb.2002.1205 PMID: 12639336

11. Robledo J, Donnellan A, Strandt-Conroy K. An exploration of sensory and movement differences from

the perspective of individuals with autism. Front Integr Neurosci. 2012;6. Available from: https://www.

frontiersin.org/article/10.3389/fnint.2012.00107.

12. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav

Brain Sci. 2013; 36: 181–204. https://doi.org/10.1017/S0140525X12000477 PMID: 23663408

13. Hohwy J. New directions in predictive processing. Mind Lang. 2020; 35: 209–223. https://doi.org/10.

1111/mila.12281

14. Seth AK. The Cybernetic Bayesian BrainThe Cybernetic Bayesian Brain: From Interoceptive Inference

to Sensorimotor Contingencies: From Interoceptive Inference to Sensorimotor Contingencies. Open

MIND. 2015 [cited 4 May 2021]. https://doi.org/10.15502/9783958570108

15. Friston K, Kiebel S. Predictive coding under the free-energy principle. Philos Trans R Soc B Biol Sci.

2009; 364: 1211–1221. https://doi.org/10.1098/rstb.2008.0300 PMID: 19528002

16. Liu B, Hong A, Rieke F, Manookin MB. Predictive encoding of motion begins in the primate retina. Nat

Neurosci. 2021; 24: 1280–1291. https://doi.org/10.1038/s41593-021-00899-1 PMID: 34341586

17. Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-

classical receptive-field effects. Nat Neurosci. 1999; 2: 79–87. https://doi.org/10.1038/4580 PMID:

10195184

18. Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational psychiatry: the brain as a phantastic

organ. Lancet Psychiatry. 2014; 1: 148–158. https://doi.org/10.1016/S2215-0366(14)70275-5 PMID:

26360579

19. Arthur T, Harris DJ. Predictive eye movements are adjusted in a Bayes-optimal fashion in response to

unexpectedly changing environmental probabilities. Cortex. 2021; 145: 212–225. https://doi.org/10.

1016/j.cortex.2021.09.017 PMID: 34749190

20. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion.

Nature. 2002; 415: 429–433. https://doi.org/10.1038/415429a PMID: 11807554

21. Parr T, Sajid N, Da Costa L, Mirza MB, Friston KJ. Generative Models for Active Vision. Front Neuroro-

botics. 2021;15. https://doi.org/10.3389/fnbot.2021.651432 PMID: 33927605

22. Brown H, Friston KJ, Bestmann S. Active Inference, Attention, and Motor Preparation. Front Psychol.

2011;2. https://doi.org/10.3389/fpsyg.2011.00218 PMID: 21960978

23. Knill DC, Pouget A. The Bayesian brain: the role of uncertainty in neural coding and computation.

Trends Neurosci. 2004; 27: 712–719. https://doi.org/10.1016/j.tins.2004.10.007 PMID: 15541511

24. Parr T, Friston KJ. Generalised free energy and active inference. Biol Cybern. 2019; 113: 495–513.

https://doi.org/10.1007/s00422-019-00805-w PMID: 31562544

25. Adams RA, Shipp S, Friston KJ. Predictions not commands: active inference in the motor system. Brain

Struct Funct. 2013; 218: 611–643. https://doi.org/10.1007/s00429-012-0475-5 PMID: 23129312

26. Shipp S, Adams RA, Friston KJ. Reflections on agranular architecture: predictive coding in the motor

cortex. Trends Neurosci. 2013; 36: 706–716. https://doi.org/10.1016/j.tins.2013.09.004 PMID:

24157198

27. Palmer CJ, Lawson RP, Hohwy J. Bayesian approaches to autism: Towards volatility, action, and

behavior. Psychol Bull. 2017; 143: 521–542. https://doi.org/10.1037/bul0000097 PMID: 28333493

28. Pellicano E, Burr D. When the world becomes ‘too real’: a Bayesian explanation of autistic perception.

Trends Cogn Sci. 2012; 16: 504–510. https://doi.org/10.1016/j.tics.2012.08.009 PMID: 22959875

29. Brock J. Alternative Bayesian accounts of autistic perception: comment on Pellicano and Burr. Trends

Cogn Sci. 2012; 16: 573–574; author reply 574–575. https://doi.org/10.1016/j.tics.2012.10.005 PMID:

23123383

PLOS COMPUTATIONAL BIOLOGY Modelling of active inference in autism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011473 September 11, 2023 20 / 23

https://doi.org/10.1007/s10803-010-0981-3
https://doi.org/10.1007/s10803-010-0981-3
http://www.ncbi.nlm.nih.gov/pubmed/20195737
https://doi.org/10.1007/s10803-012-1574-0
http://www.ncbi.nlm.nih.gov/pubmed/22723127
https://doi.org/10.1111/j.1469-8749.2008.03242.x
https://doi.org/10.1111/j.1469-8749.2008.03242.x
http://www.ncbi.nlm.nih.gov/pubmed/19207298
https://doi.org/10.1098/rstb.2002.1205
https://doi.org/10.1098/rstb.2002.1205
http://www.ncbi.nlm.nih.gov/pubmed/12639336
https://www.frontiersin.org/article/10.3389/fnint.2012.00107
https://www.frontiersin.org/article/10.3389/fnint.2012.00107
https://doi.org/10.1017/S0140525X12000477
http://www.ncbi.nlm.nih.gov/pubmed/23663408
https://doi.org/10.1111/mila.12281
https://doi.org/10.1111/mila.12281
https://doi.org/10.15502/9783958570108
https://doi.org/10.1098/rstb.2008.0300
http://www.ncbi.nlm.nih.gov/pubmed/19528002
https://doi.org/10.1038/s41593-021-00899-1
http://www.ncbi.nlm.nih.gov/pubmed/34341586
https://doi.org/10.1038/4580
http://www.ncbi.nlm.nih.gov/pubmed/10195184
https://doi.org/10.1016/S2215-0366%2814%2970275-5
http://www.ncbi.nlm.nih.gov/pubmed/26360579
https://doi.org/10.1016/j.cortex.2021.09.017
https://doi.org/10.1016/j.cortex.2021.09.017
http://www.ncbi.nlm.nih.gov/pubmed/34749190
https://doi.org/10.1038/415429a
http://www.ncbi.nlm.nih.gov/pubmed/11807554
https://doi.org/10.3389/fnbot.2021.651432
http://www.ncbi.nlm.nih.gov/pubmed/33927605
https://doi.org/10.3389/fpsyg.2011.00218
http://www.ncbi.nlm.nih.gov/pubmed/21960978
https://doi.org/10.1016/j.tins.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15541511
https://doi.org/10.1007/s00422-019-00805-w
http://www.ncbi.nlm.nih.gov/pubmed/31562544
https://doi.org/10.1007/s00429-012-0475-5
http://www.ncbi.nlm.nih.gov/pubmed/23129312
https://doi.org/10.1016/j.tins.2013.09.004
http://www.ncbi.nlm.nih.gov/pubmed/24157198
https://doi.org/10.1037/bul0000097
http://www.ncbi.nlm.nih.gov/pubmed/28333493
https://doi.org/10.1016/j.tics.2012.08.009
http://www.ncbi.nlm.nih.gov/pubmed/22959875
https://doi.org/10.1016/j.tics.2012.10.005
http://www.ncbi.nlm.nih.gov/pubmed/23123383
https://doi.org/10.1371/journal.pcbi.1011473


30. Van de Cruys S, Evers K, Van der Hallen R, Van Eylen L, Boets B, de-Wit L, et al. Precise minds in

uncertain worlds: Predictive coding in autism. Psychol Rev. 2014; 121: 649–675. https://doi.org/10.

1037/a0037665 PMID: 25347312

31. Lawson RP, Rees G, Friston KJ. An aberrant precision account of autism. Front Hum Neurosci. 2014;8.

Available from: https://www.frontiersin.org/article/10.3389/fnhum.2014.00302.

32. Lawson RP, Mathys C, Rees G. Adults with autism overestimate the volatility of the sensory environ-

ment. Nat Neurosci. 2017; 20: 1293–1299. https://doi.org/10.1038/nn.4615 PMID: 28758996

33. Cannon J O’Brien AM, Bungert L, Sinha P. Prediction in Autism Spectrum Disorder: A Systematic

Review of Empirical Evidence. Autism Res. 2021; 14: 604–630. https://doi.org/10.1002/aur.2482 PMID:

33570249

34. Bedford R, Pickles A, Lord C. Early gross motor skills predict the subsequent development of language

in children with autism spectrum disorder. Autism Res. 2016; 9: 993–1001. https://doi.org/10.1002/aur.

1587 PMID: 26692550

35. Lieder I, Adam V, Frenkel O, Jaffe-Dax S, Sahani M, Ahissar M. Perceptual bias reveals slow-updating

in autism and fast-forgetting in dyslexia. Nat Neurosci. 2019; 22: 256–264. https://doi.org/10.1038/

s41593-018-0308-9 PMID: 30643299

36. Noel J-P, Lakshminarasimhan KJ, Park H, Angelaki DE. Increased variability but intact integration dur-

ing visual navigation in Autism Spectrum Disorder. Proc Natl Acad Sci. 2020; 117: 11158–11166.

https://doi.org/10.1073/pnas.2000216117 PMID: 32358192

37. Tewolde FG, Bishop DVM, Manning C. Visual Motion Prediction and Verbal False Memory Perfor-

mance in Autistic Children. Autism Res. 2018; 11: 509–518. https://doi.org/10.1002/aur.1915 PMID:

29271070

38. Bertone A, Mottron L, Jelenic P, Faubert J. Motion Perception in Autism: A “Complex” Issue. J Cogn

Neurosci. 2003; 15: 218–225. https://doi.org/10.1162/089892903321208150 PMID: 12676059

39. Henco L, Diaconescu AO, Lahnakoski JM, Brandi M-L, Hörmann S, Hennings J, et al. Aberrant compu-
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