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Abstract: The frequency response of a resonator is governed by the locations of its quasi-normal
modes in the complex frequency plane. The real part of the quasi–normal mode determines
the resonance frequency and the imaginary part determines the width of the resonance. For
applications such as energy harvesting and sensing, the ability to manipulate the frequency,
linewidth and multipolar nature of resonances is key. Here, we derive two methods for
simultaneously controlling the resonance frequency, linewidth and multipolar nature of the
resonances of radially symmetric structures. Firstly, we formulate an eigenvalue problem for
a global shift in the permittivity of the structure to place a resonance at a particular complex
frequency. Next, we employ quasi-normal mode perturbation theory to design radially graded
structures with resonances at desired frequencies.
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1. Introduction

Resonances are key to a strong electromagnetic response of photonic components. Over the last
two decades resonant interaction has been employed in metamaterials [1–3], nano–antennas [4,5]
and super–scatterers [6,7] to almost arbitrarily manipulate electromagnetic radiation. Recently
there has been much interest in ‘Mietronics’ [8,9]. Work in this field has focused on using
higher order multipolar modes to achieve greater control of electromagnetic radiation including
directional scattering [10], field confinement [11] and frequency selective imaging [12].

Engineering the resonant frequency of any particular multipolar response is crucial for many
applications including efficient absorbers [13,14] and thermal emitters for gas sensing [15].
Although the theory of Mie resonances is over 100 years old [16], the problem of designing the
spectral response of multipolar resonances remains open.

Many approaches rely on a brute force sweep of the design parameters using memory intensive
numerical simulations [17–21] to move resonances, which can be numerically demanding and
offers little insight into the final structure. More advanced methods based upon machine learning
[22,23] have recently been used to manipulate both electric and magnetic multipole moments,
however a large amount of training data must be generated. In addition to this, semi–analytic
techniques based upon complex analysis [24] have been developed to enhance the Q–factor of
resonances. This exploits the insight provided by the quasi–normal mode framework.

First developed by Gamow to describe alpha decay [25], quasi–normal modes have been
employed extensively to model electromagnetic systems in terms of their complex frequency
resonances [26–29]. Crucially, for well separated quasi normal mode resonances, the real part of
the quasi–normal mode frequency describes the resonance frequency, whereas the imaginary
part encodes the spectral width of the resonance. The ability to manipulate the exact location of
quasi–normal modes in the complex plane therefore allows one to control the location and width
of the resonance simultaneously. Inverse design techniques to manipulate spatial electromagnetic
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responses are well developed [30–33], however few systematic techniques exist to manipulate the
spectral response of resonators. In recent years, methods based upon automatic differentiation [34]
and shape optimization with quasi–normal mode perturbation theory [35] have been developed
to provide a systematic way to manipulate the quasi–normal modes of photonic crystals, however
there is still demand for simple and numerically efficient inverse design techniques to solve this
problem.

In this work, we develop two techniques to control the spectral location, width, and multipolar
nature of the resonances of radially symmetric resonators. Building on previous work that
developed a design theory for 1D graded structures [36], we propose a technique to calculate the
complex shift one should apply to the permittivity of a resonator to place a particular multipolar
resonance at a desired complex frequency. We also employ quasi–normal mode perturbation
theory to design graded structures with resonances of specific multipolar character at chosen
frequencies. Both techniques are simple, easily extensible and numerically efficient.

2. Finding the quasi–normal modes of radially symmetric resonators

In this section, we briefly review how one can formulate a finite difference scheme to find the
quasi–normal modes of a resonator with a radially graded permittivity. Our key results are how
these permittivity profiles can be designed, however it will be necessary to find the quasi–normal
modes throughout.

The scalar Helmholtz equation governs a wide variety of physical phenomena. For example:
pressure acoustics and a single polarisation of the electromagnetic field in 2D, and in 3D it describes
the TE polarization of the electromagnetic field [37]. Our work will be a proof–of–concept of our
key techniques, however the two methods we will present are easily extended to 3D vector case,
as well as to propagating modes in waveguides [38] and other wave regimes such as elasticity
[39]. We write the scalar Helmholtz equation as[︁

∇2 + k2ε(r)
]︁
ψ(r) = 0, (1)

describing a single polarisation of the electromagnetic field ψ(r) in a material with spatially
varying permittivity ε(r) and wavenumber k. Our aim is to find, for a given permittivity profile,
the complex eigen–frequencies supported by the structure. Simply re–arranging the Helmholtz
Eq. (1), this problem can be formulated as an eigenvalue problem

−
1
ε
∇2ψ = k2ψ, subject to lim

r→∞
r
(︃
∂

∂r
− ik

)︃
ψ = 0, (2)

which includes the radiation boundary condition [40], given in three spatial dimensions. This
boundary condition makes the Laplace operator depend upon the eigenvalue k [26,36], meaning
that the solution of Eqn. (2) is no longer a straightforward eigenvalue problem [28]. Here, we
formulate how this eigenvalue problem can be solved for radially symmetric systems.

For a given radially symmetric permittivity profile ε(r) = ε(r) our aim is to find the locations
of the quasi–normal modes supported by the resonator. We consider the radially symmetric case
for simplicity, however one could employ a topology optimization based approach similar to that
in [41] to manipulate resonances arbitrarily. As we are treating radially symmetric resonators,
we write the Laplacian in Eqn. (1) in cylindrical or spherical coordinates

∇2ψ =
⎧⎪⎨⎪⎩
∂2ψ
∂r2 +

1
r
∂ψ
∂r +

1
r2
∂ψ
∂θ 2D

∂2ψ
∂r2 +

2
r
∂ψ
∂r +

1
r2 sin2 θ

∂ψ
∂θ

(︂
sin θ ∂ψ∂θ

)︂
+ 1

r2 sin2 θ

∂ψ
∂φ 3D

(3)

depending on the number of dimensions we choose to work in. While the calculations are very
similar in 2D and 3D, for clarity we proceed with the 3D example providing the 2D calculation in
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the Supplement 1. In the 2D case, we shall consider cylinders with length much longer than the
wavelength with polarisation parallel to the long axis, such that the z dimension can be neglected.
Separating the angular and radial variables, we write ψ(r) = ψ(r)Ym

ℓ
(θ, ϕ), where Ym

ℓ
(θ, ϕ) are

the spherical harmonics. Substituting this into Eqn. (1) turns the Helmholtz equation into

∂2ψ

∂r
+

2
r
∂

ψ
∂r −

ℓ(ℓ + 1)
r2 ψ(r) + k2ε(r)ψ(r) = 0. (4)

We now remove the first derivative term with the substitution ψ(r) = χ(r)/r, to get

∂2 χ

∂r2 −
ℓ(ℓ + 1)

r2 χ + k2ε(r)χ = 0. (5)

This has now brought the equation we must solve into the form of the 1D Helmholtz equation,
with an additional term related to the angular momentum ℓ. The boundary condition for an
outgoing wave that must be imposed is

ψ(r → ∞) = h(1)
ℓ
(kr), (6)

χ(r → ∞) = rh(1)
ℓ
(kr), (7)

where h(1)
ℓ
(kr) is the spherical Hankel function of the first kind. Asymptotically, as kr → ∞ the

spherical Hankel function goes as h(1)
ℓ
(kr) → i−(n+1)eikr/(kr) [42], clearly satisfying the radiation

boundary condition. This means that the boundary condition upon the derivative of the field can
be written as

∂ χ

∂r
= h(1)

ℓ
(kr)

[︄
1 + (kr)

h(1)
′

ℓ
(kr)

h(1)
ℓ
(kr)

]︄
(8)

= χ(r)

[︄
1
r
+ k

h(1)
′

ℓ
(kr)

h(1)
ℓ
(kr)

]︄
(9)

= χγ(k). (10)

To impose this boundary condition, we shall need to modify the finite difference matrix that
will numerically represent the Laplacian operator. We therefore write the boundary condition
given by Eqn. (10) in forwards finite difference form

χn+1 = χn(1 + ∆rγ(k)). (11)

At this point, the boundary condition corresponding to quasi–normal modes can be imposed
on the Laplacian. However, to find the modes we must remove the dependence upon k from the
finite difference Laplacian matrix. This can be achieved by linearising γ(k) around a particular
frequency k⋆, giving

γ(k) = γ(k⋆) + (k − k⋆)∂kγ(k⋆) = A + kB, (12)

where A = γ(k⋆) − k⋆∂kγ(k⋆) and B = ∂kγ(k⋆). This is an approximation that allows us to
separate the eigen–value from the boundary condition, which is necessary to formulate the
eigen–value problem. If the value around which one expands k⋆ is far from the eigen–value k then
this method will fail to find the correct eigen–value. This is an issue common to many numerical
techniques used to solve eigenvalue problems. One could in principle expand to quadratic or
cubic terms to improve the quality of the approximation, however this would increase the size
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of the resulting eigen–value problem. We can now formulate the eigenvalue problem posed by
Eqn. (2) such that the eigenvalue k only appears on the right–hand side. Defining

L =
1
∆r2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

...
...

. . .
...
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, L ′ =

1
∆r2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · B∆r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

we can split the Helmholtz equation into(︃
L + kL ′ −

ℓ(ℓ + 1)
r2 + k2ε(r)

)︃
χ = 0. (14)

This can then be formed into a quadratic eigenvalue problem [43]

⎛⎜⎝
0 1

−(L − ℓ(ℓ + 1)/r2)/ε(r) −L ′/ε(r)
⎞⎟⎠ ⎛⎜⎝

χ

kχ
⎞⎟⎠ = k ⎛⎜⎝

χ

kχ
⎞⎟⎠ . (15)

While the first of these two equations is trivial, it is necessary to introduce it so that χ and kχ
terms can be coupled. For radially graded structures, this gives both the radial part of the field of
the mode and the eigenfrequency k.

Fig. 1. A comparison of different methods for finding the quasi–normal modes of
isotropic cylinders or spheres. The method labelled ‘matrix’ indicates the finite difference
implementation we have developed in Section 2. a) shows the comparison for a cylinder, and
b) for a sphere. Both the cylinder and the sphere have radius a = 550 nm.

To verify this method, we compare it to other methods for finding quasi–normal modes.
For isotropic cylinders and spheres, Mie theory can be used to find the complex frequencies
analytically. Full–wave solvers such as COMSOL Multiphysics [44] can be employed to find the
complex eigenfrequencies of spatially varying structures. Both COMSOL and the method we
have outlined here require frequencies to search around, so one must already have an idea of
roughly where the resonance is located. Fig. 1 shows the comparison of the three methods of
finding the quasi–normal mode frequencies of isotropic cylinders and spheres. We have chosen
the cylinder and sphere to have radius a = 550 nm, with the cylinder having a permittivity of
ε = 4 and the sphere ε = 2. Details of the Mie theory are given in Supplement 1.[!t]
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With a method of finding both the complex frequency and mode profile of the quasi-normal
modes of cylinders and spheres, we proceed to consider two methods for engineering the
permittivity such that resonances are placed at particular complex frequencies. This allows one
to achieve a high level of control over the spectral response of a scatterer. The methods we shall
present can be used to move any multipolar resonance to any complex frequency, regardless of
how closely the modes are spaced. To illustrate the versatility of our method, in the following
sections we arbitrarily choose particular multipolar resonances, characterised by their angular
momentum ℓ, to be moved to particular target frequencies.

3. Moving resonances by finding permittivity shifts

As outlined in the previous section, finding quasi–normal modes can result in large eigen–value
problems. While it is often useful to decompose the response of a resonator into a sum over the
quasi–normal modes many issues arise from questions over normalisation and completeness of
the basis set [29,45]. To address this, it was noted that one could instead form ‘eigen–permittivity’
modes, where the eigen–value is the permittivity rather than the wave–number [46–49]. Such
modes are normalizable and form a complete basis, making them extremely useful when analysing
scattering problems [50,51] or decomposing the response of emitters to a structured photonic
environment [52]. These methods also benefit from related asymptotic techniques [53–55].
Unlike this previous work, we treat the permittivity of the resonator as a complex–valued
parameter that can be tuned to achieve resonance at a desired complex frequency. To this end,
we split the permittivity into a spatially varying part ε(r) and a background shift εb, that is
applied only to the resonator (not the free–space surrounding it). This allows us to rearrange the
Helmholtz Eq. (1) into an eigenvalue problem for the background permittivity[︁

∇2 + k2(ε(r) + εb)
]︁
ϕ = 0, (16)

−
1
k2

[︁
∇2 + k2ε(r)

]︁
ϕ = εbϕ. (17)

To use this, one can choose a complex k at which one wants the quasi–normal mode to occur,
then solve the eigenvalue problem to find the corresponding (complex) permittivity shift εb.
Unlike previous results [36], for radially symmetric resonators the Laplacian contains information
about the angular momentum of the mode that is placed at the desired k. One can therefore
control both the spectral properties and the multipolar nature of the resonance simultaneously. It
is important to note that in order to solve the eigenvalue problem posed by Eqn. (17), the finite
difference Laplacian operator must be modified to have the outgoing wave boundary condition at
the edge of the resonator, as was discussed in Section 2..

An example of this procedure for a cylinder is shown in Fig. 2. Starting from an isotropic
cylinder of radius a = 550 nm and permittivity ε = 4, the ℓ = 3 resonance is initially at
f ∼ 200 − i10 THz. We seek to move this to f = 150 − i2 THz, corresponding to a lower
resonance frequency and smaller linewidth, giving a background shift of εb = 4.15 + i0.007.
Applying this, we find the ℓ = 3 mode at the desired frequency. To verify this, full–wave
simulations are employed to calculate the scattered energy from the cylinder. These simulations
were performed in COMSOL Multiphysics [44], using the scattered field formulation. Exciting
with a background plane wave, the scattered power was obtained by integrating power outflow
over the outer boundary of the simulation. This integral, as a function of frequency, is what is
reported in the figures. While gain can be introduced to the scatterer if the permittivity shift has
Im[εb]<0, this is limited to the resonator itself. It is well–known that the spectral response of
a resonator with several well spaced quasi–normal modes can be approximated as a series of
Lorentzians [26], with the peak locations corresponding to the real part of the quasi–normal
modes and the widths corresponding to the imaginary parts. Thus, to verify that moving the



Research Article Vol. 31, No. 22 / 23 Oct 2023 / Optics Express 37147

Fig. 2. Using the permittivity–shift method to place the ℓ = 3 mode of an isotropic
cylinder. We seek to move the ℓ = 3 mode to 150-i2 THz, requiring a permittivity shift of
εb = 4.15 + i0.007. a) The locations of the quasi–normal modes. b) Full–wave simulations
verifying the scattering behaviour of the cylinder. Peak locations and widths can be related
directly to pole locations, and the fields |ψ | shown inset verify the multipolar nature of the
modes. As the inset plots are of the field norm, the ℓ = 3 lobe should exhibit 6 amplitude
peaks. For comparison, the spectra of the un–shifted resonator is shown.

Fig. 3. Finding a permittivity shift to place the dipole ℓ = 1 mode of an isotropic sphere at
f = 150 − i5 THz. A background permittivity shift of εb = 0.96 − i0.88. Locations of the
modes are shown in a). b) Scattered power is then calculated using full–wave simulations,
with the mode profile at 150 THz shown inset. The spectra of the un–shifted sphere is shown
in black for comparison.

resonances has had the desired effect on the scattering from the resonator, we plot Lorentzians of
the form

L(f , f0, Γ) = A
Γ

(f − f0)2 + Γ2 (18)

over the scattered power data. In some cases, slightly different functions might be a better fit [56]
however this requires detailed analysis. Throughout, the central frequency f0 is taken from the
real part of the mode with the width Γ corresponding to the expected imaginary part and A is
the amplitude scale. At f = 150 THz there is a peak corresponding to the ℓ = 3 quasi–normal
mode, with a width corresponding to the imaginary part of the quasi–normal mode frequency.
Examining the field profile of the resonator, shown inset, we observe that the multipolar nature of
the mode is as expected. Other peaks in the spectrum are explained by the presence of the ℓ = 2
and ℓ = 4 modes in the vicinity of the mode we have moved.

We also apply this method to move the ℓ = 1 dipole mode of a sphere of initial permittivity
ε = 2. The dipole mode is chosen as it has been utilised extensively to enable dielectric
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metamaterials to interact strongly with light [57]. Initially, this mode is located at f = 172 + i50
THz. Setting the target frequency to be f = 150 − i5 THz, corresponding to a lower resonance
frequency and 10 times smaller linewidth, we solve the eigenvalue problem posed by Eqn. (17) to
obtain a permittivity offset of εb = 0.96 − i0.88. The modes of the new system, as well as the
scattered power are shown in Fig. 3. Due to the gain that has been added to the resonator, there is
a significant increase in the scattered power.

4. Moving Resonances by radially grading the permittivity

The next method we propose employs a radial grading of the permittivity to provide control over
the spectral location of the quasi–normal modes of a resonator. For this design strategy we employ
perturbation theory to connect a small change in the structure to a small change in the position of
a quasi–normal mode. Applying perturbation theory to quasi–normal modes is challenging as
the modes grow in space and so cannot be trivially normalised [45]. Originally developed by
Zel’Dovich [58], quasi–normal mode perturbation theory has been greatly developed over the
last 6 decades [59–62], with various regularization techniques being developed. This has led to
the application of quasi–normal mode perturbation theory to a wide range of systems including
planar structures [63], waveguides [64] and graded index spheres [37]. While most works to date
have focused on the development of quasi–normal mode perturbation theory, we use it to enable
an automated design procedure. Seeking to grade spherically symmetric resonators in a way
that moves a resonance to a desired location, we note that small change in the permittivity of the
the resonator δε(r) is connected to a change in the position of the quasi–normal mode by the
following expression [59,60]

δkn = −
kn

2

∫ a
0 drψ2

n (r)δε(r)∫ a
0 ψ2

nε(r)dr + i
2kn
ψ2

n (a)
, (19)

where a is the radius of the resonator and ψn(r) is the field profile associated with the mode.
While there is much discussion in the literature about how to normalise quasi–normal modes
[65], Eq. (19) is a natural consequence of applying perturbation to the wave–equation. We
consider only perturbations to the resonator itself, not to the surrounding environment as in [66].
Re-writing the normalisation factor on the denominator as ⟨ψn |ψn⟩ and changing the permittivity
at a single point ri so that δε(r) = ∆εδ(r − ri), we find that the gradient of the location of the
quasi–normal mode with respect to the permittivity is

∂kn

∂ε
= −

kn

2
ψ2

n (r)
⟨ψn |ψn⟩

. (20)

For quasi–normal modes, the norm ⟨ψn |ψn⟩ now contains additional boundary terms due to
the out–going wave boundary condition imposed at the edge of the system.

Now, say we would like to place a particular mode at a given complex frequency ktarget.
Defining the figure of merit as

F = (kn − ktarget)
2, (21)

we find that the gradient of the figure of merit with respect to the permittivity is

∂F

∂ε
= (kn − ktarget)

∂kn

∂ε
(22)

= −
kn

2
(kn − ktarget)

ψ2
n (r)

⟨ψn |ψn⟩
. (23)

This result is key: we have an analytic expression for how to change the permittivity at every
radial position in order to minimise (or maximise) our chosen figure of merit. Like the adjoint
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Fig. 4. Designing a graded cylinder with a quadrupole resonance at 100-i2 THz. a) The
iterative movement of the ℓ = 2 mode from 152-i15 THz to the desired complex frequency
of 100 - i2 THz. Panels b) and c) show the resulting permittivity distribution, which has
the modes shown in d). e) Full–wave simulations of the scattered power indicate peaks
corresponding to each pole, with inset electric fields show that each mode exhibits the
expected multipolar nature. The power scattered by the un–graded cylinder is given for
comparison.

method for designing graded wave–shaping devices [31,67,68], this provides a numerically
efficient tool for designing graded structures. In this case, we can design graded cylinders
or spheres with specified complex quasi–normal mode frequencies with a chosen multipolar
character. As quasi–normal mode perturbation theory is only used to find how to change the
structure, this approach remains valid for systems with many nearby resonances, although one
might have to update the permittivity profile in smaller steps. The key limitation of this method
is that in its current implementation, only a single mode can be manipulated at a time.

This method is demonstrated in Fig. 4. Starting from an isotropic cylinder of permittivity
ε = 4, the mode locations kn and fields ψn are found using the matrix formulation presented
in Section 2.. Choosing to move the ℓ = 2 mode from f ∼ 250 − i45 THz to ftarget = 100 − i2
THz, the figure of merit we seek to optimise is defined by Eqn. (21). Evaluating the gradient of
the figure of merit according to Eqn. (23), the permittivity profile is iteratively updated using
gradient descent [69]

εi+1(r) = εi(r) + γ
∂F

∂εi , (24)

where the index i indicates the iteration number. This expression allows for the entire profile to
be updated each step. The progress of the optimisation is shown in Fig. 4(a), where the mode
moves through the complex plane as the structure is updated. The designed permittivity grading
is shown in Fig. 4(b) and (c), with the mode locations of the structure shown in panel d). We
note that in order to move the quasi–normal mode towards the real frequency axis one must
introduce gain, indicated by Im[ε]<0. To verify that the mode has been moved, power scattered
from the graded structure has been calculated with finite element full–wave simulations using
COMSOL Multiphysics [44], with the field distributions associated with each peak shown inset.
A Lorentzian is plotted in Fig. 4(e) with a width and central frequency corresponding to the
desired location of the quasi–normal mode in the complex plane. Next, we consider grading the
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permittivity of an initially isotropic sphere of permittivity ε = 2 to move the ℓ = 4 resonance
to ftarget = 250 − i5 THz. Using the same framework, the progression of the optimisation is
shown in Fig. 5(a), with the designed permittivity profile shown in Fig. 5(b). The locations of the
new modes as well as the scattered power, calculated using full–wave simulations, is shown in
Fig. 5(c) and (d) respectively. In both examples, one can note that most of the grading occurs
at distance r/a>0.6. This is because we are working with modes that vanish at the center of
the resonator and manipulating the permittivity in the region where the field is larger gives
greater control over the mode location. One interesting way this approach might be extended
is to consider shape deformations, rather than permittivity changes, of the radially symmetric
resonator. Perturbation theory for shape changes to a resonator was developed around around
a few decades ago [70,71] and has garnered recent interest for the nearly spherical resonators
[72–74]. Coupled with this framework, our approaches might be used to facilitate the inverse
design of non–spherical resonators.

Fig. 5. Design of a graded sphere with a ℓ = 4 resonance at 250 - i5 THz. a) Progression of
the mode over the iterative optimisation, giving b) the final radial permittivity grading. c)
Mode locations of the final graded sphere correspond directly to peaks in the d) scattered
power. The power scattered by the un–graded sphere is shown for comparison. Electric field
profiles associated with each mode are shown inset.

5. Conclusion

We have developed two techniques to solve the problem of designing cylindrical and spherical
resonators with multipolar resonances at desired complex frequencies. The first approach involves
formulating an eigenvalue problem for a complex permittivity shift of the resonator so that a given
mode is placed at a particular location. The second method uses quasi–normal mode perturbation
theory to establish a connection between a small change in the permittivity distribution and a small
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change in the location of a quasi–normal mode. This is then used to form an analytic expression
for the gradient of a figure of merit, taken to be the difference between the location of the mode and
a desired location. With this, the permittivity distribution of the resonator is iteratively updated
until the mode is at the desired spectral location. These methods have the benefit of controlling
the resonance frequency of the mode, its linewidth and multipolar nature simultaneously. While
our results are, at this point, purely proof–of–concept, to apply these to more practical designs,
one could employ a purely numerical approach. The eigen–value problem for the permittivity
shift could be set up in numerical solvers such as COMSOL, which could also be used to find
the mode fields used to update the structure in the grading technique. In this way, one could
design realistic scatterers, perhaps with stratified permittivity profiles. Additionally, the ability
to design structures with very narrow resonances is useful for building frequency multiplexed
devices. We expect our methods to find utility in a range of problems from metamaterial design
and sensing to optical computing and communication. Future developments of our methods
might involve including the effects of material dispersion as well as manipulating multiple modes
simultaneously. The ability to arrange the several resonances at desired frequencies would be
useful in the design of super–scatterers. In addition, control over the polarisation of the scattered
mode might allow the design of sensors that are polarisation dependent or enable metasurface
functionality to be multiplexed.
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