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Abstract—Flocking, shoaling and swarming in animal groups
serve a number of functions, including improving information
transmission and reducing predation risks. Individuals in bio-
logical populations tend to make limited and simple responses
to each other and also to stimuli in the environment. But by
acting together they can accomplish collective tasks, which is
referred to as swarm intelligence. Insights from natural systems
have inspired work in numerous areas, such as meta-heuristic
optimization, machine learning and image processing. However,
the limitations of information sharing, and transfer make it dif-
ficult to solve real-world engineering problems in physical world
using the swarm intelligence mechanism. This contrasts with
natural systems where, for example, birds use social information
to improve sensing of environmental cues and make decisions
without lag during flight. Thus, behavioural modelling of animal
swarming may provide new insights into this problem. Here, we
show comparsion of two data-driven deep neural network models
for drone flocking.

Index Terms—collective behaviour, swarm intelligence, artifi-
cial intelligence, self-organization model

I. INTRODUCTION

Animal collective behaviour refers to a biological phe-
nomenon in which interactions between individuals give rise to
coordinated group movement and decision-making. Tasks and
goals may include foraging, breeding, and migration. Animal
collectives can therefore arise through an emergent process
of self-organisation. Animal collectives are self-organized,
with no individual knowing the entire state of the system
or acting as a leader [1]. The study of animal collective
behaviour has attracted wide attention as it provides insights
into the mechanisms through which group-level phenomena
can emerge from local interactions between agents, generating
major ecological and evolutionary consequences [2]-[6].

Although individuals in biological populations tend to make
limited and simple responses to neighbours and external
stimuli, these local responses can give rise to collective in-
telligence, enabling groups to accomplish collective tasks that
would be beyond the abilities of any individual. This is known
as collective or swarm intelligence.

In recent years, with the development of artificial in-
telligence (AI) technologies, especially in deep neural net-
works, more researchers have started to focus on the relation-
ship between swarm intelligence and new Al technologies.
Nowadays, swarm intelligence is applied in various areas
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such as complex function optimization, industrial automation,
robotics, machine learning, and image processing.

Swarm intelligence can be used to find globally optimal
solutions by simulating the collaborative swarm behaviour
of agents. The majority of swarm intelligence algorithms
are straightforward to implement, reliable, and robust for
solving complex optimization problems [7]. For instance, ant
colony optimization (ACO) and particle swarm optimization
(PSO) algorithms have demonstrated excellent performance in
solving a wide variety of constrained and unconstrained opti-
misation problems [8]-[10]. Furthermore, introducing swarm
intelligence into natural language processing (NLP) has led to
significant improvements in translation accuracy and perfor-
mance [11]. Gao [12] proposed a new optimization method
based on ant colony algorithms and neural networks. By sim-
ulating the foraging behaviour of ants, Gao’s method achieves
faster network convergence and better performance. Liu et al.
proposed a method based on multi-objective optimization and
swarm intelligence, which has shown superior performance
and robustness across multiple tasks [13].

Swarm intelligence can also enhance the decision-making
ability of artificial intelligence and neural networks by inte-
grating the opinions of multiple agents through a collective
“wisdom of the crowds” approach, generating more accurate
and reliable decisions. This approach has applications in fields,
such as finance, healthcare, and transportation [14]-[16].

Moreover, swarm intelligence can help artificial intelligence
better adapt to the environment. In some applications, the
environment may be uncertain or dynamic, requiring the
artificial intelligence system to quickly adapt to changes. With
swarm intelligence technology, artificial intelligence systems
can better handle these environmental changes. For example,
swarm intelligence algorithms can optimise agents’ behaviour
to better adapt to constantly changing environments.

Although natural systems have inspired work in artificial
intelligence areas, the limitations of information sharing and
transfer make it difficult to solve engineering problems in
the physical world. In contrast, in the natural world, birds
for example can use social information (e.g. responding to
the movement of other individuals) to improve sensing of
environmental cues and make decisions without lag during
flight. If considering this phenomenon as an algorithm, it
can be viewed as self-organised. As we know that swarm



intelligence enables efficient collaboration through the use of
simple, local rules of interaction between agents, and shows
high autonomy. Thus, swarm intelligence may provide new
insights into information sharing and transfer. By introducing
swarm intelligence to the multi-robot system, the autonomy
of the system can be improved, such as each of the robots
is able to show simple responses to neighbours. Therefore,
information transfer problems are likely to be solved.

II. DRONE FLOCKING AS TECHNOLOGY SUPPORT

Being an emerging technology, drones are used in many
different fields, such as power infrastructure inspection, se-
curity and fire protection, agriculture and farming, industrial,
film, television and entertainment and light shows etc. [17]-
[19]. Autonomous drones enable closer and more accurate
inspection of large sites or hazardous equipment in the in-
dustry. In addition, they can provide visual or other survey
data to equipment or other objects in extreme or dangerous
environments more closely than humans [18], [20], [21].

The previous studies on unmanned aerial vehicles (UAVs)
have mainly focused on UAVs’ controlling via a centralized
control system or distributed control system [22]-[24], or
using dynamic programming for optimal flocking and control
at a particular time, which requires personnel to be on-site
for control or pre-coding. In a centralized control system,
computation is mainly done in the control centre and agents
are only used for performing instructions. So that the drones
do not interact with each other. Although, the general cost
is relatively low. One of the shortcomings of a centralized
system is that with increasing number of agents, the response
speed will be significantly reduced due to the overload of the
computing centre. Moreover, if the communication between
the command centre and the individuals is compromised, the
entire cluster will not work.

In contrast, distributed control systems for UAVs do not
require a centralised controller and they share information
and work cooperative mode. One of the most important
advantages of distributed computing systems is reliability. The
failure of one server’s system will not affect the rest of the
servers. The system can still provide services normally to the
outside world. The computing power of multiple computers
makes distributed control faster than other system structures.
However, distributed control are often designed to be complex
to ensure data consistency and avoid the data hazards caused
by machine failure.

We discuss whether it would be possible to overcome
existing problems in the centralized control system and the
decentralized system by designing a new flocking system that
uses swarm intelligence in the control system. By harnessing
the adaptive and self-organizing nature of swarm algorithms,
a new flocking system may be designed with minimal human
intervention. Introducing swarm intelligence into cluster mod-
elling has the potential to enhance the adaptability, flexibility,
and efficiency of UAV clusters and improve their environmen-
tal performance.

III. METHODOLOGY
A. Experimental Setting and Data Collection

To implement the self-organized model, we recorded a large
amount of flight data, including but not limited to small
regular patterns, different unidirectional flying patterns such
as going left, going right, taking off, landing, flying forward,
flying backwards and random walks with limited range. Our
experiments are carried out on the Crazyflie, which is a
versatile open-source flying development platform that only
weighs 27g [25]. Due to its light weight, Crazyflies have
been used in small robotics or multiple robotics research and
applications.

Based on the above mentioned flight data, we modelled the
motion of the drones within a machine learning framework.
This may be helpful in performing experiments such as obsta-
cle avoidance on a virtual model. With the data-driven virtual
model, we are able to digitize the motion of the drones from
manual control to quantitative control. This will theoretically
lead to smoother flight and improved controllability. After a
successful run of the virtual experiment, the model outputs are
assigned to the real drone so that it can be controlled directly.
The results of the test run are observed to be the same as
those of the virtual experiment. According to the above setting,
the robotic control system, motor input data or pulse width
modulation (PWM), 3D position data (X, Y, Z), and 4 features
(Roll, Pitch, Yaw and Thrust) from the stabilizer of the drone
are recorded during flying the drone. Detailed descriptions and
sizes are shown in Table I.

TABLE I
DATA DESCRIPTION
Data name Data description Data size
Small Circle A small circular motion including take-off and landing 300 x 11
Large Circle A large circular motion including take-off and landing 325 x 11
Taking Off 100 repetitions of taking off and landing 5081 x 11
Going Forward 100 repetitions of going forward and backwards 720 x 11
Going Left 100 repetitions of going to the left direction 6441 x 11
Going Right 100 repetitions of going to the right direction 2802 x 11
Small Random Multiple times of limited steps (50) random walk 7290 x 11

PWM inputs of the motors are recorded as the features of
control technology for electronic power applications [26], [27].
PWM is an irreplaceable link in a stable and flexible method
of controlling the speed of a DC motor [27]. The position is
in three dimensions that represent the position of the drone
every 50 milliseconds. Roll, pitch, and yaw are terms used
to describe the rotational movements of an object or body
in three-dimensional space. Roll refers to the rotation around
the longitudinal axis of an object. Pitch refers to the rotation
around the lateral axis of an object. Yaw refers to the rotation
around the vertical axis of an object. In robotics, roll, pitch,
and yaw are important terms for describing the movements.

The flight data is captured during the operation of the
drone, and is inherently temporal in nature, given that it is
collected over a specific time interval. The inherent temporal
and spatial dependencies in flight data may result in adja-
cent data points being interrelated and potentially influencing
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Fig. 1. Variable arrangements and schematic of data generated to train the
virtual drone model.

Feedback

each other. Furthermore, flight data is spatially correlated, as
different flight paths and altitudes may have an impact on
the data. In this paper, we collected multi-dimensional flight
data, consisting of motor data, flight position, and robotic
control parameters. The specific parameters recorded and the
schematic of data application to model structure are shown in
Fig. 1. These multiple dimensions of data are intricately related
and require sophisticated analysis and modelling technique to
extract meaningful insights.

B. Data Pre-prossessing

During the flight, noise and outliers are frequently encoun-
tered in the recorded data, which can lead to inaccuracies and
instabilities in data analysis and modelling. Flight data may be
unstable in some cases. Therefore data processing is important
for the design of the model.

First, we used a sliding window to supplement the missing
data and smooth outliers. Then normalized each of the three
groups of parameters. In the flight experiments in which the
data was recorded, the drones experienced an uncontrollable
lateral offset that became more severe with each repetition of
the flying pattern. This offset can be interpreted as a trend,
and we used Matlab’s built-in function detrend to reduce the
effect of the offset.

C. Exploratory Data Analysis

In order to have a better exploration of the relationships
between features, correlation metrics are investigated. The cor-
relation metrics between pair of features of the general flight
data for multiple detrended flight trajectories were analysed.
However, when integrating flight data from different flight
paths and performing data correlation analysis, it was found
that the data recorded on the Taking off would significantly
impact the analysis. The schematic diagram of the correlation
analysis of elements with and without Taking off data is shown
in Fig. 2 and Fig. 3, respectively.

It can be seen from Fig. 2 that the position features
(X,Y, Z) are weekly correlated to most of the rest features as
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Fig. 2. Feature correlations between 11 variables on the data including faking
off experiment.
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Fig. 3. Feature correlations between 11 variables on the data without faking
off experiment.

well as with each other. It shows a significant correlation be-
tween PWM inputs of the Motors (M1, M2, M3, M4 shown
in Fig. 2) when including taking off and thrust is highly cor-
related with the output of the motors. When only considering
the rest of the trajectories’ data, the correlations of Motors’
output are not significantly high. Although thrust shows about
0.5 correlation to the motors’ output, the correlations are not
as high as the one including faking off data in Fig. 3.

So it is interesting to see when modelling this specific
behaviour of taking off, we can exclude the output of certain
motors as features or use thrust as a substitute. This operation
will not be performed for other behaviours.

IV. RESULTS AND DISCUSSIONS
A. LSTM Based Drone Model

Considering the characteristics of the data, firstly, we build
our model based on the Long Short-Term Memory (LSTM)
deep neural network. LSTM is a kind of Recurrent Neural
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Fig. 4. The LSTM model trained and tested on small circle trajectory. The
predicted trajectory for the last 100 steps is represented with a blue point line.
The real trajectory for the last 100 steps is represented with purple short lines,
while the orange line shows the whole trajectory of small circle trajectory.

Trajectory prediction with LSTM

l’1;A|'ajectory prediction with LSTM (x-y)

—
00z 001 006 : : ' :
-005 003 002 “003 002 001 3 001 002

Yaxis (m) Xaxis (m) X xis (m)
Trajectory prediction with LSTM (x-z) Trajectory prediction with LSTM (y-z)
—_ 0.2 Ll
E o
2 o
3
N o4
02 -
-005 -004 -003 -002 -0.01 0 001 002 003 004
axis
‘—Predict trajectory —— Real-life trajectory‘

Fig. 5. The LSTM model trained and tested on taking off and landing
trajectory. The top right image displays the true trajectory and the predicted
trajectory of taking off and landing trajectory in 3D. The remaining three
images show the true and predicted trajectory on different combinations of
dimensions.

Network (RNN) which is suitable for processing sequence data
such as speech, text, and time series [28], [29]. Each unit of
LSTM can continuously store and update information over
multiple time steps, so that it can solve the problem of both
long-term and short-term dependencies better.

We first conduct experiments on a small circle trajectory.
The small circle trajectory has 300 sets of data-points, as
shown in Table I. The first 200 sets of data-points are used
to train the model and predict the next paths. The last step of
the training dataset is used as the first step of the prediction.
As an initial experiment, we mainly explored the relationship
between the output data-points PWMs of the four motors and
the position of the drone that is (X, ¥, Z). Therefore, both input
and output features are 7-dimensional. The result is shown in
Fig. 4. It can be noticed that the predicted trajectory of the
drone was found to be very similar to the first 200 sets of data-
points. Although the predicted trajectory is far from the real
one, it is very similar to the trained trajectory, which indicates
that LSTM does have the ability to predict the flight paths.
When applying the LSTM model with the same structure to
the larger datasets, it produced very similar patterns for regular
flight path prediction (Fig.5). However, in the data of going
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Fig. 6. The LSTM model trained and tested on going left. The top right image
displays the true trajectory and the predicted trajectory in 3D. The remaining
three images show the true and predicted trajectory on different combinations
of dimensions.

Comparation of predicted X and real X C

ion of predicted Y and real Y/

Im

X,
axis

400 60D GO0 1000 1200 1400 1800 1800 2000 800 1000 1200 1400 1600 1800 2000

t

0 20 a0 6w

Ci ion of predicted Z and real Z

Real & predicted trajectory

0 200 400 600 800 1000 1200 1400 1600 1800 2000

t

‘— Predict trajectory —Real-life lrajectory‘

Fig. 7. The comparison between predicted and actual trajectory on a single
dimension generated by the LSTM model applied on going left is shown. The
bottom right image displays the true trajectory and the predicted trajectory
of going left in 3D. The remaining three images show the true and predicted
trajectory on separate dimensions.

left, the predicted results differ from the real ones, which can
be easily noticed from Fig. 6. The model provides a more
accurate prediction on the y-direction, however, there is a
significant bias in the prediction of the z-direction. A further
comparison of The predicted and true values in each of the
three directions is shown in Fig. 7.

Also, due to the small size of the experimental drones,
the prediction accuracy is expected to be no greater than 10
centimetres, which is difficult for the LSTM model. When
further predicting roll, pitch, yaw, and thrust, we found
that the accuracy was extremely low. This may be because
LSTM is more suitable for handling sequences with long-
term dependencies and is susceptible to noise interference.
Therefore, we tried to use the NARX model as the structural
basis, which can better predict nonlinear time series. NARX
has better robustness to noise and outliers in the input data, and
by using multiple time-series as external inputs, it allows for
more flexible modelling of multiple time series. As compared
to LSTM, NARX provides faster computational speed for
learning patterns from the drone flight data.



Predicted trajectory and real trajectory Tr§-ectory prediction with NARX on (X-Y)

o

Yaxis (m) Xaxis (m) Xaxis

Trajectory prediction with NARX on (X-Z)  Trajectory prediction with NARX on (Y-Z)

2 A5 4 05 0 05 1 152

m)

Xaxis (m) ‘—'—Predicted trajectory —Real trajectory‘ Yaxis (

Fig. 8. The NARX model trained and tested on going left. The top right
image displays the true trajectory and the predicted trajectory of going left
in 3D. The remaining three images show the true and predicted trajectory on
different combinations of dimensions.

TABLE II
MODEL VALIDATION (MSE & R?) OF LSTM AND NARX ON going left
Model name Validation topic | Mean square error (MSE) General R?
Going Left LSTM Position 0.094 —1.28 x e P
Going Left NARX Position 0.073 0.58
PWM 0.435
Stabilizer 0.142

B. NARX Based Drone Model

Next, we modelled the going left data using the nonlinear
autoregressive with exogenous input (NARX) neural network
model. The model takes a series of positions (X, ¥, Z) as inputs
and recurrent inputs which is 11 dimensional. After training,
we compared the predicted trajectory and true trajectory, as
well as the predicted stabilizer data (roll, pitch, yaw, and
thrust) and the true values. Fig. 8 shows the true and predicted
trajectory on different combinations of dimensions.

As compared to the trajectory predicted by the LSTM model
shown in Fig. 6, the NARX model provides a significantly
more accurate prediction. The specific comparison of the
results can be seen in Table II. Table III further shows the
goodness of fit statistics (R2) for each variable which shows
that in general NARX gives better predictions. Furthermore,
the NARX model has an accuracy rate of 70% for predicting
path errors within 0.15 meters and an even higher accuracy
rate of 90% for errors less than 0.25 meters.

The clearer comparison between predicted and actual po-
sitions on a single dimension is shown in Fig. 9. After

TABLE III
MODEL VALIDATION (R? OF DIFFERENT VARIABLES) USING LSTM AND
NARX ON going left

Model name variables’ name | R of all predicted data_| RZ of the predicted data (from the 200°")
Going Left LSTM X Direction —0.37 —0.33
Y Direction ~12 ~1.13
Z Direction -15 —1.52
Going Left NARX X Direction 0.76 0.92
Y Direction 0.98 0.99
Z Direction —3.89 0.71
Roll 0.84 0.87
Pitch 0.75 0.89
Yaw —12.26 —0.85
Thrust —3.05 0.54
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Fig. 9. The comparison between predicted and actual trajectory on a single
dimension generated by the NARX model applied on going left is shown. The
bottom right image displays the true trajectory and the predicted trajectory
of going left in 3D. The remaining three images show the true and predicted
trajectory on separate dimensions.
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Fig. 10. The comparison between predicted and actual stabilizers generated
by the NARX model applied on going left.

visualizing the predicted stabilizer data and the true stabilizers,
as shown in Fig. 10, it can be noticed that the NARX model
can fit the variations of roll, pitch, and thrust well, but for rela-
tively stable data, yaw, the predicted values showed significant
fluctuations. In order to better analyse the performance of the
model, the auto-correlation of the error are analysed. We found
that the model slightly deviates from the delta function like
auto-correlation of the error, which means there are trends or
seasonal features that are not involved in the current model.
This canbe considered as under-fitting. Normally, improving
the complexity, larger dataset and reducing the number of
features can solve this problem. Then we increased the size of
the training set and found that the error is still auto-correlated,
but the correlation has slightly decreased.

V. CONCLUSION AND FUTURE WORK

Comparing the experimental results, it can be seen that
digitalizing the flight of the drones with the NARX model
generated relatively better results. However, upon visualizing
the output and analyzing the autocorrelation of the errors, we
found that the model is under-fitting. Therefore, we will further
modify the current NARX model. The purpose of this model is
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predicted trajectory in 3D. The remaining three images show the true and
predicted trajectory on separate dimensions.

data-driven learning of the flight pattern of the drone, which
will provide us with a more stable and precise method of
automatic control. This model is named as virtual drone.

Due to the upcoming application of the model for obstacle
avoidance under unknown environmental conditions, as well
as for cooperative obstacle avoidance among multiple Virtual
Drones, it is necessary to further improve the model’s struc-
ture. As a preliminary attempt, we decided to modify the input
and output structure of the virtual drone to better reflect the
environmental information encountered during flight.

Based on the operating theory of the drone, we hypothesized
that the operation of the motor causes changes in position,
and therefore, we tested whether the PWM could be used as
an external input for the model. In addition, we expect the
model to provide predictions related to the drone’s position.
To test these modifications, we trained and tested the second-
generation virtual drone model structure on a simulated envi-
ronment called small random walk. The results of comparing
the predicted and actual positions are shown in Fig. 11. It
can be seen that the model is able to predict the positions or
trends in the X and Z directions relatively well, but there is a
significant bias in the prediction of the Y direction.
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