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Abstract

We describe a new approach to modelling two-dimensional ‘bird’s-eye’ images of natural waters, sensitive to the spectral
bsorption and scattering over the visual range. Constructed using the mathematical framework of invariant imbedding to
fficiently and economically resolve the associated radiative transfer equations, this method provides a fast routine to build
hysically accurate simulations. We characterise the quality of the water through surface chlorophyll content, instead of the
raditional Jerlov water types. Simulations of ‘Macbeth’ colour identification chart at different depths are compared with real,
yperspectral images recorded in a tank.
rown Copyright © 2023 Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in
imulation (IMACS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Radiative transfer; Optical oceanography; Invariant imbedding

1. Introduction

The venture of building digital simulations of natural phenomena is vast and multifaceted–not to mention
ifficult–but with great dividend returned to the motivating problems. Oceanographic phenomena are amongst the
ost complex, given the complexity of atmospheric systems, but also the difficulty in acquiring the numerous data

equired to describe specific scenarios. Nevertheless, the need for developing accurate, realistic and encompassing
igital twins is greatly sought after in industry and scientific research alike. Spectral imaging of underwater objects
rom a bird’s-eye point of view has important applications to coastal depth mapping [4,18]; underwater microplastic
etection [15]; general detection of man-made objects via a colour criterion [2]. Such systems would be relevant for
ractical uses such as search and rescue analysis or early maritime warning systems. But also academically, many
achine learning and artificial intelligence models require large volumes and a wide variety of training data, which

s challenging to collect in the maritime environment. The simulation technique provided here is able to generate
ealistic training data for such machine learning models.

In this work, we address the task of simulating the optical output of a natural water body containing submerged
nomalies of different colour at various depths. The model we develop is designed to generate the resultant bird’s-eye
iew over a two-dimensional water surface in full spectral resolution in the visual range. Our model, which we call
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Fig. 1. Sunken cross-shaped object with Lambertian reflectance (dry colour displayed in top-right) at a depth of 2.5 m in chlorophyll-free
ater.

bird5eye’, provides a significant step in the use of physical models to create physically accurate digital twins of
aritime scenarios; an example output of which is given in Fig. 1.
Our bird5eye model builds on the approach of [23], in that we solve the depth-continuous radiative transfer

quation–the “equation of motion” for spectral light distributions–using the technique of invariant imbedding [1,3].
We extend this to the two-dimensional case to derive a computationally tractable solution for bird’s-eye views. Key
novelties of our approach include the introduction of new theoretical variants on the approach of [23], described in
Section 1.2; and a new proposal and implementation of water-type parameterisation, that is the measure of water
quality. This later proposal is based on using surface chlorophyll alone as an indicator of the deep chlorophyll
profile [36] and hence the determinant of the Inherent Optical Properties (IOPs) of a given water body [25]. This is
positioned as a practical alternative to the usual practice of using the somewhat less empirical ‘Jerlov types’, based
on ambiguous historical readings [17]; see also [24].

We draw contrast with other physically-accurate simulation procedures using Monte Carlo algorithms [9,21]
which, whilst successful in prediction, are far too computationally expensive to generate two-dimensional systems
in a tractable time. The world of rendering methods in computer graphics also offers rudimentary approaches to
simulate seawater, some with in built physical considerations (such as the exponential decay of radiance); see [10]
for a detail survey. However, the combination of physical precision in the present work (inherited from [25]) and
the fast-compute mathematical structure (see Section 4) position our model for utilisation for real-life graphical
oceanographic simulation and experimentation.

1.1. Modelling chlorophyll water types in practice

It has recently been shown [25] that in many deep water environments, the physical parameters governing
the absorptive and scattering properties depend explicitly on a single determinant: chlorophyll concentration. The
state-of-the-art methodology [25] states that chlorophyll concentration, as a function of depth, may be used as a
fundamental parameter to govern the IOPs of the water body. Moreover, in a recent exploratory study [36], it was
shown that chlorophyll profile may be reasonably predicted in terms of surface chlorophyll concentration; this results
in a natural distinction of chlorophyll strata, the ‘Uitz classification’. We incorporate this classification [36] into

our model, with the ambition to use bird5eye to prove experimentally that surface chlorophyll concentration is
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Fig. 2. A bird5eye prediction of surface colour upon submerging a white Lambertian reflector (see depth 0 m) to 3.5 m, recording every
0.25 m in the vertical axis. The horizontal axis varies through the chlorophyll strata in the Uitz classification.

an accurate predictor of sea type from a surface-imaging perspective. We propose that this practice replaces the
traditional Jerlov type classification [17,34] as a more accurate alternative, whilst remaining coarse enough to apply
generally and quickly. A colour variation example predicted by our model is illustrated in Fig. 2 where we submerge
a white Lambertian reflector in each of the chlorophyll strata proposed by [36].

1.2. Theoretical developments

The catalyst for our contribution is the extension of the one-dimensional modelling approach of [23] to a
bird’s-eye projection of a three-dimensional plane-parallel water body. The theoretical tool by which we solve
the associated radiative transfer equation is the method of invariant imbedding (see Appendix E); first introduced
to describe propagation through stellar atmospheres [1], this approach has been applied successfully to oceanogra-
phy [23], engineering [3] and more recently to deep neural networks [8]. To solve the three-dimensional radiative
transfer equation directly is a computationally intractable problem. It is posed as a coupled, three-dimensional
system of non-linear PDEs for which numerical solvers are unfit to determine with computational efficiency. But
taking a modular approach, facilitated by the invariant imbedding method, bird5eye performs one-dimensional
calculations and distributes these over a three-dimensional geometry, incorporating boundary conditions locally.

We also introduce further theoretical improvements in our model’s mathematical structure: efficient (complex)
Fourier decoupling, allowing for multicore parallel processing of Fourier coefficients; and a linear system-based
inelastic scattering solution, alongside repeated monochromatic runs where each scalar wavelength is fixed, the
inelastic solution is found in an iterative fashion. See Section 3, accompanied by Appendices B, and F, respectively.

1.3. Experimentation

We implement our bird5eye model in Matlab, a scientific computing platform, where we perform the back-end
computations. This is then connected to a user interface to facilitate ease of simulations.

To road-test the outputs of our model, we have conducted an image collection experiment in which a colour
identification chart (known colloquially as a Macbeth chart), with known spectral reflectances [27], is submerged
in a water tank in a controlled environment. Images are taken at regular intervals on a hyper-spectral camera,
allowing for real-life comparison with the model’s predictions at high spectral resolution. See Section 6 and Fig. 7.
Whilst taking measurements out at sea is a difficult and expensive task, we hope to explore experimentation with

chlorophyll types in real deep-sea environments.
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1.4. Organisation of results

In Section 3 we give background to the transfer of radiation in natural waters and set out the mathematical
tructure on which bird5eye is built. Our discrete solution, both with respect to the Fourier decomposition and
avelength analysis, is inspired by but different from past frameworks [23]. In Section 4 we generalise this result

o derive the bird’s-eye view solution, the key result of our work. In Section 5 we describe our results on a
hlorophyll classification of ocean waters, to improve upon the legacy ‘Jerlov types’. Then in Section 6 we exhibit
ur experimental results that support our theoretical model.

. Index of acronyms

The following are commonly used throughout the text. We indicate where there first use and definition can be
ound.

• RTE: Radiative Transfer Equation; see Section 3.
• VSF: Volume Scattering Function; see Section 3.
• IOP: Inherent Optical Property; see Section 3.1.
• CDOM: Coloured Dissolved Organic Matter; see Section 3.1.1.
• IVP: Initial Value Problem; see Section 4.

. Solving the radiative transfer equation

Our primary goal is to solve the plane-parallel Radiative Transfer Equation (RTE) as a two-point boundary value
roblem for a range of water types. We solve for the radiance, a directional and spectral distribution of output
adiative power as a given point in space, here denoted by L(z; r), dependent on the depth variable z, with z = 0 at

the mean sea surface and increasing into the water, and a direction, with respect to the location of the value L(z; r),
given by the unit vector r. The RTE is an integro-differential equation of the form

µ
d L
dz

(z; r) = −c(z)L(z; r) +

∫
B

L(z; r′)β(z; r′
→r)dr + σ (z; r) (1)

here c(z) = a(z) + b(z) is the beam attenuation coefficient, a sum of absorption and scattering coefficients,
espectively; β is the (elastic) Volume Scattering Function (VSF), describing scattering processes between directions
′ and r; σ is an external source term; and finally the geometric distribution is parameterised by the unit ball

B = {(µ, φ) |µ ∈ [−1, 1], φ ∈ [0, 2π )} (2)

here µ is the polar coordinate, aligned with the z-axis so that µ = +1 points into the water, and φ is the planar
zimuth, whose origin is taken relative to the non-homogeneous surface boundary and incident radiation. See Fig. 3
or a graphical depiction of the geometrical set-up.

Radiance also depends on the spectrum of wavelengths λ. For brevity, in (1) we describe the inelastic RTE and
onsider the monochrome radiance dependent on a fixed wavelength λ. Indeed, the variables a, b, c, β and σ each
ave a suppressed dependence on λ. In Appendix F, we give a general elastic solution contained in the bird5eye

mplementation.
Attached to the RTE are boundary conditions at the surface and bottom. These are given explicitly in Appendix C

nd used in the framework in Section 4. The IOPs a, b, c, and β are described in Section 3.1.

.1. Inherent optical properties

The calibration of bird5eye is based on state-of-the-art experimental measurements for non-coastal waters,
hich we log here. These waters fall into Jerlov’s categorisation I–III [17,34] and cover 95% of the earths waters.
e exclude Jerlov coastal types 1C-9C. The relevant IOPs are comprised of the absorption a(z) and scattering

(z) coefficients as well as the VSF β(z; r′
→r), see Section 3.1.3. Most importantly, we observe that for fixed

avelengths λ the coefficients a and b have an explicit functional dependence on chlorophyll concentration Chl(z)
t depth z. Consequently, the same is also true for the VSF by a separation of variables (see later in Eq. (6)), thus
mplying Chl(z) is a determining factor for all IOPs present in (1).
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Fig. 3. Geometry for theoretical radiative transfer construction.

Whilst the below data are implemented into our out-of-the-box model, we have also implemented various other
IOP classification into bird5eye, and we stress that for high precision, the IOPs for the given water under analysis
should be used.

3.1.1. Absorption coefficients
Recalling the wavelength dependence here, following [23,34] we decompose the absorption coefficient into three

parts:

a(z, λ) = aw(λ) + aChl(z, λ) + aCDOM(z, λ) (3)

ith the factors describing the absorption due to pure water, chlorophyll and Coloured Dissolved Organic Matter
CDOM), respectively.

For pure water, we define aw(λ) for λ over 200–800 nm as follows: by the discussion of results in [32, §6],
pecifically concerning the measurements of [6], we use the values of aw(λ) as computed by [32] in the region
80–727.5 nm and extend these by the values recorded by [12] in the region 340–380 nm. We further assume the
alues of [33] to extend the data set in the regions 200–330 nm and 730–800 nm, referring to [32, Fig. 10] to justify
his selection. We note in particular the mild divergence in this choice of aw(λ) with [34], who take an average of
he data given in [6,28,32].

For absorption by chlorophyll (via phytoplankton) we use the model proposed by [5], with data made available
rom the ‘A New IOP Model for Case 1 Water’ tab of www.oceanopticsbook.info. For absorption by CDOM, we
mport a result of [34] which is a numerical deduction of the functional form of aCDOM in terms of Chl at fixed
epths z. The coefficient itself is written in functional form,

aCDOM(λ) = aChl(440)M exp(−α(λ− 440)) (4)

here the coefficients α and M are functions of Chl as in [34, Figs. 7 & 8], respectively.

.1.2. Scattering coefficients
We follow the chlorophyll based model of [13] for which we have a similar decomposition to the absorption

ase but with only two summands:

b(z, λ) = bw(λ) + bp(z, λ) (5)

here bw(λ) is the well understood depth-invariant pure water scattering coefficient as given by [34, Eq. (8a)] and
p is the particle scattering coefficient. For the latter we apply the formulation described by [26, Eq. (14)]. This is

alibrated via [26, Eq. (8)] using the measurements of [22].
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3.1.3. The volume scattering function
The angular distribution of scattering effects is well understood; we follow [23, Ch. 3]. Whilst the industry-

tandard experimental data dates back to [30], it matches well understood analytic models of [11,14] of which we
nclude all of in our bird5eye implementation. See the ‘Petzold’s Measurements’ tab of www.oceanopticsbook.info.

Analytically, we average over β(z; (µ′, φ′)→(µ, φ)), as in [23, Eq. (3.5)] to define the scattering phase function
˜ via

β(z; (µ′, φ′)→(µ, φ)) = b(z)β̃(ψ) (6)

epending only on the scattering angle ψ between (µ′, φ′) and (µ, φ),

cos(ψ) = µ′µ+

√
(1 − µ′2)(1 − µ2) cos(φ − φ′), (7)

and uniform over depth z. This in turn gives rise to well known symmetries of the VSF:

β(z; (µ′, φ′)→(µ, φ)) = β(z; (µ′, 0)→(µ, φ − φ′))
= β(z; (sgn(µ)µ′, φ′)→(sgn(µ′)µ, φ))
= β(z; (µ′, φ)→(µ, φ′))

(8)

here sgn(µ) := µ/|µ|. We shall use these in our forthcoming analysis.

.2. The discrete radiative transfer equation

For computer simulation, both the directional and spectral (wavelength) components require a discrete partition-
ng, where the components of (1) are averaged over the intermediate intervals. We follow [23, §4.7] with some

inor variation. Wavelength averaging is considered in Appendix F.
To decompose the integral in (1) we fix integers N and M and approximate the unit ball B by a partition of

uadrilateral facets, or ‘quads’. We denote a quad by Qiu = Ii × Uu for i = 1 . . .M and u = 1 . . . N where
he collections {Ii }i and {Uu}u partition [0, 1], and [0, 2π ], respectively; we reflect the polar coordinates so that
I−i }i partitions [−1, 0]. We pick representatives µi ∈ Ii , extended by µ−i := −µi ∈ Ii , and φu ∈ Uu . We
et µ̃i denote the average of the endpoints of Ii . We assume that the length of each Uu has equal length, in that

Uu
dφ = 2π/N , and denote the length of Ii by ∆µi :=

∫
Ii

dµ. Then the solid angular volume of each quad is
iven by ∆Qiu :=

∫
Qiu

dµdφ =
2π
N ∆µi . (See Appendix A.2 for the explicit partition used in bird5eye.)

We shall substitute functions F : B → C for their ‘quad averaged’ counterparts F(i, u) normalised so that if
F(µ, φ) = 1 then F(i, u) = 1 for (µ, φ) ∈ Qiu . We similarly average bi-variate functions G : B × B → C
but normalise them such that if G((µ′, φ′)→(µ, φ)) = 1 then G((i ′, u′)→(i, u)) = ∆Qi ′,u′ for (µ′, φ′) ∈ Q jv .
Explication of this process is described in Appendix A.3.

With this construction, we replace (1) with its quad-averaged analogue:

µ̃i
d L
dz

(z; i, u) = −c(z)L(z; i, u)

+

N∑
v=0

M∑
j=±1

β(z; ( j, v)→(i, u))L(z; j, v) + σ (z; i, u). (9)

3.3. Spectral decoupling via the complex Fourier transform

We now change variables in (9) to instead consider the complex Fourier transforms

L̂(z; i; ℓ) :=

N−1∑
u=0

L(z; i, u)e(−ℓu/N ); σ̂ (z; i; ℓ) :=

N−1∑
u=0

σ (z; i, u)e(−ℓu/N ); (10)

nd

β̂(z; i, j; ℓ) :=

N−1∑
β(z; ( j, 0)→(i, u))e(−ℓu/N ) (11)
u=0
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where we introduce the complex exponent notation

e(x) = e2π i x
= cos(2πx) + i sin(2πx) (12)

for x ∈ R. Note that β̂ is the transform of β in only one azimuthal variable due to the symmetries of β; see (8). The
use of the complex Fourier transform here simplifies much of the to-and-fro found in the sign-cosign decomposition.
All the while the oscillating properties of the transform may be projected via Euler’s identity e(x) = cos(x)+i sin(x)
or making a simple observation of the real-values of the original functions; see Appendix B.3 for example. We
analyse such properties in detail in Appendix B.

Applying the transforms of (10) and (11), for µ ∈ [−1, 1] and z > 0 we have a decoupled spectral RTE for each
Fourier-transform index 0 ≤ ℓ ≤ N − 1 given by

µ̃i
d
dz

L̂(z; i; ℓ) = −c(z)L̂(z; i; ℓ) +

M∑
j=±1

β̂(z; i, j; ℓ)L̂(z; j; ℓ) + σ̂ (z; i; ℓ). (13)

Remark 3.1. The advantage of using the spectral RTE in (13) over the original RTE in (1) is that the φ′-integral
in (1) is eliminated, or rather ‘decoupled’ from the dependence on φ. The upshot being that the equations indexed
by 0 ≤ ℓ ≤ N − 1 may be efficiently solved, independently of one another.

3.4. The discrete spectral RTE as a linear system

To recognise the symmetry in our choice of intervals Ii and the scattering matrix symmetries (see (8)), we apply
± index to our notation and henceforth consider 1 ≤ i, j ≤ M by introducing

L̂±(z; i; ℓ) := L̂(z; ±i; ℓ); σ̂±(z; i; ℓ) := σ̂ (z; ±i; ℓ); (14)

and

β̂±(z; i, j; ℓ) := β̂(z; i,± j; ℓ) = β̂(z; −i,∓ j; ℓ). (15)

With these conventions, (13) reads as follows:

± µ̃i
d
dz

L̂±(z; i; ℓ) = −c(z)L̂±(z; i; ℓ)

+

M∑
j=1

(
β̂±(z; i, j; ℓ)L̂+(z; j; ℓ) + β̂∓(z; i, j; ℓ)L̂−(z; j; ℓ)

)
+ σ̂±(z; i; ℓ). (16)

ote that (16) is a linear system of M equations. In this vein, we further introduce the following vector notation.
or each ℓ = 0, . . . , N − 1, define the M × 1 column vectors consisting of the M transformed radiance and source

erms

L̂±(z; ℓ) := [L̂±(z; i; ℓ)]1≤i≤M , σ̂
±(z; ℓ) := [σ̂±(z; i; ℓ)]1≤i≤M .

lso define the M × M ‘local transfer matrices’ by the local transmittance matrices

τ (z; ℓ) :=

[
β̂+(z; i, j; ℓ) − c(z)δi, j

µ̃i

]
1≤i, j≤M

nd the local reflectance matrices

ρ(z; ℓ) :=

[
β̂−(z; i, j; ℓ)

µ̃i

]
1≤i, j≤M

.

hese are so-called due to their contribution to preserving the radiance distribution in a given hemisphere: radiation
cattered by the matrix β̂+ remains in the same hemisphere, adjusting its direction within that hemisphere according
o τ ; on the other hand, radiation scattered by β̂− makes a U-turn and is reflected into the opposite hemisphere via
. Altogether, Eq. (16) may now be succinctly written as

±
d

L̂±(z; ℓ) = τ (z; ℓ)L̂±(z; ℓ) + ρ(z; ℓ)L̂∓(z; ℓ) + σ̂±(z; ℓ). (17)

dz
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Condensing notation a final time we henceforth suppress the ℓ-dependence and define the (complete) 2 × 1 columns
f M × 1 vectors

L̂(z; ℓ) :=

[
L̂+(z; ℓ)
L̂−(z; ℓ)

]
, σ̂ (z; ℓ) :=

[
σ̂+(z; ℓ)
σ̂−(z; ℓ)

]
longside the local transfer matrix, the 2 × 2 array of M × M matrices

K (z; ℓ) :=

[
τ (z; ℓ) ρ(z; ℓ)

−ρ(z; ℓ) −τ (z; ℓ)

]
. (18)

e finally pose the discrete spectral RTE as a 2M-dimensional system of (in general) non-linear equations

d
dz

L̂(z; ℓ) = K (z; ℓ)L̂(z; ℓ) + σ̂ (z; ℓ). (19)

. Solving the RTE for bird’s-eye views

In this section, we describe the solution implemented in bird5eye to generate two-dimensional views over the
urface. The conclusion of Section 3 was to neatly package the theoretical components of the original RTE (1) into
linear system of ODEs (19). At face value, in a one dimensional column, this system has two boundary conditions:
ne at the surface and one at the bottom. To compose our birdseye model, we consider a large collection of such
olumns, each with their own two boundary conditions; a very expensive computational problem for typical solution
ethods, such as Monte Carlo sampling.
The method of invariant imbedding can solve this system (19) by applying a linear interaction principal across

ach infinitesimal boundary; see (E.1). Applying this principal to (19) forces a system of ODEs–the Riccati
quations given in Appendices E.2 and E.2.2–onto the coefficients of the auxiliary linear relation (E.1). These
quations are independent of the original boundary conditions which may be applied post computation, and at any
epth. Moreover, the Riccati equations are forward-facing Initial Value Problems (IVPs), thus reducing the original
wo-point boundary value problem to an easily solved system of IVPs.

In this section we proceed by describing a recipe to assemble this theoretical tool to solve for bird’s-eye view
rojections over a surface area. We exclude the technical details of the invariant imbedding method here, but include
hem in full in Appendix E.

.1. Stratified depths over a pixelated area

We describe the water’s surface as a collection of pixel coordinates P = (x, y) over a rectangular region
1 ≤ x ≤ X and 1 ≤ y ≤ Y . We shall describe a flat surface, so the surface boundary is identical for each P .
The procedure below is straightforwardly adapted to describe rough surfaces.

Under the water, we partition the depth-columns underneath each pixel into the following subintervals. Over the
pixel P = (x, y), fix an arbitrarily small real number ε > 0 and two indicators of the depth below the pixel P: the
‘effective’ bottom bP > 0 such that Chl(z) is constant for z ≥ bP ; and the ‘actual’ bottom b′

P . In practice, waters
are either considered to have b′

P = bP or b′

P → ∞, with the latter employed for computational economy where
needed. For an arbitrary depth z ∈ (ε, bP ) consider the following partition,

[−ε, b′

P ] = [−ε, ε] ∪ [ε, z] ∪ [z, bP ] ∪ [bP , b′

P ]. (20)

This decomposition describes the complete region of radiative transfer from just above the air–water interface −ε

down to the bottom of the water body b′

P below P . We consider the sky radiance L̂+(−ε) incident on (20) as given;
see Appendix C.1. Our goal is to determine the water-leaving radiance L̂−

P (−ε) above each pixel P . Amending the
method below, mutatis mutandis, one obtains the internal radiances L̂±

P (z) for any z, as implemented in bird5eye.
By the virtue of the invariant imbedding solution, it suffices to consider only the unique depths bP , regardless

f boundary condition. We henceforth index bd = bP for d = 1, . . . , D recognising that the map P ↦→ d = dP is
any to one. This is possible as we first solve the RTE within the bulk of the water body and append boundary

onditions later, as required. Numerically, this reduces the computation by a factor of XY/D.
191
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4.2. Algorithm for radiance computation

The following algorithm shows how to compute the water-leaving radiances L̂−

P (−ε; ℓ) above each pixel P , with
epth-index d = dP . We refer to various formulae detailed in the appendices, starting with the surface boundary
ondition (C.17) which expresses L̂−

P (−ε; ℓ) in terms of the unknown radiance L̂−

P (ε; ℓ). We proceed by solving
or this unknown variable.

.2.1. Step one: In the bulk
Integrate the Riccati equations of Appendix E.2.1 in the bulk from z = ε to z = bd , thus producing

solutions for T (ε, bd ), R(bd , ε), Σ (ε, bd ), R(ε, bd ), T (bd , ε) and Σ (bd , ε). From the interaction principle (E.1) with
z0, z1) = (ε, bd ) we then have

L̂−(ε; ℓ) = R̂(ε, bd; ℓ)L̂+(ε; ℓ) + T̂ (bd , ε; ℓ)L̂−(bd; ℓ) + Σ (bd , ε) (21)

nd

L̂+(bd; ℓ) = T̂ (ε, bd; ℓ)L̂+(ε; ℓ) + R̂(bd , ε; ℓ)L̂−(bd; ℓ) + Σ (ε, bd ). (22)

he unknowns in (21) and (22) are L̂+(ε; ℓ) and L̂−(bd; ℓ). At this step, the solution depends only on the depth
ndex d = dP .

.2.2. Step two: Bottom reflections
First of all we extend to the union of intervals (ε, bd )∪ (bd , b′

d ). Applying boundary conditions can vary amongst
ixels, for example when modelling different colours at each P; we thus append the pixel P to dependent quantities.
ollowing the argument of Appendix E.3 with (z0, z1, z2) = (ε, bd , b′

d ) we obtain the following transitivity relation
or (21):

L̂+

P (bd; ℓ) = (1 − R(bd , ε; ℓ)RP (bd , b′

d; ℓ))
−1(T (ε, bd; ℓ)L̂+(ε; ℓ) + ΣP (ε, bd; ℓ)); (23)

ee (E.9) with the substitution of (C.23), noting L̂−(b′

d; ℓ) = 0 and Σ (b′

d , bd; ℓ) = 0 in (bd , b′

d ) by assumption.
ogether with (C.23) and (23), we rewrite (21) as

L̂−

P (ε; ℓ) = RP (ε, b′

d; ℓ)L̂+(ε; ℓ) + Σ (b′

d , ε; ℓ). (24)

n which

RP (ε, b′

d; ℓ) = R(ε, bd; ℓ)
+ T (bd , ε; ℓ)(1 − RP (bd , b′

d; ℓ)R(bd , ε; ℓ))−1 RP (bd , b′

d; ℓ)T (ε, bd; ℓ) (25)

nd

ΣP (b′

d , ε; ℓ) = T (bd , ε; ℓ)(1 − RP (bd , b′

d; ℓ)R(bd , ε; ℓ))−1 RP (bd , b′

d; ℓ)Σ (ε, bd; ℓ)
+Σ (bd , ε; ℓ). (26)

his is the interaction principle for the interval (ε, b′

d ). The assumption that L̂−(b′

d; ℓ) = 0 manifests as an absence
f transmission T (b′

d , ε; ℓ). In this section, the outputs all depend on specific pixels P (not just the depth d = dP ).
his is due to the application of pixel-specific bottom reflectances RP (bd , b′

d; ℓ).

.2.3. Step three: Through the surface
We lastly append the surface boundary conditions (C.17) to (24). This constitutes applying the transitivity

elations of Appendix E.3 with the substitution (z0, z1, z2) = (−ε, ε, b′

d ) to give

L̂−

P (ε; ℓ) = (1 − RP (ε, b′

d; ℓ)R(ε,−ε; ℓ))−1

× (RP (ε, b′

d; ℓ)T (−ε, ε; ℓ)L̂+(−ε; ℓ) + ΣP (b′

d , ε; ℓ)); (27)

ee (E.10). With (C.17) to hand, we have an expression for L̂−

P (−ε; ℓ) in terms of L̂+(−ε; ℓ), which is assumed
iven by Appendix C.1. Altogether, we derive the solution for the response radiance on [−ε, b′

d ] = [−ε, ε]∪[ε, bd ]∪
bd , b′

d ] by

ˆ − ′ ˆ + ′
L P (−ε; ℓ) = RP (−ε, bd; ℓ)L (−ε; ℓ) + ΣP (bd ,−ε; ℓ) (28)
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Fig. 4. Deep chlorophyll profile categorise as proposed by [36].

in which

RP (−ε, b′

d; ℓ) = R(−ε, ε; ℓ)

+ T (ε,−ε; ℓ)(1 − RP (ε, b′

d; ℓ)R(ε,−ε; ℓ))−1 RP (ε, b′

d; ℓ)T (−ε, ε; ℓ) (29)

nd

Σ (b′,−ε; ℓ) = T (−ε, ε; ℓ)(1 − RP (ε, b′

d; ℓ)R(ε,−ε; ℓ))−1ΣP (b′

d , ε; ℓ). (30)

o utilise this final equation, apply the embedded definitions of RP (ε, b′

d; ℓ) in (25) and ΣP (b′

d , ε; ℓ) in (26)
longside the results of Section 4.2.1.

. Chlorophyll model parameterisation

In this section, we introduce a new approach of ocean categorisation by chlorophyll type [36]. We propose this
ethod as advantageous in contrast to attempts to understand natural waters under Jerlov’s classification [17]. A

ecent approach to apply a Jerlov parameterisation to radiative transfer models was considered by [34]. Typical
olour variation using this chlorophyll model is depicted in Fig. 2.

.1. Gaussian chlorophyll profiles

It is well understood that Chlorophyll profiles of stratified waters may be modelled by Gaussian distributions [20];
ee Fig. 4. The depth profile of stratified waters has been classified into nine classes S1–S9 based on a global
bservation project [36]. This classification has already proved applicable in the field of underwater optical
ommunications [19] and we propose to use this classification here.

The depth profile of chlorophyll concentration Chl(z) mg/m3 is described by

Chl(z) = A − Bz + C
1

σ
√

2π
exp

(
−

(z − zmax)2

2σ 2

)
(31)

here the parameters A, B,C ; standard deviation σ ; and location of the deep chlorophyll maximum (DCM), zmax,
re derived from the dimensionless quantities considered by [36], recalculated in our framework here in Fig. 5; see
ig. 4 for graphical representation.
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Fig. 5. Chlorophyll profile parameters associated to the categories proposed by [36]. Additionally, Celtic Sea (CS) and New England
eamounts are based on measurements made by [31] in May and June, respectively.

. Experimental

We conducted a submersion experiment using a hyper-spectral camera of a common colour identification chart
nown as a ‘Macbeth’ chart; see Fig. 6. This was undertaken at the open tank acoustic characterisation facility at
inetiQ FRN, Fig. 6. Reference was taken above the water’s surface (see the top left image in Fig. 7) and used

o normalise the model’s input sky radiance, as well as the colour conversion. Images were collected every 25 cm
etween 0–3.5 m. We plot the results at 0, 1, 2, 3 m of the real-life images vs. predictions made with bird5eye.

The results observed exhibit the close approximation made by the bird5eye model in synthesising submerged
olour variation, even in an environment which is difficult to control with respect to a great deal of unknown physical
actors (precise water type, optical properties of the tank’s surface, possible reflections off the surface of the checker,
tc.). Further experimentation into the nature of colour transmission in chlorophyll waters is the intended subject
f ongoing research.
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ppendix A. Quad averaging functions on the unit ball

.1. Spherical coordinates

The possible directions into which radiation may be emitted are contained in the unit sphere B. We parameterise
by the coordinates

B = {(µ, φ) |µ ∈ [−1, 1], φ ∈ [0, 2π )}

here µ is the polar coordinate, the projection of the direction onto the z-axis, and φ is the azimuth which rotates
lockwise in a plane parallel to the surface when looking in the positive z-direction and is fixed such that φ = 0
oints along x, north; see Fig. 3. Explicitly, an arbitrary direction in B centred at (0, 0, 0) is given by the unit vector

r = r(µ, φ) := sin(arccos(µ)) cos(φ)x + sin(arccosµ) sin(φ) y + µz. (A.1)

e further partition B = B+
⊔ B−

⊔ E into the upper and lower-hemispheres

B±
:= {(µ, φ) ∈ B : sgn(µ) = ±1}
nd the equator E := {(0, φ) ∈ B}.
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N

Fig. 6. Macbeth colour checker (top) and experimental water tank (bottom).

A.2. Partitioning the unit sphere

Here we set out explicitly the formulation of the quads described in Section 3.2. We refer to [23, §4.7] but note
that our conventions have a different structure.

A.2.1. Polar partition
Fix a positive integer M . We shall divide the polar coordinate µ into 2M intervals of equal θ := arccos(µ).

Starting at the equator, θ = π/2, for i = 1, . . . ,M define M polar angles π/2 > θ1 > · · · > θM > 0 by

θi :=
π

2

(
M − i + 1/2

M

)
.

ote that if i ≤ M − 1 then θi+1 − θi = π/2M . We then define M polar coordinates in the hemisphere B+ by

µ := cos(θ ).
i i
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A

s

Fig. 7. Experiment depicting bird5eye runs (top-right triangle) vs. experimental images (bottom-left) at depths of 0, 1, 2 and 3 m reading
left-to-right, top-to-bottom.

We shall consider these as representatives of the intervals

Ii :=

[
cos

(
π

2

(
M − (i − 1)

M

))
, cos

(
π

2

(
M − i

M

))]
.

We denote the length of the intervals by ∆µi :=
∫
Ii

dµ. This partitions the polar axis of B+ into intervals of varied
length ∆µi . We similarly define µ−i := −µi determining a representative set of points of B− by reflection about
0. The intervals I−i := −Ii have length ∆µ−i = ∆µi . We shall also require the definition of the average of the
end points of Ii given by

µ̃i :=
cos

(
π
2

( M−i+1
M

))
+ cos

(
π
2

( M−i
M

))
2

.2.2. Azimuthal partition
Fix a positive integer N . We firstly approximate the circles defined by φ ↦→ r(µ, φ) for each −1 ≤ µ ≤ 1 by an

N -gon, reducing analysis on the torus R/2πZ to that on the finite additive cyclic group Z/NZ. Define N equally
paced azimuthal coordinates by

φu :=
2πu

N
for u = 0, . . . , N − 1. These points sit centrally in the intervals

Uu := [φu −
π
N , φu +

π
N ),

determining the partition [0, 2π ) =
⨆N−1

u=0 Uu . The length of each Uu is equal to 2π/N . Identifying the set [0, 2π )
with R/2πZ, the map u ↦→ φu gives an embedding Z/NZ ↪→ R/2πZ. We proceed by only considering functions
which pull back uniquely to this finite group.

A.2.3. Solid angle volumes
A solid angle Ω is defined by the area A covered on a sphere as a proportion of the square radius r2; that

2
is, Ω = A/r . This is analogous to the arc-length L of a circular segment of radius r being equal to L/r . An
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infinitesimal measure in our spherical coordinate system is then given by

dΩ = dµdφ = sin(θ )dθdφ. (A.2)

Then, the area of the unit sphere, or otherwise the number of solid radians it contains, is seen to be
∫ 2π

0

∫ 1
−1 dµdφ =

4π . Our ‘quads’ over which we discretise the RTE (1) are defined by

Qiu := Ii × Uu . (A.3)

The solid radian volume of such a quad is then

∆Qiu :=

∫
Qiu

dµdφ =
2π
N

∆µi . (A.4)

A.3. Quad averaging functions on the unit sphere

Consider a function F :B → C. We consider its average over the quad index by (±i, u) to be

F(i, u) :=
1

∆Qiu

∫
Qiu

F(µ, φ)dµdφ. (A.5)

imilarly, for functions on double quads G((µ′, φ′)→(µ, φ)) we define the normalised average

G(( j, v)→(i, u)) :=
1

∆Qiu

∫
Qiu

∫
Q jv

G((µ′, φ′)→(µ, φ))dµ′dφ′dµdφ. (A.6)

We refer to [23, §4.7] for a wider description of the properties of these functions.

A.4. Quad averaged irradiance

The up E−(z) or downward E+(z) pointing irradiance from a flat surface is related to the radiance via

E±(z) =

∫
B±

L(z;µ, φ)µdµdφ. (A.7)

To compute the irradiance from quad averaged radiance values L(z; i, v) we simply observe that

E±(z) =

M∑
i=0

N∑
u=0

L±(z; i, u)µ̃i∆Qiu . (A.8)

Appendix B. Complex Fourier transforms and the spectral RTE

Here we derive the formula given in (13) which asks for analysis of the complex Fourier transform. We contrast
this derivation with the extended derivation in [23] for the real-Fourier transform. Using complex coefficients permits
the use of in-built parallel programming for complex number computations. Meanwhile, the tangible coefficient
information is compactly packaged and readily accessible when specifying that the original function is real valued;
see Appendix B.3 for example.

B.1. Fourier inversion on a finite group

A periodic function f :R/2πZ → C is naturally restricted to a function Z/NZ → C via u ↦→ f (φu). For each
integer 0 ≤ ℓ ≤ N − 1, we thus define the finite Fourier transform of f by

f̂ (ℓ) :=

N−1∑
u=0

f (φu)e(−ℓu/N ), (B.1)

recalling that e(x) = e2π i x for x ∈ R. For 0 ≤ u ≤ N − 1, the orthogonality relation

1
N

N−1∑
e((ℓ− u)/N ) = δu,0 (B.2)
ℓ=0
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implies the inversion formula

f (φu) =
1
N

N−1∑
ℓ=0

f̂ (ℓ)e(ℓu/N ). (B.3)

If f (x) ∈ R for each x ∈ R, we use the Euler’s identity, e(x) = cos(x) + i sin(x), to evaluate the real part of (B.1)
so that the expansion (B.3) is expressed in terms of trigonometric functions.

B.2. Transforming the spectral RTE

We apply the procedure given in Appendix B.1 to the discrete RTE (9) by introducing the transforms in (10)
and (11). Substituting these into (9) via the inversion formula (B.3) and applying (8) to evaluate the φ′-integral as
a summation, we obtain

µ̃i
d
dz

N−1∑
ℓ=0

L̂(z; i; ℓ)e(ℓu/N ) = −c(z)
N−1∑
ℓ=0

L̂(z; i; ℓ)e(ℓu/N )

+
1
N

N−1∑
v=0

±M∑
j=±1

N−1∑
ℓ=0

β̂(z; i, j; ℓ)e(ℓ(u − v)/N )
N−1∑
k=0

L̂(z; j; k)e(kv/N )

+

N−1∑
ℓ=0

σ̂ (z;µ; ℓ)e(ℓu/N ). (B.4)

eordering the (v, ℓ, k) summations as (ℓ, k, v) and evaluating the orthogonal v-sum per (B.2), Eq. (B.4) simplifies
o

µ̃i

N−1∑
ℓ=0

e(ℓu/N )
d
dz

L̂(z; i; ℓ) = −c(z)
N−1∑
ℓ=0

e(ℓu/N ) L̂(z; i; ℓ)

+

N−1∑
ℓ=0

e(ℓu/N )

⎛⎝ ±M∑
j=±1

β̂(z; i, j; ℓ)L̂(z; j; ℓ)dµ′
+ σ̂ (z; i; ℓ)

⎞⎠ . (B.5)

emma B.1 (Equating ℓ-Coefficients). For each u = 0, . . . , 1−N suppose that cℓ ∈ C satisfies
∑N−1

ℓ=0 e(ℓu/N )cℓ =

. Then cℓ = 0 for all ℓ = 0, . . . , N − 1.

roof. Consider the N × N matrix A := (e((i − 1)( j − 1)/N ))1≤i, j≤N and N × 1 column vector C := (c j−1)1≤ j≤N .
y the hypothesis we have that AC = 0N×1. Moreover, the Vandermonde matrix A is invertible, with inverse A−1,
s is seen by evaluating the determinant

det(A) =

∏
1≤i< j≤N

(e( j − 1) − e(i − 1)) ̸= 0.

he lemma now follows from the equality C = A−10N×1 = 0N×1. □

By Lemma B.1 this assertion, the ℓ-summands in (B.5) now decouple as follows.

.3. Coefficient elimination for real-valued functions

Let N be even. For a real valued function f (u) on Z/NZ with finite Fourier transform f̂ (ℓ) =
∑N−1

u=0 f (u)
(−uℓ/N ) we take the complex conjugate z∗

= x − iy to deduce,

f̂ (ℓ)∗ =

N−1∑
f (u)e(uℓ/N ) = f̂ (−ℓ) = f̂ (N − ℓ). (B.6)
u=0
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Applying the Fourier inversion formula we deduce

f (u) =
1
N

N
2 −1∑
ℓ=0

f̂ (ℓ)e(uℓ/N ) +
1
N

N−1∑
ℓ= N

2

f̂ (ℓ)e(uℓ/N )

=
1
N

N
2 −1∑
ℓ=0

[
f̂ (ℓ)e(uℓ/N ) + f̂ (ℓ+ 1)∗e(−u(ℓ+ 1)/N )

]
(B.7)

hich only requires the evaluation of f̂ (ℓ) for ℓ = 0, . . . , N/2.

ppendix C. Boundary conditions

.1. Sky radiance sources

Light incident on the water’s surface is an input to the surface boundary condition and so must be assigned. For
ecreational purposes this can be set arbitrarily as it does not affect irradiance reflectance computations. For our
xperiments in Section 6 we insert the measured value. For real-world data we collect two sources (implemented
n bird5eye): spectral data recorded by Chance–Kurucz [7] gives the solar irradiance onto the earth’s surface, this

ay be obtained from www.nrel.gov/grid/solar-resource/spectra.html; an atmospheric propagation model is provided
y [16], based on [29], to give sensitivity to factors such as could coverage and low visibility. We also implement
geolocation-based solar angle model to give the solar zenith with respect to a given date-time.

.2. The surface boundary

At the surface, we consider approaching the air–water interface from each side separately. This is achieved by
onsidering an arbitrarily small real number ε > 0 and assessing the distribution of radiance at both εz and −εz.
e require the reflection and transmission functions as light travels over this interface [−ε, ε]. For an incident beam

n direction r ′
∈ B±, denote the ratio reflected into direction r ∈ B∓ at ∓ε by R(∓ε,±ε; r ′

→r). For an incident
eam in direction r ′

∈ B±, denote the ratio transmitted into direction r ∈ B± at ±ε by T (∓ε,±ε; r ′
→r). These

uantities are prescribed by Snell’s law in the transmission of light across the surface boundary. For r ∈ B±, the
ssociated boundary conditions are given by

L(±ε; r) =

∫
B±

T (∓ε,±ε; r ′
→r)d r ′L(∓ε; r ′)

+

∫
B∓

R(±ε,∓ε; r ′
→r)L(±ε; r ′)d r ′

; (C.1)

ee [23, (4.66) & (4.67)].

.3. The bottom boundary

We mark the ‘effective’ bottom, the deepest point to which we solve (1) in general, by z = b. The true bottom
f the water body shall be denoted by b′ and can take one of two forms:

• A diffusely scattering, finite (Lambertian) bottom. In this case, we take b′
= b.

• An infinitely deep bottom b′
→ ∞. In this case, we simply choose b large enough so that radiative transfer

in the region [b,∞) is a homogeneous and source free.

n either case, we require the reflectance at b for the region [b, b′]. For r ′
∈ B+ and r ∈ B−, this prescribed value

s denoted by R(b, b′
; r ′

→r) and (cf. (C.1)) satisfies

L(b; r) =

∫
R(b, b′

; r ′
→r)L(b; r ′)d r ′. (C.2)
B+
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If at b′
= b the surface is diffusely scattering with irradiance reflectance R then the reflection coefficient is given

by

R(b, b′
; (µ′, φ′)→(µ, φ)) =

R
π
µ′. (C.3)

Indeed, this respects the definition of irradiance reflectance, R = E−(b)/E+(b), since

E−(b) =

∫
B−

∫
B+

L(b;µ′, φ′)
R
π
µ′dµ′dφ′

|µ|dµdφ (C.4)

=
R
π

E+(b)
∫ 2π

0

∫
−1

0
µ′dµ′dφ′

= R. (C.5)

n particular, the radiance at µ, φ reflected from a Lambertian surface is given by

L(b;µ, φ) =

∫
B+

L(b;µ′, φ′)
R
π
µ′dµ′dφ′

=
R
π

E−(b) (C.6)

for (µ, φ) ∈ B−.

C.4. Discrete spectral boundary conditions

Analogously, we transform the boundary conditions (C.1) and (C.2), first discretely, in a quad-averaged sense,
and then by Fourier decomposition as in Section 3.3 via the azimuthal Fourier transform in Appendix B.

C.4.1. The discrete spectral surface boundary
Firstly, to (C.1) we apply the quad averaging technique over Qiu to obtain the discrete boundary condition

L±(±ε; i, u) =

N−1∑
v=0

M∑
j=1

(
T (∓ε,±ε; (± j, v)→(±i, u))L±(∓ε; j, v)

+ R(±ε,∓ε; (∓ j, v)→(±i, u))L∓(±ε; j, v)
)

(C.7)

or 1 ≤ i ≤ M and 0 ≤ v ≤ N − 1. We introduce double Fourier transforms, in each variable u, v, given by

R̂(±ε,∓ε; i, j; ℓ, k) :=

N−1∑
u=0

N−1∑
v=0

R(±ε,∓ε; (∓ j, v)→(±i, u))e(−(ℓu + kv)/N ) (C.8)

nd

T̂ (∓ε,±ε; i, j; ℓ, k) :=

N−1∑
u=0

N−1∑
v=0

T (∓ε,±ε; (± j, v)→(±i, u))e(−(ℓu + kv)/N ). (C.9)

ubstituting these alongside (10) and (11) then following the procedure described in Appendix B.2 we derive the
iscrete spectral surface boundary condition:

L̂±(±ε; i; ℓ) =
1
N

N−1∑
k=0

M∑
j=1

(
T̂ (∓ε,±ε; i, j; ℓ, k)L̂±(∓ε; j; k)

+ R̂(±ε,∓ε; i, j; ℓ, k)L̂∓(±ε; j; k)
)

(C.10)

or 1 ≤ i ≤ M and 0 ≤ ℓ ≤ N − 1. Defining the matrices

R̂(±ε,∓ε; ℓ, k) :=

[
R̂(±ε,∓ε; i, j; ℓ, k)

]
1≤i, j≤M

(C.11)

nd

T̂ (∓ε,±ε; ℓ, k) :=

[
T̂ (∓ε,±ε; i, j; ℓ, k)

]
(C.12)
1≤i, j≤M
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we rewrite (C.10) as[
L̂+(+ε; ℓ)
L̂−(−ε; ℓ)

]
=

1
N

N−1∑
k=0

[
T̂ (−ε,+ε; ℓ, k) R̂(+ε,−ε; ℓ, k)
R̂(−ε,+ε; ℓ, k) T̂ (+ε,−ε; ℓ, k)

] [
L̂+(−ε; k)
L̂−(+ε; k)

]
(C.13)

or 0 ≤ ℓ ≤ N − 1.
We extend this formula by devising M N × M N matrices

R̂(±ε,∓ε) :=

[
1
N

R̂(±ε,∓ε; ℓ, k)
]

1≤ℓ,k≤N
(C.14)

nd

T̂ (∓ε,±ε) :=

[
1
N

T̂ (∓ε,±ε; ℓ, k)
]

1≤ℓ,k≤N
(C.15)

nd an M N -length column vector

L̂±(±ε) :=

[
L̂±(±ε; ℓ)

]
1≤ℓ≤N

(C.16)

o that the boundary condition is expressible as[
L̂+(+ε)
L̂−(−ε)

]
=

[
T̂ (−ε,+ε) R̂(+ε,−ε)
R̂(−ε,+ε) T̂ (+ε,−ε)

] [
L̂+(−ε)
L̂−(+ε)

]
. (C.17)

.4.2. The discrete spectral bottom boundary
At the bottom, we rewrite (C.2) as the discrete boundary condition

L−(b; i, v) =

N−1∑
u=0

M∑
j=1

R(b, b′
; ( j, u)→(−i, v))L(b; j, u) (C.18)

or 1 ≤ i ≤ M and 0 ≤ v ≤ N − 1. Note that, in both the Lambertian and infinite cases, we assume that,
R(b, b′

; ( j, u)→(−i, v)) = R(b, b′
; ( j, 0)→(−i, v − u)) thus simplifying the necessary transform. In the Lambertian

ase, where the surface is diffusely scattering with irradiance reflectance R then the quad averaged reflection
oefficient, defined by (A.6), is given by

R(b, b′
; ( j, v)→(i, u)) =

∫
Q jv

R
π
µ′dµ′dφ′

=
R
π
∆Q jvµ̃ j . (C.19)

Introducing the transform,

R̂(b; i, j; ℓ) :=

N−1∑
v=0

R(b, b′
; ( j, 0)→(−i, v))e(−ℓv/N ) (C.20)

ne derives the discrete spectral bottom boundary condition

L̂−(b; i; ℓ) =

M∑
j=1

L̂(b; j; ℓ)R̂(b; i, j; ℓ) (C.21)

or 1 ≤ i ≤ M and 0 ≤ ℓ ≤ N − 1. Similarly, defining

R̂(b; ℓ) :=

[
R̂(b; i, j; ℓ)

]
1≤i, j≤M

(C.22)

e may rewrite (C.21) as

L̂−(b; ℓ) = R̂(b; ℓ)L̂+(b; ℓ). (C.23)

.5. Collecting spectral identities in matrix form

Note that any such linear identity of the form[
L̂+(z1; ℓ)
ˆ −

]
=

[
T̂ (z0, z1; ℓ) R̂(z1, z0; ℓ)
ˆ ˆ

] [
L̂+(z0; ℓ)
ˆ −

]
. (C.24)
L (z0; ℓ) R(z0, z1; ℓ) T (z1, z0; ℓ) L (z1; ℓ)
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may be expressed in terms of the vector

L̂±(z) :=

[
L̂±(z; ℓ)

]
1≤ℓ≤N

(C.25)

y introducing the block diagonal matrices

R̂(za, zb) := diag
([

R̂(za, zb; ℓ)
]

1≤ℓ≤N

)
(C.26)

nd

T̂ (za, zb) := diag
([

T̂ (za, zb; ℓ, k)
]

1≤ℓ,k≤N

)
(C.27)

o that (C.24), for each 0 ≤ ℓ ≤ N − 1 becomes[
L̂+(z1)
L̂−(z0)

]
=

[
T̂ (z0, z1) R̂(z1, z0)
R̂(z0, z1) T̂ (z1, z0)

] [
L̂+(z0)
L̂−(z1)

]
. (C.28)

ppendix D. The fundamental solution

One may in fact write down an explicit solution to (19). Fix two depths z1 > z0 > 0. We seek an analytic solution
L̂(z), the ‘state vector’, at z = z1 given the initial value L̂(z0). To this end we introduce a state-transition matrix

(z, z0) := F(z)F(z0)−1 where the M × M matrix F(z) is a ‘fundamental solution’ to the associated homogeneous
roblem d F

dz (z) = K (z)F(z). This non-explicit definition directly implies the following properties: Φ(z0, z0) = 1;
(z1, z0) = Φ(z1, z)Φ(z, z0) for z > 0; Φ(z1, z0) = Φ(z0, z1)−1 and

d
dz1

Φ(z1, z0) = K (z1)Φ(z1, z0). (D.1)

Using Lagrange’s method of variation of parameters, the general solution to (19) is given by

L̂(z1) = Φ(z1, z0)L̂(z0) +

∫ z1

z0

Φ(z1, z)σ̂ (z)dz. (D.2)

(See [35, §2.4] for expanded details.) Whilst we do not use this solution explicitly, its existence is crucial for the
invariant imbedding method, Appendix E.

Appendix E. Invariant imbedding relations

The invariant imbedding relations that we apply to bird5eye are derived by considering a solution to (19) in
terms of the incident and response radiances on a given interval. We derive these here over an arbitrary interval
[z0, z1]. This solution fuels the general model solution outlined in Section 4. In this section, we amend the notation
of (19) by fixing 0 ≤ ℓ ≤ N − 1 and excluding its mention from the formulae here.

E.1. The linear interaction principle

Fix two depths z1 > z0 > 0. We consider ‘response’ radiances L̂+(z1) and L̂−(z0) of the interval [z0, z1] in
terms of the ‘incident’ radiances L̂+(z0) and L̂−(z1) on it. Rearranging the fundamental solution (D.2) to solve for
the response radiances we obtain the linear interaction principle:[

L̂+(z1)
L̂−(z0)

]
=

[
T (z0, z1) R(z1, z0)
R(z0, z1) T (z1, z0)

] [
L̂+(z0)
L̂−(z1)

]
+

[
Σ (z0, z1)
Σ (z1, z0)

]
. (E.1)

he coefficients R, T and Σ may be derived from (19) and, in particular, all depend on the fixed integer
≤ ℓ ≤ N − 1. We consider the R terms as locally measuring the reflection of radiance, T the transmission,

nd Σ the source contribution. Note that the ordering of (z0, z1) or (z1, z0) indicates the original direction of the
ncident beam, the former corresponding to B+ and the latter to B−.

Whilst these coefficients may be expressed explicitly, the approach of invariant imbedding is to consider their

light variation over the family of problems as z0 and z1 vary.
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E.2. The Riccati differential equations

In this section we derive differential equations for the coefficients R, T and Σ that may be solved as initial value
problems in order to explicate (E.1). The routine to achieve this is as follows:

1. Fix one of z0 or z1 and consider the other as a free variable.
2. Differentiate the interaction principle (E.1) with respect to the free variable.
3. Substitute the expression for the RTE (19) in place of the derivatives of any L̂±.
4. Substitute any response radiances L̂+(z1) and L̂−(z0) with their expressions in (E.1) to result in an expression

involving derivatives of the R, T and Σ± and incident radiances.
5. The resulting equations hold for any choice of incident radiances L̂+(z1) and L̂−(z0). We then argue by their

linear independence in order to derive identities amongst their coefficients. These are the Riccati differential
equations.

.2.1. Six downward equations
Firstly, we consider z0 as a fixed constant and z1 > z0 a free variable. As described above, starting with

L̂+(z1) = T (z0, z1)L̂+(z0) + R(z1, z0)L̂−(z1) + Σ (z0, z1) we obtain the following:
d

dz1
T (z0, z1) = [τ (z1) + R(z1, z0)ρ(z1)] T (z0, z1)

d
dz1

R(z1, z0) = [τ (z1) + R(z1, z0)ρ(z1)] R(z1, z0) + R(z1, z0)τ (z1) + ρ(z1)

d
dz1

Σ (z0, z1) = [τ (z1) + R(z1, z0)ρ(z1)]Σ (z0, z1) + R(z1, z0)σ−(z1) + σ+(z1)

(E.2)

tarting with L̂−(z0) = R(z0, z1)L̂+(z0) + T (z1, z0)L̂−(z1) + Σ (z1, z0) we determine the remaining downward
quations:

d
dz1

R(z0, z1) = T (z1, z0)ρ(z1)T (z0, z1)

d
dz1

T (z1, z0) = T (z1, z0) [τ (z1) + ρ(z1)R(z1, z0)]

d
dz1

Σ (z1, z0) = T (z1, z0)
[
ρ(z1)Σ (z0, z1) + σ−(z1)

] (E.3)

nitial conditions for the equations in (E.2) and (E.3) are obtained from (E.1), whence

T (z0, z0) = 1M×M

R(z0, z0) = 0M×M

Σ (z0, z0) = 0M×1.

(E.4)

.2.2. Six upward equations
Secondly, we consider z1 as a fixed constant and z0 < z1 a free variable. Starting with L̂+(z1) = T (z0, z1)L̂+(z0)+

R(z1, z0)L̂−(z1) + Σ (z0, z1) we obtain the following:

−
d

dz0
T (z0, z1) = T (z0, z1) [τ (z0) + ρ(z0)R(z0, z1)]

−
d

dz0
R(z1, z0) = T (z0, z1)ρ(z0)T (z1, z0)

−
d

dz0
Σ (z0, z1) = T (z0, z1)

[
ρ(z0)Σ (z1, z0) + σ+(z0)

] (E.5)
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Starting with L̂−(z0) = R(z0, z1)L̂+(z0) + T (z1, z0)L̂−(z1) + Σ (z1, z0) we determine the remaining downward
quations:

−
d

dz0
R(z0, z1) = [τ (z0) + R(z0, z1)ρ(z0)] R(z0, z1) + R(z0, z1)τ (z0) + ρ(z0)

−
d

dz0
T (z1, z0) = [τ (z0) + R(z0, z1)ρ(z0)] T (z1, z0)

−
d

dz0
Σ (z1, z0) = [τ (z0) + R(z0, z1)ρ(z0)]Σ (z1, z0) + R(z0, z1)σ+(z0) + σ−(z0)

(E.6)

nitial conditions for the equations in (E.5) and (E.6) are obtained from (E.1), whence

T (z1, z1) = 1M×M

R(z1, z1) = 0M×M

Σ (z1, z1) = 0M×1.

(E.7)

.3. Transitivity relations

Now fix z2 > z1 > z0. We consider how the interaction principle (E.1) behaves transitively over the interval

[z0, z2] = [z0, z1] ∪ [z0, z2].

he given incident radiances on [z0, z2] are L̂+(z0) and L̂−(z2) and we consider the system as solved when we may
ompute the responses L̂−(z0) and L̂+(z2). We do this by deriving linear interaction principles for the full interval
z0, z2]. We begin with (E.1) for each of the subintervals [z0, z1] and [z1, z2]:

L̂+(z2) = T (z1, z2)L̂+(z1) + R(z2, z1)L̂−(z2) + Σ (z1, z2)

L̂−(z1) = R(z1, z2)L̂+(z1) + T (z2, z1)L̂−(z2) + Σ (z2, z1)

L̂+(z1) = T (z0, z1)L̂+(z0) + R(z1, z0)L̂−(z1) + Σ (z0, z1)

L̂−(z0) = R(z0, z1)L̂+(z0) + T (z1, z0)L̂−(z1) + Σ (z1, z0)

(E.8)

ext, by substitution, we express L̂+(z1) and L̂−(z1), the intermediate terms, in terms of the incident radiances on
z0, z2]. We thus derive

L̂+(z1) = T (z0, z1, z2)L̂+(z0) + R(z2, z1, z0)L̂−(z2) + Σ (z0, z1, z2) (E.9)

nd

L̂−(z1) = R(z0, z1, z2)L̂+(z0) + T (z2, z1, z0)L̂−(z2) + Σ (z2, z1, z0) (E.10)

here

T (z0, z1, z2) = (1 − R(z1, z0)R(z1, z2))−1T (z0, z1)

R(z2, z1, z0) = (1 − R(z1, z0)R(z1, z2))−1 R(z1, z0)T (z2, z1)

Σ (z0, z1, z2) = (1 − R(z1, z0)R(z1, z2))−1(R(z1, z0)Σ (z2, z1) + Σ (z0, z1))

R(z0, z1, z2) = (1 − R(z1, z2)R(z1, z0))−1 R(z1, z2)T (z0, z1)

T (z2, z1, z0) = (1 − R(z1, z2)R(z1, z0))−1T (z2, z1)

−1

(E.11)
Σ (z2, z1, z0) = (1 − R(z1, z2)R(z1, z0)) (R(z1, z2)Σ (z0, z1) + Σ (z2, z1)).
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Remark E.1. We pause this mathematical derivation to observe the physical significance of the terms involved.
ecall that we have the following identity for the geometric series,

1
1 − X

= 1 + X + X2
+ X3

+ · · ·

alid for X < 1. Such terms occur in the above and signify the accruing of multiple reflections across the dissected
nterval [z0, z2]. We refer to [23, Fig. 7.1, Ch. 7, p. 351] for a graphical discussion of this phenomenon.

Lastly, inserting (E.9) and (E.10) into the expressions for L̂+(z2) and L̂−(z0) in (E.8) one obtains global
nteraction principles for [z0, z2]:

L̂+(z2) = T (z1, z2)T (z0, z1, z2)L̂+(z0)

+ (T (z1, z2)R(z2, z1, z0) + R(z2, z1))L̂−(z2)

+ T (z1, z2)Σ (z0, z1, z2) + Σ (z1, z2).

(E.12)

nd

L̂−(z0) = (R(z0, z1) + T (z1, z0)R(z0, z1, z2))L̂+(z0)

+ T (z1, z0)T (z2, z1, z0)L̂−(z2)

+ T (z1, z0)Σ (z2, z1, z0) + Σ (z1, z0),

(E.13)

ith coefficients equal to

T (z0, z2) = T (z1, z2)(1 − R(z1, z0)R(z1, z2))−1T (z0, z1)

R(z2, z0) = T (z1, z2)(1 − R(z1, z0)R(z1, z2))−1 R(z1, z0)T (z2, z1) + R(z2, z1)

Σ (z0, z2) = T (z1, z2)(1 − R(z1, z0)R(z1, z2))−1(R(z1, z0)Σ (z2, z1) + Σ (z0, z1))

+Σ (z1, z2)

R(z0, z2) = R(z0, z1) + T (z1, z0)(1 − R(z1, z2)R(z1, z0))−1 R(z1, z2)T (z0, z1)

T (z2, z0) = T (z1, z0)(1 − R(z1, z2)R(z1, z0))−1T (z2, z1)

Σ (z2, z0) = T (z1, z0)(1 − R(z1, z2)R(z1, z0))−1(R(z1, z2)Σ (z0, z1) + Σ (z2, z1))

+Σ (z1, z0).

(E.14)

ppendix F. Solving the elastic-scattering RTE

For λ′
↦→ λ, 1 ≤ i ≤ M and 0 ≤ ℓ ≤ N we have the spectral RTE

µ̃i
d
dz

L(z; λ; i; ℓ) = −c(z; λ)L(z; λ; i; ℓ) +

M∑
± j=1

βE (z; λ; i, j; ℓ)L(z; λ; j; ℓ)

+

M∑
± j=1

∫
Λ

βI (z; λ, λ′
; i, j; ℓ)L(z; λ′

; j; ℓ)dλ′
+ σ (z; λ; i; ℓ) (F.1)

where βI (z; λ, λ′
; i, j; ℓ) denotes the inelastic volume scattering function from wavelengths λ′ to λ over a bounded

λ-spectrum Λ ⊂ R>0. We introduce a notion of band averaging for functions F(λ) by defining

F(m) :=
1

Vol(Λm)

∫
Λm

F(λ)dλ (F.2)

for a closed interval Λm ⊂ Λ. For functions of two variables G(λ, λ′) and another closed interval, Λn ⊂ Λ we
efine

G(m, n) :=
1

∫ ∫
G(λ, λ′)dλ′dλ. (F.3)
Vol(Λm) Λm Λn
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Assuming that inelastic scattering βI is compactly supported with respect to λ′ we may band average over a
union of intervals Λ =

⋃B
n=1 Λn (F.1) so that

µ̃i
d
dz

L(z; m; i; ℓ) =

M∑
± j=1

B∑
n=1

(βE (z; m; i, j; ℓ) − c(z; m)δi, j )δm,n L(z; n; j; ℓ)

+

M∑
± j=1

B∑
n=1

βI (z; m, n; i, j; ℓ)L(z; n; j; ℓ) + σ (z; m; i; ℓ) (F.4)
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