
Ab Initio Study of Intercalated TMDCs and
their Superlattices

Submitted by Conor Jason Price, to the University of Exeter as a thesis for the

degree of Doctor of Philosophy in Physics, October 2023.

This thesis is available for Library use on the understanding that it is copyright

material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been

identified and that any material that has previously been submitted and approved

for the award of a degree by this or any other University has been acknowledged.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conor Jason Price





This is for Katie and Kiean.



Abstract

In this thesis, the structures and properties of layered transition metal dichalo-

genide (TMDC) materials are investigated at the atomic scale using ab initio den-

sity functional theory methods, with a focus on determining their suitability for

intercalation electrodes in lithium-ion and beyond-lithium-ion batteries. Layered

materials with a van der Waals spacing have already demonstrated a lot of suc-

cess as intercalation electrodes, owing to the natural channels through which

foreign ions can move during cell cycling and be stored in when fully charged or

discharged. As a result, the fundamental function and working of batteries have

changed little since the 1970s and 1980s. The TMDCs represent a particularly

broad family of such layered materials that have received a lot of attention in a

wide range of applications, but only selected materials have been considered as

intercalation electrodes. We therefore provide a comprehensive study of these

materials and several key electrode properties, including the volume expansion,

the voltage, and the reversible intercalation capacity. From this, we conclude

TMDC sulfides to be the best in general for lithium intercalation, highlighting the

Group IV, V, and VI in particular for their low volumetric expansion, moderate in-

tercalation voltages, and high stability against conversion reactions. TMDCs com-

posed of early transition metals are also shown to offer the best performance for

magnesium intercalation. We extend this investigation to consider how the elastic

and mechanical properties change with intercalation. Such properties are par-

ticularly important for electrode modelling beyond the atomic scale, and we find

that the introduction of an intercalant reduces elastic anisotropy but increases the

bulk, shear, and Young’s moduli of the host material. Out of these broad stud-

ies, we identify ScS2 in particular to be a promising material for consideration as

a cathode due to its high voltages and high intercalation stability, though it has

received little attention previously. Consequently, we present a more thorough

study of this material, employing a mix of machine learning and ab initio tech-

niques, and consider other beyond-lithium intercalants. Ultimately, we find that

ScS2 is able to compete with current market leaders and that the introduction



of scandium into the structure of other cathodes could be used to improve their

performance. Finally, we consider how the formation of TMDC superlattices af-

fects the properties of the TMDCs. From of a study of 50 pairings, we are able

to show that, in general, many key of the key electrode properties of van der

Waals superlattice structures can be well approximated with the average value

of the equivalent property for the component layers. Thus, we conclude that su-

perlattice formation can be used to improve material properties through tuning of

intercalation voltages towards specific values, and by increasing the stability of

conversion-susceptible materials.
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Chapter 1

Introduction

“It is important to realize that in physics today, we have no knowledge of what energy is.”

Richard Feynman, 1964

The success of early human civilisation can broadly be attributed to the develop-

ment of agriculture (∼10,000 B.C.E.) and the domestication of a diverse range of

animals (∼8,500 B.C.E.). Following this, the discovery and application of new ma-

terials allowed for further development, allowing for growth out of the colloquially-

termed Stone Age into the Bronze Age (∼3,300 B.C.E.) and Iron Age (∼1,200

B.C.E.). However, much more recent developments have centred around the

generation and utilisation of energy. The earliest evidence of water-driven wheels

dates back to Greek engineer Philo of Byzantium (∼280-220 B.C.E.), and the first

technical description of a watermill comes from the Roman engineer Vitruvius

(∼10 B.C.E.). These made use of the energy of flowing water to drive a mech-

anism, and The Domesday Book (1086 C.E.) lists 5,624 water mills in England

— one per 350–400 people. Along a similar vein, windmills became popular in

Europe between ∼800-1100 C.E. and exploited the energy of moving air. The

Industrial Revolution in Europe and the USA across the 18th and 19th centuries

provided a significant increase in energy use, resulting in a transition from hand

production methods to machine-based methods. These modern alternatives used

water and steam power, generated from the combustion of coal. This period also

provided large-scale access to a form of energy that is the basis of almost all

modern technology: electricity.
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The wide-spread availability of electrical energy in commercial and domestic set-

tings, along with the development of more powerful electronics, has seen a cor-

responding rise in the use of devices such as televisions, smart phones, and

computers. This has resulted in households being consistently ranked as the

largest electricity final users. In 2021, for example, households in the UK con-

sumed nearly 109 terawatt-hours of electricity, accounting for roughly 38% of the

total energy consumption. There is also significant energy demand from a wider

range of industries, including mining, chemical processing, and transport, of all

which are requiring a greater consumption of energy to meet the demands of

growing populations and growth of consumer industries.

With energy usage undergoing dramatic change over the last few decades, and

larger changes expected over the coming years, forecasts of energy demand

and carbon emissions vary wildly. However, numerous reports by both public

and private organisations conclude the same thing: the global energy demand is

rising and we are in the middle of an energy crisis [1–4]. Currently, fossil fuels

provide for approximately 70-80% of the total global energy consumption [1–3],

resulting in over 35 Gt of CO2 being released into the atmosphere throughout

2020 alone [5]. As the rise in the Earth’s average temperature is primarily caused

by human activity [6], there is a serious need to move away from our reliance

on fossil fuels. Coupled with this, fossil fuels are finite resources, and so natural

deposits will eventually be depleted.

As a consequence of the negative environmental effects of fossil fuel use and ris-

ing prices due to depletion of reserves, new sources of energy are being consid-

ered. Fortunately, many projections are optimistic in the share of energy produc-

tion these alternatives will provide, predicting renewables as the fastest growing

source of energy [4], and an overall decarbonisation of the energy sector as fossil

fuels are replaced by green electricity and hydrogen [3]. For example, across the

member states of the European Union, more than 35% of consumed energy is

now generated from renewable energy sources, and over 80% of this renewable

energy is provided by wind, hydro or solar energy. This is, in part, a result of

cooperative international efforts to reduce the impact of climate change, such as

with the Paris Agreement and the recent COP27 Conference. There is, however,
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still much work to do to reduce the strain on energy production, and facilitate an

effective transition to green, renewable alternatives [7].

Obvious alternatives to the non-renewable energy sources build on the early

ideas of wind and water mills, with modern equivalents being wind turbines and

hydropower dams. Whilst these have long been overlooked due to their low en-

ergy and power output compared to fossil fuel combustion, they are clean, renew-

able, and can largely provide a passive supply of energy. Many of these green,

renewable alternatives to energy generation, however, are dependent upon vari-

able factors such as the weather, meaning there could be extended periods of

time for which there is no power output (for example, when there is little wind).

If instead the energy harvested during active periods was able to be safely and

reliably stored, the variability would no longer be an issue. The challenge is then

not the harvesting of energy from renewable sources, but cost-effective and ef-

ficient ways to store the energy produced during peak production times for later

use [8,9].

1.1 Electrochemical Energy Storage

Within the field of electrical energy storage, there are two main types of electro-

chemical cell: batteries and capacitors. Batteries are characterised by Faradaic

electron transfer, achieved by accessing different oxidation states of (typically)

metal atoms constituting the material being employed. Capacitors on the other

hand use electric double layers at the surfaces of materials to non-Faradaically

store charge [10]. However, the rapidly increasing number of materials that have

been presented to the community has started to lead to ambiguous boundaries

between these, with many materials displaying both capacitive and Faradaic elec-

trochemical characteristics, so-called ‘pseudo-capacitors’ [11]. One way to begin

categorising the mechanism of charge storage is through the use of electrochem-

ical techniques such as cyclic voltammetry, which shall be discussed later in this

section. The work in this thesis does not consider the surfaces of the materials

in question, nor the interaction with any potential electrolyte, and so the results

will be presented with only the Faradaic electron transfer in mind. However, it is
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(a) (b)

Figure 1.1: 1.1a shows a conventional capacitor, consisting of two oppositely charged

plates separated by a dielectric material (orange). 1.1b shows an electric double layer

capacitor (EDLC), consisting of two opposing plates separated by an electrolyte (green),

where the electric double layer formed at each plate is indicated.

important that we are aware of the different processes that can occur in these

cells to better understand experimental results and how the results presented

here may be modified in an experimental setup.

1.2 Capacitors

Electrochemical capacitors, sometimes referred to as supercapacitors or ultraca-

pacitors, are a form of energy storage device consisting of two opposing elec-

trodes separated by an electrolyte. Patents for such devices date back to the

1950s [12]. Whilst conventional capacitors store charge on opposing plates or

through polarisation of a dielectric material (see Figure 1.1a), electrochemical

capacitors establish a so-called ‘electric double layer’ at the boundary between a

conductive electrode and an adjacent liquid electrolyte. At this interface, oppos-

ing charges accumulate into two opposing layers, one within the electrode and

one within the electrolyte [10], hence the term ‘double-layer’ (see Figure 1.1b).

Capacitors offer high charge-discharge efficiency, remain robust after repeated
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cycling, and therefore have long lifetimes [13]. As the charge storage mechanism

is based on reactions that occur at the surface of an electrode (instead of ionic

diffusion through a material), capacitors are able to achieve high power densi-

ties [14, 15], and are best suited for applications where fast energy delivery is

required [16]. Unfortunately, as the charge storage mechanism is restricted to

surfaces [17], they typically have low charge capacities, and hence low energy

densities of up to 10 Whkg−1 [14,15].

1.3 Batteries

Perhaps the most well-known and most widely available form of electrochemical

energy storage is the battery. This ubiquitous electrical component can be found

in devices ranging from personal phones and laptops, to medical equipment and

power tools. Batteries are able to store charge through chemical reactions, typ-

ically through the conversion of a material or through storage of ions in a host

material. As these devices rely on chemical reactions and the transport of ions

into a crystal framework, they tend to have limited charging rates and hence low

power densities. However, as these reactions are not limited to a surface (as

with electrochemical capacitors), they are able to achieve higher energy densities

relative to capacitors.

With an ever-increasing demand for more powerful electronic devices, the need

for suitable batteries has also increased. Unfortunately, batteries have developed

at a much slower pace than other areas of electronics [18, 19]. This has meant

that low capacities and short life-times still plague modern batteries, and hence

modern electronics. On top of this, the past two decades have seen a rapid in-

crease in research and investment into the development of electric vehicles [20],

with the hope being for a move away from their more widely-used, fossil-fuel con-

suming cousins. One of the largest hurdles faced by the electric-vehicle industry,

however, is the need for higher capacity batteries: the energy density of batter-

ies has improved in a roughly step-wise manner, and is currently at about 200

Whkg−1 [21, 22], but energy densities of at least 500 Whkg−1 [23–25] are re-

quired to satisfy the demand of vehicle electrification. Thus, there is a clear need



6 Chapter 1. Introduction

for higher capacity, more robust, longer-life batteries.

Modern batteries rely on the insertion (‘intercalation’) of lithium or other elements

into layered materials, as we shall see in the following discussions. Beyond direct

battery application, the intercalation of ions into a host structure raises a range of

fundamental questions, the answers to which could be of immense value through-

out physics, chemistry and materials science. For example, the processes by

which an ion enters a material, the diffusion of ions through the material once it is

intercalated, and the removal of those ions from a material during discharge, are

all properties that change between materials. Intercalation has also been used as

a method to modify the optical [26–28], thermal [29,30], and magnetic [31] proper-

ties of materials, and there is evidence for new, metastable, superdense phases of

lithium forming when intercalated into layered materials such as graphite [32,33].

These new material phases could hold novel properties that have not been pre-

viously observed. Clearly, being able to understand how a host material interacts

with an intercalated species and how this changes the properties of the host

material would be useful for a wide range of applications. The intercalation of

layered materials, in the context of intercalation batteries, will form the main focus

and motivation of this thesis.

1.3.1 Function of Batteries

A typical Li-ion cell is shown in Figure 1.2 to highlight the two main components to

a battery: the electrodes and the electrolyte. Other components may be included

during manufacture, such as the ‘separator’, which physically separates the elec-

trodes to prevent a shorting of the cell, the ‘current collector’, which connects

the components that collect electrical current generated at the electrodes with

external circuits, and the ‘binder’, which binds the active materials in the elec-

trodes together. However, these additional components do not take part in the

electrochemical processes; instead, they act to increase the efficiency, lifetime,

and performance of the cell. Therefore, we will only discuss the electrodes and

electrolyte here.
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Figure 1.2: Schematic of Goodenough’s battery during discharge, with a LiaCoO2 cath-

ode. Lithium ions travel through the electrolyte from one electrode to the other. Electrons,

unable to travel through the electrolyte, travel through an external circuit and power a con-

nected device. Figure reproduced from the Nobel Prize Website [34].

Electrodes

The electrodes of electrochemical cells are the sites at which the electrochemical

reactions take place. In an intercalation battery, the reactions taking place are

the intercalation and deintercalation of ions. The electrodes act to ‘house’ the

intercalated ions in between charging and discharging. Whilst there is in principle

no limit to what these intercalated ions can be, we will use the example of lithium

in the following discussions.

There are two electrodes in a battery, the anode and the cathode, characterised

by the redox process they facilitate. The anode is the electrode at which the ox-

idation of lithium atoms takes place, producing positively charged lithium ions,

and releasing the removed electrons to an external circuit. Conversely, the cath-

ode is the electrode at which reduction takes place, accepting electrons from an

external circuit to reduce lithium ions to lithium atoms. During discharge of the

cell the anode is the negative electrode and the cathode is the positive electrode.

The direction of ion and electron flow is reversed during the charging process
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and so this assignment is switched, however to avoid confusion and to maintain

consistency, we will only refer to the discharge process within this thesis.

For the specific case of intercalation electrodes, Whittingham was the first to sug-

gest that materials with a layered structured and van der Waals spacings would

be ideal for the storage of intercalant species [35], as their spacings provide nat-

ural channels for the lithium to be held in, and allow for reversible intercalation

reactions that do not break any bonds. For typical lithium-ion batteries, com-

posed of a graphitic anode and a LiCoO2 cathode, the discharge of the battery

can be described by the following reactions:

Cathode: CoO2 + aLi+ + ae− → LiaCoO2

Anode: LiaC6 → C6 + aLi+ + ae−

Full Reaction: LiaC6 + CoO2 → C6 + LiaCoO2.

(1.1)

This reaction, or an equivalent reaction with other electrode materials, produces a

potential difference across the cell. The potential difference is an important quan-

tity in electrochemistry, and can be useful for describing and comparing different

electrode materials. For easy comparison of intercalation potentials between dif-

ferent materials a reference anode of lithium metal is typically used. This will then

give the electrode half-cell potential for any given material, which is the voltage

given with respect to the Li/Li+ redox potential [10].

Ideal cathode materials will demonstrate a high voltage versus the Li/Li+ redox

level, with current market leaders achieving voltages of 3 - 5 V [36–42]. Ideal

anodes, on the other hand, will demonstrate a low (but positive) voltage. The

voltage obtained from a pairing of any two materials can then be calculated from

their difference. As LiCoO2 possesses a voltage of ∼4 V [42], and graphitic car-

bon achieving voltages as low as 0.01 V [43], cells utilising these materials as

opposing electrodes allows the battery to provide a voltage of 4 V.

Electrolytes

The electrolyte is a medium connecting the two electrodes of the cell, and whilst

a range of electrolytes exist, for example liquid organics [44], ionic liquids [45]

and inorganic solids [46], their basic function is the same. The electrolyte must
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Figure 1.3: Schematic illustrating the open-circuit energy diagram associated with the

cathode, electrolyte and anode of a cell. µCathode indicated with a solid blue line is the

electrochemical potentials of the cathode, µAnode indicated with a solid red line is the elec-

trochemical potentials of the anode, and HOMO and LUMO indicate the highest occupied

molecular orbital and lowest unoccupied molecular orbital of the electrolyte, respectively,

both indicated with solid green lines. The effect of the formation of a solid-electrolyte

interphase (SEI) layer (green dashed lines) is allows the positions of µCathode and µAnode

to shift, as indicated with the respective dashed lines.

prevent electronic conduction between the electrodes (which would result in a

short of the cell), whilst allowing ionic conduction. Electrolytes are subject to their

own practical restrictions and shortcomings, and the search for better electrolytes

is the subject of many different studies. Whilst electrolytes are not the focus of

this work, it is important that they are addressed for context and awareness of

any restrictions they may impose on electrodes.

Within the electrically-resisting electrolyte, there will be a gap between the low-

est unoccupied molecular orbital (LUMO) and the highest occupied molecular

orbital (HOMO), which is often referred to as the window of stability of the elec-

trolyte [45, 47]. It is required that the electrochemical potential of the cathode

(µCathode) be higher in energy than the HOMO of the electrolyte, and the electro-

chemical potential of the anode (µAnode) be lower in energy than the LUMO of the

electrolyte. This is indicated in Figure 1.3. If the electrochemical potential of the

anode is higher than the LUMO of the electrolyte, electrons will be able to flow
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from the anode to the electrolyte and the electrolyte will be chemically reduced.

Similarly, if the electrochemical potential of the cathode is lower than the HOMO

of the electrolyte, electrons will be able to flow from the electrolyte to the cathode,

and the electrolyte will be oxidised. Both of these processes cause degradation

of the electrolyte and cell.

A passivation layer at the interface between the electrode and electrolyte, known

as a solid-electrolyte interphase (SEI), can be formed. A successful SEI layer

will be electronically insulating but ionically conducting, and act as solid elec-

trolyte [48]. If this material is conductive to ionic lithium but electrically insulating,

then normal battery operation can take place. The electrical insulator property of

the SEI can add electrochemical stability to the electrolyte by raising the effective

LUMO of the electrolyte and lowering the effective HOMO. This in turn allows the

position of µCathode (µAnode) to move to a lower (higher) energy, thus allowing for a

larger open-circuit voltage to be obtained, as indicated by the dashed lines in Fig-

ure 1.3. However, the specific properties of the SEI and the effect of its formation

on device function will depend heavily on the electrolyte, the electrode, and the

local chemistry at their interface. The formation of a SEI may also require con-

sumption of lithium, the active electrode, and/or the electrolyte, resulting in higher

internal resistance of the cell and capacity fading. This usually manifests as a

larger charge capacity being achieved in the first few charge-discharge cycles of

a cell compared to following cycles [49].

Electrochemical Testing

A popular tool for investigations of the complex reactions in a material is cyclic

voltammetry. This involves linearly varying the potential across the cell in time and

recording the resultant current. Once one potential sweep between two defined

potentials is completed, the potential is varied in the opposite direction back to

the starting potential, hence ‘cyclic’ voltammetry. When the potential is far from

the potential of a redox-reaction, only non-Faradaic currents can flow. However,

as the potential sweeps through any redox-reaction potentials, Faradaic currents

lead to spikes. These can be identified in the voltammetry plots, giving insight into

the nature of reactions that occur during charging/discharging [10], and can help
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(a) (b)

Figure 1.4: Figures of electrochemical tests on NbSe2 during lithium intercalation. Fig-

ure 1.4a shows the cyclic voltammetry plots (scan rate of 0.1 mV/s) during the first three

cycles, with key potentials identified. Figure 1.4b shows the galvostatic test (constant

current of 0.1 A/g) for both charging and discharging of NbSe2 in the same work. Figures

reproduced from [50].

with the determination of whether a material is Faradaic, capacitive, or pseudo-

capacitive [11]. An example cyclic voltammetry plot is shown in Figure 1.4a,

reproduced from [50].

Another popular tool is galvanostatic testing, which can be useful for the evalua-

tion of a material’s specific capacity and cyclability. This involves the application

of a constant current to the cell electrodes, and measurement the resultant poten-

tial between them as a function of the total charge supplied. The produced plot

often consists of a series of plateaus, each indicating structural changes in the

electrode [10]. An example galvanostatic test plot is shown in Figure 1.4b, also

reproduced from Peng [50].

As is evident from these figures, there can be several redox peaks appearing

for a single material. These can arise from intercalation, conversion of the host

material into other products, further reduction/oxidation of these conversion prod-

ucts, SEI formation, or reactions taking place in the electrolyte, to name a few

possible sources of redox peaks. For example, in Figure 1.4, the peaks/plateaus

in the range 0.01-1.70 V are attributed to the reversible conversion of the lay-

ered LiaNbSe2 structure to Li2Se and metallic Nb, and the peaks/plateaus close

to 1.85 V are are attributed to the oxidation-reduction reaction between Li2Se and
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polyselenides [50]. Special care should therefore be taken when assigning these

peaks to any particular redox reaction.

1.3.2 A Brief History of Batteries

Benjamin Franklin first coined the term ‘battery’ to describe a system of charged

plates in 1749 [51], however the first chemical battery was not constructed until

1800 when Alessandro Volta invented the voltaic pile [52]. This consisted of an

alternating stack of copper and zinc discs, separated by layers of salt water, and

was able to deliver electrical currents to circuits, albeit for short periods of time.

Due to batteries being constructed from multiple components, all of which require

some compatibility with every other component, there have been only relatively

few improvements to the construction and operation of batteries since their initial

creation. Fortunately, there have been some significant milestones over the past

three centuries which have allowed the development of modern batteries and

technologies.

Lithium (from the Greek ‘lithos’ meaning ‘stone’) was the third element to form,

coming into existence a mere five minutes after the Big Bang [53, 54]. The first

lithium-containing mineral to be discovered was petalite (LiAlSi4O10) in 1800, with

its lithium content determined in 1817 by Johan August Arfvedson [55,56]. William

Thomas Brande then first isolated lithium metal by applying a voltaic pile to lithium

oxide in 1821 [55]. This came over a decade later and utilised a different method

to what Sir Humphry Davy used to isolate sodium, potassium, and many of the

Group II elements [57]. The work of Brande thus gave access to the metal on the

periodic table with the lowest atomic number, the lowest atomic mass, and hence

the lowest density.

In 1860, Gaston Planté developed the first battery that could be recharged by

passing a reverse current through it [58, 59]. This utilised Nicolas Gautherot’s

observations from 1801, where wires used in electrolysis experiments provided

a small ‘secondary’ current, even after the main battery had been disconnected.

Planté’s early ‘lead-acid’ design consisted of two sheets of lead, separated by

rubber strips, and rolled into a spiral. Whilst the next century offered several
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improvements to the lead-acid battery, such as the lattice suggested by Camille

Alphonse Faure and the gel electrolytes first used in the 1920s and 1930s, lead-

acid batteries have comparatively low energy-densities to modern rechargeable

batteries. Nevertheless, they still remain a major battery system, largely due to

their low cost, light weight, high power density, and ability to supply high surge

currents, and have found particular use in starting automotive engines.

In 1913, Lewis and Keyes began investigating the electrochemical properties of

metallic lithium, and determined its Li+ + e− → Li redox potential to be -3.04 V

versus the standard hydrogen electrode [60]. In 1958, William Harris examined

the solubility of various salts [61] in different electrolytes, including cyclic esters,

molten salts, and inorganic lithium salt (LiClO4) dissolved in propylene carbon-

ate. It was observed that the formation of a passivation layer was capable of

preventing a direct chemical reaction between lithium and the electrolyte while

still allowing for ionic transport across it [56].

The promise of lithium metal, having a low density, a low redox level, and a passi-

vation layer being able to protect the electrolyte from its high reactivity, prompted

research into the use of lithium in lithium-ion batteries as energy storage de-

vices [56]. Within a decade, there were numerous primary lithium-ion batteries

available. A CuF2|Li battery was developed by NASA in 1965 [62], a lithium-

sulfur dioxide Li|SO2 cathode became commercially available in 1969 [63, 64],

Matsushita commercialised a lithium–polycarbon monofluoride Li|(CFx)n cell in

1970 [65, 66], and lithium–manganese oxide (Li|MnO2) batteries were commer-

cialised by Sanyo in 1975 [56]. Though these offered 3 V lithium-ion cells, many

of which are still used in devices today, they were primary cells and needed to

be discarded after a single use: there was still the need for cells which could be

recharged and reused.

The use of intercalation electrodes, that is, electrodes with a layered structure

which allow the ‘insertion’ of lithium ions in between the sheets, for use in lithium

cells was first proposed by Whittingham in 1976 [35]. Whittingham then investi-

gated the electrical energy storage and intercalation chemistry of layered TiS2 [67],

following which Exxon, a multinational gas and oil corporation, tried to commer-

cialise a TiS2 battery [68, 69]. However, due to the sensitivity of TiS2 to mois-
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ture (releasing H2S gas on contact with water), the inclusion of a dangerous,

shock-sensitive electrolyte, and the use of metallic lithium, device manufacture

was found to be expensive and complex. As such, the development of Whitting-

ham’s lithium-titanium disulfide battery was discontinued by Exxon [69].

In the early 1980s, working in separate groups, researchers Ned A. Godshall [70],

and Koichi Mizushima and John B. Goodenough [71,72] began looking at a mate-

rial related to TiS2: lithium cobalt oxide. Goodenough looked at a range of layered

materials, and was able to experimentally verify both the superior stability of tran-

sition metal oxides over their sulfide counterparts during intercalation reactions,

and their higher operating voltages. In an investigation of a variety of layered tran-

sition metal oxides, LiaCoO2 was identified as the best candidate for a cathodic

material, able to have its lithium content reduced to from a = 1 to a = 0.067 during

a charging voltage of 4 V [55,71–73]. This provided a high-voltage, high capacity

cathode that was more stable than its predecessors.

Throughout the investigation of materials for cathodes for rechargeable lithium ion

batteries, metallic lithium anodes had been used. Unfortunately, metallic lithium

is prone to dendrite formation [74,75], which can cause short-circuiting of the cell

and spontaneous combustion when in contact with oxygen, and large volumetric

expansion [76]. Both of these properties raised concerns over the safety of its

use. In the late 1980s, Moli Energy, a Canadian technology company, was even

required to issue a total recall of their Li|MoS2 cells used in mobile phones due

to reports of battery fires [55]. As such, there was a serious need for a safe

alternative to the lithium metal anode.

In 1983, Yazami found that a soft-carbon, graphitic electrode was able to demon-

strate reversible lithium intercalation and had promise as the anode of lithium ion

batteries [77]. With this anode, in 1985 Yoshino was able to create the first pro-

totype of a secondary cell, composed of a LiCoO2 cathode and carbon-based

anode, that was small and light, demonstrated excellent cyclability, and offered a

high energy density [78].

Using the design developed by Yoshino, Sony commercialised a lithium ion bat-

tery in 1991 [79], and a joint venture between Asashi Kasei Co. and Toshiba
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produced a battery in 1992 [69]. Many companies were quick to utilise these

small, light, and resilient devices, which were able to provide energy densities of

200 WhL−1 and 80 Whkg−1 when charged to 4.1 V.

The works discussed above resulted in the commercialisation of lithium-ion bat-

teries to such a scale that they are an integral part of modern life, being used in

the vast majority of portable electronic devices across the globe. Together, these

works also earned Goodenough, Yazami, and Yoshino the 2012 IEEE Medal for

Environmental and Safety Technologies [80], and earned Goodenough, Whitting-

ham, and Yoshino the 2019 Nobel Prize in Chemistry for their contributions to-

wards the development of lithium-ion batteries [81].

Since the development of the rechargeable lithium-ion battery, there has been

much work put into further development of battery technology [69]. Many other

materials have been considered as cathodes, with LiNixMnyCo1−x−yO2 (NMC),

LiNixCoyAl1−x−yO2 (NCA), and their variants [41,82–86], several phosphates [36,

38, 40], and spinel oxides such as Mn2O4 [87] each offering high voltages. In an

attempt to achieve capacities greater than those available when using graphite,

materials such as silicon [88], lithium titanate [89], and other metal oxides being

considered [90,91] for the anode. Intercalant species other than lithium have also

been investigated: following the success of lithium, other Group I metals have

been investigated for intercalation batteries. Multivalent Group II elements, zinc,

and aluminium, have also been considered, with each offering their own viable

successes in recent years.

1.4 Outline

This work considers a theoretical investigation into the viability of atomically thin,

layered materials for use as electrodes in intercalation batteries. In particular,

we investigate the viability of transition-metal dichalcogenides, a group of lay-

ered materials similar to graphite. This thesis will predict the voltages associated

with the intercalation and de-intercalation of ions into transition metal dichalco-

genide (TMDC) materials, as would be seen as the significant features in common
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electrochemical tests. It will also indicate the ability of intercalant ions to diffuse

through the structures, and identify any intercalation-induced phase transitions

in them. Further, it explains how the open-circuit voltage profiles and lithium dif-

fusion barriers change for composite materials, how the stability changes upon

superlatticing, and overall the potential such structures have for future battery

development.

In the next Chapter, we will discuss the methods used throughout this thesis, pro-

viding a discussion and derivation of the fundamental principles and underlying

theory of ab initio density functional theory, the tool with which we have explored

the electronic, energetic, and structural properties of the materials in question.

Chapter 3 provides the results of a high-throughput investigation into the proper-

ties of the TMDC family, a group of materials that has received much attention in

a wide range of applications. Here, we focus on their suitability for intercalation

electrodes (when intercalated with either lithium or magnesium) by determining

their voltage profiles, thermodynamic phase diagrams, volumetric expansion, and

their electronic structure, all of which are vital for characterising successful elec-

trode materials. Chapter 4 discusses how the elastic properties of the TMDCs

can be controlled through ion intercalation. This is of particular interest in a time

where the demand for flexible electronics is on the rise, but is also vital for the

modelling of material fracture during cell cycling. Chapter 5 provides a closer

look into layered ScS2, a material that is highlighted as a particularly promising

cathode in Chapter 3, extending its study to intercalation with sodium and potas-

sium, as well as the lithium and magnesium. Along with the methods outlined in

Chapter 3 and Chapter 4, we also employ random structure search techniques,

and consider the dynamic stability. We predict a stable intercalation electrode that

can provide capacities that are competitive with current market leaders. Chapter 6

extends the investigation presented in Chapter 3 to TMDC superlattices. These

are formed by making use of the layered structure of TMDCs, with superlattices

consisting of alternating material layers, allowing us to utilise not only the proper-

ties of the component materials but also the novel physics that can arise from the

interface between them. Finally, this thesis is then summarised, and a discussion

of ways to take this work forward is presented.
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Methods

“Reality is frequently inaccurate”

Douglas Adams, 1980

2.1 Introduction

In the previous Chapter, we introduced the idea of using materials for energy

storage applications. For atomic-scale investigations of such materials, we must

first be able to accurately describe their geometric structure. Once we have

established the structure, we can then begin our assessment of materials for

applications: we can determine key energetic properties such as the interca-

lation voltage, and investigations of the electronic structure can provide insight

into whether electronic conduction limits electrode function. We can also quan-

tify functional limits through thermodynamic phase diagrams by identifying where

decomposition into other compounds occurs, or through analysis of the phonon

band structure to determine limits of the dynamic stability.

To carry out such an investigation into a material, however, we must first have a

firm understanding of the fundamental physics that governs it at the atomic level.

In this Chapter, we will summarise the core principles of quantum mechanics

and solid-state physics necessary for discussions of crystalline solids. We will

then examine some methods commonly used to investigate our chosen family
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Figure 2.1: Diagram showing how a periodic lattice of points (black dots), the associated

primitive lattice vectors a1 and a2, and an atomic basis (purple and yellow circles) can be

used to generate a periodic crystal. The primitive unit cell is indicated with dashed lines.

of materials, methods which provide the backbone for the majority of the work

presented in this thesis.

2.2 Crystal Structure

In the study of crystalline solids, one key concept is that of the crystal lattice: an

infinite array of equivalent points, periodically repeated such that their arrange-

ment and orientation remain unchanged, regardless of the point from which the

array is viewed. Due to this intrinsic periodicity, rather than considering the infi-

nite array, we can instead utilise a primitive unit cell defined by a parallelepiped

(in three dimensions) of three vectors. These primitive vectors, a1, a2, and a3, do

not lie in the same plane, and any integer (ni = 0, 1, 2, · · · ) combination of them

will translate between equivalent points within the lattice,

T = n1a1 + n2a2 + n3a3 =
∑
i

niai, (2.1)

known as a lattice translation vector. An example of a two dimensional primitive

unit cell is shown in Figure 2.1, with the lattice points depicted as black dots, and

the resultant unit cell indicated with dashed lines.

Though useful for discussions of crystalline solids, the lattice is a mathematical

construct and does not contain any information about the crystal composition,
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chemistry, or the properties it possesses. However, to each lattice point we can

attribute an atom or collection of atoms that is also repeated infinitely throughout

the solid. This is referred to as the ’atomic basis’. Together, the lattice and basis

generate the entire crystal, and the relationship between each of these is shown

in Figure 2.1.

2.2.1 Crystal Symmetries

It is often extremely useful to make use of any symmetries of a crystal, beyond

the translational symmetry required by the lattice, and allow for classification of

lattices and crystal structures. Symmetries such as mirror planes or rotational

symmetry, which preserve the position of the point about which these symmetries

can be seen, are termed point symmetries. A group of point symmetries is called

a point group, and the group of lattices with the same set of point groups is called

a lattice system. Depending on the relative lengths of the primitive lattice vectors,

quantities called the lattice constants, and the angles between them, a (three

dimensional) crystal can fall into one of seven different lattice systems: triclinic,

monoclinic, orthorhombic, tetragonal, cubic, trigonal, and hexagonal. Some of

these can be further divided into different lattice types (primitive, body-centred,

face-centred, and base-centred) which results in 14 Bravais lattices [92]. We can

also consider the symmetries of the basis atoms. There are 32 unique crystallo-

graphic point groups, and the combination of lattice types and unique point groups

leads to the full 230 unique space groups, which provide a full description of the

crystal symmetry.

2.2.2 Reciprocal Space and the Brillouin Zone

Along with the real-space lattice described above, another concept that is useful

for discussions of material properties is the reciprocal lattice. Consider a general

plane wave exp(ik · r). For a general wave vector k, the plane wave will not pos-

sess the same periodicity as the lattice. However, the set of all k-points, G, that do

produce plane waves with the same periodicity define the reciprocal lattice. This
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can be analytically understood by considering the periodicity of the real-space lat-

tice: we require the plane wave at a point r to be equivalent to the plane wave at

another point, separated from r by any translation vector T defined above. Thus,

exp(iG · r) = exp
(
iG · (r + T)

)
, (2.2)

which can be factored to give the requirement,

exp(iG · T) = 1. (2.3)

This is satisfied for any G · T = n× 2π, with integer n.

As this must hold for the lattice vectors themselves, we can write the reciprocal-

lattice translation vector,

G = m1a∗1 +m2a∗2 +m3a∗3 =
∑
i

mia∗i , (2.4)

in terms of reciprocal space lattice vectors a∗1, a∗2, and a∗3. These can be deter-

mined from the real-space lattice vectors using,

a∗1 = 2π
a2 × a3

a1 · (a2 × a3)
,

a∗2 = 2π
a3 × a1

a2 · (a3 × a1)
,

a∗3 = 2π
a1 × a2

a3 · (a1 × a2)
,

(2.5)

from which it can easily be shown that ai · a∗j = 2πδij.

The reciprocal lattice vectors construct a periodic lattice. By finding the Wigner-

Seitz cell of this reciprocal lattice, we can identify the first Brillouin zone, the

volume of which, ΩBZ, is related to the volume of the real space unit cell, ΩCell, by,

ΩBZ =
(2π)3

ΩCell

. (2.6)

As the Brillouin zone is constrained by the symmetries of the reciprocal lattice, we

can define an irreducible Brillouin zone, which contains all of the unique points

necessary for a description of the full Brillouin zone. If the reciprocal lattice has

M point symmetries, the irreducible Brillouin zone will be a 1
M

fraction of the full

Brillouin zone.
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2.3 Mathematics of Electronic Structure Calculations

2.3.1 The Schrödinger Equation

One of the most fundamental equations in quantum mechanics is the Schrödinger

equation, solutions of which allow us to describe the temporal and spatial evolu-

tion of a quantum state. The time-independent Schrödinger equation is given

by,

ĤΨ(r) = − ~2

2m
∇2Ψ(r) + V̂ (r)Ψ(r) = EΨ(r), (2.7)

where Ĥ is the Hamiltonian of the system, and is the sum of a kinetic energy term

and a potential energy term. The eigenfunction of the Hamiltonian, Ψ, is the wave

function, a complex, single-valued, continuous function of spatial coordinate r,

and has eigenvalue E equal to the energy of the state it describes.

Whilst analytical solutions to the Schrödinger equation have been determined for

a select few quantum systems, obtaining the wave function is typically a very dif-

ficult task. This is in-part due to the range of forms the potential V̂ can take, but

more so because the inclusion of many-body terms (which are necessary for an

accurate consideration of most quantum systems) result in repeated interactions.

This often results in a wave function being impractical or even impossible to ob-

tain. We shall see in the coming sections a range of methods that can be used to

combat the difficulty of obtaining wave functions of many-body systems.

2.3.2 Born-Oppenheimer Approximation

For a crystalline system, the electronic and ionic wave functions are typically cou-

pled. Whilst consideration of static ions allows use to write the total wave function

as a product of the ionic and electronic wave functions, nuclear motion (for exam-

ple, due to finite temperature) can be expected to result in changes that prevent

such a convenient decoupling. One approach that is commonly used to simplify

this problem for electronic structure calculations is the Born-Oppenheimer ap-

proximation. We leave a detailed discussion of this to Appendix A, which consid-
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ers the energy associated with ionic motion to be a perturbation to the electronic

Hamiltonian due to the comparatively larger masses and smaller velocities of ions

compared to electrons. At zeroth order, we achieve the case of static ions. An

expansion to second order shows that nuclear motion is harmonic and the elec-

trons move adiabatically in a potential created by nuclei fixed to their equilibrium

positions. Consequently, and most importantly for our discussions, the electronic

and nuclear wave functions can be decoupled, thus allowing us to isolate the

electronic Schrödinger equation,

ĤΨ(r) =
(
T̂el + V̂el−el + V̂el−ion + V̂ion−ion

)
Ψ(r) = EΨ(r). (2.8)

Here, we have separated out the terms of the Hamiltonian corresponding to the

electron kinetic energy (T̂el), the electron-electron interaction potential (V̂el−el),

the electron-ion interaction potential (V̂el−ion), and the ion-ion interaction potential

(V̂ion−ion).

2.3.3 Orthonormal Basis Functions

One method that is commonly employed to obtain solutions to the Schrödinger

equation is to decompose the wave function into a linear combination of mutually

orthogonal basis functions,

Ψ =
∑
i

cibi. (2.9)

It is then an algebraic problem to optimise the expansion coefficients, ci, of each

basis function bi. We start by defining a functional, G[Ψ]:

G[Ψ] = 〈Ψ| Ĥ |Ψ〉 − E 〈Ψ|Ψ〉 , (2.10)

and impose stationary conditions on this functional. We substitute our expansion

of (in general infinite) N orthonormal functions into our definition of G[Ψ], to get

G(c1, · · · , cN) =
∑
ij

c∗i cjHij − E
∑
ij

c∗i cjδij

=
∑
ij

c∗i cj(Hij − Eδij),
(2.11)

with matrix elements of the (square matrix) Hamiltonian Hij = 〈bi| Ĥ |bj〉, and

elements of the (diagonal square matrix) Eδij = E 〈bi|bj〉. The Hermitian nature

of the operator Ĥ means Hji = H∗ij.
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Minimising G with respect to the expansion coefficients leads to ∂G
∂c∗i

= 0, and we

get, ∑
j

(Hij − Eδij)cj = 0. (2.12)

A non-trivial solution exists if

det |Hij − Eδij| = 0. (2.13)

This is the secular equation, and can also be written as Ĥc = Ec. This is an

eigenvector equation, with N×N matrix Ĥ and vector c formed of coefficients ci.

We thus have N eigenvectors (one for each row in the matrix Ĥ), and so the N

solutions can be written as:

Ψk =
∑
i

Cikbi, (2.14)

with k = 1, · · · , N , and Cik the fundamental matrix. We must now consider an

important property of C: the relation Ψk =
∑

iCikbi can be viewed as a trans-

formation between a starting set of N basis functions, bi, and a final set of N

functions, Ψk, via transformation matrix C. Rather than trying to directly obtain

a solution Ψk, our task is to instead determine the elements of C to construct Ψ

from the basis functions. If starting functions bi are orthonormal, then,∫
Ψ∗l Ψk dr =

∫ ∑
ij

C∗jlb
∗
jCikbi dr

δlk =
∑
ij

C∗jlCikδji =
∑
i

C∗ilCik,
(2.15)

or in matrix notation,

(C−1)ij = C∗ij ≡ C†ij, (2.16)

and the transformation matrix C is unitary.

If we now consider the effect of the transformation matrix on the Hamiltonian,

(C−1ĤC)kn =
∑
ij

(C−1)kiHijCjn

=
∑
i

C∗ik
∑
j

HijCjn

=
∑
i

C∗ikEnCin

= En
∑
i

C∗ikCin

= Enδkn,

(2.17)
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we demonstrate that transformation matrix C transforms Ĥ into a diagonal matrix,

with N non-zero (diagonal) elements which are the eigenvalues of the system.

Our eigenvalue problem is therefore changed to a search for a transformation

matrix, which allows us to move from our original ‘guess’ basis to a new basis

which diagonalises the Hamiltonian of the system.

2.3.4 Variational Method

Using the above construction of a wave function from a set of orthonormal ba-

sis functions, it is possible to obtain approximate solutions to the Schrödinger

equation using the variational method. This is the foundation for many practi-

cal approaches to obtaining a solution to the Schrödinger equation in condensed

matter physics. To emphasise the usefulness of the this method, we now con-

sider the complete orthonormal set of eigenfunctions ψn of a Hamiltonian Ĥ with

eigenvalues En:

Ĥψn = Enψn. (2.18)

The ground state of this system, labelled n = 0 with energy E0, by definition is the

lowest energy eigenstate of Ĥ. We expand an arbitrary function Ψ using energy

eigenfunctions ψn as the basis set,

Ψ =
∑
n

cnψn. (2.19)

Substituting equation (2.19) into the expression for the expectation value of Ĥ,

〈Ĥ〉 =

∫
Ψ∗ĤΨ dV

=

∑
n |cn|2En∑
n |cn|2

= E0 +

∑
n |cn|2(En − E0)∑

n |cn|2

〈Ĥ〉 ≥ E0,

(2.20)

with equality for the case where the wave function Ψ is exactly equal to the ground

state wave function ψ0. This simple result is incredibly useful: it tells us that the

lowest eigenvalues found from this method will always be higher than or equal to

the true ground state energy, with the function Ψ yielding for the expectation value
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of energy an upper bound estimate for the energy of the ground state energy. If

the ground state is initially unknown, an approximation to the ground state can

be found simply by varying Ψ to minimise 〈Ĥ〉. One can often identify a set of

trial wave functions, for example molecular orbitals of isolated atoms, as start-

ing points to this process. The properties associated with the ground state are

of particular importance for electronic structure calculations, as we shall see in

Section 2.5.1 and 2.5.2.

2.3.5 Periodic Boundary Conditions

In our above discussion of crystalline solids, we have emphasised the transla-

tional symmetry of the lattice, but are yet to use this feature. As each unit cell

is indistinguishable from another, the background potential of the crystal, and the

resultant wave function, should also possess the same periodicity. Bloch stated

that such a wave function can be written as the product of a plane wave, exp(ik · r)

and a function u(r) = u(r + T) with the same periodicity as the lattice,

Ψ(r) = exp(ik · r)u(r). (2.21)

By considering a system consisting of N1 × N2 × N3 unit cells we can impose

the Born-von Karman cyclic boundary condition, and so the Bloch function must

satisfy,

Ψ(r) = Ψ(r +N1a1) = Ψ(r +N2a2) = Ψ(r +N3a3). (2.22)

As the u(r) by definition has the periodicity of the lattice, we must instead enforce

the above periodicity on the plane wave component,

exp
(
ik · (r +N1a1)

)
= exp

(
ik · (r +N2a2)

)
= exp

(
ik · (r +N3a3)

)
(2.23)

which is achieved when,

exp(ik ·N1a1) = exp(ik ·N2a2) = exp(ik ·N3a3) = 1. (2.24)

The arguments of the exponentials must be equal to an integer number of 2π, and

so we can conclude that the allowed values of k are,

k =
m1

N1

a∗1 +
m2

N2

a∗2 +
m3

N3

a∗3, (2.25)

with integers m1, m2, and m3. For infinitely large systems, N1, N2, N3 → ∞ and

the allowed values of k becomes a continuum.
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2.3.6 Fourier Transform

If we consider a function f(r) within a three-dimensional crystal, it must satisfy,

f(r + T) = f(r), (2.26)

where T is the translation vector defined in equation ((2.1)).

We can instead consider the Fourier transform of the periodic function f(r), as a

function of wave vector k,

f(k) =
1

ΩCrystal

∫
Crystal

f(r) exp(ik · r) dr, (2.27)

where the total volume of the crystal, ΩCrystal, can be obtained from the product

of the volume of a single unit cell, ΩCell, and the total number of unit cells in the

crystal, NCell. Making use of the lattice periodicity, we can replace the above

integral over the whole crystal with a sum of integrals over each unit cell,

f(k) =
1

NCellΩCell

NCell∑
T

∫
Cell

f(r + T) exp
(
ik · (r + T)

)
dr

=
1

NCellΩCell

NCell∑
T

exp(ik · T)

∫
Cell

f(r) exp(ik · r) dr.

(2.28)

We can now utilise equation ((2.3)), and the fact that all other values of k lead to

Fourier components equal to zero, to give the Fourier transform of the periodic

function,

f(G) =
1

ΩCell

∫
Cell

f(r) exp(iG · r) dr. (2.29)

The Fourier transform is thus given by the discrete set of f(G), where G is defined

by the periodicity of the reciprocal space cell. The original function f(r) can then

be reconstructed from these Fourier coefficients using,

f(r) =
∑
m

f(Gm) exp(iGm · r). (2.30)

Using this result, we can begin to assess the periodic wave function: we first

write the ith Bloch function for a given k, but write the lattice-periodic function as
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a Fourier expansion [93],

Ψi,k(r) = exp(ik · r)ui,k(r)

= exp(ik · r)
∑
m

ci,k(Gm) exp(iGm · r)

=
∑
m

ci,k(Gm) exp
(
i(Gm + k) · r

)
.

(2.31)

Thus, we are able to construct a wave function with the periodicity of the lattice,

able to be decomposed into a linear combination of orthonormal plane waves, the

coefficients of which can be determined using variational methods.

In principle, the sum over all reciprocal lattice translation vectors would include all

of the infinite possible Gm. In practice, this is not a viable procedure to complete,

and so a truncation of the sum is required. Fortunately, the Fourier components

for large |Gm + k| are small, and so it is reasonable to expect lower energy so-

lutions to the Schrödinger equation to dominate. Clearly, the inclusion of more

terms in the expansion should lead to more accurate results, however at the cost

of more computational effort. A cutoff value of G at which to truncate is chosen

by specifying a ‘cut-off’ energy, Ecut,

Ecut =
~2|Gcut|2

2m
. (2.32)

2.3.7 Electronic Band Structure

Since we have a wave function that is determined for each k separately, we should

have a corresponding set of k-specific eigenvalues. Of course, due to the period-

icity of the reciprocal lattice, these eigenvalues and eigenstates are periodic with

any reciprocal translation vector G. In the limit of large volumes, the k-points be-

come a dense continuum, as was outlined above, and so the eigenvalues become

continuous energy bands. For each k, there are a discrete set of eigenstates

(i = 1, 2, · · · ) which can be found through diagonalisation of the Hamiltonian. The

positions of these bands relative to each other, the band curvature, band occu-

pation, and many other descriptors, are all important for determining electronic

properties.



28 Chapter 2. Methods

2.4 Hartree-Fock

One of the first attempts to simplify the many-body problem was provided by

Hartree. Within this, we consider a many-body electron system as a system of Ne

non-interacting electron-like particles. This allows us to decouple the many-body

wave function into a product of Ne independent single-particle ‘spin-orbitals’, ψi,

called the Hartree product:

ΨHP (x1, · · · ,xNe) = ψ1(x1) · · ·ψNe(xNe) =
Ne∏
i=1

ψi(xi). (2.33)

Here, xi ≡ {ri, σi} describes the set of spatial ri and spin σi coordinates of the

ith particle. In the absence of spin-orbit interaction, ψi(rj) can be written as a

product of a function of the spatial position, φσi (rj), and a function of the spin

variable, αi(σj).

One major flaw with this description is that it fails to describe the behaviour re-

quired by identical fermionic particles, where an exchange of two particles should

result in a change in the sign of the wave function due to its antisymmetry. This is

resolved by considering instead the Slater determinant of the single-particle wave

functions:

ΨHF (x1, · · · ,xNe) =
1√
Ne!

∣∣∣∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xNe)

... . . . ...

ψNe(x1) · · · ψNe(xNe)

∣∣∣∣∣∣∣∣∣ . (2.34)

The Slater determinant form then satisfies the antisymmetric requirement of the

fermionic wave function. This can be checked by the exchange of two rows re-

sulting in a change in the sign of Ψ due to properties of a determinant, or by the

determinant equalling zero when two states are set equal to each other hence

satisfying the Pauli exclusion principle.

Using the above form of the wave function for the many-electron system, we can

now obtain a form for the energy by considering the expectation value of the

Hamiltonian (in the following, we employ Hartree atomic units ~ = me = e = 4π/ε0 =

1). We make use of the requirement that the spin-orbitals be linearly independent

and for simplicity assume the Hamiltonian is diagonal in the spin basis σ = |↑〉 ; |↓〉,
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giving the Hartree-Fock energy,

EHF = 〈ΨHF | ĤHF |ΨHF 〉

=
∑
i

〈i| ĥ |i〉+
1

2

∑
i,j

(
〈i| V̂ij |j〉 − 〈i| V̂jj |i〉

) (2.35)

where |i〉 ≡ ψi has been used for brevity. The term 〈i| ĥ |i〉 is the single-electron

energy given by,

〈i| ĥ |i〉 =

∫
ψ∗i (xi)

[
− 1

2
∇2
i −

Nion∑
α

Zα
|ri − Rα|

]
ψi(xi)dxi, (2.36)

and contains both the kinetic energy of a single electron and the energy due to

external potential due to, for example, electron-ion interactions.

The second sum in equation (2.35) contains the effects of direct Coulombic electron-

electron repulsion and electron exchange, both obtained with appropriate index

choice in,

〈i| V̂jk |l〉 =

∫
ψ∗i (x1)ψj(x1)V (x1 − x2)ψ∗k(x2)ψl(x2)dx1dx2. (2.37)

Th element 〈i| V̂jk |l〉 describes the scattering of one particle from state j to state

i, and another particle in state l to state k, due to the presence of a two-particle

potential V (x1 − x2). For two electron-like particles, we shall assume a Coulomb-

like potential, V (x1 − x2) = 1
|ri−rj | . Whilst equation (2.35) includes fictitious self-

interaction term when i = j, the Coulomb and exchange terms are identical for

i = j, so they cancel in the summation and any self-interaction is ignored.

In equation (2.35), we can see that the third term (electronic exchange) is to al-

ways lower the energy of the system. Hence, it can be interpreted for each elec-

tron as an interaction between the electron and a positively charged ‘exchange

hole’ surrounding it, with the electronic charge associated with this ‘hole’ being

redistributed (to preserve the charge of the whole system).

We then reach the Hartree-Fock equations,[
− 1

2
∇2 + Vext +

∑
j

∫
ψ∗j (xj)

1

|ri − rj|
ψj(xj)dxj

−
∑
j

∫
ψ∗j (xj)ψi(xj)

1

|ri − rj|
ψj(xi)
ψi(xi)

dxj

]
ψi(xi) = εiψi(xi),

(2.38)
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where the term in square brackets is the Fock operator, F̂ ,

F̂ = ĥ+ V̂H + V̂ex. (2.39)

The first term is the single-electron Hamiltonian,

ĥ = −1

2
∇2 + Vext, (2.40)

the second is the Hartree operator (for electrons of the same spin [94]),

VH(xi) =
∑
j

∫
|ψj(xj)|2

|ri − rj|
dxj. (2.41)

and the third is the exchange operator,

Vex(xi) = −
∑
j

ψj(xi)
ψi(xi)

∫
ψ∗j (xj)ψi(xj)
|ri − rj|

dxj. (2.42)

The Hartree-Fock approach aims to minimise the energy εi above with respect

to all degrees of freedom of the spin-orbital ψi(xi) whilst still satisfying the Slater

determinant. However, it is largely limited to special cases like the homogeneous

electron gas.

The Hartree-Fock approach has offered a lot of success, being able to provide an

exact description of electronic exchange (Fermi correlation), which prevents two

parallel-spin electrons from being found at the same point in space and includes

the effects of exchanging two identical electrons. However, it does not account

for the Coulomb correlation, which describes the correlation between the spatial

position of electrons of opposite spin due to their Coulombic repulsion [94, 95].

Electronic exchange is often abbreviated to ‘exchange’ and Coulomb correlation

to ‘correlation’. We shall see in the next section that obtaining accurate descrip-

tions of the exchange and correlation of electronic systems is the largest chal-

lenge faced in ab initio calculations of electronic structure, and considerable care

must be taken in choosing an appropriate description.

2.5 ab initio Density Functional Theory

A solid is composed of a large number of electrons and nuclei, and to determine

the electronic and energetic properties of a system a solution to the many-body
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Schrödinger equation is required. Considering the large number of bodies in-

volved, the mutual interactions between electrons and nuclei, and the dynamics

of these individual particles, obtaining this solution is an extremely difficult task.

Unlike Hartree-Fock or more sophisticated methods like many-body perturbation

theory which are based on the wave function, density functional theory (DFT), as

the name might suggest, considers the electronic charge density as the quantity

of interest.

DFT is a principal tool used in the study of materials and calculation of electronic

structure for both crystalline solids and single molecules. This first principles

approach aims to make as few assumptions as possible, relying on the funda-

mentals of physics and quantum chemistry to achieve a complete description of

a given material. In the following, we shall explore the core ideas and theories

that go into building a successful DFT methodology. For brevity, we have not ex-

plicitly addressed spin in much of the following, however, an extension to include

spin is possible and does not dramatically change the main proofs or conclusions

presented. We will also make use of Hartree atomic units (~ = me = e = 4π/ε0 =

1) for similar reasons.

2.5.1 Hohenberg-Kohn Theorems

Consider an collection of an arbitrary number of electrons, in a large box, under

the influence of an arbitrary external potential, Vext(r), and mutual Coulomb inter-

action (an ‘inhomogeneous electron gas’ [96]). The electronic Hamiltonian can

be reduced to the form,

Ĥel = T̂el + V̂el−el + V̂ext, (2.43)

where T̂el is the kinetic energy of the electrons, V̂el−el is the interaction potential

between electrons, and V̂ext is an externally applied potential (for example, from

nuclei) [96]. The density of particles, n(r), is given by the expectation value of the
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density operator n(r) =
∑N

i=1 δ(r− ri),

n(r) =
〈ψ| n̂(r) |ψ〉
〈ψ|ψ〉

= N

∫
dr2, · · · , drN |ψ(r, r2, · · · , rN)|2∫

dr1, dr2, · · · , drN |ψ(r1, r2, · · · , rN)|2
.

(2.44)

Note the numerator is not integrated over dr1, and the r1 in ψ is replaced by r to

avoid carrying an unnecessary index throughout the following. This is the same

as the normalisation condition, ∫
dr n(r) = N (2.45)

The total energy, E, is the expectation value of the Hamiltonian, given by

E =
〈ψ| Ĥ |ψ〉
〈ψ|ψ〉

= 〈T̂el〉+ 〈V̂el−el〉+

∫
drVext(r)n(r),

(2.46)

where the expectation of the external potential has been explicitly written as an

integral over the density function.

The first of the Hohenberg-Kohn Theorems is: For any system of interacting parti-

cles, in an external potential Vext(r), the potential is determined completely, except

for an additive constant, by the ground state density, n0(r).

Suppose now that there are two different external potentials, V (1)
ext (r) and V

(2)
ext (r),

which differ by more than an additive constant, but lead to the same ground state

density n0(r). The two external potentials lead to two different Hamiltonians, Ĥ(1)

and Ĥ(2), and different ground state wave functions, ψ(1) and ψ(2), hypothesized to

have the same ground state density n0(r). Unless V (1)
ext (r) − V (2)

ext (r) is a constant,

the two wave functions, ψ(1) and ψ(2), cannot be equal as they satisfy two different

Schrödinger equations [96]. Since ψ(2) is not the ground state of Ĥ(1), it follows,

E(1) =
〈
ψ(1)

∣∣ Ĥ(1)
∣∣ψ(1)

〉
<
〈
ψ(2)

∣∣ Ĥ(1)
∣∣ψ(2)

〉
. (2.47)

The last term in equation (2.47) can be written as,〈
ψ(2)

∣∣ Ĥ(1)
∣∣ψ(2)

〉
=
〈
ψ(2)

∣∣ Ĥ(2)
∣∣ψ(2)

〉
+
〈
ψ(2)

∣∣ (Ĥ(1) − Ĥ(2))
∣∣ψ(2)

〉
= E(2) +

∫
dr
[
V

(2)
ext (r)− V (1)

ext (r)
]
n0(r).

(2.48)
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and so,

E(1) < E(2) +

∫
dr
[
V

(1)
ext (r)− V (2)

ext (r)
]
n0(r). (2.49)

If, however, we consider E(2) in the same way, we can find exactly the same

equation, but with the superscripts (1) and (2) interchanged, resulting in,

E(2) < E(1) +

∫
dr
[
V

(2)
ext (r)− V (1)

ext (r)
]
n0(r). (2.50)

Adding equations (2.49) and (2.50) we get the contradictory inequality E(1) +

E(2) < E(2) +E(1). Therefore, different external potentials, differing by more than a

constant, will always produce different densities. This confirms the first Theorem,

in that the ground state particle density uniquely determines the external potential,

to within a constant [93]: for any given ground state particle density there can

only be one corresponding external potential. To be able to have a quantum

theory based on density, the opposite must also be true, i.e. the external potential

determines the resulting ground state density. A corollary of this is that since the

Hamiltonian is fully determined, except for the constant shift in energy, the many-

body wave functions for all states (ground and excited) are also determined, with

the ground state being the one with the lowest energy. Hence, given a ground

state density n0(r), all properties of the system are completely determined.

Whilst this result holds much promise, the original problem still remains: solving

the many-body problem, with interacting electrons, moving in an external poten-

tial. Though the many-body ground state wave function is a unique functional of

the ground state particle density, ψ(r1, r2, · · · , rN) ≡ ψ[n0(r)], the functional is not

known [94].

The second of the Hohenberg-Kohn Theorems is: For any external potential

Vext(r), there exists a universal functional for the energy, E[n(r)], in terms of the

particle density n(r). For a given Vext(r), the exact ground state produces the

global minimum in this energy functional, and the density n(r) that minimises the

functional is the exact ground state density, n0(r).

We have seen that the external potential applied to a system is uniquely deter-

mined by n(r). All other ground state properties of the system, such as kinetic
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energy, are also uniquely determined by n(r) once specified, and as such we can

consider each as a functional of n(r):

EHK [n] = T [n] + Eel−el[n] +

∫
drVext(r)n(r)

≡ FHK +

∫
drVext(r)n(r),

(2.51)

where we have neglected nuclei interactions. The functional FHK includes all

internal energy terms of the interacting electron system. These terms are of the

same form for all systems consisting of electrons, regardless of the number of

particles or external potential [96]. For different particles (e.g. different masses,

interactions, etc.) there will be correspondingly different functionals. Note that

the discussion so far applies irrespective of the level of interaction. For example,

the case of ‘non-interacting electrons’, fermions with electronic mass but with no

interactions between them. This idea will be useful when discussing the Kohn-

Sham equations later [93].

Consider a system with ground state energy n(1)(r) and associated external po-

tential V (1)
ext (r). In the unique ground state, ψ(1), the expectation value of the Hamil-

tonian is given by E(1) = E[n(1)] =
〈
ψ(1)

∣∣ Ĥ(1)
∣∣ψ(1)

〉
. Now consider a different state

ψ(2), with particle density n(2)(r): E(2) is greater than E(1), as E(1) is the ground

state energy. It follows that if the functional FHK [n] is known, one could find the

ground state density and energy by minimising EHK [n] with respect to the particle

density [94], as outlined by the second Theorem. Unfortunately it is not easy to

minimise an unknown functional, as all we know at this time is that it exists. The

complexity of determining the functional FHK [n], and hence EHK [n], arises from

the description of the many-body electron interactions [96].

The variational property of the Hohenberg-Kohn functional is a direct conse-

quence of the general variational principle in quantum mechanics. We have

therefore demonstrated an algorithm by which it is possible to find the ground

state: instead of solving the Schrödinger equation to find the 3N-dimensional

wave function, we need to find a function of three spatial dimensions in the form

of the charge density. The functional E[n] is sufficient to determine the ground

state energy and density. In general, excited states must be determined by other

means [93].
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2.5.2 Kohn-Sham Single-Particle Equations

The approach of Kohn and Sham [97] is to replace the complex many-body in-

teracting system with a system that is a fictitious ensemble of non-interacting

particles which is much easier to solve. The ansatz of Kohn and Sham assumes

that the ground state density of the original system (with interactions) is equal

to that of a chosen non-interacting system. This makes the particles indepen-

dent of each other, leading to a series of single-particle equations that can, in

principle, be solved. The construction of the auxiliary system is built upon two

assumptions [93]:

1. The ground state density of the true many-body system can be represented

by the ground state density of an auxiliary system of non-interacting parti-

cles. This is called ‘non-interacting-V-representability’.

2. The Hamiltonian of the auxiliary system is chosen to have an independent-

particle kinetic energy term and an effective local potential Veff(r), for particle

at position r.

The Hamiltonian for the auxiliary system is given by,

Ĥaux = T̂s + V̂eff(r), (2.52)

where we have included the kinetic energy term for the Kohn-Sham electron-

like particles, T̂s, and the effective potential V̂eff(r) which includes the interac-

tions which are not included in the auxiliary system. This set of single-particle

Schrödinger-like equations is then satisfied by the Kohn-Sham orbital eigenstates

φi(r):

Ĥaux φi(r) = εiφi(r). (2.53)

These Kohn-Sham orbitals are required to reconstruct the particle density,

n(r) =
N∑
i=1

|φi(r)|2, (2.54)

with summation over occupied eigenstates.
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The kinetic energy operator of the independent-particles is functionally the same

as for the true electrons, but the resultant kinetic energy in general differs from

that of the true electron kinetic energy, Ts 6= T ,

Ts = −1

2

N∑
i=1

∫
φ∗i (r)∇2φi(r)dr (2.55)

Writing the effective potential out explicitly, then, we can decompose it into the

different contributions present in the real system,

Veff [n(r)] =

∫
Vext(r)n(r)dr +

1

2

∫
n(r)n(r′)
|r− r′|

drdr′ + Exc[n(r)]

= Eext[n(r)] + EH [n(r)] + Exc[n(r)].
(2.56)

In this effective potential, we have included any present external potentials (such

as those due to nuclei), Eext[n(r)], the Hartree energy relating to Coulombic in-

teractions, EH [n(r)], and an extra term Exc[n(r)] which includes all of the complex

many-body interactions between electrons. This final term, Exc, is referred to as

the ‘exchange-correlation’ energy, and will be discussed more in the next section.

Kohn and Sham demonstrated [97] that solving the above Schrödinger-like equa-

tions is equivalent to minimising the energy functional,

EKS[n(r)] = Ts[n(r)] + Eext[n(r)] + EH [n(r)] + Exc[n(r)] (2.57)

with respect to the particle density, as is required by the Hohenberg-Kohn the-

orems. To do this minimisation, instead of varying the density n(r) we vary the

Kohn-Sham orbital wave function, φi(r),
δ

δφi(r)
EKS[n(r)] =

δ

δφ∗i (r)
EKS[n(r)]

=
δTs[φ

∗
i (r)]

δφ∗i (r)
+
δEext[n(r)]
δφ∗i (r)

+
δEH [n(r)]
δφ∗i (r)

+
δExc[n(r)]
δφ∗i (r)

=
δTs[φ

∗
i (r)]

δφ∗i (r)
+

[
δEext[n(r)]
δn(r)

+
δEH [n(r)]
δn(r)

+
δExc[n(r)]
δn(r)

]
δn(r)
δφ∗i (r)

= 0.

(2.58)

The choice to vary of the wave function over the density is due to the term Ts

being explicitly dependent on the orbitals through equation (2.55) and,

δTs
δφ∗i (r)

= −1

2

N∑
i=1

∇2φi(r) (2.59)
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Figure 2.2: Jacob’s Ladder of DFT, indicating the relative chemical accuracy and cost of

different methods used for many-body problems.

and the dependence of the density on the Kohn-Sham wave function through

equation (2.54) and,

δn(r)
δφ∗i (r′)

= φi(r)δ(r− r′). (2.60)

As a consequence of the Kohn-Sham approximation, we are thus able to replace

a real system consisting of many interacting particles with an simplified system

with no interactions. To account for the lack of interactions that would be present

in a real system (and hence are required for any realistic description) we introduce

an effective ‘exchange-correlation’ potential. Solving the single particle Kohn-

Sham equations using variational methods then allows us to find the ground state

density and energy in theory exactly [98, 99], but in practice is limited by the

accuracy of this exchange-correlation functional.
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2.5.3 Exchange-Correlation Functionals

We mentioned in Section 2.5.2 the ‘exchange-correlation’ correction term to the

energy of the non-interacting electron system, Exc[n(r)]. This comes about from

us mapping one N -body problem onto N one-body problems. Within this correc-

tive term, all of the information of the complex many-body interactions between

electrons is held: "our ignorance is hidden there". This term has been shown to

exist, and have a functional dependence on the particle density, n(r), however this

functional dependence is essentially unknowable [100]. One of the first attempts

to model these functionals was made by means of Monte Carlo methods applied

to the uniform electron-gas, for a range of densities, and then paramaterised to

yield density functionals. It is important to keep in mind that all practically used

functionals are approximations. Their benefit, however, comes from the reduction

in computational effort when compared to calculating an exact solution.

Due to the variety of chemical environments, from strong covalent bonds found in

isolated organic molecules to metals and ionic crystals, no functional currently ex-

ists that can accurately describe all properties of interest for all materials, though

some inevitably prove more useful in a wider range of contexts than others. The

range of functionals available has led to a ‘Jacob’s Ladder’ of DFT, with the re-

spective rungs of representing different levels of approximation. Each rung should

be able to reproduce the results of lower rungs in appropriate limits, but also intro-

duce more capabilities, better chemical accuracy, and a wider range of applica-

bility, though these advantages usually come at the cost of computational effort.

We present an example Jacob’s Ladder in Figure 2.2, where we have included

the Hartree-Fock method discussed in Section 2.4, the LDA, GGA, and hybrid

functionals which will be discussed in the following, as well as fully non-local

functionals and quantum Monte Carlo methods.

Local Density Approximation

The local density approximation (LDA) is the simplest functional for describing the

exchange-correlation energy. This approximation assumes the electronic density

of an inhomogeneous electron density is a slowly varying function in space, and
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locally behaves like a homogeneous electron gas. To describe the homogeneous

electron gas, then, Ne electrons are placed in a volume V , with a positive back-

ground charge to retain a neutral charge within the system. N and V are then

taken to infinity in a manner than preserves a finite density n = Ne/V . In the

following, we will also make use of the quantity, rs, which is more commonly used

in place of the density. This is defined as the radius of a sphere containing one

electron on average,

n =
Ne

V
=

(
4π

3
r3
s

)−1

. (2.61)

The LDA proves very useful as the kinetic energy, electrostatic interaction energy,

and the exchange energy of a homogeneous electron gas are all known. Further,

the wave function is able to be expressed in terms of plane waves. The exchange-

correlation energy, depending only on the electronic density at that point, is written

as,

ELDA
xc [n(r)] =

∫
n(r)εLDAxc [n(r)] dr, (2.62)

where we have used the corresponding energy per electron, εLDAxc . The corre-

sponding exchange-correlation potential can be expressed as,

V LDA
xc [n(r)] =

d

dn

{
εLDAxc [n(r)]n(r)

}
= εLDAxc + n

∂εxc

∂n

= εLDAxc − rs
3

dεLDAxc

drs
.

(2.63)

This exchange-correlation energy is often linearly decomposed into exchange

and correlation terms,

Exc[n(r)] = Ex[n(r)] + Ec[n(r)]

=

∫
n(r)εx[n(r)] dr +

∫
n(r)εc[n(r)] dr,

(2.64)

so that expressions for the exchange and correlation energies are independently

sought. Though the exchange term for the homogeneous electron gas is known

analytically,

εx[n(r)] = −3

4

(
3

π

) 1
3

n(r)
1
3 , (2.65)
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the correlation energy is only known for special cases of electron gases with high

density (small rs) [93,101],

εc(rs) = A ln rs +B + rs(C ln rs +D) + · · · , (2.66)

or low density (large rs) [93,102],

εc(rs) =
a1

rs
+
a2

r
3
2
s

+
a3

r2
s

+ · · · . (2.67)

Beyond these two limiting cases, different approximations of the correlation en-

ergy have consequently led to different forms of the LDA functional [103–105].

The LDA functional has been used for a generation in the materials science com-

munity, however it is not accurate for most chemical purposes. Some typical er-

rors the LDA functional encounters include its over-binding of compounds, leading

to higher binding energies, and an underestimation of lattice parameters.

Generalised Gradient Approximation

Functionals using the genaralised gradient approximation (GGA) contain the next

term in the derivative expansion of the charge density, requiring information of

both the density and the gradient of the density at that point. They have been

shown to offer improvements to their LDA predecessors, offering improved to-

tal and atomisation energies [106–109], energy barriers and structural energy

differences [110–114], and soften atomic bonding, correcting some LDA predic-

tion [115]s. The exchange-correlation energy is given by,

EGGA
xc [n(r)] =

∫
n(r)εGGAxc [n(r),∇n(r)] dr, (2.68)

The exchange-correlation potentials take the form [93],

V GGA
xc [n(r)] = εGGAxc + n

∂εGGAxc

∂n
−∇

(
n
∂εGGAxc

∂∇n

)
. (2.69)

Some commonly used GGA functionals include the Becke 1988 (B88) [116],

Purdew-Wang 1991 (PW91) [106], Armiento-Mattsson 2005 (AC05) [117], and

Wu-Cohen 2006 [118] variants. However, the majority of the work completed for

this thesis has been carried out using the Perdew, Burke, and Ernzerhof [119,120]
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(PBE) form of the GGA functional. The PBE functional arose from the need for

a functional that performed better than the available semi-empirical functionals,

particularly for systems with delocalised electrons (such as in simple metals). It

also improved upon the PW91 functional through a simpler derivation (hence eas-

ier understanding and application), relying on less parameter fitting, and provided

a better recovery of LDA results [119].

For the PBE functional, we break the exchange-correlation energy into the ex-

change contribution and the correlation contribution. First, the exchange energy

is given through a exchange-specific form of equation (2.68),

EPBE
x [n(r)] =

∫
n(r)εhomx [n(r)]Fx dr, (2.70)

where εhomx is the exchange energy of the electron gas, and Fx is a dimensionless

quantity given by,

Fx = 1 + κ− κ

1 + µs2

κ

, (2.71)

with κ = 0.804, µ = 0.220, and s is a dimensionless gradient of the charge density

given by |∇n|/2kFn.

The correlation is then given by,

EPBE
c [n(r)] =

∫
n(r)

(
εhomc (rs, ζ) +H(rs, ζ, t)

)
dr, (2.72)

where rs was defined above, ζ = (n↑ − n↓)/2 is the spin polarisation, and t is

another dimensionless gradient related to s. We now define φ = ((1 + ζ)2/3 + (1−

ζ)2/3)/2, allowing us to write H as,

H =
e2

a0

γφ3 ln

(
1 +

β

γ
t2

1 + At2

1 + At2 + A2t4

)
, (2.73)

where A is given by,

A =
β

γ

[
exp

(
−εhomc

γφ3 e2

a0

)]−1

. (2.74)

Since its release, the PBE functional has been used extensively within the mate-

rials science community for a range of materials, and is often used as a bench-

mark by which other functionals or methods are assessed [121–124]. At the time

of writing, the original article discussing the PBE functional is one of the most

cited papers ever, having over 130,000 citations [119, 125–127], highlighting its

exhaustive use and wide-spread success.
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Hybrid Functionals

Local and semi-local functionals such as those built upon LDA and GGA typically

underestimate electronic band gaps, whereas the band gaps predicted using the

Hartree-Fock method tend to be too large compared with experiment. We also

saw in the above discussions that such semi-local functionals can lead to over-

binding or under-binding of molecules. As a result, the mixing of the DFT and

Hartree-Fock approaches was suggested by Becke in 1993 [128] as a method to

more accurately describe molecular bonding. These ‘hybrid’ functionals typically

build upon GGA functionals, providing a more accurate description of atomisa-

tion energies, bond lengths, and vibrational frequencies of most molecules [129].

The exact exchange energy is calculated using Hartree-Fock method, and this is

mixed with the exchange energy calculated with a GGA functional. As GGA func-

tionals only consider up to semi-local effects, hybrid functional calculations are

typically more costly as the exact exchange is a non-local effect: the exchange

interaction in insulators decays exponentially as a function of the band gap, and

algebraically in metallic systems [130]. The mixing scheme is broadly achieved

as follows:

EHybrid
xc = αEHF

x + (1− α)EDFT
x + EDFT

c , (2.75)

where 0 ≤ α ≤ 1 is a parameter to be decided (usually ∼ 0.2), EDFT
c is the

correlation energy determined from DFT methods, and EHF
x and EDFT

x are the

exchange energies obtained using Hartree-Fock and DFT methods, respectively.

The apparent improvements that come from these functionals arise from the in-

clusion of a non-dynamical ‘static correlation’ effect which effectively delocalises

the GGA exchange hole [130]. The choice of α is usually decided by comparing

results from DFT to experiment; at this point the DFT calculation is no longer ab

initio.

Some commonly used hybrid functionals include the B3LYP (Becke 3-parameter

[109], Lee-Yang-Parr [131]) functional [132–134] and PBE0 [129]. Where hybrid

functionals are used in this work, however, we shall employ the HSE06 functional

proposed by Heyd, Scuseria and Ernzerhof [130, 135], which builds upon the

GGA-PBE functional. This applies a screened Coloumb potential to the exchange

interaction, thus screening the long-range part of the Hartree-Fock exchange.
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As a result, there is mixing of exact exchange only for short-range interactions,

allowing the exchange hole to be delocalised among the near neighbours of a

reference point, but not beyond. The purpose of this screening was to avoid the

divergence that arises at k = 0 in the Fourier transform of the Coulomb potential.

We split the Coulomb potential into a short-range (SR) and long-range (LR) inter-

action,

1

r
=

erfc(ωr)

r
+

erf(ωr)

r
. (2.76)

The first of these terms represents the SR interaction, and the second represents

the LR interaction, with ω an adjustable parameter which governs the extent of

the short-range interactions. Looking again at equation (2.75), specifying the

PBE form of GGA, we have,

EHybrid
xc = αEHF

x + (1− α)EPBE
x + EPBE

c . (2.77)

We now specify the SR and LR interactions for each of these terms,

EHybrid
xc = αEHF,SR

x (ω) + αEHF,LR
x (ω)

+ (1− α)EPBE,SR
x (ω) + (1− α)EPBE,LR

x (ω) + EPBE
c .

(2.78)

The authors of the functional found that the long-range exchange for HF and PBE

contributions could be omitted as they are small and tend to cancel each other.

Thus,

EHybrid
xc = αEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c . (2.79)

A value of α = 0.25 is usually taken, as determined from perturbation theory [130].

When ω = 0, the above expression is equivalent to the PBE0 functional, and

asymptotically approaches PBE as ω → ∞. The authors found a value of ω =

0.106 [135].

Hubbard-U Parameter

For many materials, the LDA approach provides a reliable description of the

ground state electronic structure. However, the LDA and semilocal GGA function-

als often fail to accurately describe systems with localized (strongly correlated)
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or partially filled d or f shells, such as with transition metal oxides. This usu-

ally results in unrealistic one-electron energies or too small magnetic moments,

for example, transition metal compounds like NiO experience a strong on-site

Coulomb repulsion between the 3d electrons due to the narrow band width of the

d-electrons, which is not described in a spin-polarised DFT treatment. In some

cases this can be remedied by introducing on the d or f atom a strong intra-atomic

interaction in a simplified (screened) Hartree-Fock like manner between electrons

(EU ) as an on-site replacement of the semilocal functional. To account for the

double-counting of the electron-electron interactions that are already present in a

DFT functional, a double-counting correction term (Edc) is also included:

ELDA/GGA+U
xc = ELDA/GGA

xc + EU − Edc. (2.80)

This method is known as the DFT+U method.

The approach of Dudarev [136] is to account for the orbital degeneracy of d-shell

electrons using a Hamiltonian of the form,

Ĥ =
U

2

∑
m,m′,σ

n̂m,σn̂m′,−σ +
U − J

2

∑
m6=m′,σ

n̂m,σn̂m′,σ. (2.81)

Here, n̂m,σ = â†m,σâm,σ is the operator for the number of electrons occupying a

particular site with magnetic quantum number m and spin σ. U is a spherically

averaged Hubbard parameter which describes the electron-electron Coloumb re-

pulsion, and gives the energy cost to place an extra electron on a particular site,

U = E(dn+1)+E(dn−1)−2E(dn). J is then a parameter representing the screened

exchange energy. The first term in the above Hamiltonian describes the interac-

tion between electrons of opposite spin, whilst the second term describes inter-

action between electrons of like spin. The corresponding EU(n̂) is then,

EU =
U

2

∑
m,m′,σ

nm,σnm′,−σ +
U − J

2

∑
m 6=m′,σ

nm,σnm′,σ, (2.82)

and the double-counting correction is,

Edc =
U

2

∑
m,σ

nm,σ(nm,σ − 1)− J

2

∑
m,σ

nm,σ

(
nm,σ

2
− 1

)
. (2.83)

We finally arrive at the functional correcting the DFT functional,

ELDA/GGA+U = ELDA/GGA +
U − J

2

∑
m,σ

(nm,σ − n2
m,σ), (2.84)
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where we see that, for positive U − J , the whole of the second term becomes a

cost that drives the on-site occupancy to idempotency.

The DFT+U method provides a computationally less demanding approach to

combating errors produced in DFT calculations compared to hybrid functionals.

However, in practice the +U parameter is obtained either from a constrained DFT

calculation, or used as a variable parameter, thus requiring comparison with ex-

periment or higher level calculations.

In this thesis, we aim to explore a large family of materials in a predictive way. Un-

fortunately, not all of these materials have been explored within the literature, and

so comparison with experiment/other theoretical works to determine appropriate

values of +U is not always possible. Further, the size of the TMDC family means

that determining the +U parameter for each system would be a demanding task.

Consequently, we have not utilised the +U method in this work.

2.6 Computational Implementation

In the above section we have discussed the theoretical grounding for ab initio

electronic structure calculations. However, in practice, other techniques can be

utilised to reduce computational cost. Here, we discuss such techniques which

have been employed in this work.

2.6.1 Pseudopotentials

It is well known that the core electrons are not particularly important for many of

the physical properties of materials (e.g. ionisation, chemical bonding) and do not

significantly change between free atoms and solids, especially when compared

to the valence electrons. As such, we can utilise the ‘frozen-core’ or ‘pseudopo-

tential’ method to effectively combine the core electrons and the ionic nucleus,

replacing them with a weaker potential than that of the original system. This new

‘pseudopotential’ can be chosen to produce any important physical and mathe-

matical properties of the original system.



46 Chapter 2. Methods

(a)

0 r
cutoff

Radius

P
o
te

n
ti
a
l

Core Valence Pseudo-Potential

True Potential

(b)

0 r
cutoff

Radius

W
a

v
e

 F
u

n
c
ti
o

n

Core Valence Pseudo-Wave Function

True Wave Function

Figure 2.3: Comparison of the true (Coulomb) and a possible pseudo-pontential (2.3a),

and a comparison of the true and pseudo-wave functions (2.3b). The core and valence

regions have been indicated.

The value of utilising a pseudopotential instead of the true potential can be seen

by considering the approach of the orthogonalised plane wave (OPW) method.

We assume that the lowest ncore energy eigenvalues, Ec, and eigenfunctions, ψc,

of the Hamiltonian (corresponding to the core states of the atom) are already

known, and denote these states as,

Ĥψc = Ecψc n = 1, 2, · · · , ncore. (2.85)

From here, we wish to obtain all other eigenvalues and eigenfunctions of the

Hamiltonian, Ĥ. To do this, we consider a transformation of the single-particle

wave functions, ψi,

|φi〉 = |ψi〉 −
∑
c

αc |ψc〉 . (2.86)

Here, ψi is a smooth function which corresponds to a valence state i, and ψc

corresponds to the core states bound to the atom [94]. Coefficients αc are deter-

mined by enforcing that φi be orthogonal to all of the known eigenstates, ψc (i.e.

〈ψc|φi〉 = 0),

〈ψc′ |φi〉 = 〈ψc′|
[
|ψi〉 −

∑
c

αc |ψc〉
]

= 〈ψc′|ψi〉 −
∑
c

αc 〈ψc′ |ψc〉

0 = 〈ψc′|ψi〉 − αc′ ,

(2.87)

where we have made use of the orthogonality of the different core states. Thus,

αc = 〈ψc|ψi〉.
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We now consider 〈φj| Ĥ |φi〉,

〈φj| Ĥ |φi〉 = 〈φj| Ĥ
[
|ψi〉 −

∑
c

αc |ψc〉
]

= 〈ψj|
[
Ĥ −

∑
c

Ec |ψc〉 〈ψc|
]
|ψi〉 ,

(2.88)

where we have made use of the above expression for αc and the required orthog-

onality 〈ψc|φi〉 = 0. We can perform a similar evaluation of 〈φj|E |φi〉,

〈φj|E |φi〉 = 〈φj|E
[
|ψi〉 −

∑
c

αc |ψc〉
]

= 〈ψj|
[
E − E

∑
c

|ψc〉 〈ψc|
]
|ψi〉 .

(2.89)

Combining these two results, we get,

〈φj| Ĥ − E |φi〉 = 〈φj| Ĥ |φi〉 − 〈φj|E |φi〉

= 〈ψj|
[
Ĥ −

∑
c

Ec |ψc〉 〈ψc|
]
|ψi〉 − 〈ψj|

[
E − E

∑
c

|ψc〉 〈ψc|
]
|ψi〉

= 〈ψj|
[
Ĥ − E +

∑
c

(E − Ec) |ψc〉 〈ψc|
]
|ψi〉

= 〈ψj|
[
Ĥeff − E

]
|ψi〉 .

(2.90)

Solving the above secular equation requires,

det | 〈ψj| Ĥ(eff) |ψi〉 − Eδij| = 0, (2.91)

with effective (single-particle) Hamiltonian,

Ĥ(eff) = Ĥ +
∑
c

(E − Ec) |ψc〉 〈ψc|

= −∇2 + V (r) +
∑
c

(E − Ec) |ψc〉 〈ψc| ,
(2.92)

where −∇2 + V (r) is the ordinary crystal Hamiltonian. The additional summation

term is energy dependent and non-local, and can be qualitatively considered as a

repulsive potential due to the presence of the core states: it takes a positive value,

as the energy eigenvalue of each of the core states, Ec, is lower in energy than

the valence state eignvalues, E [94]. This repulsive term acts to partially cancel

the strong attractive potential within the core region, V (r). Thus, the idea of the

pseudopotential method is to consider an effective potential, which is smoother

than the true potential of the core region, but identical to it outside of the core

region.



48 Chapter 2. Methods

Further, whilst Bloch’s theorem states that the wave functions of electrons in

solids can be expanded using a discrete set of plane waves, accurate descrip-

tions of the wave functions for tightly bound core electrons require a large number

of plane waves due to rapid oscillations. As the pseudopotential is smaller and

smoother than the true potential, it reduces the number of plane waves required

to describe the electronic wave function.

We schematically show the effect of using a pseudopotential in Figure 2.3. Be-

yond some given radius from the nucleus (rcutoff), the pseudopotential matches

the true potential of the ion. However, for radii smaller than this cut-off there is a

significant difference between the two potentials, arising from the grouping of the

nucleus with the core electrons, as is shown in Figure 2.3a. In 2.3b we then see

the effect of this pseudopotential on the wave function: beyond the cutoff radius,

the true and pseudo-wave functions match, but we see a significant reduction in

the number of oscillations within the core region.

We thus consider the system to be described by a collection of pseudo-valence

electrons and pseudo-ionic cores. The pseudo-electrons experience exactly the

same potential outside the ionic core as the original electrons, however the po-

tential they experience within the core is significantly weaker [137, 138]. If no

pseudopotential is used, and all of the electrons are to be explicitly considered,

then the calculation is said to be an ‘all-electron’ calculation.

PAW Pseudopotentials

There exist a range of different types of pseudopotentials, such as ultrasoft (which

require relatively few plane waves, but are empirically fit to experimental data) and

norm-conserving (which ensure the norm of the pseudo-wave function is equal

to the true wave function at the cutoff radius). Within this work, however, we

have utilised pseudopotentials built upon the Projector Augmented Wave (PAW)

method [139]. We first consider a transformation, T , which brings the pseudo-

wave function,
∣∣∣Ψ̃〉, into the single particle Kohn-Sham wave function of the all-
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electron case,

|Ψ〉 = T
∣∣∣Ψ̃〉 . (2.93)

As we require that the pseudo-wave functions still reproduce the behaviour of the

states outside of the core region, we write,

T = 1 +
∑
R

TR, (2.94)

where TR is non-zero only in the core region surrounding atom R.

It is useful to expand the pseudo-wave functions into pseudo-basis functions,∣∣∣Ψ̃〉 =
∑
i

ci

∣∣∣φ̃i〉
=
∑
i

〈
pi

∣∣∣Ψ̃〉 ∣∣∣φ̃i〉
=
∑
i

∣∣∣φ̃i〉〈pi∣∣∣Ψ̃〉 ,
(2.95)

where we have written ci =
〈
pi

∣∣∣Ψ̃〉 in terms of the so-called ‘projector functions’,

pi. There is exactly one projector function for each pseudo-basis functions φ̃i. If

we now replace
∣∣∣Ψ̃〉 with

∣∣∣φ̃j〉,∣∣∣φ̃j〉 =
∑
i

∣∣∣φ̃i〉〈pi∣∣∣φ̃j〉 , (2.96)

which requires that
〈
pi

∣∣∣φ̃j〉 = δij.

Operating on the pseudo-wave function with the operator T , we get,

|Ψ〉 =
∑
i

(
1 +

∑
R

TR
) ∣∣∣φ̃i〉〈pi∣∣∣Ψ̃〉 . (2.97)

We also require that the transformation T transforms the pseudo-basis functions

into the true basis functions, hence,

|φj〉 =
∑
i

(
1 +

∑
R

TR
) ∣∣∣φ̃i〉〈pi∣∣∣φ̃j〉

=
∑
i

(
1 +

∑
R

TR
) ∣∣∣φ̃i〉 δij

=
(
1 +

∑
R

TR
) ∣∣∣φ̃j〉 ,

(2.98)

which can be rearranged to get an expression for
∑

R TR,∑
R

TR

∣∣∣φ̃j〉 = |φj〉 −
∣∣∣φ̃j〉 . (2.99)
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Right multiplying both sides with 〈pj|,∑
R

TR

∣∣∣φ̃j〉 〈pj| = (|φj〉 −
∣∣∣φ̃j〉) 〈pj| . (2.100)

Finally, this allows us to write our transformation as,

|Ψ〉 = T
∣∣∣Ψ̃〉

=
∑
i

(
1 +

∑
R

TR
) ∣∣∣φ̃i〉〈pi∣∣∣Ψ̃〉

=
∑
i

∣∣∣φ̃i〉〈pi∣∣∣Ψ̃〉+
∑
i

∑
R

TR

∣∣∣φ̃i〉〈pi∣∣∣Ψ̃〉
=

[
1 +

∑
i

(
|φi〉 −

∣∣∣φ̃i〉 ) 〈pi| ] ∣∣∣Ψ̃〉 ,
(2.101)

giving,

T = 1 +
∑
i

(
|φi〉 −

∣∣∣φ̃i〉 ) 〈pi| . (2.102)

The transformation is therefore given by the set of all-electron basis functions |φi〉,

the set of pseudo-basis functions
∣∣∣φ̃i〉, and the set of projector functions |pi〉.

We therefore have a method by which we can reduce the number of electrons

needed to be explicitly evaluated in an electronic structure calculation by combin-

ing the nucleus and core electrons into an effective, pseudo-potential. Outside

of the core region, the pseudo-basis wave functions are equal to the original

all-electron basis functions. Within the core regions, they can be any smooth

continuation, such as a linear combination of polynomials or Bessel functions.

2.6.2 Brillouin Zone Sampling

The evaluation of many important physical properties involves an integral over the

first Brillouin zone. For instance, the particle density, n(r),

n(r) =
1

ΩBZ

∑
i

∫
BZ

fik|ψik(r)|2dk, (2.103)

for first Brillouin zone volume ΩBZ , sum index i indicating the band index, Bloch

vector k, and occupation number of the state ik denoted by fik. In fact, much of

the work done in a DFT calculation reduces to an integral of the form,

G =
1

ΩBZ

∫
BZ

g(k) dk, (2.104)
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where integration is done only over the possible values of k in the first Brillouin

zone.

For an infinite, periodic crystal, however, k is a continuous variable and hence

there are an infinite number of k-points that need to be considered for evaluation

of the arbitrary function g(k). As this is not feasible to do with finite resources, a

compromise is made: a discrete set of points is instead used. Equation (2.104) is

then rewritten as,

G =
1

ΩBZ

∑
BZ

g(k) dk. (2.105)

The most commonly used process for Brillouin zone sampling was developed by

Monkhorst and Pack [140], with the selected points being given by,

ksampled
n1,n2,n3

=
3∑
i=1

2ni −Ni − 1

2Ni

a∗i , (2.106)

with the reciprocal lattice vectors a∗i , and ni = 1, 2, ..., Ni. This gives a grid of

N1N2N3 uniformly spaced points. To use this method, all that needs to be spec-

ified is the number of k-points to be used in each direction of reciprocal space.

If there are N1,2,3 k-points used in each direction (1, 2, 3) of reciprocal space, the

calculation is specified as having a uniformly spaced N1 ×N2 ×N3 k-point mesh,

typically centered on the Γ point [137].

Irreducible Brillouin Zone

As equations of the form (2.104) can require a lot of computational effort, most

DFT codes available make use of symmetries within the Brillouin zone to speed

up calculations. These symmetries mean that the integrals do not need to be

completed over the entire Brillouin zone, as some points are equivalent, and so

we can replace our sum over the Brillouin zone with a weighted sum, weighting

repeated k-points with some weighting function. For example, we reconsider the

particle density, calculated using a sum over k-points,

n(r) =
∑
ik

wkfik|ψik(r)|2, (2.107)
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Figure 2.4: High symmetry points of the hexagonal Brillouin zone.

with weighting function wk. This weighting function corresponds to the probability

of a chosen k being sampled, taking into account any equivalent points.

Points and Lines of High Symmetry

Though a uniform sampling of k-points is used for calculation of important mate-

rial properties, visualisation of the electronic structure often relies on a sampling

that is biased along lines between specific points. Due to the symmetry of the Bril-

louin zone, these points typically lie along the edge of irreducible Brillouin zone,

and hence are referred to as points of high symmetry. We show in Figure 2.4

a schematic of the high symmetry points in the hexagonal (Figure 2.4) Brillouin

zone [141], as this example of a Brillouin zone is discussed throughout this work.

2.6.3 Geometric Relaxation

Before the investigation into a material can begin, it is necessary for the geometric

structure to be accurately determined, and so calculation of the forces on compo-

nent ions is required. Further, knowledge of these ionic forces is fundamental to

the working of nudged elastic band calculations, and strict force minimisation is

necessary for obtaining phonon band structures. Here, we discuss the definition

of ionic forces and how they can be obtained, and the scheme by which these

forces have be minimised within this work.



2.6. Computational Implementation 53

Hellmann-Feynman Forces

The force, FI , on an ion, I, is given by,

FI = − dE

dRI

, (2.108)

where E is the total energy of the system, and RI is the position of the ion I.

As the ion moves, the wave functions must change to the self-consistent Kohn-

Sham eigenstates corresponding to the new ionic position. These changes in the

electronic wave functions, ψi, for state i, contribute to the force exerted on the ion.

We show this by expanding the above total derivative,

FI = − ∂E

∂RI

−
∑
i

∂Ei
∂ψi

dψi
dRI

−
∑
i

∂Ei
∂ψ∗i

dψ∗i
dRI

. (2.109)

However, we can show that the last two terms on the right cancel, by using E =∫ ∑
i ψ
∗
i Ĥψi dV ,

−
∑
i

∂Ei
∂ψi

dψi
dRI

−
∑
i

∂Ei
∂ψ∗i

dψ∗i
dRI

= −
∫ ∑

i

∂(ψ∗i Ĥψi)

∂ψi

dψi
dRI

dV −
∫ ∑

i

∂(ψ∗i Ĥψi)

∂ψ∗i

dψ∗i
dRI

dV

= −
∫ ∑

i

ψ∗iEi
dψi
dRI

dV −
∫ ∑

i

ψiEi
dψ∗i
dRI

dV

= −
∑
i

Ei

∫
ψ∗i
dψi
dRI

dV −
∑
i

Ei

∫
ψi
dψ∗i
dRI

dV

= −
∑
i

Ei
d

dRI

∫
ψ∗iψi dV

= 0,

(2.110)

due to the normalisation condition
∫
ψ ψ∗ dV = 1, and hence,

FI = − ∂E

∂RI

. (2.111)

This shows that when each ψi is an eigenstate of the Hamiltonian, the partial

derivative of the Kohn-Sham total energy with respect to the position of a specified

ion gives the force on the ion, akin to the classical definition of a force [95]. This

result it often referred to as the Hellmann-Feynman theorem [142].

The Hellmann-Feynman theorem relies on the given wave functions, ψi, being

eigenstates of the (Kohn-Sham) Hamiltonian, and so accurate forces can only

be obtained when the wave functions are close to the exact eigenstate. Once
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the forces and stresses have been obtained, atomic positions and the size and

shape of the unit cell can be changed accordingly. Each time the geometry of

the system is changed, however, the electronic eigenstates must be re-evaluated

for the updated geometry in order to repeat the process. Repeating this process,

moving the ions in the directions of the calculated forces, will reduce the total

energy of the system and the Hellmann-Feynman forces acting on the atoms.

That is, until the Hellmann-Feynman forces are decreased to a point where they

are smaller than the errors in the forces, in which case movement of the ions may

not necessarily decrease the total energy of the system [138].

Pulay Forces

In principle, there should be an extra term included in equation (2.109) to con-

sider the derivative of the basis set, φ, with respect to the position of the ion,

of the form ∂φ
∂RI

. This extra contribution is called the Pulay force [143], and, if it

is not calculated, provides further error in the value of the Hellmann-Feynman

forces [138].

The derivative of any orbital with no dependence on the ionic positions (such as

plane waves) with respect to the atomic position is zero, and hence the Hellmann-

Feynman forces will be exactly equal to that given above. This is another advan-

tage of using a plane wave basis set over a basis set comprised of atomic orbitals.

If the Pulay force does not vanish, the resultant error will be independent of how

close the electronic configuration is to its ground state. Moving an ion in the

direction of the Hellmann-Feynman force can then increase the total energy of

the system, and significantly more computational effort is required to find a local

energy minimum [138].

Conjugate Gradient

In mathematics, the conjugate gradient method is an algorithm to obtain the solu-

tion for systems of linear equations, often implemented as an iterative algorithm.

However, it can also be used to solve unconstrained problems of optimisation, for
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example energy minimisation. For geometric relaxations completed for the work

presented in this thesis, the conjugate gradient method is employed, and so we

present a discussion of it here.

Consider a quadratic function F in a space of variables {xi} ≡ x, given by,

F (x) =
1

2
x ·H · x, (2.112)

with the Hessian matrix H describing the system. The challenge we face is, for

such a given multidimensional space, to find a way of efficiently moving from

some coordinate x to a minimum described by x∗.

The simplest method by which we can achieve this minimisation is through the

‘steepest descent’ algorithm. For the nth iterative step, we define the gradient g

at xn as,

g(xn) = −∂F
∂x

∣∣∣∣
x=xn

= −H · xn. (2.113)

To move towards the minimum, a new set of coordinates is obtained using xn+1 =

xn +αngn. A series of such steps to consecutive coordinates xn+2,xn+3,xn+4, · · ·

can be taken. However, this method does not move directly towards the mini-

mum, suffering from a version of Zeno’s paradox such that the minimum is never

reached exactly.

A more efficient, faster method to reach the minimum can instead be achieved

through a ‘conjugate gradient’ descent, taking into account not only the gradient

of the current coordinate set, but also the gradients at previous points. Analogous

to the steepest descent approach, the new coordinate is given by,

xn+1 = xn + αndn, (2.114)

where dn is the change in coordinates from the nth step.

The first step is the same as steepest descent, using x1 = x0 + α0d0 where

d0 = g0. However, for subsequent steps a slightly different approach can be

taken. If minimisation along dn is carried out effectively, the gradient at xn+1

along dn should be zero,

dn · g(xn+1) = 0. (2.115)
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The best choice for the n+1th step is then to move in a direction where the change

in gradient ∆gn+1 along the previous direction dn is zero, i.e.,

dn ·∆gn+1 = 0. (2.116)

Using the gradients of two consecutive points, g(xn+1) and g(xn+2), we can find

this change in the gradient as we move along the direction dn+1 to be,

∆gn+1 = g(xn+2)− g(xn+1)

= −H · (xn+2 − xn+1)

= −αn+1H · dn+1,

(2.117)

where we have used equations (2.113) and (2.114). We now see that the condi-

tion given by equation (2.116) is satisfied if the inner product,

dn ·H · dn+1 = 0, (2.118)

holds. For such a condition, dn and dn+1 are mutually conjugate vectors with re-

spect to H, hence the naming of this method. Further, if this condition is satisfied

at each step, the conjugate condition is maintained for every step,

dn
′ ·H · dn = 0, for all n′ < n. (2.119)

It can be useful to describe the new, conjugate direction in terms of quantities that

are easily accessible, in particular the gradient at the current coordinate, and the

direction of the previous step,

dn+1 = g(xn+1) + γn+1dn, (2.120)

where γ is determined through,

γn+1 =
gn+1 · gn+1

gn · gn
, (2.121)

with the special case of γ1 = 0 (as was used with the steepest descent method).

Though the conjugate gradient method is well suited to problems involving quadratic

functions, it can be extended to functions of higher dependency as with electronic

structure calculations. To do so, the conjugate directions are defined as above,

but a line minimisation is carried out for the particular non-linear functional being

addressed.
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2.6.4 Bader Charge Analysis

The charges on atomic species in molecules or solids are not observables, and

therefore are not well defined within quantum mechanics. Common approaches

assign charge through the orbitals, such as with Lowdin or Mulliken charge anal-

ysis. However, these require a basis set that is centred on atoms, allowing for

the charge of the basis function to be assigned to its associated atom. For plane

wave basis sets, this is not possible as the plane waves are not associated with

any particular atom within the system. In such cases, it seems reasonable that

the electronic charge density, which is obtainable from electronic structure calcu-

lations, would be able to offer some way to assign these charges instead.

A method by which the charge density is used to assign charge proposed by

Bader [144] relies on its spatial variation, exhibiting maxima at the positions of the

nuclei and minima between. Determination of the gradient of the charge density,

∇ρ(r), allows us to describe the nuclei as attractors of this gradient vector field

in all three dimensions, with the field lines extending to infinity. Hence, we can

partition the total space of a system into a set of separate basins, with basins

being the open region of space traversed by all of the trajectories of ∇ρ(r) which

terminate on a given ion, and (usually) the associated ion. We can define the

surface S bounding this basin Ω with the boundary condition,

∇ρ(r) · n(r) = 0 for all r ∈ S(Ω, r), (2.122)

demanding that for a given charge density, ρ(r), the dot product of its gradient with

the surface normal n(r) (i.e. the flux in the gradient vector field) should vanish at

every point on the surface. Such regions that satisfy this condition are called

Bader regions [145].

Common implementations of this method involve finding the critical points where

∇ρ(r) = 0 to construct the surfaces of zero-flux, integration over which gives

the contained charge. Though many approaches have been used to refine the

implementation of this method, they still typically suffer from high computational

demand, complexity, and convergence issues. An alternative approach has been

presented [145] in which an explicit representation of the dividing surfaces is not

used and no attempt is made to locate stationary points of the charge density.
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This makes the approach more robust than many alternatives, and is more ap-

plicable to systems where the boundary surfaces are difficult to obtain. Instead,

to determine which of these grid points belong to a given Bader region, a path of

steepest ascent is defined for each point on the charge density grid, terminating

on a point of maximal charge. Points which share the same point of maximal

charge are then members of the same Bader region. The total electronic charge

within a Bader region can then be approximated by the sum over the grid points

within the region.

There have been several developments to this algorithm, focused around better

assignment of charge near the surfaces of Bader regions [146–148]. More re-

cently, a weighting method has been suggested [149], which introduces a weight

to the integrand of the charge integration to smooth out the grid-based partition.

This weighting, which varies between 0 and 1, is determined from the total integral

of flux of trajectories from a given grid volume into adjacent grid volumes. Though

this scales quadratically, compared to the linear scaling of previous methods, it

dramatically improves upon integration accuracy.

Bader charge analysis is used at several points throughout this thesis to offer

insight into the transfer of charge that arises from material combination, or through

the intercalation of foreign ions into a host material.

2.6.5 van der Waals Corrections

One drawback to all commonly-used functionals which utilise GGA (including hy-

brid functionals) is the lack of description of long-range electron correlations that

are responsible for van der Waals (vdW) forces. Such interactions between atoms

and molecules are vital for accurate descriptions of organic compounds [150], the

noble gases [151,152], and, importantly for the work presented here, layered vdW

materials.

Of the methods available for vdW corrections, the DFT-D method has been tested

most thoroughly, being applied to thousands of chemically-different systems. This

is an empirical method, whereby a corrective dispersion potential is added to the
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energy obtained using DFT methods. This potential can be written as [153–155],

Edisp = −
∑
AB

∑
n=6,8,10,...

sn
CAB,n
rnAB

fd,n(rAB), (2.123)

where the first sum is over all pairings of two atoms AB in the system, CAB,n gives

the averaged (isotropic) nth-order dispersion coefficient (orders n = 6, 8, 10, ...) for

atom pair AB, and rAB is their internuclear distance. sn are scaling factors to

ensure the correct asymptotic behaviour, and fd,n(rAB) are damping functions to

avoid singularities for small rAB.

In this work, we use the Grimme-D3 correction [155] specifically, as atom pair-

specific dispersion coefficients are explicitly computed and so it is less empirical

than other DFT-D approaches, it provides consistent descriptions of the first 94

elements, and achieves close agreement with other high-accuracy methods. The

correction is given by,

Edisp = −
∑
AB

(
fd,6(rAB)

C6,AB

r6
AB

+ fd,8(rAB)
C8,AB

r8
AB

)
. (2.124)

Here, the coefficients Cn,AB are geometry-dependent, adjusted on the basis of

the local coordination number. This dispersion correction is added to the total

energy, potential, and hence interatomic forces, allowing for lattice relaxations to

be performed with vdW interactions included.

2.7 Nudged Elastic Band

The nudged elastic band (NEB) method is a popular tool used for mapping out

the potential energy surface (PES) of ionic diffusion in solids, providing an effi-

cient method for finding reaction barriers between given initial and final states.

The energy barrier between two different ionic configurations is determined by

constructing a series of equivalent ‘images’ of the structure of interest, but with

distortions that are intermediate to the initial and final states. Allowing for ionic

relaxation of any of these distorted images would then reproduce one of the mini-

mum points. To prevent this, a spring-like interaction between adjacent images is

added to ensure continuity of the path, mimicking an elastic band.



60 Chapter 2. Methods

An essential feature of the NEB method is the projection of forces both parallel

and perpendicular to the path tangent. This ensures that the true force does not

alter the distribution of images along the path, and that the spring forces do not

interfere with convergence of the elastic band to the path [156]. It is therefore

necessary to estimate the tangent to the path at each image for each iteration of

a minimisation. The component of the total force perpendicular to the tangent is

equal to the component of the true force that is perpendicular to the local tangent,

and so the PES does not interfere with the distribution of images. The component

of the total force that is parallel to the tangent is then taken from the parallel

component of the elastic force, and so the elastic force is only required to maintain

image spacing. This force projection is referred to as ‘nudging’.

An elastic band with N+1 total images can be denoted with [R0,R1,R2, · · · ,RN ].

The points R0 and RN correspond to the initial and final configurations, respec-

tively, and are fixed points on the PES. The total force acting on the ith of N − 1

intermediate images is found using,

Ftot
i = Fspring

i

∣∣
‖ −∇E(Ri)

∣∣
⊥. (2.125)

This involves the sum of the tangent-perpendicular component of the true force,

and tangent-parallel component of the force due to the fictitious elastic band.

∇E(Ri)
∣∣
⊥ is given by,

∇E(Ri)
∣∣
⊥ = ∇E(Ri)−∇E(Ri) · τ̂i, (2.126)

where E is the energy of the system, and τ̂i is the normalised local tangent at

image i. The normalised local tangent is calculated from τ̂i = τi
|τi| , where [157],

τi,=
Ri −Ri−1

|Ri −Ri−1|
+

Ri+1 −Ri

|Ri+1 −Ri|
. (2.127)

The spring force is then given by,

Fspring
i

∣∣
‖ = k

(
|Ri+1 −Ri| − |Ri −Ri−1|

)
τ̂i, (2.128)

with spring constant k. Once the total force on an image is obtained, optimisation

algorithms can be used to move the images according the direction of the force.

Issues can arise when the parallel component of the total image force is large

compared to the perpendicular component, and careful choice of tangent vector
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must be made to avoid the appearance of kinks along the path and corner-cutting.

However, a discussion of these is not necessary for a working understanding of

the NEB method, but have been presented elsewhere [157].

Due to the discrete sampling of images with the NEB method, the energy of PES

saddle points between end images needs to be obtained by interpolation. How-

ever, except for very fortunate image samplings, this interpolation can be inac-

curate. The climbing image nudged elastic band (CI-NEB) method [156] offers

a small modification to the NEB method, retaining the information of the shape

of the PES whilst also achieving a rigorous convergence of saddle points, at the

cost of relatively little added computational effort.

After some initial NEB calculations, the image with the highest energy is identified,

imax. For this image, the total force is given by the true force due to the PES, but

with the path-parallel component inverted,

Ftot
imax

= −∇E(Rimax)
∣∣
⊥ +∇E(Rimax)

∣∣
‖

= −∇E(Rimax) + 2∇E(Rimax)
∣∣
‖

(2.129)

From this we see that the imax image is not affected by the spring force at all, but

is moved along the path in the direction of increasing energy. Once the CI-NEB

calculation converges, the climbing image will be at the saddle point (a maximum

along the particular path) and all other images will have followed it such that they

give good description of the PES around the saddle point.

2.8 Phonons and Lattice Dynamics

The potential, V , experienced by an atom within a crystal lattice can be expanded

as a Taylor series in atomic displacement vector,

V = V0 +
∑
lσ

∑
α

∂V

∂uα(lσ)
uα(lσ) +

1

2

∑
lσl′σ′

∑
αβ

∂2V

∂uα(lσ)∂uβ(l′σ′)
uα(lσ)uβ(l′σ′) +O(u3).

(2.130)

Here, the vector uα(lσ) gives the displacement of atom σ in unit cell l with po-

larisation α. The first term is the equilibrium potential, and the second term is

identically zero as the equilibrium configuration is defined where the forces ∂V
∂uα(lσ)
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are zero. The third term then describes a harmonic potential, and higher order

terms O(u3) describe anharmonic effects. When one approaches the problem of

crystal dynamics, N atoms are usually considered to be connected by harmonic

springs which result in a linear combination of 3N modes of vibration, with any an-

harmonic terms usually being treated as perturbations. Whilst anharmonic terms

can be important in some materials, the associated force constants are difficult

to evaluate from first principles and also require the consideration of coupling be-

tween phonons (yet another many-body problem). As such, we shall omit third

order terms in the following discussion, and work entirely within the domain of the

harmonic approximation.

We can define a matrix of second-order inter-atomic force constants, the ele-

ments of which being given by,

Φαβ(lσ, l′σ′) =
∂2V

∂uα(lσ)∂uβ(l′σ′)
. (2.131)

We can then produce the equations of motion for a 3D-crystal of atomic masses

Mσ within the harmonic approximation,

Mσüα(lσ) = −
∑
l′σ′β

Φαβ(lσ, l′σ′)uβ(l′σ′), (2.132)

which can be solved with displacement vector,

uα(lσ) =
1√
Mσ

∑
q

Uα(qσ) exp
[
i(q · r− ωt)

]
. (2.133)

Here, r is the position vector to unit cell l and t is time. Making this substitution of

the displacement vector into the equation of motion gives,

ω2Uα(qσ) =
∑
l′σ′β

1√
MσMσ′

Φαβ(lσ, l′σ′) exp
[
i(q · (r′ − r)− ωt)

]
Uβ(qσ′), (2.134)

where we have dropped the summation over q to provide the expression for a

single q-point.

We now make use of the translational symmetry of the crystal, and hence the

translational invariance of Φαβ(lσ, l′σ′). If we translate the system by −l, we re-

quire,

Φαβ(0σ, (l′ − l)σ′) = Φαβ(lσ, l′σ′). (2.135)
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This allows us to rewrite our above result from the equation of motion,

ω2Uα(qσ) =
∑
σ′β

1√
MσMσ′

∑
l′

Φαβ(0σ, l′σ′) exp
[
i(q · r′ − ωt)

]
Uβ(qσ′)

=
∑
σ′β

Dαβ(σσ′|q)Uβ(qσ′),
(2.136)

and we have introduced the elements of the dynamical matrix for a fixed value of

q,

Dαβ(σσ′|q) =
1√

MσMσ′

∑
l′

Φαβ(0σ, l′σ′) exp
[
i(q · r′ − ωt)

]
. (2.137)

Non-trivial solutions can be found by evaluating the secular equation,

det |Dαβ(σσ′|q)− ω2δα,βδσ,σ′| = 0. (2.138)

We can combine the atomic (σ) and directional (α) indices since α can only take

one of the three values corresponding to the three spatial directions, and so we

instead use σα. With this, for each of the eigenvalues ω2
qs corresponding to a

specific q-point and band/polarisation branch s, we can write the eigenvector of

the dynamical matrix as,

U(qs) =
(
U(qs1x), U(qs1y), U(qs1z), · · · , U(qsσx), U(qsσy), U(qsσz),

· · · , U(qsNx), U(qsNy), U(qsNz)
)
.

(2.139)

This has dimensions of 3N (three degrees of freedom for each of the N atoms in

the basis) with each element giving the amplitude of the displacement for each of

those atoms in each of the directions, allowing us to write equation (2.136) as,

D(qs)U(qs) = ω2
qsU(qs). (2.140)

From the above discussions, it is now clear that to find the phonon frequencies

ωqs of a material characterised by a set of force constants the dynamical ma-

trix must be diagonalised, with the square of the phonon frequencies being the

eigenvalues of the dynamical matrix. For a given q-point, calculating the 3N

frequencies allows the construction of the phonon band structure, analogous to

the construction of electronic band structures described in Section 2.3.7. How-

ever, a negative eigenvalue would correspond to an imaginary phonon frequency,

which, when substituted into a displacement with a plane wave form as was used
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above, would result in motion with no restoring force and indicates a crystal is

not dynamically stable. The only remaining challenge is to determine the form

of the dynamical matrix, which depends on the second-order interatomic force

constants, Φαβ(0σ, l′σ′).

2.8.1 Ab initio Approaches to Lattice Dynamics

If we consider a phonon mode (characterised by a plane wave with wave vector

q) propagating through a crystal, the ionic cores will oscillate about their equi-

librium positions with a definite displacement pattern. The electron cloud will re-

spond quickly to this displacement, as within the adiabatic approximation. Taking

a snapshot of this oscillation, it is possible to consider the system in a new crystal

structure arising from the distortion of the phonon. This new crystal structure will

be closely related to the original, possessing the same translational symmetry,

but will have a lower symmetry and a higher total energy.

If Etot(0) and Etot(u) are the total energy of the undistorted and distorted struc-

tures, respectively, then the frequency of the ‘frozen phonon’ is defined by,
1

2
ω2
∑
σ

Mσ|uσ|2 = Etot(u)− Etot(0). (2.141)

Alternatively, the phonon frequency can be obtained from the force equation,

Fσ = −
∑
σ′

Φ(0σ, l′σ′)uσ′ , (2.142)

where the left hand side represents the harmonic contribution to the force on atom

σ, and Φ(0σ, l′σ′) is the force constant matrix. Though the frozen phonon mode

can be calculated using either of these approaches, the force method has some

advantages over using the energy. Firstly, fewer distorted geometries are required

to determine the dynamical matrix than with the energy approach. Secondly, the

energy differences associated with the distortions are typically very small com-

pared to the total energies, whereas the changes in the forces are of the same

order of magnitude as the forces themselves, and so a higher numerical accuracy

is attainable [158].

In practice, supercells of a fully geometry-relaxed structure are used to consider

a set of unique finite atomic displacements, allowing calculation of the force con-
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Species Included Electrons Species Included Electrons

Li 1s22s1 (3) Mn 3p63d64s1 (13)

Na 2p63s1 (7) Re 5d66s1 (7)

K 3p64s1 (7) Fe 3d74s1 (8)

Mg 2p63s2 (8) Ru 4s24p64d75s1 (16)

S 3s23p4 (6) Os 5d76s1 (8)

Se 4s24p4 (6) Co 3d84s1 (9)

Te 5s25p4 (6) Rh 4d85s1 (9)

Sc 3d24s1 (3) Ir 5d86s1 (9)

Y 4s24p64d2 (10) Ni 3d94s1 (10)

Ti 3p63d34s1 (10) Pd 4d95s1 (10)

Zr 4s24p64d3 (11) Pt 5d96s1 (10)

Hf 5d36s1 (4) Cu 3d104s1 (11)

V 3d44s1 (5) Ag 4d105s1 (11)

Nb 4s24p64d45s1 (13) Au 5d106s1 (11)

Ta 5d46s1 (5) Ge 3d104s24p2 (14)

Cr 3s24s14p64d5 (14) Sn 4d105s25p2 (14)

Mo 4d55s1 (6) Pb 5d106s26p2 (14)

W 5d56s1 (6)

Table 2.1: Electronic configurations of electrons modelled for different species consid-

ered in this thesis.

stants using first principles calculations. In typical DFT calculations, the atomic

forces within a supercell are obtained by a small additional computation from the

converged Kohn–Sham orbitals. In this work, we use the Phonopy [159, 160]

for generation of the supercells and unique displacements, interfaced with VASP,

allowing the calculation of phonon band structures.
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2.9 Summary

In this thesis, first principles calculations, within the framework of density func-

tional theory, were performed using the Vienna Ab initio Simulation Package

(VASP) [161–164]. Unless otherwise specified, the Perdew-Burke-Ernzerhof [119,

120] (PBE) form of the generalised gradient approximation was used to perform

structural and electronic relaxations of the systems presented. The projector aug-

mented wave (PAW) method [139] was used to describe the interaction between

core and valence electrons, and in Table 2.1 the valence electrons explicitly con-

sidered for each species are presented. All other electrons were effectively con-

tained within the used PAW-PBE pseudopotentials. A plane-wave basis set was

chosen to model the electronic wave functions, and we demonstrate the con-

vergence of the calculations with the plane wave energy cutoff in Appendix A.

All k-point grids used for calculations were Γ-centred and generated using the

Monkhorst-Pack scheme [140], with the exception of band structure calculations.

A demonstration of the convergence of the calculations with the chosen k-point

grids is presented in Appendix A. For band structures, specific k-points were cho-

sen to follow routes along high-symmetry lines, between high-symmetry points

of the Brillouin zone, and are indicated in the relevant figures. Geometric relax-

ation was achieved using the conjugate gradient algorithm, and electronic min-

imisation was achieved through a combination of blocked Davidson and RMM-

DIIS iteration schemes. The finite displacement of ions was used to calculate

phonon band dispersions using the frozen phonon supercell method employed

by Phonopy [159, 160]. All figures in this thesis that depict ball and stick models

of atomic structures, and the associated charge densities, were generated using

the VESTA atomic structure visualisation package (VESTA 3). Further calculation

details are included in the chapters where the relevant work is presented.



Chapter 3

Intercalation of TMDCs

“Lashing out the action, returning the reaction,

Weak are ripped and torn away,

Hypnotising power, crushing all that cower,

Battery is here to stay.”
Metallica, 1986

3.1 Introduction

Lithium ion batteries, as a result of their high specific energy and capacity, have

a vital role in sustainable energy storage, driven in recent years by the rising

popularity of electric vehicles, flexible electronics, and the ever-increasing de-

mand for more powerful portable devices. Unfortunately, battery technology has

struggled to meet the demand from these areas of electronics meaning that, for

example, most commercially available electric vehicles are currently limited to dis-

tances of 100 miles [165] and costs of $100-250 per stored kWh [166]. Reducing

battery pack costs [167] to a target of $40-50 per stored kWh, improving flexibil-

ity [168, 169], or enhancing the electronic properties of materials are all aspects

that would make electric cars and flexible devices more accessible to consumers,

and would help facilitate the transition to renewable energy sources.

Beyond intercalation with lithium, other ionic species have also been consid-

ered. Group I elements (sodium [170] and potassium [171]) have very similar
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chemistries to lithium and so offer an alternative that would require minimal mod-

ification to the existing infrastructure of lithium-ion batteries. Group II elements

such as magnesium and calcium have also received attention as possible succes-

sors to lithium. Whilst these elements offer twice the number of valence electrons

as their Group I neighbours, and hence twice the charge available for transfer, this

larger charge leads to issues in the stability of the electrodes and electrolytes be-

ing used [172]. However, they have been shown to be safer due to non-dendritic

metal deposition [173], and do not provoke environmental or socio-economic con-

cerns from limited global distribution or the safety of its mining and use.

The electrodes are a crucial component of batteries, determining voltages, capac-

ity, and cost. The anode is required to have a low voltage with respect to the redox

level of the intercalant species (e.g. vs. Li/Li+). A particularly successful material

being graphite, with lithium intercalation occurring between 0.2 and 0.01 V vs.

Li/Li+. However, graphite suffers from a capacity being limited to LiC6 (equivalent

to 372 mAhg−1) [43] and the low intercalation potential results in the decomposi-

tion of organic electrolytes. This has led to materials such as silicon [88], lithium

titanate [89], and other metal oxide materials being considered [90,91]. Cathodes,

on the other hand, need to offer high intercalation potentials typically in excess of

3 V. Following the success of LiCoO2, many transition metal-based oxides have

been investigated and have demonstrated their own successes. NMC, NCA, and

their variants [41,82–86], several phosphates [36,38,40], and spinel oxides such

as Mn2O4 [87] have offered high voltages. Despite the numerous promising candi-

dates for both anode and cathode materials, they each suffer from their individual

short-comings, and so the exploration and investigation of other materials is still

required.

Many electrode materials experience stresses arising from the intercalation of

ions into their structure. These can be due to phase changes [174], ionic dif-

fusion [175, 176], and volumetric expansion [177, 178], and can lead to the ma-

terial ‘fracturing’, ultimately leading to structural degradation and device failure.

Layered materials such as graphite [179–181], NMC [83, 86, 182], and the MX-

enes [183] show lower volume expansions [184] upon intercalation as they can

more readily accept intercalants [35, 72] into their van der Waals gaps. This re-
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Figure 3.1: Side-on view showing an example structure of a single TMDC layer. The

dashed lines indicate the planes of metal (M) and chacolgen (X) atoms, forming an

‘atomic trilayer’.

duces the fracturing and structural degradation [185] that many electrode materi-

als suffer from [186].

There are many metal chalcogenide materials which do offer the desired layered

structure, and have also been shown to be electrochemically active and have

shown good cyclability [187, 188]. One particularly diverse group of layered ma-

terials are the transition metal dichalcogenides (TMDCs) [189–191], with general

formula MX2. The presence of a transition metal M allows us to utilise the redox

levels that have led to the successes of the transition metal oxides, the choice of

chalcogen X means that electrolytes that are not oxygen-based (such as sulfur-

based electrolytes) may now be a more viable option, and the different possible

M-X pairings allow us to consider the wide range of properties that have been

demonstrated within the TMDC family. In this Chapter, we consider the whole

family of TMDC materials for use as intercalation electrodes in lithium-ion and

magnesium-ion batteries.

3.2 Background

3.2.1 Atomic Structure

Each TMDC layer consists of three atomic planes, having a hexagonally-packed

plane of metal atoms sandwiched between two planes of chalcogen atoms (X-M-

X), sometimes described as an ‘atomic trilayer’ structure. An example of such a

structure is shown in Figure 3.1. The structure of the individual sheets is main-
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(a) (b)

Figure 3.2: The possible coordination states for the metal atom within a TMDC sheet

to exhibit. (a) shows the hexagonal coordination state with trigonal prismatic symme-

try (denoted ‘H’). (b) shows the octahedral coordination state with anti-trigonal prismatic

symmetry (denoted ‘T’).

tained by intra-layer, covalent M-X bonds with p-d hybridisation [192], whilst the

sheets are coupled to each other by weak van der Waals forces [193].

The metal atoms in a TMDC structure typically exhibit one of two different coor-

dination states, or ‘polymorphs’, with the chalcogen atoms. The first of these is

the hexagonal coordination state with trigonal prismatic symmetry (denoted ‘H’,

and shown in Figure 3.2a). The second is the octahedral coordination state with

anti-trigonal prismatic symmetry (denoted ‘T’, and shown in Figure 3.2b). As Fig-

ure 3.2 shows, the metal atom in each of the coordination states is bonded to

six chalcogen atoms. The bonding of the H-coordinated structure is symmetric

through a horizontal mirror-plane (passing through the plane of metal atoms),

whereas for T-coordination there is a 60◦ rotation of one of the chalcogen planes

resulting in an inversion symmetry (about the metal atom). The coordination

state exhibited by a TMDC is largely governed by the d-electron count on the

transition metal. For example, Group IV TMDCs are all in the T-phase, Group

V demonstrate both the T- and H-phases, and Group VI are commonly in the

H-phase [189,194–196].

Due to the structure of individual layers, TMDCs are capable of exhibiting different

stacking polytypes depending on the positing of the atoms in one TMDC layer

with respect to the atoms in another. To highlight this, Figure 3.3 shows the

stacking arrangement for T-phase and three arrangements for two layers of H-

phase TMDC. As we can see from Figure 3.3, the chalcogen and metal atoms

can be in one of three positions, and we describe the layer by which of these
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(a) (b) (c) (d)

Figure 3.3: Side-views showing the different stacking arrangements for two layers of H-

phase and T-phase TMDCs. Vertical dashed lines indicate the three positions that the

metal and chalcogen atoms can occupy, and are denoted ‘a’, ‘b’ and ‘c’. The stacking

arrangements are then shown for the Ha-phase (3.3a) described by AbA CbC, for the

Hb-phase (3.3b) described by AbA AcA, and the Hc-phase (3.3c) described by AbA BaB.

The stacking arrangement for the T-phase is also shown (3.3d), which is described by

AbC AbC.

sites are occupied by the atoms of the sheet. We use capital letters to specify the

position of the chalcogen atoms, and lower case letters to specify the position of

the transition metal atom. For example, the Ha-phase is described by AbA CbC

(cholcogen atoms in the ‘A’ positions in the lower layer, and the ‘C’ positions in the

upper layer, with transition metal atoms in the ‘b’ position in both layers). Similarly,

the Hb-phase is described by AbA AcA, the Hc-phase is described by AbA BaB,

and the T-phase is described by AbC AbC.

This discussion of the stacking polytypes highlights a difference between each of

the Ha-, Hb-, and Hc-phases, and the T-phase: the H-phases require a specifica-

tion of the position of six atoms over two layers, whereas the T-phase is specified

by three atoms as there is a repeated unit. If there are two layers within a unit

cell/stacking sequence, as in the case of the H-phases discussed above, then the

structure can be totally described as the 2Ha-, 2Hb-, or 2Hc-phase. Conversely,

the T-phase above only has a single layer in its unit cell, and thus is described as

the 1T-phase. Therefore, we can include the number of layers in a unit cell, the
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coordination of the transition metal with the chalcogen atoms, and any specific

stacking in a concise manner. When referring to a TMDC we will denote them as,

for example, 2Hc-MX2 where applicable, thus including the size of the unit cell,

the coordination state between the M and X atoms, the stacking arrangement of

the layers, and the constituent species.

Though the layered structure is not always observed, with many MX2 compounds

exhibiting a pyrite or marcasite phase, and the intercalated MX2 compositions

exhibiting a chalcopyrite or spinel phase [197, 198], various techniques can be

employed to encourage the growth of the layered structure, such as through

careful choice of a substrate, the use of specific growth conditions, or specific

techniques [199,200].

For each of the phases presented, the hexagonal packing of the metal atoms

within the single TMDC sheets results in the primitive cell, and hence the lattice,

being hexagonal. In this work, we choose the (wide angle) lattice vectors of the

real lattice to be,

a1 = a x̂

a2 = −1

2
a x̂+

√
3

2
a ŷ

a3 = cẑ.

(3.1)

The corresponding reciprocal lattice vectors for the hexagonal real-space lattice

vectors given above are then,

a∗1 =
2π

a

(
x̂+

1√
3
ŷ

)

a∗2 =
2π

a

(
2√
3
ŷ

)
a∗3 =

2π

c
ẑ.

(3.2)

Due to the three-fold axis of rotational symmetry of the basis compared to the

six-fold axis of the lattice, the crystal is instead classified with trigonal symmetry.

In particular, we find space group number 164 to be the most relevant for this

work, so we consider this more closely. The point symmetries include a three-fold

rotation axis, three two-fold rotation axes perpendicular to the three-fold axis, and

mirror planes whose normals are perpendicular to the three-fold rotation axis.
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Figure 3.4: Qualitative schematic highlighting the ideal progressive filling of d orbitals

that are located within the bandgap between bonding (σ) and anti-bonding (σ∗) states in

group IV, V, VI, VII and XIV TMDCs. The Fermi energy is denoted EF . Dark blue regions

indicate filled states, and light blue regions indicate unfilled states.

3.2.2 Electronic Structure

In contrast to most transition metal complexes, where bonding occurs between

lone pairs of electrons on ligands and the empty orbitals of the transition metal, in

layered TMDCs the metal atoms provide four electrons to the chalcogen species

to form filled bonding states (σ) and unfilled anti-bonding states (σ∗). Within the

gap between the bonding and anti-bonding states are the non-bonding M atom d-

bands. As the Group of the transition metal is increased, the number of electrons

on the transition metal increases, and thus the unoccupied non-bonding d-bands

are progressively filled. This is highlighted in Figure 3.4. When the bands are

partially filled and the Fermi level lies within a band, such as for Groups V and

VII in Figure 3.4, the material will exhibit metallic behaviour. Conversely, when

the bands are completely filled, the Fermi level lies within a band gap, such as for

Groups IV, VI and X in Figure 3.4, and the material will exhibit semiconducting or

insulating behaviour [189].

T-phase TMDCs have D3d symmetry, and form degenerate dz2,x2−y2 and degen-

erate dxy,yz,zx orbitals. This leads to the non-bonding d-bands splitting into two

orbitals, with the dxy,yz,zx orbitals lower in energy than the dz2,x2−y2 orbitals. H-
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(a)

(b)

Figure 3.5: 3.5a presents a crystal field diagram showing the energy of transition metal

d states in a free atom, and in the octahedral (T) and trigonal prismatic (H) coordination

states of a TMDC. 3.5b then shows the d-electron configuration for Group VI TMDCs

(black) and the effect of adding further d-electrons is indicated with red and blue arrows.

phase TMDCs have D3h symmetry, and form three sets of degenerate orbitals:

dz2, dx2−y2,xy and dyz,zx, in increasing energy order. These can be seen in Fig-

ure 3.5a [201].

In Figure 3.5b we show an example of the electronic configuration in a Group VI

TMDC such as MoS2 [202,203], comparing the octahedral and trigonal prismatic

coordination states. The two d electrons remaining on the transition metal in the

TMDC are represented with black arrows. In the trigonal prismatic coordination,

the dz2 orbital is doubly filled and all other orbitals are empty, whereas in the

octahedral coordination state two of the degenerate dxy, dyz, and dxz orbitals are

singly filled. Comparing these, the sum of the electron energies in the T-phase is
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greater than the sum of the electron energies in the H-phase, and so Group VI

TMDCs can be expected to (and do) exhibit the H-phase.

If the group of the transition metal is increased, however, additional d electrons

will be present. This is indicated in Figure 3.5b with the red arrow denoting a sin-

gle additional electron, corresponding to a Group VII TMDC. For the T-phase, this

single additional electron occupies the remaining low-energy degenerate state,

whereas in the H-phase it must begin to fill the higher energy dx2−y2 or dxy states.

The result of this is that the sum of electron energies in the T-phase is now lower

than the sum of the electron energies in the H-phase. There is now an energetic

preference for the TMDC to exhibit the T-phase as has been observed experi-

mentally, where MoS2 shows a reduced favourability to exhibit the H-phase as

the concentration of nickel and/or cobalt dopants (and hence the number of d

electrons) is increased [204].

Due to the large energy difference between the dxy,yz,zx orbitals and dz2,x2−y2 in the

T-phase, further occupation of the d states (corresponding to Group VIII, IX, and

X TMDCs) would result in the dxy,yz,zx states being doubly filled. This would be

lower in energy than the equivalent filling of the dx2−y2,xy and dyz,zx in the H-phase,

and so the T-phase is preferred for higher Group TMDCs. We indicate this with

the additional blue arrows in Figure 3.5b. It is worth noting that the specific filling

order of the high energy H-phase states will depend on the energy separation

between dx2−y2,xy and dyz,zx, though this does not affect our conclusions.

Upon changing the chalcogen species, however, the effect on the electronic struc-

ture of the is much smaller than the effect of changing the transition-metal species.

With increased atomic number of the chalcogen atom, the d-bands begin to

broaden, resulting in smaller band gap [189].

3.2.3 Intercalation of TMDCs

Many members of the TMDC family and their intercalated structures have already

received a lot of attention, being the subject of intense study over the last few

decades [35, 205–207]. The mechanism for the reaction of lithium intercalation
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into layered TMDCs is generally accepted to be,

MX2 + aLi↔ LiaMX2, (3.3)

with typical ranges of 0 < a < 1. TiS2 was identified as early as the 1970s [67,208]

for showing a lithium-intercalation voltage of 2 V and a reversible capacity of

240 mAhg−1. However, due to the sensitivity of TiS2 to moisture (releasing H2S

gas on contact with water), the inclusion of a dangerous, shock-sensitive elec-

trolyte, and the use of metallic lithium, device manufacture was found to be ex-

pensive and complex. Nonetheless, it inspired works of magnesium intercala-

tion into TiS2 [209, 210], and prompted investigations into the Zr [211–214] and

Hf [211,215] analogues. The large inter-layer spacing in VS2 has been shown to

allow rapid insertion and extraction of alkali-metal intercalants [216], and recently

it was proposed for magnesium-based cathodes, delivering a reversible discharge

capacity of 235 mAhg−1 [217]. The Nb- and Ta-based materials [211] have been

intercalated to similar levels, but their heavier masses result in lower theoreti-

cal capacities below 170 mAhg−1. Of course, the ubiquitous MoS2 [218–223]

is a favourite within the study of layered materials and has been the subject of

many of its own investigations, demonstrating an intercalation voltage of 2 V with

a capacity of 167 mAhg−1. This material, along with some others, can exhibit

multiple TMDC phases, and has been observed to undergo transitions between

them with intercalation [224, 225]. Other materials, such as CrS2 [226, 227] and

ScS2 [228, 229], are not stable without intercalants, though it is possible to syn-

thesise them in their intercalated forms. ScS2 in particular has recently been

suggested as a promising electrode [230], promising an ideal cathode voltage of

4.5 V and a reversible capacity of 183 mAhg−1 and will be the subject of Chap-

ter 5.

Though the above intercalation reaction appears relatively simple, there are many

ways for the intercalants to arrange within the host material. The staging of lithium

and how it distributes evenly across layers in graphite has been identified and

explored in numerous studies. Recent works have identified a similar staging in

MoS2, but with lithium filling the structure in a layer-by-layer manner [225, 231,

232]. Lithium intercalation into SnS2, on the other hand, has been shown to

proceed by a two-phase reaction, forming a SnS2|LiSnS2 boundary, initiated by

nucleation of the LiSnS2 composition [233].
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As we discussed above, the number of d-electrons plays an important role in both

the resultant geometric structure and the electronic properties of TMDCs. It can

be expected, then, that upon the intercalation of a foreign species which can do-

nate or accept electrons to/from the host, the effective number of d-electrons in

the TMDC changes, which would result in corresponding geometric and/or elec-

tronic structure changes. Indeed, this has been observed for the intercalation of

alkali metals into TMDCs, where the alkali metal donates an electron to the host

TMDC structure. Most famously, the transformation of 2H-MoS2 to 1T-MoS2 [222],

but also the irreversible transition from 2H-NbSe2 to distorted 2H’-NbSe2 [50] and

the transformation of 1T-TaS2 to 2H-TaS2 [234], with lithium intercalation are all

well documented. For intermediate intercalant concentrations, charge donation to

a single host transition metal would encourage local distortion, whilst the structure

of the surrounding TMDC structure would retain its initial geometry.

For several of these materials, however, the intercalation capacity is dictated by

the formation of the Li2S (or equivalent) compound, a conversion product which

can result in the irreversible loss or amorphisaton of the layered TMDC struc-

ture [225]. For lithium intercalation, a typical conversion reaction is,

LiaMX2 + (4− a)Li→ M + 2Li2X. (3.4)

The post-transition metal sulfide SnS2, for example, has also been the subject of

many studies [233,235–243], however it has been shown to readily undergo con-

version to Li2S and elemental tin. These conversion reactions allow for further cell

charging, facilitated by subsequent reactions involving Li2S or lithium polysulfides

to elemental lithium and sulfur [219,244], as has utilised in lithium-sulfur batteries.

However, they result in the loss of the ideal layered structure and the deposition

of the inert metal species of the host material. As a result, the volumetric expan-

sion can reach as high as 80%, resulting in large mechanical stresses and rapid

device failure. We can therefore consider the formation of these conversion prod-

ucts the limit to intercalation, such that identifying and improving the intercalant

concentration that these reactions occur is a key challenge for investigation.

Intercalation with other species will have a different but equivalent conversion-

reaction equations, depending on the nature of the intercalant. Other Group I el-

ements (such as sodium and potassium) have similar chemistry to that of lithium,
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and so the reactions and products are analogous (i.e. Na2X or K2X). Group II

intercalants such as beryllium and magnesium, however, possess twice as many

valence electrons, and so they exhibit different chemical behaviour. Whilst inter-

calation into TMDCs or other layered materials can occur in the same manner,

conversion reactions result in different products (MgS instead of Li2S, for exam-

ple). Typically, the breakdown of LiaMX2 into Li2X occurs at some point 0 < a < 1,

as has been observed for MoS2 [220,223] and WS2 [244].

Recent works have looked at improving many of the properties offered by these

materials, with the aim of extending device operation, increasing the intercalant

capacities, and improving operating voltages. Dimension reduction [245–247]

provides greater surface area and thus a higher surface reactivity, allowing for

faster ionic and electronic transport. To a similar effect, morphology control [218,

248,249] and composite formation [216,250–255], particularly through the inclu-

sion of graphitic carbon or other layered materials, has been used to improve

electrical and ionic conductivity, provide mechanical support, and ultimately im-

prove the resultant capacity. Coating and encapsulation has been used to pro-

tect both the electrolyte and electrode from mutual decomposition, stabilisation

of surfaces and prevention of reactions between the electrolyte and the electrode

surface [256]. Finally, doping and functionalisation [257,258] can improve chemi-

cal and thermal stability, and allow for some control of the operating voltage [230].

However, to understand the improvements that arise from each of these methods,

an understanding of the fundamental electrochemical properties of the bulk struc-

tures is first needed. Properties such as the volumetric expansion, the intercala-

tion voltage, and the intercalation capacity need to be established in a consistent

manner as these are vital for discussions of electrode materials. Further, much

of this family is yet to be investigated, meaning there are still many materials that

could offer ideal voltages or higher capacities, or alternatively demonstrate other

properties that could be advantageous to a wide range of other applications.
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3.3 Computational Details

In this work, first principles techniques based on density functional theory were

used to determine structural, energetic, and electronic properties of layered MX2

materials intercalated with varying levels of either lithium or magnesium. These

calculations were performed using the Vienna Ab initio Simulation Package (VASP)

[161–164]. The projector augmented wave method [139] was used to describe

the interaction between core and valence electrons, and a plane-wave basis set

was used with an energy cutoff of 700 eV. The valence electrons included for

each species are indicated in Table 2.1. vdW interactions have been addressed

using the zero damping DFT-D3 method of Grimme [155].

This study focuses on 1T-phase TMDCs, as many of the TMDCs exhibit the 1T-

phase [194–196, 205]. Not only are they known to have superior electrical con-

ductivities over their 2Hc-phase counterparts [259], making them better suited to

electrode application, but alternative phases often undergo a phase transition to

the T-phase under intercalation [260, 261]. However, the Hc-phase is found to

be important for several TMDCs. As such, comparisons have been made with

the 2Hc-phase for such TMDCs, as is discussed later in the Chapter. Though

transition metal dichalcogenide compounds can exhibit a wide range of different

structural phases beyond the layered structures considered here [197], we focus

on the T- and Hc-phases to utilise their ideal layered structures.

For comparisons of intercalant site and of the T- and Hc-phases, primitive cells

of each of the TMDCs were used. However, for a more thorough consideration

of these materials with finer sampling of intercalant concentrations, supercells of

(2 × 2 × 1) and (2 × 2 × 2) unit cells of 2Hc- and 1T-phase MX2, respectively,

were generated and structurally relaxed. This corresponds to 24 atoms, eight

MX2 formula units, and two TMDC layers in the supercells. These were then

used as the bulk unit cells into which lithium and magnesium were intercalated

for evaluation of voltages and thermodynamic stability.

All structural relaxations (allowing for both ionic and unit cell optimisation) were

completed using the Perdew-Burke-Ernzerhof (PBE) [119] functional form of the

generalised gradient approximation (GGA), and converged to a force tolerance
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of 0.01 eV/Å, while electronic self-consistency was considered to an accuracy of

10−7 eV. Monkhorst-Pack grids [140] of k-points equivalent to a 6×6×6 grid in the

supercells are used throughout. Upon intercalation, local charge transfer leads to

local electric fields within the structure, making it impossible to align the electronic

structures of pristine and intercalated materials using typical means of core-state

alignment [262] or with respect to the vacuum level [262–264]. Instead, we have

qualitatively aligned to the high-energy occupied states of the unintercalated su-

perlattice at Γ, allowing us to comment on the relative position of the Fermi level.

To account for the inaccurate calculation of exchange in GGA functionals, the

HSE06 hybrid functional [130, 135, 265] has also been used for a selection of

systems. For these systems, geometric relaxations were performed on the primi-

tive cell to the same force and energy tolerance as used with the PBE functional,

though a coarser k-point grid was used due to the increased computational cost

of the hybrid functional.

Climbing-image nudged elastic band (CI-NEB) methods, as employed in VASP,

were used to consider transition states for intercalant diffusion through the sys-

tem [156, 157] (using the PBE functional). This method uses a series of inter-

polated ‘images’ along a specified path to determine the activation energies for

diffusion. For these calculations, we formed 2 × 2 bilayers of selected TMDCs

and fixed the positions of the transition metal species with intercalant species oc-

cupying high-coordination sites. CI-NEB relaxations were considered to a force

tolerance of 0.01 eV/Å per atom, electronic self-consistency was considered to an

accuracy of 10−7 eV, and Monkhorst-Pack grids of 6 × 6 × 1 k-points were used.

Five images were considered along the reaction route.

3.4 Methods for Material Evaluation

When assessing a material for its suitability as an electrode material, there are

many key properties that need to be determined. Quantities such as the vol-

umetric expansion and electronic band gaps can be directly obtained from DFT

calculations, however there are many other properties that need careful attention.

The intercalation voltage gives a measure of the energy associated with interca-
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lation of a given ion and hence the energy storage, whereas the intercalation

capacity gives a limit on how much of a given intercalant can be introduced to a

host material before secondary reactions that degrade the material occur. Here,

we outline how we approach these challenges using a first principles approach.

3.4.1 Calculation of Voltage

For a given state of charge, a, the potential difference in the open circuit, VOC(a),

can be calculated from the difference between the chemical potential of lithium in

the cathode, µCathodeLi (a), and in the anode, µAnodeLi (a), divided by the total charge

transfer, ze, where z is the valency of the intercalant ion (z = 1 in the case of

lithium, z = 2 for magnesium) and e is the elementary charge [266],

VOC(a) = −µ
Cathode
Li (a)− µAnodeLi (a)

ze
. (3.5)

As we are assuming a lithium anode (see the previous discussion in Section 1.3.1

regarding the half-cell potential), we can replace the second term in the numera-

tor with µ0
Li, which is the chemical potential of lithium under standard conditions,

equivalent to the energy of a single lithium atom when in its bulk form. How-

ever, assessing the chemical potential of a given element in a specific cathode

compound is not a trivial task. Instead, we now consider the change in electrical

energy, ∆E, from discharging a cathode between two charge states, q2 > q1,

∆E =

∫ q2

q1

VOC(a) dq = −
∫ q2

q1

µCathodeLi (a)− µ0
Li

ze
dq. (3.6)

If we assume that all transferred charge is due to the lithium, we are able to write

dq = ze da, and so,

∆E = −
∫ a2

a1

µCathodeLi (a)− µ0
Li da

= −
[ ∫ a2

a1

µCathodeLi (a) da−
∫ a2

a1

µ0
Li da

]
= −

[
G(Lia2MX2)−G(Lia1MX2)− (a2 − a1)µ0

Li

]
= −∆G,

(3.7)

which is simply the change in the Gibbs free energy of the host material. This

then allows us to write the average voltage between two different lithium contents
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as,

VOC = −dG
dq
≈ −∆G

∆q
= −

G(Lia2MX2)−
[
G(Lia1MX2) + (a2 − a1)µ0

Li

]
(a2 − a1)ze

, (3.8)

in terms of the Gibbs free energy at different lithium contents, which are much

more accessible quantities. We make a further approximation,

VOC = −
ELia2MX2 −

[
ELia1MX2 + (a2 − a1)ELi

]
(a2 − a1)× ze

, (3.9)

where we have replaced the Gibbs free energy of a given compound with the

total energy, ELiaMX2, as is obtained using DFT methods. We do this as the

pressure-volume, and vibrational entropy contributions are known to be negligible

in transition metal oxide and chalcogenide materials [266–268].

Whilst we can evaluate the total energy for different levels of intercalation, the

true lowest energy for a specific intercalant concentration might not be achiev-

able for the unit cell size being modelled within a DFT framework. Instead, a

combination of different concentrations (the total concentration equalling the tar-

get concentration) might instead be preferred, as has been observed for some

materials including SnS2 [233,239,269,270]. For example, whilst we have evalu-

ated the energy for a supercell containing four lithium atoms, a lower energy might

instead be obtained by the average of a cell with no lithium in and cell with eight

lithium atoms. In cases like this, the intercalated structure would have a phase

separation, with fully intercalated regions and completely empty regions instead

of a homogeneous lithium distribution. This simple example can be extended to

include other components and different numbers of components, which can have

dramatic effects on the resulting voltage profiles. In the following short discussion

we shall make use of notation whereby the true energy (allowing for phase sepa-

rations) is written as E ′n =
∑8

m=0 cmEm, in terms of the energy obtained from DFT

for a given composition Em ≡ ELim
8

MX2.

We can easily visualise this phase separation by consideration of the convex

hull: Figure 3.6a presents the convex hull for LiaMoS2 using the formation energy

calculated with,

Eform = ELiaMoS2 −
[
aELiMoS2 + (1− a)EMoS2

]
. (3.10)
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Figure 3.6: The convex hull for LiaMoS2 is shown in 3.6a, and the effect on the resultant

voltage (for LiaSnS2) from changing the maximum number allowed for any cm involved in

calculating the lowest energy E′n for a given lithium concentration is given in 3.6b.

Whilst the formation energies lie on the hull for 0 ≤ a ≤ 4
8

(0 ≤ m ≤ 4), for

concentrations of a = 5
8
, 6

8
, 7

8
(m = 5, 6, 7) they lie above it, and so a combination

of the energies ELi 4
8

MoS2 and ELiMoS2 are required.

This is also shown for SnS2 in Figure 3.6, where the effect of the number of

components included is highlighted. The point at which the voltage profile be-

comes constant or decreasing with lithium concentration gives the correct profile.

As shown in Figure 3.6, the voltage for SnS2 is constant across the intercalation

range. This is due to the fact that, for each of the concentrations, it is energetically

preferred for the lithium to separate into regions with no lithium (with an energy of

E0) and regions that are fully intercalated (with and energy of E8). For example,

the lowest energy for Li 1
8
SnS2 is given by E ′1 = (7

8
E0 + 1

8
E8) < E1, and the lowest

energy for Li 2
8
SnS2 is given by E ′2 = (6

8
E0 + 2

8
E8) < E2. As the difference between

consecutive concentrations is a constant ∆E = 1
8
(E8 − E0), the voltage is also

constant across the range.

3.4.2 Thermodynamic Phase Diagrams

The stability of TMDCs with intercalation depends heavily on how favourable the

formation of secondary products is, for example Li2X or MgX. Generally, these

conversion products are not desired for intercalation electrodes as they indicate
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Figure 3.7: Schematic phase diagrams for lithium (3.7a) and magnesium (3.7b) interca-

lated TMDCs, constructed using equations (3.19)-(3.20) and (3.23).

the loss of the layered TMDC structure, and limits the reversibility of cell charg-

ing. By assessing the relative stability of these conversion products against the

intercalated phases, one can construct phase diagrams indicating the viability of

the intercalated structure at different intercalation capacities [271]. We can then

determine the maximum intercalant capacity that can be reached, and hence the

reversible charge capacity, a key metric for assessing the viability of electrode

materials. For an arbitrary TMDC material, MX2, when intercalated with lithium,

LiaMX2, we define the Gibbs free energy of formation of relevant products:

∆G(LiaMX2) = E(LiaMX2)− [aµ0
Li + µ0

M + 2µ0
X], (3.11)

∆G(MX2) = E(MX2)− [µ0
M + 2µ0

X], (3.12)

and,

∆G(Li2X) = E(Li2X)− [2µ0
Li + µ0

X]. (3.13)

Here, ∆G(A) gives the Gibbs free energy of formation of the compound A, E(A)

gives the energy of the compound A, and µ0
B = E(B) gives the chemical potential

of elemental species B when it is in its elemental bulk structure.

The thermodynamic equilibrium condition requires,

∆G(LiaMX2) = a∆µLi + ∆µM + 2∆µX, (3.14)

where we have used the notation ∆µB = µB − µ0
B, with µB being the chemical

potential of elemental species B in LiaMX2. This simply states that the energy of
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the intercalated compound is the sum of the chemical potentials of the constituent

atoms. Rearranging the thermodynamic equilibrium condition gives,

∆µX =
1

2

{
∆G(LiaMX2)− [a∆µLi + ∆µM]

}
. (3.15)

We require that MX2, Li2X, and the bulk forms of the component elements do not

form. Therefore,

∆µM + 2∆µX ≤ ∆G(MX2), (3.16)

2∆µLi + ∆µX ≤ ∆G(Li2X), (3.17)

and,

∆µLi,M,X ≤ 0. (3.18)

Substituting (3.15) into (3.16) and rearranging,

1

a

{
∆G(LiaMX2)−∆G(MX2)

}
≤ ∆µLi. (3.19)

This then gives the thermodynamic limit on the lithium chemical potential such

that the intercalation of the TMDC is preferred to the pristine TMDC and bulk

lithium.

We now substitute (3.15) into (3.17) which results in,

∆µLi ≤
1

4− a
[
2∆G(Li2X)−∆G(LiaMX2) + ∆µM

]
, (3.20)

which is then the thermodynamic limit on the chemical potential of the lithium

so that the conversion-reaction product Li2X do not form. Thus, we have two

equations describing the boundary conditions for the chemical potential of lithium,

dependent on formation energies of the relevant products, and the chemical po-

tentials of the relevant metals.

We can equally consider the magnesium-compounds, and the limits on the chem-

ical potential of magnesium. We start by defining the Gibbs free energy of forma-

tion of MgX,

∆G(MgX) = E(MgX)− [µ0
Mg + µ0

X] (3.21)
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Analogous to the condition (3.17),

∆µMg + ∆µX ≤ ∆G(MgX), (3.22)

which can be combined with the magnesium equivalent of (3.15), to get,

∆µMg ≤
1

2− a
[
2∆G(MgX)−∆G(MgaMX2) + ∆µM

]
. (3.23)

It should be noted, by considering the equations (3.11)-(3.13) and (3.21), that

the limiting conditions are independent of µ0
X,and hence ∆µX. As a result, the

phase diagrams are only dependent on the chemical potentials of lithium and the

relevant metal, ∆µLi,Mg,M.

Using equations (3.18)-(3.20) and (3.23), we can construct thermodynamic phase

diagrams with the purpose of estimating the intercalation capacity. Schematics

of such phase diagrams are shown in Figure 3.7. We restrict ourselves to the

negative-negative quadrant to ensure that the elemental bulks do not form. Above

the diagonal line, labelled "1", the experimentally observed Li2S (or equivalent)

crystal is favoured, as opposed to the intercalated TMDC. Below the horizontal

line, labelled "2", the pristine MX2 structure is preferred to intercalation. The result

of this is that intercalation is favoured for chemical potential combinations that sit

within the shaded region indicated in Figure 3.7. Outside of this window, how-

ever, the secondary products (as indicated in the figure) are favourable to form.

Though a transition to these is not guaranteed, the intercalated TMDC sstruc-

ture becomes meta-stable. Whilst other compounds could have their respective

boundaries determined to be included in these phase diagrams, such as Li2X2 or

MX, these first require the disintegration of the LiaMX2 material into Li2X and/or

elemental bulks. Hence, we only consider the limits outlined above.

We can quantitatively compare the phase diagrams for the different concentra-

tions considered by evaluating the difference between the intercepts of lines ‘1’

and ‘2’ with the vertical ∆µLi-axis. We define this as,

ELi
IS = ∆µ

(1)
Li (∆µM = 0)−∆µ

(2)
Li (∆µM = 0), (3.24)

where ∆µ
(1/2)
Li (∆µM = 0) is the value of the boundary line 1/2 at the point where

∆µM = 0. Alternatively, using (3.19) and (3.20), EIS can be expressed as,

ELi
IS =

2

4− a
∆G(Li2X) +

1

a
∆G(MX2)− 4

4a− a2
∆G(LiaMX2), (3.25)
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Figure 3.8: Comparison of the TMDC T- and Hc-phase energies in the pristine bulk and

intercalated forms, for the sulfide materials. Positive values indicate a more favourable

T-phase, whereas negative values indicate a more favourable Hc-phase. Group V-like

behaviour is tracked with the magenta boxes, and Group VI-like behaviour is tracked with

the green boxes.

in terms of the relevant formation Gibbs free energy values. Each of these free

energy formation values should be negative for them to be thermodynamically

stable with respect to their atomic constituents. When the value of ELi
IS is negative,

the first two terms dominate, and line ‘1’ intercepts below line ‘2’ so no stability

region exists. When the value of EIS is positive, however, ∆G(LiaMX2) dominates

and the intercalated MX2 material is stable. For magnesium intercalation, we have

an equivalent expression using,

EMg
IS = ∆µ

(1)
Mg(∆µM = 0)−∆µ

(2)
Mg(∆µM = 0), (3.26)

resulting in,

EMg
IS =

2

2− a
∆G(MgX) +

1

a
∆G(MX2)− 2

2a− a2
∆G(MgaMX2). (3.27)

3.5 Determination of Structure

As we discussed in Section 3.2.1, the family of TMDCs have been shown to ex-

hibit multiple polymorphs of the layered structure, most commonly the 1T-phase
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and 2Hc-phase [195, 196]. The phase a TMDC exhibits is largely determined by

the number of transition metal d-electrons. As the phase of the host TMDC ma-

terial can have some effect on the operating voltage, material stability, and hence

the overall energy capacity, it is important that the correct phase be determined

first.

We evaluate the energetic ordering of these phases in the pristine bulk by tak-

ing the difference between the Hc-phase energy (EHc) and the T-phase energy

(ET ). The results of this are presented in Figure 3.8 for the TMDC sulfides,

where positive values indicate a more favourable T-phase and negative values

indicate a more favourable Hc-phase. Equivalent data for the selenide and tel-

luride materials is presented in Appendix B. We find that most of the TMDCs pre-

fer the T-phase, with the exception of those composed of Group V and Group VI

transition metals which prefer to exhibit the Hc-phase, agreeing with many other

works [195,196,259].

Some materials are susceptible to more significant structural changes, and do

not exhibit a layered structure. LiAuS2, LiPtS2, LiPtSe2, MgPdS2, MgPtS2, and

MgPtSe2 each structurally relaxed from the H-phase into a structure that does

not resemble that of a layered TMDC, and so these have also not been included.

For others, geometric relaxation transformed the intercalated structure from the

H-phase into the T-phase, and so a quantitative comparison between the two

structures was not able to be made, though we are able to comment that the T-

phase is lower in energy than the H-phase. As such, these points, which included

LiIrS2, MgGeSe2, MgRhS2, MgIrS2, and MgRhSe2, have also been omitted.

Upon intercalation, charge donation from the intercalated species increases the

effective number of d-electrons on the transition metal, and so the effective tran-

sition metal Group is increased. This can result in a phase transition between

the two phases, as has been demonstrated by many materials, but most notably

by MoS2 [225, 261]. With lithium intercalation, we note that the electron count

of Group VI metal sulfides has effectively increased by one, resulting in them

being ‘Group VII-like’ and reproducing the H → T transition seen in MoS2 [261].

When Group V materials are intercalated with lithium the extra electron results in

‘Group VI-like’ behaviour (with the H phase being preferred), and upon magne-
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(a) (b) (c)

Figure 3.9: Tetrahedral (3.9a) and octahedral (3.9b) coordination of an intercalant with

sulfur in an intercalated TMDC. 3.9c shows the different routes considered for the CI-NEB

calculations.

sium intercalation the Group IV materials become ‘Group VI-like’. This behaviour,

and the favourability of the Hc-phase over the T-phase, is indicated with the green

boxes in Figure 3.8. We see that the pristine Group V materials show little dif-

ference in energy between the T- and Hc-phases (with EHc − ET being close to

0 eV). When intercalated with lithium, the Group IV materials lose their clear pref-

erence for the T-phase and become ‘Group V-like’, as do the Group III materials

when intercalated with magnesium. This progression of Group V behaviour is

indicated with the magenta boxes in Figure 3.8. From these results we conclude

that (i) the T-phase is the preferred phase in the pristine, lithium-intercalated, and

magnesium-intercalated forms for most of the TMDCs considered in this work,

with the exception of those materials composed of early transition metals, and (ii)

the additional electrons from lithium causes Group VI TMDCs to undergo a H→T

transition, and similarly the addition electrons from magnesium causes Group IV

TMDCs to undergo a T→H transition. We therefore also consider the Hc-phase

TMDCs only for the Group IV, V, and VI transition metals.
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Figure 3.10: Relative energy of the tetrahedral intercalation site compared to the octa-

hedral intercalation site for the sulfide TMDCs. Data for lithium intercalation is presented

in black, and data for magnesium intercalation is presented in red.

3.6 Intercalation Site

Before assessing the intercalation properties of a host material, and hence its

suitability for electrode applications, it is important to first determine the correct

intercalation site within it. The two sites often considered in investigations of in-

tercalated TMDCs are the octahedrally coordinated site and the tetrahedrally co-

ordinated site directly above the chalcogen. Whilst the octahedrally coordinated

site has been shown to be the preferred site for many TMDC-like structures in-

tercalated with lithium [82, 272–274] and magnesium [210, 274], for consistency,

we examine this here. First, we compare the relative energy from intercalation

into each of these sites of the primitive cell for both lithium and magnesium in-

tercalation, the results of which are presented in Figure 3.10. We focus on the

sulfide materials here, but equivalent data for the selenide and telluride materials

is presented in Appendix B. For most of the TMDCs, we find that the tetrahedrally

coordinated site (Figure 3.9a) is higher in energy than the octahedrally coordi-

nated site (Figure 3.9b) by ∼0.5 eV. This is due to the octahedral site having a

higher coordination between the intercalant and chalcogen species than the tetra-

hedral site. We do identify some exceptions, such as LiYS2, LiYSe2, MgWSe2,

MgAuSe2, and MgGeSe2, where the tetrahedral site is lower in energy, though
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Figure 3.11: Nudged elastic band diffusion barriers for ScS2 (3.11a), TiS2 (3.11b), ZrS2

(3.11c), and ZrSe2 (3.11d). Octahedral (O) and tetrahedral (T) sites are indicated. Data

for lithium diffusion is shown in red, and in blue for magnesium intercalation.

a closer investigation of these (using larger unit cells and hence intermediate in-

tercalant concentrations) show a transition in favourability of the two sites: for

concentrations of a in LiaMX2 and MgaMX2 greater than 0.5 the tetrahedral site is

indeed energetically preferred, but for concentrations lower than 0.5 the octahe-

dral is preferred. Thus, if these TMDC materials are intercalated from MX2, the

octahedral site will be occupied first, and promote further filling of octahedral sites

as more intercalants are added.

Whilst these high-symmetry, high-coordination intercalation sites are frequently

considered for investigations of intercalation into TMDCs, we have also performed

nudged elastic band (NEB) calculations between these sites on selected systems,

to confirm that there are no lower-energy sites within these materials. The three

routes investigated are a) between two octahedrally-coordinated (O) sites, de-

picted by Route A in Figure 3.9c, b) between one octahedrally-coordinated site
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Figure 3.12: Nudged elastic band diffusion barriers for ZrTe2 (3.12a), HfS2 (3.12b), SnS2

(3.12c), and SnSe2 (3.12d). Octahedral (O) and tetrahedral (T) sites are indicated. Data

for lithium diffusion is shown in red, and in blue for magnesium intercalation.

and one tetrahedrally-coordinated (T) site, depicted by Route B, and c) between

two tetrahedrally-coordinated sites, depicted by Route C. We have considered a

selection of TMDC materials (ScS2, TiS2, ZrS2, ZrSe2, ZrTe2, HfS2, SnS2, and

SnSe2) for this investigation. We have not performed an exhaustive investiga-

tion into the diffusion barriers of every TMDC material due to the dependency

of results on the calculation details. As a result of the periodic boundary con-

ditions used here, we have here fixed the positions of the host transition metal

atoms throughout the CI-NEB calculation, as the diffusion of a single ion should

only cause local distortions and not cause the macroscopic expansion of whole

TMDC sheets. Restriction of the out-of-plane expansion results in the barriers we

have determined being over-estimations [210]. As such, our use of the CI-NEB is

focused on determination of intercalation site.

For both lithium and magnesium intercalation, we find that the octahedrally- and
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tetrahedrally-coordinated sites commonly used for investigations of intercalated

TMDCs are local minima within the layer, and find no other minima. As such,

these are the only candidates for intercalation sites. Each of the materials also

show that the octahedrally-coordinated site is lower in energy that the tetrahe-

dral, due to a higher Li-S coordination and a larger volume for intercalation [191],

agreeing with the above discussion. Hence, we conclude that the octahedral site

is the correct site for ion intercalation, which is in agreement with other TMDC

investigations [191,233,272,273].

These CI-NEB results also allow us to comment on the diffusion properties of in-

tercalants in such layered materials. As the rate of diffusion is determined through

an Arrhenius equation, the height of the activation barriers is a key parameter for

characterizing electrode materials. For each of the materials considered, we see

that, whilst Route A offers the most direct path between two octahedral sites, dif-

fusion along Route B has a lower activation energy. We also find that magnesium

diffusion is subject to higher barriers for each of the three routes considered. This

can be attributed to the higher ionic charge: the larger positive charge of the in-

tercalant and the larger negative charge of the host chalcogen produce stronger

Coulombic interactions than those for lithium intercalation. Separation of these

oppositely-charged species throughout diffusion therefore requires more energy,

and thus a larger barrier to diffusion. For example, in SnSe2, the diffusion barrier

along Route A is 1.34 eV for lithium and 2.43 eV for magnesium. The lowest dif-

fusion barrier is actually found along Route B, where the barriers are 0.59 eV and

1.01 eV for lithium and magnesium, respectively. This agrees with other works

on TMDC intercalation [205, 210, 226]. Diffusion of both lithium and magnesium

would therefore occur at a higher rate along Route B than along Route A.

From the results presented here, it is clear that the preferred site of intercalation is

the octahedrally-coordinated site above the transition metal of the host material.

As such, we use this site for the following study. For the 2× 2× 2 supercells used

in this work, there are eight different sites available for intercalation (indexed a - h

in Figure 3.13) and 23 unique intercalant configurations for intercalation, listed in

Table 3.1. Each of these configurations has been considered.
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Figure 3.13: The different intercalation sites available in the supercells of T-phase

TMDCs considered in this work.

3.7 Charge Analysis
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Figure 3.14: Bader charges for the metal, sulfur, lithium, and magnesium atoms in the

bulk, LiMS2, and MgMS2 structures. Blue circles correspond to the metal atom (M) in the

bulk MS2 structure, red squares correspond to M atom in the intercalated structure, green

diamonds correspond to the sulfur atom (S) in the bulk MS2 structure, black triangles

correspond to S atom in the intercalated structure, and the orange line indicates the

charge of the intercalated species in the intercalated structure. The data for the lithium-

intercalated sulfides are presented in Figure 3.14a, and the magnesium-intercalated data

is presented Figure 3.14b.

Charge transfer from the intercalant species to the host material is the fundamen-

tal mechanism for energy storage in electrode materials, and the distribution of

charge within the material can affect how the structure transforms during inter-

calation, dictating the resultant volumetric expansion. It is therefore important to

consider both the magnitude and direction of any charge transfer. To this end,
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No. Li Atoms Sites Filled No. Li Atoms Sites Filled

0 - 4 adeh

1 a 4 adfg

2 ab 4 adfh

2 ae 5 abcde

2 af 5 abcef

2 ah 5 abceh

3 abc 6 abcdef

3 abe 6 abcefg

3 bce 6 abdefg

4 abcd 6 bcdefg

4 abce 7 abcdefg

4 abch 8 abcdefgh

Table 3.1: Table showing the 24 different intercalation configurations (including the un-

intercalated) considered for the intercalation of MX2 materials for nine different lithium

concentrations.

we utilise two different approaches for assessing charge transfer: Bader charge

analysis, and evaluation of differences in the charge density.

Bader charge analysis [144–147,149] was performed on both the pristine TMDCs

and the fully intercalated (LiMX2 and MgMX2) TMDCs, and the average charges

of the M, X, Li, and Mg atoms are all displayed in Figure 3.14 for the TMDC

sulfides. Firstly, we note that the charge of the intercalant ion in an intercalated

TMDC structure maintains an almost constant value, independent of the host

material. Lithium maintains a charge of of +0.86 (±0.02) |e| across all TMDCs

considered, agreeing with Bader charges reported for the same materials with the

chalcopyrite structure [198] and in graphite [275]. For magnesium intercalation,

the magnesium ion maintains a charge of +1.63 (+0.05
−0.07) |e| across the materials

considered. On average, the magnesium ions posses a charge 1.89 times greater

than that of the intercalated lithium, close to the double valency of the magnesium

ion.

Generally, the M species has a small reduction in its charge after intercalation,
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as indicated by the cyan line in Figure 3.14. There is a larger reduction for mag-

nesium intercalation than there is for lithium intercalation, demonstrating that the

reduction in the charge of the metal arises from the intercalant. This charge

transfer to the metal species is increased as the atomic number of the chalcogen

increases, due to the greater number of electrons already present and hence the

reduced electronegativity of the chalcogen. There is a greater transfer of elec-

tronic charge to the chalcogen species compared to the charge transferred to the

metal, as indicated by the magenta line in Figure 3.14. As the chalcogen species

is both closer to the intercalant and more electronegative than the metal species,

this is unsurprising. Again, there is a greater charge transfer to the chalcogen

species with magnesium intercalation than with lithium intercalation. We iden-

tify a gradual decrease in the absolute charge on both the transition metal and

chalcogen in the intercalated states, as the Group of the transition metal is in-

creased, which has also been noted for the chalcopyrite structure [198]. Selenide

and telluride data show the same trends, which are presented in Appendix B.

Above, we have only considered the Bader charges of the extremes of intercala-

tion (the MX2, LiMX2, and MgMX2 compositions). Of course, during cycling of a

cell, intermediate concentrations will be achieved, potentially resulting in different

charges on the component ions to those at each end of the intercalation range. To

investigate the charges each ionic species can explore, we present in Figure 3.15

and Figure 3.16 the charges exhibited by ions in selected TMDCs, across each

of the 24 intercalant configurations considered in this work. Straight-line connec-

tions between the MX2 and LiMX2/MgMX2 compositions have been included as

visual aid.

We present the results for the intercalated ZrX2 materials in Figure 3.15, and

for NbS2, GeS2, and SnS2 in Figure 3.16. The first thing of note is the uniform

charge exhibited by both lithium and magnesium intercalants. This follows the

constant charge exhibited by both intercalants regardless of which host material

they are introduced to. Of the TMDCs considered, the transition metals all closely

follow the linear trend suggested, with very little spread. On the other hand, the

chalcogens follow the linear line fairly well but present a much larger spread in

charges. This greater spread seen for the chalcogen is to be expected, as the
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Figure 3.15: Bader charges for lithium-intercalated ZrS2 (3.15a), ZrSe2 (3.15c), and

ZrTe2 (3.15e) across the different intercalant concentrations and configurations con-

sidered. Similarly, the Bader charges of magnesium-intercalated ZrS2 (3.15b), ZrSe2

(3.15d), and ZrTe2 (3.15f) are also shown. Dashed lines connecting the initial and final

charges have also been included as visual aid.

ions are closest to the intercalant ions and receive most of the donated electronic

charge.

Beyond Bader charge analysis, an alternative evaluation of the charge transfer

can be achieved by analysing the differences in the charge density before and
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Figure 3.16: Bader charges for lithium-intercalated NbS2 (3.16a), GeS2 (3.16c), and

SnS2 (3.16e) across the different intercalant concentrations and configurations con-

sidered. Similarly, the Bader charges of magnesium-intercalated NbS2 (3.16b), GeS2

(3.16d), and SnS2 (3.16f) are also shown. Dashed lines connecting the initial and final

charges have also been included as visual aid.

after intercalation. Keeping the positions of the ions the same as in the interca-

lated material, the electronic charge densities were obtained. By comparing the

charge density of the full structure with those of the TMDC and lithium (or mag-

nesium) [276], i.e. ∆ρ = ρLiMX2 − [ρLi + ρMX2 ], it is possible to comment on the
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(a) (b)

(c) (d) (e)

Figure 3.17: The planar-average of ∆ρ = ρLiMX2− [ρLi +ρMXS2 ] for intercalants Li (black)

and Mg (red) for intercalated ZrS2 (3.17a) and SnS2 (3.17b). Positive values correspond

to regions of electron accumulation, and negative values correspond to regions of elec-

tron depletion. The corresponding structure is overlayed on these plots. The 3D visuali-

sation of this charge transfer in SnS2 is shown in 3.17c and 3.17d for lithium (isosurface

3.0 me−/Å3) and magnesium (isosurface 5.8 me−/Å3) intercalation, respectively. 3.17e

shows a 2D slice through the (1 1 0) plane of the LiSnS2 charge-difference distribution.

Red isosurfaces show electron depletion and blue isosurfaces show electron accumula-

tion.

charge transfer upon intercalation. An example is shown in Figure 3.17, where

we present the planar-averaged values of ∆ρ for ZrS2 (3.17a) and SnS2 (3.17b),

which are representative of the TMDC materials. In these, the metal species of

the host TMDC (blue, purple) is positioned at c = 0.5, the host chalcogens (yellow)

are at c = 0.25 and c = 0.75, and the intercalant species (green) is at c = 0 with its

periodic image at c = 1. We can see there is significant electron depletion from
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the location of intercalant (c = 0, 1), which is to be expected as the intercalated

species donate their valence electrons to the host material. These donated elec-

trons are shown to be partially donated into the Li-S and Mg-S bonding regions.

These extra electrons in the vicinity of the chalcogen species repel the electrons

that are present in the M-X bond closer to the metal of the host/reduce the num-

ber of electrons required for donation from the metal to the chalcogen. Hence we

observe negative ∆ρ values in the ranges c = 0.3 − 0.4 and c = 0.6 − 0.7, and

the positive values of ∆ρ on the metal site itself. This agrees with the reduction

in Sn and Zr Bader charges presented above. This is further supported with the

3D visualisations of the charge transfer, presented in 3.17c and 3.17d for lithium

and magnesium intercalation into SnS2. The isosurfaces chosen are the deter-

mined by the ratio of intercalant Bader charges ( qMg

qLi
= 1.67

0.86
). Figure 3.17e shows

a 2D slice through the (1 1 0) plane of the LiSnS2 charge-difference distribution,

passing through the tin, sulfur, and lithium atoms. In each of the 3D and 2D vi-

sualisations, red isosurfaces show electron depletion and blue isosurfaces show

electron accumulation. Finally, we note the increased charge transfer, both with

the planar-averaged charge transfer plots and the 3D visualisation, for magne-

sium intercalation compared to lithium. Due to the double valency this is to be

expected, and is in line with the results of the Bader analysis.

3.8 Volumetric Expansion

For intercalation electrodes, it is important to consider the volumetric expansion

that arises from the intercalation of ions, as significant expansion during cycling

can result in degradation of the electrode material, ultimately leading to device

failure. We therefore present in Figure 3.18a and Figure 3.18b the volumetric ex-

pansion associated with lithium and magnesium intercalation, respectively. This

is calculated using % = V−V0
V0
× 100, for fully intercalated (LiMX2 and MgMX2)

volume V and volume of the unintercalated structure V0.

We note that as the transition metal Group increases, there is a larger volume

expansion upon intercalation, with the Group III, IV, and V metal TMDC sul-

fides not exceeding 15% expansion with lithium intercalation. ZrS2 and HfS2
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Figure 3.18: Total percentage volume expansion is presented for lithium (3.18a) and

magnesium (3.18b) intercalation, calculated using % = V−V0
V0
× 100. In each of these,

sulfide data is presented in black (top), selenide data is presented in red (middle), and

telluride data is presented in blue (bottom).

in particular demonstrate expansions of less than 1%. These expansions are

comparable to many market leaders which posses a layered structure, including

LiCoO2 [277, 278] (2-3.25%), NMC [279] (8.44%), and graphite [280] (13.2%).

Conversely, Group IX, X, and XI metal TMDC sulfides undergo expansions over

20%. We see the volume expansion of all of the TMDCs remaining below 60%,

with most materials remaining below 30%. Whilst these are larger than expan-

sions demonstrated by other layered materials, they remain exceptionally low

compared to many materials that have been considered for electrode applica-

tions, such as tin [281] (300%) and silicon [282] (380%). Across the family of

TMDCs the expansion that arises from magnesium intercalation is comparable to

that with lithium intercalation, and considering the ionic radii of both lithium and

magnesium, this is not surprising.

Looking at the expansion of the a- and c-lattice vectors can not only be useful for

determining the origin of the volume expansion, but also for the pairing of mate-

rials in superlattice structures. We present in Appendix B the lattice constants

for each of the TMDCs without an intercalant, when intercalated with lithium,

and when intercalated with magnesium. With intercalation, most TMDCs show

an out-of-plane lattice expansion. For Group III-VIII, this expansion remains be-

low ∼15%, with some TMDCs showing out-of-plane contraction with magnesium

intercalation. Later Groups, however, demonstrate expansions exceeding 15%,
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reaching as high as 45%. This expansion is shown to be due to a lengthening

of the M-X bond, and an increase in the vertical separation between chalcogens

on opposing sides of the vdW gap. For lithium intercalation, most of the TMDCs

exhibit in-plane lattice expansion of 5-10%, with a few of the early-transition metal

TMDCs surprisingly contracting. We notice greater expansion of the in-plane lat-

tice constants with magnesium intercalation, with some TMDC tellurides exhibit-

ing expansions close to 20%.

Unintercalated structures show a large spread in the in-plane lattice constants,

but upon intercalation the spread in lattice constants of the TMDCs is reduced.

To highlight this, the TMDC with the largest lattice constant of the pristine T-phase

sulfides is shown to be YS2 with a = 4.07 Å and the smallest lattice constant is

CrS2 with a = 3.04 Å, giving a range of 1.03 Å. However, upon intercalation to

LiMS2 the largest lattice constant is PbS2 with a = 3.84 Å and the smallest is WS2

with a = 3.24 Å. This gives a smaller range of 0.60 Å. Similarly, upon intercalation

with magnesium to MgMS2 the largest lattice constant is PbS2 with a = 3.86 Å and

the smallest is WS2 with a = 3.27 Å, giving a range of 0.61 Å. Clearly, the largest

lattice constant is reduced and the smallest lattice constant is increased. This

is likely due to the intercalated ions straining the TMDCs such that the nearest-

neighbour distance of the intercalated species is close to the nearest-neighbour

distance in the bulk form of the intercalant.

Along with the changes in lattice vectors and volume of these materials, there are

also small changes to the atomic structure of the host material. Upon intercala-

tion, we typically see an increase in the in-plane metal-metal distance, following

the increase of the in-plane lattice constants, and a smaller increase in the metal-

chalcogen bond length. These increases are more significant for the magnesium

intercalant than they are for lithium. We also note a vertical stretching/contraction

of the TMDC sheets: this is identified by both an increase/decrease in the verti-

cal separation between the transition metal and nearest six chalcogen ions, and

by an increase/decrease in the vertical separation between intralayer chalcogen

ions on opposing basal planes of a TMDC layer. The bond length between the

magnesium and the chalcogen species is found to be longer than the bond length

between lithium and the chalcogen species. Further details of ionic geometry is
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given in Appendix B.

3.9 Voltages
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Figure 3.19: Intercalation voltages for TMDC materials intercalated with lithium and mag-

nesium. The average lithium and magnesium intercalation voltages for the TMDC sulfides

are given in 3.19a, and 3.19c, respectively. The average voltage obtained from intercala-

ton between MX2 and LiMX2 is presented as red crosses, the average voltage obtained

from intercalaton between MX2 and Li0.5MX2 is presented as black upward-pointing trian-

gles, and the average voltage obtained from intercalaton between Li0.5MX2 and LiMX2 is

presented as black downward-pointing triangles. 3.19b and 3.19d give specific examples

of the variation of intercalation potential with lithium and magnesium content, respectively.

One of the fundamental properties used to evaluate a particular material for its

application as an electrode is the voltage. This gives the energy associated with

intercalation with a given intercalant ion, allows for easy comparison of different
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materials, and determines whether a material is best suited for a cathode (high

voltage) or an anode (low voltage). Using equation (3.9) the intercalation po-

tential vs. Li/Li+ can be obtained for a range of intercalant concentrations. In

Figure 3.19a we present the supercell average voltages for the TMDC sulfides

with lithium intercalation. The average voltage is obtained by taking the aver-

age across the intercalation range, equivalent to Vav = E8−(E0+8ELi)
8

. We have

also indicated the average potential for the first half of the intercalation range

(0 < a < 0.5) and the average potential for the second half (0.5 < a < 1). Equiv-

alent data for the selenide and telluride materials are presented in Appendix B.

Comparing these values, we see a clear reduction in the average voltage as the

atomic number of the chalcogen species is increased. In general, most of the

sulfide (selenide|telluride) values lie in the 2− 2.5 V (1.5− 2 V|1− 1.5 V) range.

Anode materials should have well-defined voltage plateaus lower than 2 V vs.

Li/Li+, ideally in the range 0.5-1.5 V [283]. Based solely on this, telluride ma-

terials appear best suited with most voltages being around 1.5 V. We highlight

this with VTe2 and WTe2 in Figure 3.19b, which have average voltages of 1.46 V

and 1.56 V, respectively. However, the voltage profiles of these materials vary

significantly across the concentration range. Other telluride materials offer the

low voltages ideal for anodes but with a more plateau-like voltage profile, such as

those composed of the Group IV, X, and XIV metals, each varying by less than

0.5 V. Unfortunately, the atomic mass of tellurium is much larger than sulfur and

selenium, the other chalcogen species used in TMDC materials, which would sig-

nificantly increase the mass of an electrode host-material, and thus reduce the

gravimetric capacity. Though there are fewer sulfide and selenide materials that

have ideal voltage profiles for anodes, there are still many (such as HfS2, PtS2,

NbSe2, and TaSe2 as shown in Figure 3.19b) which also have relatively flat volt-

ages below 2 V. Conversely, cathode materials should possess much higher volt-

ages, with current cathodes offering voltages above 3 V [284]. We demonstrate

this in Figure 3.19b with scandium and yttrium sulfide and selenide materials,

which are seen to have voltages exceeding 3 V (in the case of the selenides) and

3.5 V (in the case of the sulfides). The promise of ScS2 will be discussed further

in Chapter 5.
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In a similar manner we consider magnesium intercalation, with equation (3.9) al-

lowing us to obtain the average magnesium intercalation potentials vs. Mg/Mg2+.

We present the results for the TMDC sulfides in Figure 3.19c, with selenide and

telluride data being presented in Appendix B. Due to the double valency of mag-

nesium, one can expect different intercalation behaviours to manifest in the pro-

files of the TMDCs, corresponding to different changes to the oxidation state of

the host material. At a concentration of a = 0.5, the two electrons from each of

the magnesium ions are donated to the host material, with one electron effectively

being donated to each MX2 unit. Past a = 0.5, further electron donation results in

another change to the oxidation states of the MX2 unit.

As was observed for lithium intercalation, we note the reduction in intercalation

potential with increased atomic number of the chalcogen species, and highlight it

in Figure 3.19d with the TiX2 materials: TiS2 has an average voltage of 0.86 V,

TiSe2 a voltage of 0.61 V, and TiTe2 a voltage of 0.37 V. For most of the TMDCs,

there is a significant drop in the magnesium intercalation potential for the sec-

ond half of the intercalation range. This is dramatically shown with WS2, where

the initial intercalation potential is 1.99 V and the final intercalation potential is

-1.24 V, demonstrating a drop of over 3 V. We observe that TMDCs composed of

early-transition metals have a greater range in the magnesium intercalation volt-

age than the late-transition metals/post-transition metals. There are some of the

materials which show very little change to the intercalation potential, with NiS2,

GeS2 and SnS2 each varying by 0 V. These are presented in Figure 3.19d. This

constant voltage is due to the fact that, for each of the concentrations, it is ener-

getically preferred for the magnesium to separate into regions with no magnesium

(with an energy of E0) and regions that are fully intercalated (with and energy of

E8). For example, the lowest energy for Mg 1
8
SnS2 is given by E ′1 = 7

8
E0 + 1

8
E8,

and the lowest energy for Mg 2
8
SnS2 is given by E ′2 = 6

8
E0 + 2

8
E8. As the difference

between consecutive concentrations is a constant ∆E = 1
8
E8 − 1

8
E0, the voltage

is also constant across the range. Further discussion of such clustering or phase

separation is presented in the next section.

For magnesium intercalation, none of the TMDCs achieve voltages greater than

3 V, and so do not offer much promise as cathode materials. However, many of
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them have voltages below 1.5 V, indicating their potential as anode materials. Fur-

ther, we can highlight those materials with little difference between the two stages

of their intercalation to ensure we have a well-defined voltage plateau [283]. How-

ever, we do not need to rule out those materials with a large difference between

the two stages. Due to the double valency of magnesium, the total charge trans-

ferred from the magnesium in either the range 0 < a < 0.5 or 0.5 < a < 1, and

hence the total energy stored, is comparable to the charge transferred across the

full 0 < a < 1 range using lithium intercalation. As such, in situations where the

there is a large difference between the two charging stages, we can utilise just

part of the intercalation range. For example, TMDCs composed of the Group III,

IV, and V metals show voltages below 0.5 V in the range 0.5 < a < 1, which is

ideal for anodes.

The results presented here find good agreement with many experimental works.

In particular, we see good agreement between the 2-2.5 V intercalation volt-

age identified for LiTiS2 [67, 205, 208], and the 1.6-1.9 V intercalation voltage of

LiZrS2 [212, 214]. The intercalation voltage of T-MoS2 has been identified in the

range 1.9-2.5 V which agrees with the results we have presented [218,222], and

we reproduce the 1.8 V intercalation potential seen for intercalation of SnS2 [233,

239]. Of course, many transition metal dichalcogenide compounds do not typ-

ically exhibit the layered structure that has been considered in this work [197],

most commonly the pyrite structure as for FeS2 [285], MnS2, and CoS2. Compar-

ison with experiment with such materials is therefore not appropriate.

3.10 Clustering

We can comment on whether it is preferred for intercalants to intercalate a single

vdW gap or to distribute across multiple layers. This is presented in Figure 3.20,

where we focus on the Li0.5MX2 (3.20a) and Mg0.5MX2 (3.20b) intercalant con-

centration as an indicator, and used the indexing outlined in Figure 3.13 and Ta-

ble 3.1. We indicate where intercalants spread evenly throughout the host struc-

ture with orange-shaded regions, and indicate where intercalants completely fill

a single layer before occupying adjacent layers with the green-shaded regions.
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Figure 3.20: Graphs indicating which intercalant configuration at Li0.5MX2 (3.20a) and

Mg0.5MX2 (3.20b) is the lowest in energy. Indexing is used following Figure 3.13 and

Table 3.1. The orange-shaded regions indicate intercalants spread evenly throughout the

host structure, and the green-shaded regions indicate intercalants fill a single layer before

intercalation of a second layer begins.

For lithium intercalation, most TMDCs have lithium spread evenly throughout the

host [286], with the exception of Group IX and X TMDCs. There is then an even

stronger preference for even-distribution of magnesium. This preference for in-

tercalants to be distributed evenly throughout the host can be explained with a

simple argument of minimising Coulombic repulsion between intercalant ions.
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Figure 3.21: Graphs depicting whether TMDCs are intercalated homogeneously (Hom)

or whether there is domain/phase separation (PS). Results for lithium-intercalated

TMDCs are presented in 3.21a, and those for magnesium-intercalated TMDCs are pre-

sented in 3.21b.

As mentioned in the above discussion on how we obtain the intercalation voltage,

it is possible for intercalants to separate into domains of different concentrations,
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beyond the configurations presented in Figure 3.20. For example, rather than

have each cell of a crystal intercalated to Li0.5MX2, it may be preferred for do-

main/phase separation into Li0MX2 and Li1MX2, as has been demonstrated with

LiSnS2. We again consider the Li0.5MX2 and Mg0.5MX2 concentrations as an in-

dicator for this separation, and present the results in Figure 3.21. Most materials

show homogeneous (Hom) filling, and would follow the intercalant configuration

presented in Figure 3.20. However, many materials show a phase separation

(PS) into domains of different intercalant concentrations, for example (but not lim-

ited to) Li0MX2 and Li1MX2.

3.11 Thermodynamic Stability

Using equations (3.18)-(3.20), we are able to construct thermodynamic phase

diagrams to evaluate the thermodynamic stability of the intercalated structures

against conversion, which would result in the loss of the layered structure. By

determining the intercalant concentration that leads to the loss of the window of

stability on the phase diagram, we can obtain the limit on the reversible inter-

calation charge capacity, an important property for any electrode material. Fig-

ure 3.22 presents the values of EIS (given by equations (3.25) and (3.27)) for both

lithium and magnesium intercalation of the TMDCs, for a range of intercalation

concentrations. Positive values of EIS indicate an intercalated TMDC structure

is stable against conversion, and from the range of concentrations over which

EIS remains positive, we have determined the specific charge capacity of each

material. These values (in mAhg−1) have been included in Figure 3.22.

Figure 3.22a presents the values of EIS for lithium intercalation of the sulfides,

with specific examples being highlighted in Figure 3.22b. Equivalent figures are

presented in Appendix B for the selenide and telluride materials. In general, we

see a reduction in the stability of the TMDCs as the concentration of lithium is in-

creased. The size of this effect varies across the periodic table, with the TMDCs

composed of the central Group VI, VII, and VIII metals showing the largest varia-

tion. This is highlighted with WS2 in Figure 3.22b, where EIS drops from 2.42 eV

at a concentration of Li0.125WS2, to 2.23 eV at a concentration of Li0.25WS2, to
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Figure 3.22: EIS values for each of the TMDC sulfides intercalated with different con-

centrations of lithium (3.22a) and magnesium (3.22c). The resultant gravimetric charge

capacities in mAhg−1 (as determined from the range over which EIS is positive) are also

presented at the bottom of each of the figures. 3.22b and 3.22d give specific examples

of the variation of EIS with lithium and magnesium content, respectively.

1.57 eV at a concentration of Li0.5WS2, finally to 0.74 eV at a concentration of

LiWS2. However, those TMDCs composed of metals from Groups IV, V, IX, and X

having a relatively constant values of EIS. For example, as shown in Figure 3.22b,

TiS2 demonstrates a constant EIS = 1.51 eV at both LiTiS2 and Li0.125TiS2, HfS2

has a minor decrease from 1.02 eV (LiHfS2) to 1.01 eV (Li0.125HfS2), and for NiS2

it retains the same value of EIS = 0.23 eV. Whilst most TMDCs are shown to

destabilise with increased lithium content, we do highlight in Figure 3.22b some

examples that prove exceptions, such as ScS2, ZrS2, and NbS2, whose values of

EIS increase with lithium content.

With increasing atomic number of the chalcogen species, there is a gradual re-

duction in the stability (indicated by a reduction in EIS). This is shown best

with the Group XI TMDCs (CuX2, AgX2, and AuX2), where the sulfides are sta-
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ble across the concentration range investigated, the selenides become unstable

when the lithium concentration exceeds a = 0.5, but none of the tellurides are sta-

ble for any of the intercalant concentrations. The data for the CuX2 materials is

presented in Figure 3.22b to highlight this. This can be explained with the reduced

electronegativity for larger atomic numbers, as the greater number of electrons al-

ready present at the chalcogen site lowers the favourability of additional electrons

being donated. There is no easily-identifiable trend seen for changing the tran-

sition metal species, however, with some Groups showing an increase in EIS as

the atomic number of the transition metal is increased (e.g. Groups III and VIII)

and some showing a decrease (e.g. Groups IV and X).

Overall, the Group III (Sc, Y), IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) ma-

terials offer the greatest stability, which is unsurprising given that these materials

have been investigated the most thoroughly over the past 50 years. However, we

also highlight the Group VIII (Fe, Ru, Os) and IX (Co, Rh, Ir) sulfides as potential

lithium-intercalation materials as they show stability over the intercalation range

considered here.

For magnesium intercalation we see similar results, as shown in Figure 3.22c for

the sulfides, with specific examples are presented in Figure 3.22d. The selenide

and telluride results are also presented in Appendix B. We typically see a reduc-

tion in the stability with increased magnesium concentration. Again, we highlight

this with WS2, where EIS drops from 1.99 eV at a concentration of Mg0.125WS2,

to 1.06 eV at a concentration of Mg0.25WS2, to 0.60 eV at a concentration of

Mg0.5WS2, finally to -3.17 eV at a concentration of MgWS2. We note this large

reduction in EIS between intercalation concentrations of a = 0.5 and a = 1, which

is greater than what was demonstrated for lithium intercalation. This is also seen

for other materials, including VS2, NbS2, and MoS2, as shown in Figure 3.22d.

We attribute this large reduction to the second donated electron from the mag-

nesium: the electrons donated in the range 0 ≤ a ≤ 0.5 with magnesium inter-

calation stimulate the same transition in oxidation state as that of the electrons

donated in the range 0 ≤ a ≤ 1 with lithium intercalation. Any further charge

donation triggers different changes in oxidation state, as more than one electron

is then being donated to each of the MX2 units. However, despite this larger drop
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for greater magnesium concentrations, many of the TMDCs still possess positive

values of EIS, including TMDCs containing Group III, IV, or V metals. As with

lithium intercalation, we note a gradual reduction in stability of the TMDCs as the

atomic number of the chalcogen species is increased, and demonstrate this with

both the ZrX2 and CuX2 TMDCs in Figure 3.22d. Despite these causes for stabil-

ity reduction, however, there still remain several TMDCs that are predicted to be

resilient with magnesium intercalation: The Group III (Sc, Y), IV (Ti, Zr, Hf), and V

(V, Nb, Ta) sulfides again offer the greatest stability to intercalation. Though many

of the other materials show a susceptibility to conversion with intercalation, the

Group VIII (Fe, Ru, Os) and IX (Co, Rh, Ir) sulfides offer stability over a significant

intercalant concentration range (0 < a < 0.5), which corresponds to significant

charge transfer when noting the double valency of magnesium.
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Figure 3.23: 3.23a shows the phase diagram for intercalated 2H-MoS2 and 3.23b shows

the phase diagram for intercalated 1T-MoS2, for varying lithium concentrations.

Comparing our results here with experimental studies we find good agreement,

particularly for the Group IV TMDCs. For each of the Group IV dichalcogenides,

we find a positive value of EIS, indicating their stability against conversion. Exper-

imentally, TiS2 has been shown to be stable over a range of lithium concentrations

up to a = 1 in LiaTiS2, as have the ZrX2 and HfX2 materials [211, 226]. SnS2 is

shown here to have a negative EIS, indicating it is not stable to intercalation and

hence susceptible to conversion. This agrees with experimental works [236–239]

where SnS2 is observed to readily undergo conversion reactions to Li2S or an

alloy of Sn and Li. We are also able to show the Hc-MoS2 → T-MoS2 transition

arising from lithium intercalation. It has been widely reported that, upon interca-
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lation with lithium, 2H-MoS2 undergoes a phase transition to 1T-MoS2. Within the

phase diagrams, this presents itself as the 2H-MoS2 having no window of stability

for the intercalated structure, with a negative value of EIS. The 1T-MoS2 phase,

however, has a value of EIS = 1.055 eV. These are shown in Figure 3.23a and

Figure 3.23b, respectively. As such, the intercalated layered structure must con-

vert to the T-phase, otherwise the decomposition into Li2S becomes energetically

favourable.

Whilst some works have achieved intercalant contents greater than a = 1, such as

with Li2VSe2 [211], Li3TiS2 [287], and Li3.48NbSe2 [26], we have not investigated

beyond this limit here. However, we have shown for these cases that EIS remains

positive with lithium concentration, with values of EIS = 0.63 eV, EIS = 1.51 eV,

and EIS = 0.70 eV for LiVSe2, LiTiS2, and LiNbSe2, respectively. These positive

values, therefore, still allow for further intercalation towards the concentrations

that have been observed experimentally.

It should also be noted that we have not considered the effects of surface forma-

tion or how microscopic morphology can play a role. Experimental works have

shown that lithium deposition onto the surface of these TMDC materials can lead

to conversion even for TMDCs that are stable to intercalation [194,288], and first

principles methods have been used to confirm that the formation of a surface can

reduce the size of the stability window [271], therefore reducing EIS and making

these materials more susceptible to conversion reactions.

The values of EIS presented here are only for the geometrically relaxed structure

where the intercalant occupies the lowest-energy intercalation site. Of course,

during the cycling of the electrode an intercalant is expected to occupy not only

higher-energy intercalation sites, but also intermediate points (e.g. along Routes

A, B and C in Figure 3.9c). As such, the host material will undergo local distortions

that will increase its energetic state, and hence reduce the corresponding stability

indicated by EIS. However, accurate mapping of the energy space for intercalant

diffusion remains a challenge due to current limits on cell sizes. Further, obtaining

a sufficient number of interpolated CI-NEB images at different intercalant concen-

trations for each of the TMDCs would be computationally demanding. As such,

we use the difference in energy between the intercalant occupying the octahderal
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and tetrahedral sites rather than the activation barrier height. We rationalise this

further by considering the coordination between the intercalant and chalcogen

species which is reduced for intermediate positions and so limits the available

ions for conversion to the appropriate Li2X or MgX compound. Finally, the time

scales associated with an intercalant ion being in an intermediate position are sig-

nificantly shorter than the time scales associated with occupation of an octahedral

or a tetrahedral site.

The difference in energy between lithium in the octahedral and tetrahedral sites

is approximately 0.4 eV across each of the TMDCs, whereas it is typically slightly

higher at 0.6 eV for magnesium (see Section 3.6). Whilst there are examples of

both higher and lower energies, we can use these typical values as a further limit

on EIS, indicated by the shaded region in Figure 3.22c. For lithium intercalation,

only a few of the sulfides are affected by this new limit, with the fully intercalated

ReS2 becoming susceptible to conversion, along with the Group X, XI, and XIV

materials. However, there is a more dramatic consequence for magnesium in-

tercalation due to the second donated electron. Almost all of the TMDC sulfides

demonstrate a reduction in their capacity, arising from the higher magnesium con-

centrations being falling within the new limit on EIS.

3.11.1 Formation Energy vs. Intercalant Binding Energy

An alternative but equivalent way to assess the stability of a TMDC material

against conversion is to consider the two contributions to the material stability:

the formation energy of the pristine TMDC material and the binding energy of the

intercalant with the host material [271]. These two quantities are more commonly

used for first-principles material evaluation. The TMDC formation energy is given

by,

∆G(MX2) = E(MX2)− [E(M) + 2E(X)]. (3.28)

The formation energy describes the energy required to form a material from the

constituent elements, and so gives an indication of the strength of the M-X bond.

The more negative a value of ∆G(MX2) the stronger the M-X bond, and hence

the more resistant the TMDC is to conversion. Similarly, the intercalant binding



114 Chapter 3. Intercalation of TMDCs

(a)

-5 -4 -3 -2 -1 0

Lithium Binding Energy (eV)

-6

-5

-4

-3

-2

-1

0

T
M

D
C

 F
o

rm
a

ti
o
n

 E
n

e
rg

y
 (

e
V

)

SnS
2

PdS
2

PtS
2

GeS
2

ScS
2 TiS

2

ZrS
2 HfS

2

WS
2

NbS
2

NiS
2

CuS
2

LiMS
2

Li
0.875

MS
2

Li
0.75

MS
2

Li
0.625

MS
2

Li
0.5

MS
2

Li
0.375

MS
2

Li
0.25

MS
2

Li
0.125

MS
2

(b)

-5 -4 -3 -2 -1 0

Magnesium Binding Energy (eV)

-6

-5

-4

-3

-2

-1

0

T
M

D
C

 F
o

rm
a

ti
o
n

 E
n

e
rg

y
 (

e
V

)

ZrS
2

NbS
2

VS
2

MoS
2

WS
2

SnS
2

MgMS
2

Mg
0.875

MS
2

Mg
0.75

MS
2

Mg
0.625

MS
2

Mg
0.5

MS
2

Mg
0.375

MS
2

Mg
0.25

MS
2

Mg
0.125

MS
2

Figure 3.24: Comparison of TMDC formation energy (equation (3.28)) and intercalant

binding energy (equation (3.29)) for different intercalant concentrations of selected

TMDCs. 3.24a and 3.24b present results for lithium and magnesium intercalation, re-

spectively. The shaded region indicates where conversion is energetically favourable,

equivalent to negative values of EIS .

energy is given by,

Eb = E(LiaMX2)− [E(MX2) + aE(Li)] (3.29)

(or equivalent for magnesium). This then gives the energy required to add some

quantity a of an intercalant to the host TMDC, again with negative values signi-

fying a more favourable intercalation reaction, hence indicating the strength of

the interaction between intercalant and TMDC. To resist the conversion reaction,

a TMDC should possess a large (negative) formation energy, large (negative)

intercalant binding energy, or ideally both.

In terms of the above two quantities, we can determine the limits of stability, which

are,

∆G(MX2) + 4Eb ≤ 2∆G(Li2X)

∆G(MX2) + 2Eb ≤ 2∆G(MgX).
(3.30)

which requires the formation energy of the TMDC and the intercalant binding en-

ergy to be lower that the formation energy of the appropriate conversion product

(∆G(Li2X) or ∆G(MgX)). In Figure 3.24a we plot the TMDC formation energy

against the lithium binding energy, and also indicate the boundary described by

equation (3.30). Here, it is now easy to see that materials that possess a nega-

tive value of EIS and are unstable against intercalation (such as PdS2, SnS2, or
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CuTe2) are those with low TMDC formation energy and low lithium binding energy.

3.12 HSE06 Hybrid Functional

Whilst we have shown good agreement with experiment, validating our choice

of functional, previous studies have shown that the choice of functional can lead

to differences in predictions for properties important to electrode materials [289,

290]. To account for the inaccurate calculation of exchange in GGA function-

als such as PBE, and to evaluate the differences that can arise from choice of

functional, the HSE06 hybrid functional [130, 135, 265] has used for a selection

of systems. Due to the higher computational cost of this functional compared to

PBE, a smaller system was considered: the primitive unit cell of each of the 1T-

TMDCs was used and intercalated with a single lithium atom. This corresponds

to a lithium concentration equivalent to eight lithium atoms in the supercell sys-

tem. Clearly, the primitive and supercell systems significantly differ in size, and

so, to ensure that a comparison is made with an equivalently sized system, PBE

calculations were also performed on the primitive cell with a single lithium inter-

calated per cell. For both the HSE and PBE calculations, geometric relaxations

were converged to less than 0.01 eV/Å per atom, and electronic self-consistency

is considered to an accuracy of 10−7 eV. Monkhorst-Pack k-point grids [140] of

6×6×6 and 12×12×12 were used for the HSE and PBE calculations, respectively.

The comparison of the PBE and HSE06 functionals are presented in Figure 3.25

for selected lithium-intercalated TMDCs, with further presentation of results pro-

vided in Appendix B. In general, we identify an increase in both the voltage and

EIS using the HSE06 functional compared to PBE. For example, the LiTiS2 volt-

age is increased by 0.17 V, the LiMoS2 voltage is increased by 0.25 V, and the

LiIrS2 voltage is increased by 0.58 V compared to the PBE functional. This in-

crease in intercalation voltage with use of a hybrid functional (as well as with using

GGA+U corrections) has been shown for a range of transition metal oxides com-

monly used as electrode materials [289, 290]. We also note, in general, a larger

effect on the voltage for heavier chalcogen species, as shown with the MoX2 se-

ries of TMDCs: the telluride material has a larger voltage increase (1.03 V) than
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Figure 3.25: Comparison of results using the PBE and HSE06 functionals. 3.25a, 3.25c,

and 3.25e present the voltages for TiS2, ZrS2, and HfS2, respectively. 3.25b, 3.25d, and

3.25f present the phase diagrams for TiS2, ZrS2, and HfS2, respectively. The insets show

the values of EIS .

the selenide (0.46 V), which has a larger increase than the sulfide (0.25 V).

The exceptions to this include the voltages of SnS2 (reduced by 0.14 V), ZrS2

(reduced by 0.06 V), and HfS2 (reduced by 0.04 V). Further, there is also a reduc-

tion in EIS for these materials due to lowering of the diagonal line described by
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TMDC PBE Supercell

Average Voltage (V)

PBE Primitive Cell

Voltage (V)

HSE Primitive Cell

Voltage (V)

ScS2 3.655 3.655 4.231

YS2 3.559 3.559 4.108

TiS2 2.327 2.327 2.493

ZrS2 2.027 2.027 1.966

HfS2 1.726 1.726 1.684

MoS2 2.466 1.814 2.066

IrS2 2.348 2.348 2.922

MoSe2 2.039 1.285 1.748

MoTe2 1.597 0.820 1.849

Table 3.2: Summary of average TMDC lithium intercalation voltages, using the HSE06

functional for the primitive unit cells. PBE results using the supercell and primitive cell

have been reproduced for easy comparison.

equation (3.20), corresponding to the boundary between the intercalated TMDC

and the Li2X crystal. Similarly, there is a raising of the horizontal line described

by equation (3.19), which describes the boundary between the intercalated and

pristine TMDC structures. As such, the intercalated compound is reduced in

favourability compared to both the pristine structure, and the conversion product

Li2X. By looking at the phase diagrams for the MoX2 materials (see Appendix B)

we also note that as the chalcogen is varied down the group, the horizontal line is

shifted further downwards. In Table 3.2 and Table 3.3 we present numerical val-

ues comparing HSE06 and PBE results. As we have achieved good agreement

with experiment using the PBE functional, however, we have not performed an

exhaustive study using the HSE06 alternative.

We also consider the difference in volumetric expansion. Using the PBE (HSE06)

functional the expansion for SnS2 is 9.81% (9.92%), for ZrS2 it is 0.28% (-0.40%),

and for HfS2 it is 0.32% (-0.24%). Again, the differences between the two func-

tionals are very small.
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TMDC PBE Supercell EIS

(eV)

PBE Primitive Cell

EIS (eV)

HSE Primitive Cell

EIS (eV)

ScS2 3.22 3.22 3.81

YS2 3.58 3.20 3.78

TiS2 1.51 1.51 1.67

ZrS2 1.38 1.38 1.27

HfS2 1.02 1.02 0.89

MoS2 1.05 0.19 0.30

IrS2 0.65 0.65 1.28

SnS2 -0.09 -0.09 -0.42

MoSe2 0.53 -0.48 -0.11

MoTe2 0.10 -0.93 0.21

Table 3.3: Summary of average EIS values for lithium intercalation of TMDCs, using the

HSE06 functional for the primitive unit cells. PBE results using the supercell and primitive

cell have been reproduced for easy comparison.

3.13 Discussion of Hc-Phase TMDCs.

We here present data for those TMDCs where the Hc-phase was preferred to

the T-phase at some point over the intercalation range. We present the average

intercalation voltages in Figure 3.26a, where we note some slight changes to the

intercalation voltages, with the Hc-phase voltages being higher that the T-phase

for Group IV TMDCs, and lower in the Hc-phase than the T-phase for the Group

VI TMDCs. There is a mix for the Group V TMDCs.

We present in Figure 3.26 the evolution of EIS with lithium (Figure 3.26b) and

magnesium (Figure 3.26c) intercalant concentration in H-phase TMDC sulfides.

More significantly, we note some large differences in the stability characterised

through EIS, though we see the same general trends as are observed in the

T-phase: With increased lithium intercalation, the Group IV and V TMDCs re-

tain a relatively constant value of EIS, and the Group VI TMDCs show a drop

in stability for higher concentrations. With magnesium intercalation, we again

notice the drop in stability for intercalation concentration greater than a = 0.5
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Figure 3.26: H-phase intercalation voltages (3.26a) and values of EIS for lithium (3.26b)

and magnesium (3.26c) intercalation into H-phase TMDCs.

attributed to the double valency of magnesium. The Group IV materials remain

stable across the range of concentrations, as do the Group V materials for con-

centrations lower than a = 0.5. Beyond this intercalant concentration they become

unstable. The MoX2 and WX2 materials show no positive values of EIS, but as

their T-phase counterparts do, this is a manifestation of the H→T transition. For

each of the TMDCs considered here, the heavier chalcogens show reduced sta-

bility and hence a higher susceptibility to conversion reactions.
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Figure 3.27: Electronic band gap sizes for pristine bulk (circles), lithium-intercalated

(pluses), and magnesium-intercalated (crosses) TMDCs. Sulfide data is in black (top),

selenide data is in red (middle), and telluride data is in blue (bottom).

3.14 Electronic Structure

One of the attractive features of the TMDC family is the wide range of electronic

properties that have been reported [189, 190, 291]. For electrodes, it is desir-

able for the host material to be conductive so that the compensating electrons

can more easily conduct throughout the host material, and to remove the need

for additives such as graphitic carbon. However, upon the addition of intercalant

species it can be expected that the electronic structure and properties are mod-

ified. As it is desirable for this conductive nature to endure across the range of

intercalation, we here present the changes to the electronic structure with inter-

calation.

We present in Figure 3.27 the electronic band gaps for each of the pristine,

lithium-intercalated, and magnesium-intercalated materials. It is clear to see that

the vast majority possess no band gap, and so should be electronically conduc-

tive. This agrees with previous works which have established the increased con-

ductivity of T-phase TMDCs over their H-phase counterparts. This is ideal for

electrode applications where the conduction of electrons is required. However,

TMDCs composed of Group III, VII, IX, and XIV metals undergo transitions be-
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Figure 3.28: Electronic band structures and density of states (DOS) for pristine and

intercalated TMDCs. NbS2 data is presented in 3.28a and 3.28d, HfS2 in 3.28b and

3.28e, and GeS2 in 3.28c and 3.28f. MX2 data is presented in black, LiMX2 data in red,

and MgMX2 data in blue. Each has been aligned with high energy occupied states of the

pristine MX2 material. The energy of the highest occupied state (EFermi) is indicated with

dashed lines.

tween conducting and semiconducting/insulating states, and so conductive ad-

ditives would be necessary to facilitate charge transfer. In fact, we identify four

different cases describing how the electronic structure can change with interca-

lation: either the TMDC i) retains a conductive nature with intercalation, ii) un-

dergoes a semiconductor-to-conductor transition, iii) undergoes a conductor-to-

semiconductor transition, or iv) possesses an insulating nature before intercala-

tion and at the a = 1 intercalation level. We highlight some examples of these

in Figure 3.28, where the electronic band structures and associated density of

states (DOS) are presented.

We track the shift in the position of the Fermi level with intercalation by align-

ment of the band structures of the pristine, lithium-intercalated, and magnesium-

intercalated structures. Alignment of electronic band structures is usually achieved

either through alignment of core states [262] or through alignment with respect

to the vacuum level [262–264]. However, charge transfer upon intercalation (as
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shall be discussed later) leads to local electric dipoles that shift the position of

even deep core states, and so core alignment is not appropriate. Alignment with

respect to the vacuum level, on the other hand, requires the inclusion of a vacuum

region within the system. To maintain stoichiometry, one surface would need to

consist of intercalant ions and the opposite layer should be a bare TMDC layer,

which naturally leads to large electric fields across the vacuum region. To avoid

these large electric fields, both surfaces should be symmetrically equivalent, but

this then breaks the stoichiometry of the compound in question. As such, we

have instead chosen to qualitatively align the high-energy occupied states of the

pristine and intercalated structures at Γ, allowing us to comment on the position

of the Fermi level.

For materials such as NbS2, the Fermi level lies in the middle of a band, as shown

in see Figure 3.28a and 3.28d. The addition of lithium donates electronic charge

to the host, and so the Fermi level rises accordingly. Similarly, with magnesium

intercalation the Fermi level rises but by a greater amount due to the larger elec-

tronic charge that is donated to the host. We note some small changes to the

positions and shape of the individual bands due to local electric fields arising from

charge transfer (as was shown in Figure 3.17), which can be identified by consid-

ering the bands positions at Γ. Otherwise, the general features of the bands can

easily be tracked. No new bands, which would be associated with the intercalant

species, are introduced into the regions presented. For materials such as HfS2

which undergo a transition from a semiconducting to conducting, we see much

the same behaviour, with the addition of a larger jump in the position of the Fermi

level due to the presence of the host band gap. Once this band gap has been

overcome, however, population of the conduction band states can occur and a

conducting nature is achieved (see Figure 3.28b and 3.28e). Conversely, ScS2 is

an example of a material which loses its conductive nature once fully intercalated,

further discussion of this has been presented elsewhere [230]. In this situation,

the addition of electrons fills states until the next band gap is reached. Finally, in

Figure 3.28c and 3.28f we highlight an example of a material which is an insula-

tor before intercalation, becomes conducting under intercalation with lithium (or

partial intercalation with magnesium), but once fully intercalated with magnesium

recovers a band gap. The cause of this is the gradual downwards shift in the
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position of the GeS2 conduction band that is dispersive across the energy range

1 eV to 3 eV. Once intercalated with lithium, this band becomes partially occupied

and is reduced in energy by ∼1 eV at Γ. When intercalated with magnesium, the

band is fully occupied and we see a further energy drop of ∼1 eV at Γ. This ability

to control both the material conductivity and position of the Fermi level through

intercalation could be useful in a range of applications.

By decomposing the DOS into contributions from the different ionic orbitals (see

Appendix B), we find that TMDCs composed of main-block transition metals have

conduction bands dominated by the d-orbital of the metal, with a significantly

smaller contribution from the p-orbitals of the chalcogen. For TMDCs composed

of Group XIV metals, however, the conduction band is instead composed of metal

s-orbitals and chalcogen p-orbitals. The contributions from these states are al-

most equal, with the chalcogen contributing slightly more. This difference in the

character of the conduction band is likely the origin for the difference of its be-

haviour under intercalation, (as demonstrated for GeS2 in Figure 3.28c and 3.28f).

We emphasise that these electronic band structures (and the corresponding band

gaps) were obtained using the PBE functional. Use of a hybrid functional would

likely increase the band gaps of those materials that are semiconducting, and

could also introduce a band gap into some materials that are metallic. Whilst

the PBE functional is known to underestimate band gaps, previous work has

suggested that hybrid functionals over-estimate the band gap for TMDC mate-

rials [292].

Finally, in Figure 3.28, we have only shown materials that do no have spin-split

electronic structures. We present in Figure 3.29 the magnetic moments (per for-

mula unit) for each of the TMDCs in their pristine and their a = 1 intercalated

structures. We find that magnetic moments are only presented by TMDCs com-

posed of central block transition metals (Groups V to X). Of these, the largest

moments are shown by the top row transitions metals V, Cr, and Mn when their

TMDCs are intercalated with magnesium, and when their tellurides are interca-

lated with lithium.
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Figure 3.29: Magnetic moment (per formula unit) of the different TMDCs explored. The

sulfides (top), selenides (middle), and telluride (bottom) materials are included, with

the results for lithium-intercalated structures presented with pluses, and magnesium-

intercalated presented with crosses.

3.15 Summary

In the evaluation of any given electrode material, there are many metrics that

need to be considered to determine the promise of that material, and we have pre-

sented here the results of an investigation of lithium- and magnesium-intercalation

into each of the layered transition metal dichalcogenides, as indicated in Fig-

ure 3.30. By comparing the two polymorphs of the layered TMDC structures, we

have shown that the T-phase is typically the preferred phase. However, phase

changes can be induced with intercalation, particularly for the Group IV, V, and

VI materials. The layered phase of the TMDCs is ideal for intercalation due to

the presence of vdW gaps, providing natural space for intercalation with minimal

need for volumetric expansion. All of the TMDCs present expansions lower than

60%, with many of the early transition metal structures expanding by less than

15%. Most of this expansion comes from an increase in the out-of-plane lattice

constant, though we also identify minor changes to the in-plane structure.

Using thermodynamic phase diagrams, we evaluate the stability of intercalated

TMDCs to conversion reactions and thus provide an estimate of the reversible
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Figure 3.30: Summary of the work presented in this Chapter.

capacity. We find that most TMDCs are stable with lithium intercalation, though

this stability is reduced for magnesium intercalation due to the extra charge of the

intercalant. Compounds composed of heavier chalcogens also suffer a reduction

in stability due to the reduced electronegativity of the chalcogen leading to a re-

duction in the M-X bonding strength. From the range over which the materials

are stable, we determine the gravimetric charge density, and find that many of the

Period IV transition metal sulfides offer capacities in excess of 200 mAhg−1 with

lithium intercalation, and over 400 mAhg−1 with magnesium intercalation. These

materials have shown a range of voltage profiles as well. For lithium intercala-

tion, sulfide materials offer the largest voltages (in the range of 2 − 2.5 V), with

a gradual decrease as the mass of the chalcogen is increased. There is further

reduction in the voltage for intercalation with magnesium, with most materials of-

fering voltages lower than ∼1.5 V, and a significant spread across the range of

magnesium concentration.

We find that most of the TMDCs retain a conductive nature across the range of

intercalant concentrations considered, though some materials do become insu-

lating at concentrations of a = 1 in LiaMX2 or MgaMX2. Many key features of the

band structure can be easily tracked with the inclusion of intercalants, and there
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is a gradual shift upwards of the Fermi level due to the charge that is donated

to the host material. The Group XIV materials do deviate from this behaviour

slightly, but we can attribute this to the difference in character of the conduction

band compared to main-block TMDCs.

In general, we find that the TMDC sulfides are the best for lithium intercalation,

and we highlight the Group IV, V, and VI in particular for their low volumetric

expansion, moderate intercalation voltages, and high stability against conversion

reactions. We also highlight ScS2 and YS2 as promising cathode materials, which

offer high voltages close to 4 V, and high intercalation stability allowing for theo-

retical capacities of 243.99 mAhg−1 and 173.91 mAhg−1, respectively. Finally, we

suggest that the Group VIII and IX materials are also worthy of further investiga-

tion. For magnesium intercalation, we again show that the early transition metals

offer the best performance as anodes, but also show that many other materials

show ideal voltages and sufficient thermodynamic stability over a significant con-

centration range. The comprehensive and consistent study here shows both the

promise of the TMDCs as electrodes and provides a repository of data for future

studies of these materials.

In the following Chapter, we shall extend the above study to investigate the elastic

properties of the TMDCs and how they change with intercalation. Not only are

these elastic properties useful for microscopic modelling of electrode materials,

but they are important role for considering materials in flexible electronics.



Chapter 4

Elastic Properties of Intercalated

TMDCs

“Your suit can stretch as far as you can without injuring yourself, and still retain its shape.

Virtually indestructible, yet it breathes like Egyptian cotton.”

Edna E. Mode, The Incredibles, 2004

4.1 Introduction

Layered van der Waals (vdW) materials have been the subject of intense study

over the past few decades due to the wide range of electronic, optical, and chem-

ical properties they can exhibit. This is further enhanced by the ability to tune

these properties through layer control and defect engineering, resulting in them

being utilised across a wide range of applications. Besides the optical and elec-

tronic properties that are typically of direct practical interest, other fundamental

properties such as the mechanical behaviour are also important for all indus-

trial applications. However, very few investigations have been carried out to ex-

plore such mechanical behaviour. Nevertheless, due to the presence of a vdW

gap, the mechanical properties of layered materials are highly anisotropic [293],

making them interesting candidates for thermoelectric [294, 295], superconduct-

ing [296,297], and piezoelectric [298–300] applications.
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As we saw in the previous Chapter, one application in which the layered vdW

materials have found particular success is as intercalation electrodes. Conven-

tional materials experience stresses arising from the intercalation of ions into their

structure due to phase changes [301–303], ionic diffusion [304], and volumetric

expansion [305]. These lead to material ‘fracturing’, ultimately resulting in struc-

tural degradation and device failure. However, the intrinsic interlayer spacings

within vdW materials allow for easy storage and transport of ions during cell cy-

cling [35, 72], resulting in relatively low volumetric expansions [184]. As such,

many vdW materials, such as the NMC variants [83,86,182], graphite [179–181],

MXenes [183], and the TMDCs have each been the subject of many studies in

recent years. Unfortunately, despite their ideal layered nature, vdW materials

are not totally immune from the intercalant-related stresses, and can suffer from

limited lifetimes because of this.

Several models based on solid-state diffusion and continuum mechanics have

been developed to investigate stresses in electrodes associated with ionic dif-

fusion [306–312], and have been applied to graphite. However, these rely on

quantities describing the mechanical and elastic behaviour of the material, such

as the Young’s modulus, Poisson ratio, or elements of the elastic tensor. Though

the elastic properties of several materials have been explored using experimen-

tal and theoretical methods, many quantities are typically absent from literature

as experimental investigations into these mechanical properties are difficult to

perform. Consequently, such investigations of intercalated materials are often re-

stricted to the limits of intercalation: For example, the elastic properties of lithium-

intercalated graphite have been explored using ultrasonic resonance and neu-

tron scattering techniques [313–316], and though data is available for the pure

graphite and Li6C compositions, little is known about the elastic properties for

intermediate concentrations. Even recent techniques such as nanoindentation

limit studies of vdW materials to samples of a few layers [317–323], raising is-

sues of resolving vdW adhesion to substrate materials [324]. Further, reported

elastic properties of bulk TMDC samples are typically dominated by defects at

grain boundaries and existing cracks, which have been studies using molecular

dynamics simulations [325–327], but are not intrinsic to the material [323].
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In the absence of such experimental data, then, approximations and assumptions

must be made. For unintercalated materials, extrapolation from the elastic proper-

ties of chemically or structurally related materials has been suggested [328,329],

though this requires an in-depth investigation of at least one related structure and

calibrations for non-linear properties are needed. For the evolution of elastic prop-

erties with increased intercalant concentration, on the other hand, one approach

is to assume the elastic moduli and components of the elasticity tensor are inde-

pendent of intercalant concentration, whereas another is to assume a linear trend

between the initial and final charge states [275,277]. Clearly, an investigation into

the fundamental elastic behaviour of these materials is required: Not only will this

further our understanding of the elastic properties of layered materials and how

these change with the loss of the vdW spacing, but will also provide necessary

quantities for continuum models.

In this Chapter, we report on a theoretical modelling of the mechanical properties

of TMDC layers, with a focus on their properties for use as electrode materials

in lithium and magnesium ion cells. From the calculated elastic tensor we derive

many key elastic quantities, including the bulk and shear moduli, and commonly-

considered elastic ratios. We also comment on the elastic anisotropy using the

universal anisotropy metric and the angular Young’s modulus.

4.2 Background

4.2.1 The Strain Tensor

We define the position of a point in a body as r, with the components xi in some

coordinate system (e.g. x1 = x, x2 = y, and x3 = z). Under a deformation, every

point within the body is (in general) displaced to r’ (with components x′i). The

displacement which transforms r into r’ is then given by the displacement vector

u = r’ − r, with components ui = x′i − xi. The coordinates of the final vector (x′i)

depend upon the coordinates of the initial vector (xi), hence the components of

the displacement vector (ui) are a function of xi [330].
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Let us now consider two different points within the body which are very close

together, separated by a vector described by dxi of length dl2 =
∑

i dx
2
i . After the

deformation, the two points are now separated by the vector dx′i = dxi + dui, of

length dl′2 =
∑

i x
′2
i . For brevity we will drop the explicit summation, allowing us

to write dl2 = dx2
i and dl′2 = dx′2i = (dxi + dui)

2. Expanding this, we get,

dl′2 = dx2
i + 2dxidui + du2

i

= dl2 + 2dxidui + du2
i .

(4.1)

Substituting dui = ( ∂ui
∂xk

)dxk we get,

dl′2 = dl2 + 2
∂ui
∂xk

dxidxk +
∂ui
∂xk

∂ui
∂xl

dxkdxl. (4.2)

As summation over i and k in the second term extends the same range, we can

write the second term in its explicitly symmetric form,

∂ui
∂xk

dxidxk =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
dxidxk. (4.3)

For the final term in equation (4.2), we swap the dummy indices i and l (to match

the dxidxk of the second term), giving,

∂ui
∂xk

∂ui
∂xl

dxkdxl =
∂ul
∂xk

∂ul
∂xi

dxidxk. (4.4)

We can now write the element dl′ as,

dl′2 = dl2 + 2 · 1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
dxidxk +

∂ul
∂xk

∂ul
∂xi

dxidxk

= dl2 + 2εikdxidxk,

(4.5)

where we have used the tensor εik, defined as,

εik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xk

∂ul
∂xi

)
. (4.6)

The tensor εik is the strain tensor, and we see from its definition that it is symmetric

with swap of index, εik = εki. As such, we can choose coordinate axes called the

principal axes of the tensor so that the tensor is diagonalised at a given point, and

the leading diagonal terms (labelled ε11 = ε(1), ε22 = ε(2), and ε33 = ε(3)) are all

non-zero. Once diagonalised, the element dl′ becomes,

dl′2 = (δik + 2εik)dxidxk

= (1 + 2ε(1))dx2
1 + (1 + 2ε(2))dx2

2 + (1 + 2ε(3))dx2
3.

(4.7)
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From this, we see that the strain on an element volume may be treated as three

independent strains in three mutually perpendicular directions (the principal axes

of the tensor).

Except for special cases (such as thin rods and thing plates) a deformation results

in only a small displacement vector, meaning that ui and its derivatives are small.

We can therefore afford to ignore the third term of the strain tensor as it is second-

order small due to the product of two derivatives. Hence, we reach the strain

tensor for small deformations,

εik =
1

2

(
∂ui
∂xk

+
∂uk
∂xi

)
. (4.8)

4.2.2 The Stress Tensor

We can expand the internal energy E of a crystal with respect to the strain tensor

as,

E(V0, {εmn}) = E0(V0) +
1

2

∑
ij

(
∂E

∂εij

)
εij +

1

2

∑
ijkl

(
∂2E

∂εij∂εkl

)
εijεkl + ...

= E0(V0) + V0 ·
1

V0

∑
ij

(
∂E

∂εij

)
εij + V0 ·

1

V0

· 1

2

∑
ijkl

(
∂2E

∂εij∂εkl

)
εijεkl + ...

= E0(V0) + V0

∑
ij

σijεij +
V0

2

∑
ijkl

Cijklεijεkl + ...

(4.9)

where we have defined the stress tensor,

σij =
1

V0

(
∂E(V0, {εmn})

∂εij

)
ε=0

, (4.10)

and the second-order adiabatic elastic constants,

Cijkl =
1

V0

(
∂2E(V0, {εmn})

∂εij∂εkl

)
ε=0

, (4.11)

with the equilibrium volume being given by V0. It can be shown that the stress

and strain tensors are linearly related by a multiplicative constant equal to an

appropriate elastic constant, similar to Hooke’s law,

σij = Cijkl εkl. (4.12)
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The elements Cijkl construct a tensor called the ‘elastic tensor’ or ‘stiffness ten-

sor’. The above Hooke’s law relation can be inverted, however, and rewritten in

terms of elements of the compliance tensor, Sijkl,

εij = Sijkl σkl. (4.13)

The compliance tensor is the inverse of the elastic tensor, S = C−1, so has the

same symmetries.

4.2.3 The Elastic Tensor

We can define a strain energy density function, w, as,

σij =
∂w

∂εij
. (4.14)

If the material is not only elastic but also obeys a linear stress-strain relation,

as given by Hooke’s law (equation (4.12)), then we can write the strain energy

density function in quadratic form,

w =
1

2
Cijkl εij εkl. (4.15)

The elastic tensor consists of the 81 elastic constants (three for each of the i, j,

k, and l indices). Considering the symmetry of the stress tensor (with indices ij),

we can say Cijkl = Cjikl, which reduces the number of elastic constants to 54 (six

for ij, and three for each of the indices k and l). Similarly, we can consider the

symmetry of the strain tensor (with indices kl) to note that Cijkl = Cijlk, and

further reduce the number of elastic constants to 36. These symmetries are

called the minor symmetries. Finally, we notice that the strain energy density

function, as given in equation (4.15), should be unchanged by swapping ij and kl

so Cijkl = Cklij. This major symmetry then reduces the number of unique elastic

constants to 21.

It is convenient to make use of the tensor-symmetries established above to use

Voigt notation instead of the indices ijkl. In Voigt notation, we contract pairs of

Cartesian indices into a single integer: xx → 1, yy → 2, zz → 3, yz/zy → 4,

xz/zx → 5, and xy/yx → 6. We now simplify the various expressions outlined
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above. The elastic energy is now given as,

E(V0, {εm}) = E(V0) + V0

∑
i

σiεi +
V0

2

∑
ij

cijεiεj + ... (4.16)

the stress tensor as,

σi =
1

V0

(
∂E(V0, {εm})

∂εi

)
ε=0

, (4.17)

and elastic constants as,

cij =
1

V0

(
∂2E(V0, {εm})

∂εi∂εj

)
ε=0

. (4.18)

These cij elastic constants construct a 6 × 6 ‘elastic matrix’ (six for each of the i

and j indices). The elastic matrix c and its elements cij are closely related to the

elastic tensor C and its elements Cijkl, however they are subtly different due to the

reduction of Hooke’s law from tensor form to matrix form. A similar construction

of a compliance matrix can also be completed, which is the inverse of the elastic

matrix. Within this Chapter, we will primarily utilise the elements of the elastic

matrix.

4.2.4 Elastic Stability

Within the harmonic approximation, a crystalline structure (in the absence of any

external load) is considered stable if all phonon modes have positive frequencies

for all wave vectors, so-called dynamic stability. It also required that the change in

elastic energy (given by the quadratic term in equation (4.16)) is always positive

(E > 0, for all ε 6= 0), which is called the elastic stability criterion. This latter condi-

tion is equivalent to the following necessary stability conditions for an unstressed

crystal,

1. The elastic matrix (given by cij) is definite positive (symmetric and real).

2. All eigenvalues of the elastic matrix are positive.

3. All leading principal minors of the elastic matrix (determinants of its upper-

left k by k sub-matrix, with 1 ≤ k ≤ 6) are positive. This is known as

Sylvester’s Criterion.
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4. An arbitrary set of minors of the elastic matrix are all positive.

From these conditions, we can also deduce further necessary (but not sufficient)

conditions. For example, the condition on the principal minors implies that all

diagonal elements are positive (cii > 0, for all i), though this is not strong enough

to ensure stability. Another is that (cij)
2 < ciicjj for all i, j.

4.2.5 Polycrstalline Elastic Moduli

From the elastic matrix, various elastic properties are able to be determined. It is

unlikely that fabricated samples of a given material will be a perfect crystal with a

single crystal orientation, instead consisting of many domains with different align-

ments. However, from the elastic matrix, we are able to determine average values

of the various elastic constants and elastic moduli of a polycrystalline sample. The

bulk and shear moduli of these polycrystalline materials can be calculated from

the single crystal elastic matrix [331,332], though there are different schemes by

which we can do this. Upper bounds of bulk modulus (BV ) and shear modulus

(GV ) can be found using the Voigt scheme [333,334],

BV =
1

9

[
(c11 + c22 + c33) + 2(c12 + c23 + c31)

]
GV =

1

15

[
(c11 + c22 + c33)− (c12 + c23 + c31)

+ 3(c44 + c55 + c66)
]
.

(4.19)

An alternative method by which we can evaluate the bulk and shear moduli utilises

the elements of the compliance matrix (the inverse of the elastic matrix). This can

be achieved using the Reuss scheme [333, 334] to obtain the lower bounds BR

and GR,

1

BR

=(s11 + s22 + s33) + 2(s12 + s23 + s31)

1

GR

=
1

15

[
4(s11 + s22 + s33)− 4(s12 + s23 + s31)

+ 3(s44 + s55 + s66)
]
.

(4.20)

The results of the Voigt and Reuss schemes can be combined in the Voigt-Reuss-

Hill scheme [333, 334], where an average of the upper (V) and lower (R) bounds
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is taken,

BV RH =
BV +BR

2

GV RH =
GV +GR

2
.

(4.21)

Once the bulk and shear moduli have been determined, the polycrystalline Young’s

modulus, Y , can also be obtained:

Y =
9BG

3B +G
(4.22)

Two other quantities that can be useful for describing the elastic nature of a ma-

terial are the, the Poisson ratio, ν, and the Pugh ratio, R, each given by,

ν =
3B − 2G

2(3B +G)

R =
B

G
.

(4.23)

As a general guide, Poisson ratios greater than 0.26 indicate a material will be

ductile, whereas it will be brittle for ratios smaller than 0.26. Similarly, Pugh ratios

greater than 1.75 indicate that a material will be ductile, whereas for ratios lower

than 1.75 the material is expected to be brittle [279,331,335,336].

4.2.6 Elastic Anisotropy

In only relatively few cases is the elastic response of a single crystal isotropic, and

given the layered nature of the compounds under consideration, the expectation

is that many will exhibit a signficant degree of anisotropy [293]. We can evaluate

the extent of this anisotropy using a universal elastic anisotropy index, AU , using

the Voigt and Reuss moduli discussed above [337],

AU = 5
GV

GR

+
BV

BR

− 6 ≥ 0. (4.24)

This takes a minimal value of zero when the single crystal is locally isotropic. De-

parture from this minimal value gives a measure of the single crystal anisotropy,

accounting for both the shear and bulk contributions. This can be interpreted

as a generalization of the Zener anisotropy index, whereby, instead of taking the

ratios of individual stiffness constants to define the anisotropy, all stiffness con-

stants have been taken into account by considering the matrix nature of elastic

stiffness [337].
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The anisotropic Young’s modulus of a general crystal class can be calculated from

the compliance tensor [338], starting from,

1

Y
=

3∑
m=1

3∑
n=1

3∑
p=1

3∑
q=1

Smnpqlmlnlplq, (4.25)

where Smnpq is an element of the compliance tensor, and each of the li is an

element of the unit vector,

l̂ =


l1

l2

l3

 =


sin θ cosφ

sin θ sinφ

cos θ

 (4.26)

with directional cosines l1, l2, and l3. We have used the Euler angles θ (angle from

the z axis) and φ (angle in the x-y plane from the x axis). For trigonal crystals,

equation (4.25) reduces to,

1

Y
= s11

(
l41 + l42

)
+
(
2s12 + s66

)(
l21l

2
2

)
+
(
2s13 + s44

)(
l23
)(
l21 + l22

)
+ 2s14

(
2l21l2l3 − l32l3

)
+ s33

(
l43
)

= s11 sin4 θ +
1

4

(
s13 + s44

)
sin2 2θ + s33 cos4 θ

+ 2s14 sin3 θ
(
2 sinφ cos2 φ− sin3 φ cosφ

)
,

(4.27)

where we have used the elements of the compliance matrix, sij, and the relation

s66 = 2(s11 − s12). This expression for anisotropic Y is equal to the expression for

hexagonal systems [339] when the element s14 is equal to zero.

4.3 Computational Details

In this work, first principles techniques based on density functional theory were

used to determine the elastic properties of layered MX2 materials, as well as

their lithium- and magnesium-intercalated structures. These calculations were

performed using the Vienna Ab initio Simulation Package (VASP) [161–164]. The

valence electrons included for each species are those presented in Table 2.1.

The projector augmented wave method [139] was used to describe the interaction

between core and valence electrons, and a plane-wave basis set was used with

an energy cutoff of 700 eV. Van der Waals interactions have been addressed

using the zero damping DFT-D3 method [155].
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This study focuses on 1T-phase TMDCs, as many of the TMDCs exhibit the 1T-

phase [194–196,205] and in the previous Chapter we highlighted the preference

for the T-phase structure with intercalation. Individual TMDC sheets are held

together by covalent M-X bonds with p-d hybridisation [192], whilst the sheets

are coupled to each other by weak van der Waals forces [193]. Intercalant ions

were introduced into the vdW spacing, choosing the octahedrally-coordinated site

above the metal atom of the host structure as this has been shown in the previous

Chapter to be the lowest in energy. Initial structural relaxations (allowing for both

ionic and unit cell optimisation) to determine the geometry were completed us-

ing the Perdew-Burke-Ernzerhof (PBE) [119] functional form of the generalised

gradient approximation (GGA). These were converged to a force tolerance of

0.0001 eV/Å per atom, electronic self-consistency was considered to an accuracy

of 10−8 eV, using a Monkhorst-Pack [140] k-point grids of 12× 12× 12.

Due to the small changes in energy that can be involved, the elements of the

elastic tensor can be sensitive to the sampling of reciprocal space [277]. For

the primitive unit cells considered, Monkhorst-Pack k-point grids of 18 × 18 ×

18 were used, and for the 2 × 2 × 2 supercells comparable grids of 9 × 9 × 9.

These correspond to k-point densities of 17496 per reciprocal atom (pra) in the

pristine systems, and 23328 pra in the intercalated systems. These values are

comparable values to those used in databases such as the Materials Project [340,

341], and in similar studies of other layered materials [275,279,293,342,343].

The limited number of studies into the elastic properties of the TMDCs and how

they change with intercalation make it difficult to check the accuracy of our calcu-

lations with other first principles works, investigations using other theoretical ap-

proaches, and with experimental works. We have therefore performed a separate

study into graphite and LiCoO2 (for which there are several works in the literature)

to determine the reliability of our results, which we present in Appendix C. We

conclude that k-point grids of 18×18×18 for the primitive unit cells of the TMDCs

are sufficient for accurate descriptions of the elastic response (compared to other

theoretical approaches and experimental works), and convergence against more

dense grids.

Many works have shown that choice of functional can lead to differences in pre-
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dictions for properties important to electrode materials [289,290]. Previous works

have found that use of hybrid functionals such as HSE06 demonstrate a change

of∼ 5% in the matrix elements and elastic values in monolayers of CaFI [344] and

CaFCl [345] compared to GGA method, and a change of ∼ 10% for BiAlO3 [346].

Compared to GGA functionals, +U corrections have been shown to reduce the

elements of the elastic tensor and produce small deviations in some elastic prop-

erties for CuInTe2 [347], and increase elastic constants in FePO4 [348] resulting

in an increase in the bulk and shear moduli. +U has also been shown to produce

little change to the values obtained for LiFePO4 [348]. The functionals rVV10

and VdW-DF2 have produced similar values to the PBE functional [349] for bulk

and monolayer MoS2, with no significant improvement to the matrix elements or

elastic constants compared to the values obtained using experimental methods.

Computational studies [350, 351] on 2H-MoS2 have also been used to compare

results obtained with different levels of exchange-correlation approximation to

those obtained experimentally. For example, the c11 element is found to have

an experimental value of 238 GPa which is reproduced with HSE methods, but

underestimated at 211 GPa using a GGA functional. However, other elements

of the elastic matrix are more accurately calculated using GGA than with HSE,

though these typically fall within ∼ 10% of experiment. There is also a spread in

values for any given method (for example, between different calculations using

GGA), suggesting that other aspects of a first principles calculation offer more

significant changes to elastic results than the level of exchange-correlation ap-

proximation employed. Finally, we have also performed a limited study on the

elastic properties of graphite and LiCoO2 using the PBE functional. This is out-

lined in Appendix C, where we find close agreement with experimental results,

improving on LDA and other GGA results in the case of graphite, and improving

on LDA, other GGA, and HSE results in the case of LiCoO2.

In this work we have chosen to use the PBE functional for three reasons: (i) the

increased computational cost of using hybrid functionals; (ii) the lack of experi-

mental results for many of the materials considered necessary for accurate choice

of +U corrections, and (iii) the relatively small changes to the elastic properties

that arise from these methods. For evaluation of the elastic matrix symmetry,
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elements are considered to be equal if they fall within 0.01 GPa.

As transition metal compounds allow for the possibility of unpaired electrons in d

and f orbitals, all calculations have been performed allowing for optimisation of

collinear spin-polarization without specifying any initial spin configuration, or the

inclusion of spin-orbit (SO) effects. Given the possible complexity of magnetic or-

dering in TMDCs, there can be many local minima in the potential energy surface,

and the global minimum might not be easily identifiable. This ambiguity increases

the risk of drawing incorrect conclusions from SO calculations. Further, despite

the additional cost and time, calculations including SO may not yield significantly

distinct properties compared to simpler calculations.

In the case of the TMDCs, numerous prior studies have already examined the

influence of SO effects on their electronic structure. Typically, the SO interaction

can be thought of as a modulation on the electronic structure. Specifically for

elastic properties, some previous works have compared results of transition-metal

containing compounds obtained with and without the SO interaction. Small (∼1%)

change in c11 and c12 when doping Ni24Al7 with transition metals, and the effect is a

lot less significant compared to that arising from the inclusion of spin [352]. There

is also a small (∼5%) change in the in-plane elastic constants of monolayers of

HfSSe, and no change in the HfS2 and HfSe2 equivalents [353]. One material

composed of Period V and VI elements, YPtBi, shows an increase in c11, c12 and

c44 by ∼10% with the inclusion of SO [354]. However, we consider this change

to be at the extreme end due to the high content of heavy elements compared to

the TMDCs considered in this work.

4.4 Methods for Evaluation of Elastic Properties

4.4.1 Single Crystal Bulk Modulus

The single-crystal bulk modulus was evaluated by uniformly expanding and com-

pressing the three lattice vectors in ±1% intervals and allowing for ionic relax-

ation. The five lowest-energy points (0%, ±1%, ±2%) were then used to fit a
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Figure 4.1: An example plot showing the variation in the relative energy of lithium-

intercalated ScS2 with volume expansion and compression.

quadratic relation between the system energy and the cell volume, as we show

in Figure 4.1. Almost all R2 values of these fits exceed R2 = 0.99. We find that

most of the fits show R2 values greater than 0.99. Of those that fall below this

value, seven (MoS2, ReS2, ScSe2, VTe2, NbTe2, LiVTe2, and MgMnTe2) are in

the range R2 = 0.98 − 0.99. A further eleven fall below R2 = 0.98, but these are

either found to be elastically unstable (such as LiMnSe2, MgMnS2, and MgCrSe2,

see Section 4.6) or demonstrate a range of magnetic moments at different strains

(such as MnSe2, OsSe2, CrTe2, LiCrTe2, LiMnTe2, LiVSe2, and MgMnSe2) hence

making a quadratic fit inappropriate. However, for consistency, we have main-

tained this approach whilst highlighting the issues arising from these magnetic

considerations.

The second order derivative of each of the fits was used for determination of the

single-crystal bulk modulus BS, as given by,

BS = V0
∂2E

∂V 2
, (4.28)

where E is the energy, V is volume, and V0 is the volume at zero pressure.

Though further extensions beyond the ±2% could have been considered, the

energy-strain profiles tend to deviate from a parabolic curve for larger strains [355,

356].
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4.4.2 Elastic Matrices

The elastic and internal strain tensors were computed from the second order

derivatives of the total energy with respect to the position of the ions and changes

to the size and shape of the unit cell, as employed in VASP. For evaluation of

the elastic matrix symmetry, elements are considered to be equal if they fall

within 0.01 GPa. Near all of the TMDCs in their pristine, lithium-intercalated, and

magnesium-intercalated forms are found to be trigonal with space group number

164 (space group P3m1 and point group 32/m), with the exception of LiCrS2. This

space group number was found to be the most prevalent in a recent study of vdW

layered structures, and was also frequently observed for the related ionic struc-

tures [293]. For such trigonal crystal systems, the elastic matrix has the form,

c11 c12 c13 c14

· c11 c13 −c14

· · c33

· · c44

c44 c14

· c66


, (4.29)

where empty elements are equal to zero. There are thus only six indepen-

dent elastic constants due to the symmetry constraints and the relation c66 =

1
2
(c11− c12). The above matrix takes the form of a hexagonal crystal system when

the element c14 is equal to zero [357]. We have evaluated the elastic matrix for

the considered materials, as this is the fundamental object for the following dis-

cussions.

In the previous Chapter, we assessed the thermodynamic stability of the inter-

calated TMDCs, finding most to be stable with the inclusion of lithium or small

amounts of magnesium. Whilst the mechanical stability of a material is usually

evaluated by identifying the presence of any imaginary (ω2 < 0) phonon modes,

calculation of full phonon dispersions are not conducive to broad investigations

such as this. However, as these instabilities occur for long wavelength modes

(q → 0), we can instead utilise the Born stability criteria to assess stability from

the elastic tensor [293, 358]. This is because the elastic tensor is derived from

the linear approximation of the stress-strain relationship, and so the components
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Figure 4.2: Single crystal bulk modulus values for the pristine, unintercalated structures

are presented in black, lithium-intercalated in red, and magnesium-intercalated in blue.

The top shows the sulfide data, the middle shows the selenide data, and the bottom

shows the telluride data.

are related to the dispersion curves for low energy acoustic phonons [293]. The

elastic stability conditions have been outlined elsewhere for different crystal sys-

tems [357], which for trigonal crystals are,

(a) c11 > |c12|

(b) c44 > 0

(c) c2
13 <

1

2
c33(c11 + c12)

(d) c2
14 <

1

2
c44(c11 − c12) = c44c66

(4.30)

which can be determined through calculating the leading principal minors of the

elastic matrix, and requiring that they are all positive (Sylvester’s criterion).

4.5 Single Crystal Bulk Modulus

The single-crystal bulk modulus can be obtained using equation (4.28), and we

present the results of this in Figure 4.2 for the pristine and intercalated systems.

For the pristine structures, we see a gradual increase in the bulk modulus as

the Group of the metal composing the host TMDC increases. Using the TMDC
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sulfides as an example to highlight this, there is an increase from 36.86 GPa

(ScS2) to 103.92 GPa (AuS2). Though there is a general linear trend between

these points, the central transition metal Groups VII and VIII drop below this. A

closer look at the magnetic configuration of these materials, however, reveals a

change in the spin state for different strains. Being able to utilise this spin degree

of freedom allows for further energy minimisation in these materials and so they

can achieve a lower bulk modulus, and also highlights the potential to utilise these

materials for their magnetoelastic properties.

With intercalation, we notice a general increase in the bulk modulus. For example,

with lithium intercalation, the bulk modulus of TiS2 increases from 43.24 GPa to

72.60 GPa in LiTiS2, and for magnesium intercalation it increases to 101.72 GPa.

This increase in the bulk modulus is observed for most materials, specifically for

those composed of transition metals in Groups III to VIII. This can be understood

by an increase in the bonding strength between TMDC layers, facilitated by the

introduction of the ionic intercalants, and the consequent formation of ionic bonds

between the intercalant and the TMDC layers. We note a surprising change in

this trend for later transition metals: For Group IX compounds, the bulk modulus

of the magnesium-intercalated structure remains the largest. However, the values

for the pristine and lithium-intercalated compounds are near equal, with relatively

small (∼ 10 GPa) differences between them, and there are some cases where the

lithium-intercalated bulk modulus is smaller than that of the pristine material, such

as with CoSe2 (B = 67.58 GPa) and LiCoSe2 (B = 72.31 GPa). For Group X com-

pounds, this evolves to the bulk modulus of magnesium-intercalated compounds

being comparable with the pristine compounds, and for Group XI materials the

bulk modulus of the pristine structures is higher than that of the corresponding

intercalated compounds. With few exceptions, we also identify a reduction in the

bulk modulus with increased mass of the chalcogen, in line with increased forma-

tion energy [359] and hence weaker bonding.

Changing the chalcogen species results in comparable changes to those arising

from a change in the transition metal. We note a general decrease in the bulk

modulus as the atomic number of the chalcogen is increased. For example, the

pristine TiX2 materials offer a bulk modulus of 43.24 GPa (sulfide), 37.42 GPa
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Figure 4.3: The formation energy (per formula unit) described by equation (4.31) is pre-

sented in 4.3a for lithium and in 4.3b for magnesium. Negative values of formation energy

indicate intercalation is favourable. In each, sulfide data is presented in black, selenide

data is presented in red, and telluride data is presented in blue.

(selenide), and 32.17 GPa (telluride). To explain this, we consider the formation

energy of the intercalated TMDC as a metric to assess the stability of a host

TMDC with intercalation. This is given by,

Eform = ELiMX2 −
[
EMX2 + ELi

]
, (4.31)

where EMX2 is the energy of the pristine bulk MX2 structure, ELiMX2 is the en-

ergy of the intercalation MX2 structure, and ELi is the energy of a lithium atom

as found in bulk. An equivalent expression can be written for magnesium in-

tercalated TMDCs. We present in Figure 4.3a and Figure 4.3b the formation

energy (per formula unit) for the lithium-intercalated and magnesium-intercalated

TMDCs, respectively. We see that all TMDCs (with the exception of magnesium-

intercalated TaTe2) show negative formation energies, and therefore intercalation

is energetically favourable.

As the atomic number of the chalcogen is increased, the formation energy of

TMDC layers similarly increases [359], highlighting TMDC formation is less favourable.

This reduction in favourability is an indication of a weakened bonding. It has also

previously been shown that there is a reduction in the (2D) Young’s modulus with

increased formation energy [360], hence we can conclude that the reduction in

the bulk modulus as the chalcogen is changed S→Se→Te can be attributed to a

weakening of the TMDC bonding. Likewise, there is a change in the bulk modu-
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Figure 4.4: Elements of the elastic matrix, c14, c44, and c66, for the sulfide TMDC ma-

terials. Data shows pristine bulk (black), lithium-intercalated (red), and magnesium-

intercalated (blue) data. Materials which are not elastically stable are indicated with

shaded regions.

lus with change in chalcogen species. For example, the LiTiX2 materials the bulk

modulus is 72.60 GPa (sulfide), 54.85 GPa (selenide), and 40.97 GPa (telluride),

and for the MgTiX2 compounds it is 101.72 GPa (sulfide), 78.07 GPa (selenide),

and 42.72 GPa (telluride). We see a similar increase in the formation energy for

the intercalated TMDC structures, and so the above discussion using the weak-

ened bonding to explain this reduction holds.

4.6 Elastic Stability

Evaluating the above elastic stability conditions for each of the materials pre-

sented, we find that of the 252 materials considered, 212 are elastically stable. In

the following presentation of results, regardless of which criteria are violated, we

also include data for the elastically unstable materials, but shade their data ranges

to identify them. For the pristine materials, we find that twelve materials break the

elastic stability equations outlined in equation (4.30). We find that all twelve break

condition (d), and of these eight break condition (b). Three materials break con-

dition (a), and one breaks condition (c). For lithium-intercalated TMDCs, there
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are nine materials which break the stability conditions: five break condition (a),

four break condition (b), three break condition (c), and eight break condition (d).

For magnesium-intercalated TMDCs, nineteen materials which break the stability

conditions: six break condition (a), eleven break condition (b), five break condition

(c), and sixteen break condition (d). The conditions broken by each material are

summarised in Appendix C.

We note that conditions (b) and (d) are most commonly broken by materials that

are not elastically stable. These conditions can both be related to the element c44,

and so we conclude that the largest source of instability arise from the response

to shear deformations. For the sulfide materials, we present in Figure 4.4 the

elements of the elastic matrix, c14, c44, and c66, which are present in the stability

conditions. It is now clear to see the cases which typically lead to elastic instability

in these materials: negative values of either the element c44 (as with ScS2, YS2,

and PbS2) or the element c66 (as with LiFeS2). These would both result in negative

quantities on the right hand side of stability condition (d).

Materials composed of the central Mn, Re, and Fe metals frequently break the

stability conditions. These materials have magnetic moments that deserve close

attention. Although we have allowed for different (collinear) spin configurations

in the following presentation of results, a more careful consideration of their spin

configurations might remove the elastic instabilities shown here. With the intro-

duction of an intercalant, we find that many late-transition metal TMDCs lose their

elastic stability. However, we do identify some materials, such as ScS2 and YS2,

where the introduction of an intercalant results in an elastically stable compound.

Finally, we find that twenty two selenide materials break stability conditions, which

is more than the sulfide (fifteen) or telluride (eleven) materials. However, overall

the same trends (in terms of which conditions are broken most frequently) are

seen across TMDCs composed of different chalcogen atoms.
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Figure 4.5: Bulk modulus (4.5a) and shear modulus (4.5b) for sulfide TMDC materials.

Values calculated using the VRH scheme are presented with crosses, and the corre-

sponding Reuss and Voigt results are presented as error bars. Data for the pristine

bulk, lithium-intercalated, and magnesium-intercalated structures is presented in black,

red, and blue, respectively. Materials which are not elastically stable are indicated with

shaded regions.

4.7 Polycrystalline Properties

4.7.1 Elastic Moduli

In Figure 4.5a we present the polycrystalline bulk modulus for each of the sulfide

TMDCs in the pristine bulk (black), lithium-intercalated (red), and magnesium-

intercalated (blue) forms. We have included values using each of the Voigt,

Reuss, and VRH schemes where values calculated using the VRH scheme are

presented with crosses, and the corresponding Reuss and Voigt results are pre-

sented as error bars. This shows the range in values that can be obtained using

the different schemes. Equivalent data for the selenide and telluride materials

is presented in Appendix C. For the pristine bulk structures, we note a gradual

increase in the bulk modulus as the Group of the transition metal is increased

from III (Sc, Y) to XI (Cu, Ag, Au), for each of the chalcogen species. We high-

light this with the VRH values of the sulfide materials. The bulk modulus is found

to be 32.92 GPa for ScS2, which increases to 36.76 GPa for VS2, to 48.09 GPa

for CrS2, to 70.96 GPa for CoS2, to 75.79 GPa for NiS2, to 97.85 GPa for CuS2,

demonstrating a range of 65 GPa. However, this range is reduced upon intercala-
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ton: the bulk modulus for lithium-intercalated sulfides ranges between 43.42 GPa

(LiPbS2) and 93.54 GPa (LiWS2), a difference of 50.12 GPa, and the bulk mod-

ulus for magnesium-intercalated sulfides ranges between 65.04 GPa (MgPbS2)

and 125.80 GPa (MgOsS2), showing a difference of 60.76 GPa. These values

also highlight that intercalation moves the maximal values of bulk modulus away

from the late-transition metals (Group XI) towards the Groups in the middle of the

transition metal block, (VI to VIII). The intercalant, therefore, acts to level out the

bulk modulus of these materials.

We note some exceptions to the upward trend exhibited by the pristine materials,

and point out the drop in bulk modulus for the Group VII and Group VIII sul-

fides. For TMDCs composed of these transition metals we see that the magnetic

state changes by as much as 0.2 µB per unit cell across the unique distortions

made. This spin degree of freedom is not utilised in the other TMDCs, and al-

lows for further energy minimisation (and hence a lower bulk modulus). This is in

line with results presented elsewhere [361], where magnetic materials with larger

magnetic moments typically showed a lower bulk modulus than those with a zero

magnetic moment. We also notice a drop for the Group XIV metals, where we

have determined a value of 37.98 GPa for GeS2, though these are post-transition

metal materials, and the difference in behaviour from main-block transition met-

als is not surprising. Beyond these exceptions, however, the general upwards

trend is evident in Figure 4.5a for the sulfides, and for the selenide, and telluride

materials presented in Appendix C.

For the selenide and telluride materials, the bulk modulus follows the same trends

as those shown by the sulfides. However, we do note a general reduction in the

bulk modulus. For example, the Voigt-Reuss-Hill values for TiX2 compounds de-

creases from 35.07 GPa (sulfide), to 28.95 GPa (selenide), to 22.60 GPa (tel-

luride). For the lithium-intercalated LiTiX2 structures this reduction is again seen,

decreasing from 71.64 GPa (sulfide), to 57.23 GPa (selenide), to 40.27 GPa (tel-

luride), as well as for the magnesium-intercalated MgTiX2 structures, with values

of 102.47 GPa (sulfide), 80.41 GPa (selenide), and 39.88 GPa (telluride). This is

in line with what was seen for the single-crystal bulk modulus discussed above,

which was rationalised with the reduction in TMDC bonding strength.
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Using the different schemes (Voigt, Reuss, VRH) we can obtain different esti-

mates for the elastic moduli. For the pristine systems, there is a large spread

between the Voigt and Reuss values of bulk modulus. We find that these val-

ues are closer for the materials composed of larger chalcogen species: using the

WX2 materials as an example, the difference between the bulk modulus using

the Voigt and Reuss schemes are 26.94 GPa, 17.24 GPa, and 5.03 GPa for the

WS2, WSe2, and WTe2 materials, respectively. Once intercalated, this difference

between the Voigt and Reuss values is decreased (for example, to 0.04 GPa for

LiWS2 and to 2.09 GPa for MgWS2).

In Figure 4.5b we show the polycrystalline shear modulus for the sulfide materi-

als, with the equivalent selenide and telluride data presented in Appendix C. For

the pristine materials (black) the shear modulus shows a general increase with in-

creasing Group number, from 23.56 GPa (ZrS2) to 51.69 (PtS2) for the sulfides in

the VRH scheme. Again, the central transition metals (Groups VII to IX) fall below

this trend by utilising their spin state during deformation. There is then a further,

but small, reduction for the Group XI materials. Finally, the Group XIV materials

shown the lowest values of shear modulus, for example with values of 20.00 GPa,

16.94 GPa, and 7.54 GPa for SnS2, SnSe2, and SnTe2, respectively. We present

the equivalent selenide and telluride shear modulus data in Appendix C. How-

ever, for the pristine materials, we note a less dramatic change as the chalcogen

species is changed. Using the TiX2 materials to highlight this, the Voigt-Reuss-

Hill values of shear modulus are 26.03 GPa (sulfide), to 20.36 GPa (selenide), to

20.95 GPa (telluride). The similarity in these values is likely due to the weak vdW

interaction coupling different MX2 layers.

We also identify a spread in the shear moduli using the different (Voigt, Reuss,

VRH) schemes, larger than the spread that was present for the bulk modulus.

Whilst this spread is typically reduced with the inclusion of an intercalant, many

materials, such as the magnesium-intercalated Group XI materials, have a greater

spread than their pristine counterparts. However, we explain this through consid-

eration of the elastic stability: From equations (4.19) and (4.20) we can see that

the polycrystalline bulk modulus does not depend on the c44 element of the elas-

tic tensor (which we determined above to be the cause of the elastic instability
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Figure 4.6: Voigt-Reuss-Hill values of Young’s modulus for sulfide TMDC materials. Data

for the pristine bulk, lithium-intercalated, and magnesium-intercalated structures is pre-

sented in black, red, and blue, respectively. Materials which are not elastically stable are

indicated with shaded regions.

present in these materials). As such, it would be expected that the values of bulk

modulus be relatively well behaved regardless of the elastic stability. However, the

dependence of the polycrystalline shear modulus on the c44 element results in the

anomalous values of the shear modulus. We highlight this with the magnesium-

intercalated compounds: whilst equivalent materials that are elastically stable

show very little variation in shear modulus between the different schemes, elas-

tic instability leads to dramatic differences. The Group XI TMDCs (CuX2, AgX2,

AuX2), for example, show differences in excess of 100 GPa and some unphysical

negative values when intercalated with magnesium.

The spread in bulk and shear moduli will propagate into the elastic properties

that are determined from B and G, as can be seen from equations (4.22)-(4.23).

In the following, we present only the results of the VRH scheme for clarity and

brevity.
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4.7.2 Young’s Modulus

We can obtain values for the polycrystalline Young’s modulus using the above

values of bulk and shear moduli. We present these in Figure 4.6 for the sulfide

TMDCs. For the pristine bulk structures, we see a roughly linear trend upwards

as the Group of the transition metal is increased, similar the behaviour of the

bulk modulus (see equation 4.22). There are some exception to this, including

the Group III TMDC sulfides which are elastically unstable, and the Group XIV

TMDC sulfides which show a drop due to the corresponding drop in the bulk

modulus arising from the difference in chemical character of the metal compared

to the main transition block. We also note that TMDCs composed of metals from

Groups VII-IX also fall below this trend, but we again ascribe this to the ease

with which these TMDCs change their spin state. Of the pristine sulfides, FeS2

has the lowest Young’s modulus of 30.21 GPa, and CuS2 has the highest with

130.73 GPa. Due to the range in values for the bulk and shear moduli using

the different Voigt/Reuss/Hill schemes, there is a corresponding spread in the

obtained values for the Young’s modulus. Upon intercalation, there is in general

a small increase in the Young’s modulus, with a larger increase with magnesium

intercalation that with lithium intercalation.

With changing chalcogen species, we find that TMDC composed of chalcogens

with higher atomic number show a general reduction in the polycrystalline Young’s

modulus. Using the ZrX2 materials to highlight this, the Young’s modulus (us-

ing the Voigt-Reuss-Hill scheme) reduces from 57.73 GPa (ZrS2), to 51.82 GPa

(ZrSe2), to 44.17 GPa (ZrTe2). Above, we discussed how the increase in forma-

tion energy with S→Se→Te [359] is an indication of a weakened bonding, and

that an increased formation energy has led to a corresponding decrease to the

(2D) Young’s modulus for similarly layered structures [360]. In fact, it has previ-

ously been reported that a reduction in the charge transfer between the metal and

chalcogen atoms leads to a reduction in the (2D) Young’s modulus of ultra-thin

TMDCs [323]. We do stress, however, that due to the sensitivity of the Young’s

modulus on the bulk and shear values through equation (4.22) and the choice

of scheme used to calculate them, there are several examples of TMDCs which

break this trend, though not by much. Further details of the values obtained using
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Figure 4.7: Voigt-Reuss-Hill values of Poisson ratio (4.7a) and Pugh ratio (4.7b) for sul-

fide TMDC materials. Data for the pristine bulk, lithium-intercalated, and magnesium-

intercalated structures is presented in black, red, and blue, respectively. A Poisson ratio

of 0.26 and a Pugh ratio of 1.75 are indicated with horizontal dashed lines. Materials

which are not elastically stable are indicated with shaded regions.

the different schemes and equivalent data for the selenide and telluride materials

are presented in Appendix C.

4.7.3 Elastic Ductility

We can assess the ductility of a material using equation (4.23), which describes

two commonly used elastic ratios. We present in Figure 4.7 the Poisson and Pugh

rations for the pristine and intercalated sulfide materials, where a Poisson ratio of

0.26 and a Pugh ratio of 1.75 are indicated with horizontal dashed lines. Above

these limits, materials are described as ductile, where as ratios lower than these

limits indicate brittle materials. Equivalent data is presented in Appendix C for the

selenide and telluride materials.

We find that for the unintercalated structures, the materials composed of Group

III-VI transition metals show Poisson and Pugh ratios that lie below the respective

limits, indicating they are brittle in nature. With lithium intercalation, each group

displays a slightly different response: Group III show an increase in the elastic

ratios, however their pristine structures are elastically unstable and so a direct

comparison with the intercalated structures is not appropriate. The Group IV sul-
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fides show a stiffening (reduction in Poisson and Pugh ratios), the selenides retain

a similar stiffness/ductility, and the tellurides show an increased ductility (increase

in Poisson and Pugh ratios). The Group V materials become more ductile, and

the Group VI materials experience little change to their ductility. With magnesium

intercalation, we see a universal increase in the material ratios, though, with each

of these early-Group TMDCs showing an increased ductility. For materials com-

posed of later transition metals, most exhibit a higher ductility and lie above the

Poisson and Pugh criteria. For both lithium and magnesium intercalation, Group

VII to IX materials show a shift towards the brittle/ductile limit, but the Group X and

XI materials show increase Poisson and Pugh ratios. We do highlight, however,

that the intercalated Group XI TMDCs are not elastically stable. Compared to the

changes that arise with choice of transition metal, we notice very little difference

arising with choice of chalcogen, with most changes being within 0.05 (Poisson

ratio) and 0.2 (Pugh ratio) of each other.

4.8 Elastic Anisotropy

4.8.1 Comparison of Elastic Matrix Elements

To assess the anisotropic elastic response, we present in Figure 4.8 a compari-

son between the c11 and c33 elements of the sulfide TMDCs (selenide and telluride

data is presented in Appendix C). These elements correspond to in-plane and out-

of-plane stretching, respectively. For the pristine structures, we identify a much

larger value of c11 compared to c33, demonstrating the much stronger covalent

M-X bonding present in-plane and the significantly weaker vdW bonding between

consecutive TMDC layers. With the introduction of an intercalant, though, the dif-

ference between these elements is reduced. With lithium intercalation, materials

composed of early transition metals (Groups III to VI) have comparable values of

c11 and c33. For materials composed of metals from Groups VIII to X, there is still

a significant difference between these values. For example, the values of c11 and

c33 for LiTiS2 are 160.33 GPa and 129.00 GPa respectively, for LiCoS2 these are

196.89 GPa and 103.13 GPa. However, with magnesium intercalation, we see a
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Figure 4.8: Elements of the elastic matrix, c11 and c33, for the sulfide TMDC materials.

Data for the pristine bulk, lithium-intercalated, and magnesium-intercalated structures is

presented in black, red, and blue, respectively. Materials which are not elastically stable

are indicated with shaded regions.

further increase in the values of c33 such that many of them are greater than the

corresponding c11 element. For the selenides and tellurides, we typically see a

reduction in the values of c11 and c33 as the chalcogen mass is increased, though

some deviations are present for c33. However, we see the same trends that are

present for the sulfide materials which arise with changing the transition metal

and with intercalation with lithium or magnesium.

4.8.2 Universal Anisotropy

We can further assess the anisotropy by determining the universal anisotropy

index, AU , as given by equation (4.24). We present these values in Figure 4.9a

for the sulfide materials (equivalent data for the selenide and telluride TMDCs is

shown in Appendix C). A value of AU = 0 indicates a locally isotropic material,

and deviation from this indicates a larger degree of anisotropy. The results of

elastic instability is highlighted here, with materials which are not elastically stable

show negative values of AU . For the pristine crystals there is a wide range in the

obtained anisotropies: many materials, such as the Group IV-VII sulfides, having
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Figure 4.9: Universal anisotropy values for the sulfide TMDC materials in shown in 4.9a,

where data for the pristine bulk, lithium-intercalated, and magnesium-intercalated struc-

tures is presented in black, red, and blue, respectively. Arrows with labels indicate values

that lie outside of the plotted range. Materials which are not elastically stable are indi-

cated with shaded regions. 4.9b shows the elastic anisotropy diagram, with data for all

materials included.

values in the range AU = 6 − 12. There are even some values even exceeding

12, such as ScTe2 and CrTe2, though there are very few of these. This was to

be expected due to the difference between the nature of the in-plane and out-of-

plane bonding. Surprisingly, despite this difference in bonding, there are many

pristine materials, such as the Group XI sulfides and GeTe2, possessing values

of AU less than unity which indicates materials that are close to isotropic.

With intercalation, there is then a dramatic reduction in the elastic anisotropy of

the TMDCs: Figure 4.9a shows that almost all of the intercalated systems pos-

sess anisotropy indices less than unity, with very few exceeding even 2, and this

extends to the selenide and telluride materials. This follows other works which

have compared the anisotropy between vdW and ionic materials [293]. It is not

surprising that the anisotropy of these layered materials is reduced with intercala-

tion: the presence of the van der Waals gap results in a large difference between

the in-plane and out-of-plane bonding, and hence the restoring forces to any elas-

tic deformation. The inclusion of an intercalant removes this van der Waals gap

and introduces a large positive charge between the negatively charged chalcogen

species (as we saw in Chapter 3), and so a significant change in the elastic prop-

erties is to be expected. However, as the two intercalants considered in this work
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are metals and possess positive charges once intercalated, they are qualitatively

very similar to the metals constituting the host structure, and so the out-of-plane

bonding becomes comparable to the in-plane bonding, demonstrating a similar

elastic response.

Using the ratios of the Voigt and Reuss values of bulk and shear moduli we

can construct an elastic anisotropy diagram (EAD), which is presented in Fig-

ure 4.9b. The advantages of such a diagram have previously been described

elsewhere [337], but we briefly outline them here: we see from Figure 4.9b that

the BV
BR

< 1 and GV
GR

< 1 regions are inadmissible, and the included lines of con-

stant anisotropy (which have a slope of -5) highlight that changes in GV
GR

have

a greater influence on crystal elasticity than an equivalent change in BV
BR

. Cu-

bic crystals have been shown to cluster along the line given by BV
BR

= 1, and so

other materials that lay along this line are elastically similar to cubic crystals, de-

spite their trigonal symmetry. As locally isotropic materials appear closer to the
GV
GR

= 1, BV
BR

= 1 point than those that are not locally isotropic, we see that the

main effect of intercalation is to reduce the anisotropy of the TMDC family, as

was shown with Figure 4.9a. Many of the pristine TMDCs are scattered across

the EAD away from the GV
GR

= 1, BV
BR

= 1 point, but after intercalation there is a

significant shift of all points towards GV
GR

= 1, BV
BR

= 1.

4.8.3 Anisotropic Young’s Modulus

We can further assess the anisotropy of these materials by making use of equa-

tions (4.25) and (4.27) to determine the angular dependence of the anisotropic

Young’s modulus. We present in Figure 4.10a the angular Young’s modulus for

pristine TiS2, where it is clear to see the relatively high in-plane Young’s modu-

lus (∼ 120 GPa) compared to the out-of-plane Young’s modulus (∼ 40 GPa). This

large disparity arises from the stronger covalent in-plane bonding compared to the

weaker vdW bonding present between layers. Equivalent figures for the lithium-

(Figure 4.10b) and magnesium-intercalated (Figure 4.10c) TiS2 structures, where

we see a dramatic change with the included intercalants. For lithium intercalation,

we see an increase in the in-plane Young’s modulus to ∼ 145 GPa, and a more
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Figure 4.10: Three-dimensional heat maps showing the angular-dependent Young’s

modulus for TiS2 (4.10a), LiTiS2 (4.10b), and MgTiS2 (4.10c). Scatter plots show the

relative standard deviation of the Young’s modulus as a function of anisotropy index AU

(4.10d), and the variation in the ratio of the out-of-plane and in-plane Young’s modulus

with AU . In these, we include data for each of the structures considered.

dramatic increase in the vertical Young’s modulus to ∼ 120 GPa. We see a similar

effect for magnesium intercalation, with the in-plane Young’s modulus increased

to ∼ 140 GPa and the out-of-plane similarly increased to ∼ 145 GPa. This shows

the effect of coupling between layers through intercalation, and that the donated

electron can increase the strength of the in-plane bonding, as has been seen

for the covalent strengthening of bonds through introduction of extra electrons in

other systems [362]. We also note the Young’s modulus along the direction of

the Ti-S bond is particularly high, reaching values of 180 GPa. Similar figures for

other TMDCs are presented in Appendix C, where we find a very similar evolution

of the Young’s modulus with intercalation.

Similar figures for other TMDCs are presented in Appendix C, where we find a

very similar evolution of the Young’s modulus with intercalation. In particular, we

have included equivalent data for TiSe2 and its intercalated structures for com-

parison with TiS2 shown in Figure 4.10. Aside from a global reduction of about

40 GPa due to the reduced bonding of the selenide TMDC compared to the sulfide



158 Chapter 4. Elastic Properties of Intercalated TMDCs

equivalents, as was discussed above, the general shape shown in Figure 4.10 is

reproduced. Specifically when intercalated with lithium, we see the increase in

the Young’s modulus out-of-plane, resulting in a more isotropic Young’s modulus

similar to what is shown in Figure 4.10b. When intercalated with magnesium, we

see the extremes in Young’s modulus along the Ti-Se bonds, and the compara-

ble Young’s modulus in-plane and out-of-plane (coloured blue), similar to what is

shown in Figure 4.10c.

A broader investigation of the Young’s modulus can be achieved by comparing

the relative variation of the Young’s modulus over a large, evenly-distributed set

of angles with the universal anisotropy. We present this in Figure 4.10d, where,

by fitting with guidelines given in the figure, we find that these slopes are close

to the Estd/Eavg ∝ (AU)0.5 determined elsewhere [293]. Similarly, we present the

ratio of out-of-plane and in-plane Young’s modulus against the anisotropy met-

ric. The pristine structures (black) show the largest deviation from the constant

YOut/YIn = 1 line of equivalence, in most cases dropping below it due to the

significant difference between the weak out-of-plane vdW bonding to the strong

in-plane covalent bonding. With the addition of lithium (red), there is a general

movement of these materials upwards, towards the YOut/YIn = 1 line, and hence

show a reduction in the anisotropy. However, they again fall below the constant

line, indicating that the in-plane bonding is much stronger than out-of-plane. Fi-

nally, for magnesium intercalation (blue) we see a further shift upwards and a re-

duction in the anisotropy. Many of the magnesium-intercalated compounds fall on

the line of equivalence, showing that the magnesium intercalant facilitates bond-

ing between layers that is similar in strength to those in-plane. In fact, many of the

magnesium-intercalated structures (as well as some lithium-intercalated) demon-

strate bonding out-of-plane that is stronger than bonding in-plane. For large AU ,

there is little trend YOut/YIn, as has been shown in a broader study of layered

materials [293].
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Figure 4.11: Variation of the single crystal bulk modulus with intercalant concentration

for TiS2 (4.11a) and ZrS2 (4.11b). Data for both lithium and magnesium intercalation is

presented. A straight line (dashed) connecting the bulk modulus of pristine and fully-

intercalated structures has been included for visual aid.

4.9 Dependence on Intercalant Concentration

So far, we have only considered the limiting cases of pristine bulk TMDCs and

their fully intercalated LiMX2 and MgMX2 forms. However, it is possible to interca-

late these materials by intermediate amounts through control of precursor or by

limiting the discharge voltage in a half-cell arrangement. The elastic properties of

similarly layered materials graphite and LiCoO2 have been shown to be linearly

dependent on the concentration of an intercalant species [275, 277], which sug-

gests the possibility of tuning the elastic properties of the TMDCs by controlling

the level to which they are intercalated. Due to the larger cell sizes required for a

finer sampling of intercalant concentration, and hence larger computational cost,

we have investigated TiS2 and ZrS2 and their intercalated forms for closer study.

We present the single-crystal bulk modulus for lithium- and magnesium-intercalated

TiS2 in Figure 4.11a, and the equivalent ZrS2 structures in Figure 4.11b. For vi-

sual aid, we have included the linear trend suggested previously with dashed

lines. With increased lithium intercalation we find the single-crystal bulk modu-

lus falls slightly below the linear, with the largest deviation being at the Li0.5TiS2

and Li0.5ZrS2 compositions. As we show for Li0.5ZrS2 in Figure 4.11b, the small-

est values arise from intercalation into a single vdW spacing (labelled abcd) as

such intercalant arrangement retains an uninterrupted, weakly-bonded vdW re-
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Figure 4.12: Summary of the key results presented in this Chapter.

gion. The largest bulk modulus is then achieved with a uniform distribution of

lithium across the vdW layers (labelled adfg), hence coupling each of the TMDC

layers with an intercalant.

For magnesium intercalation, we identify a more significant deviation from the lin-

ear trend than was seen for lithium intercalation. The intercalant configurations

which display the lowest bulk modulus are again those where a single vdW spac-

ing is filled (as has been indicated by labels a, ab, abc, and abcd in Figure 4.11a)

and more equal filling between the layers results in higher values of bulk modulus.

However, comparing the energies for these different configurations show that the

filling of a single layer is the least energetically favourable, and more homoge-

neous filling is preferred. As such, we would still expect the bulk modulus to vary

roughly linearly between the start and end of intercalation in an experimental in-

vestigation, for both lithium- and magnesium-intercalated materials. Regardless,

this does indicate the importance of considering intermediate intercalant concen-

trations, as there can be a wide range in elastic properties between different inter-

calant arrangements for a given concentration, and hence significant deviations

from the linear trend that is often assumed.
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4.10 Summary

In this Chapter, we have presented a first-principles study into the elastic be-

haviour of layered TMDCs and their intercalated structures. The elastic properties

of materials are important for all industrial applications, and are particularly impor-

tant for modelling electrodes beyond the atomic scale. We have determined the

elastic matrices, allowing us to evaluate key properties including the bulk, shear,

and Young’s moduli, and show that there is a general increase in these quantities

with intercalation. Commonly used elastic ratios which describe the ductility of a

material have also been calculated, allowing us to conclude that the pristine ma-

terials are brittle, but become more ductile with the addition of lithium or magne-

sium. The anisotropy of these materials was also assessed using a combination

of the universal anisotropy metric and a direct calculation of the angular depen-

dence of the Young’s modulus. These showed that the pristine van der Waals

materials possess a high degree of anisotropy, which is to be expected given

the relatively weak interactions across the vdW spacing in the pristine structures.

However, this anisotropy is reduced with the introduction of a positively charged

intercalant. This general stiffening and reduction in anisotropy of TMDC materials

with intercalation is schematically indicated in Figure 4.12. Finally, for selected

systems we have also explored intermediate intercalant concentrations, and con-

clude that, whilst linear extrapolation of elastic properties between the limits of

intercalation may be suitable in some situations, different intercalant configura-

tions or the use of multivalent intercalant species can cause significant deviations

from this.

This work builds upon the work of the previous Chapter which investigated the

energetic and electronic properties of intercalated TMDCs. The elastic proper-

ties of materials are important for all industrial applications, and are particularly

important for modelling electrodes beyond the atomic scale. The work presented

here therefore allows for further investigation into the layered TMDCs as electrode

materials. In the next Chapter, we explore one particular layered TMDC material

that has offered promise as an electrode in this and the previous Chapter: ScS2.





Chapter 5

Intercalation of Scandium Disulfide

“Scandium, the unsung hero of the periodic table, embodies both strength and versatility.

Like a hidden gem, it quietly empowers innovation, sparking a brilliant cascade of

possibilities.”

ChatGPT, 2023

5.1 Introduction

In Chapter 3, we investigated the family of TMDCs for intercalation lithium- and

magnesium-ion batteries. We were able to show that their layered structure did in-

deed limit the volumetric expansion due to intercalation when compared to typical

3D-materials. We were able to determine their intercalation voltages, and show

that many of them were thermodynamically stable, and commented on their re-

versible intercalation capacities. However, of the whole family, one material stood

out as a particularly promising cathode material: ScS2.

In this Chapter, we present a focused investigation into the layered ScS2 mate-

rial for intercalation electrodes, extending the previous study to intercalation with

lithium, sodium, potassium, and magnesium. We begin with a detailed discussion

of scandium-based materials, and highlight the few works that have considered

layered ScS2 as an intercalation electrode. After outlining the calculation details

used in this work, we then present the results of our investigation. First, we deter-

mine the ground state structure of intercalated ScS2 to indeed be layered, using
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a combination of random structure search and by explicitly considering the struc-

tures of analogous compounds. The layered structure is then investigated for key

electrode properties such as the volumetric expansion, voltage, and the capacity,

along with other material properties such as the electronic structure and the elas-

tic behaviour. Once we have established the promise of the ScS2, we try to push

the limits of it by intercalating beyond the LiScS2 limit, and through substitutional

metal mixing.

5.2 Background

As the demand for rechargeable batteries rises, the need for both better and a

wider range of cathode materials rises with it. Whereas for anodes there are a

wealth of materials available and the key challenge is competing with the abun-

dance of hard carbons, for cathodes the range of materials is much lower with

leading contenders being the phosphates [36,38,40], the ubiquitous NMC and its

variants [41,82–86], and spinel oxides such as LiMn2O4 [87].

For intercalation electrodes, layered materials such as the TMDCs [189–191],

NMC [83,182], and the MXenes [183] are highly attractive as their van der Waals

gaps allow for low diffusion barriers and hence fast intercalant transport. Re-

cent works have started to note the potential of scandium, where the doping of

metal oxides with scandium has been shown to increase particle size without af-

fecting the crystal structure [363], provide a comparable capacity whilst improve

cycling stability [363,364], and significantly lower the surface energy of nanoparti-

cles [365]. With these clear structural and energetic improvements, as well as the

fact that scandium is one of the lightest available metals, it raises the question as

to how good scandium-based materials themselves would perform as electrode

materials.

Transition metal oxides have been widely investigated and used for intercalation

cathodes as they display high voltages and capacities. Lithium scandium dioxide

(LiScO2) has been experimentally verified to exist in only one form, a fractional

cationic ordered rock-salt structure, with the I41/amd space group [366,367]. This
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is similar to the anatase structure of TiO2 but with lithium filling the void spaces.

However, this material was found to have poor ionic conductivity, requiring sub-

stitutional doping with transition metals in place of the scandium atoms [367].

This lack of ionic conductivity therefore prevents its exploitation as a cathode

material. Alternative, layered structures of the oxide have therefore been consid-

ered [368, 369], but are unfeasible as the structure is energetically unfavourable

compared to the rock-salt phase.

Layered sulfides are closely related to the oxides, and have the added bene-

fit of being compatible with sulfide electrolytes. Sulfide electrolytes are chem-

ically unstable with high-voltage oxides due to the difference in electronegativ-

ity of oxygen and sulfur [198]. Thus, scandium-sulfide materials could offer the

optimal properties for cathodes whilst allowing the use of sulfide-electrolytes.

The bulk properties of the TMDC T- and H-phases of ScS2 have been shown

to be conducting [370], however, the monolayer form of the H-phase is insulat-

ing [192, 370, 371]. Bulk forms of LiScS2, NaScS2, and KScS2 have all been

synthesised [228, 229], and were found to have the layered α-NaFeO2 structure

with space group R3̄M . Unfortunately, theoretical investigations of this structure

have been limited to monolayers [247, 372], and though these have suggested

high capacities of over 400 mAhg−1 with lithium intercalation, monolayers are

significantly more difficult to synthesise compared to their bulk counterpart, and

do not provide an accurate representation of the dimensions of electrodes being

utilised in functional devices. To the best of our knowledge there are currently no

studies investigating the potential of bulk ScS2 for electrodes, and so the ques-

tions of how well the bulk material would perform as an intercalation electrode

remains.

5.3 Computational Details

In this work, first principles techniques based on density functional theory were

used to determine structural and energetic properties of layered scandium disul-

fide (ScS2) intercalated with varying levels of lithium, sodium, potassium, and

magnesium. These calculations were done using the Vienna Ab initio Simulation
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Package (VASP) [161–164]. The valence electrons included for each species

were Sc 3d24s1, S 3s23p4, Li 1s22s1, Na 2p63s1, K 3p64s1, and Mg 2p63s2. All

other electrons were effectively contained within the used pseudopotentials. The

projector augmented wave method [139] was used to describe the interaction be-

tween core and valence electrons, and a plane-wave basis set was used with an

energy cutoff of 700 eV. Van der Waals interactions have been addressed using

the zero damping DFT-D3 method of Grimme [155].

Three different phases of the ScS2 structure were considered: the T-phase, the

Hc-phase [195, 196], and the α-NaFeO2-like [228, 229] structure which is here

referred to as the α-phase. The T- and α-phases have the same in-plane structure

but differ in the relative stacking of layers (as shown in Figure 5.1) leading to the

α-structure containing three ScS2 layers in the primitive unit cell, compared to

the one in the primitive unit cell of T-ScS2. The Hc-phase has a different layer

structure, and possesses two layers of ScS2 in its primitive unit cell. To consider

intercalation with the different species, supercells of (2 × 2 × 2), (2 × 2 × 1), and

(2×2×1) were used for the T-, Hc-, and α-phases, respectively. These supercells

provided eight different intercalation sites for the T- and Hc- phases, and twelve

sites for the α-phase. These allowed for various filling configurations, as was seen

in Chapter 3, each of which was explored. Whilst other phases are possible for the

TMDCs, such as 3R and distorted T structures, their intercalation environments

are similar to that of the T-, Hc-phase, or α-phases, and so have not been explicitly

considered here. It was found through two different methods that the favoured

intercalation site in all three phases of ScS2 is the octahedrally-coordinated site.

Consequently, this site has been used in the following study.

All structural relaxations were completed using the Perdew-Burke-Ernzerhof (PBE)

[119] functional form of the generalised gradient approximation (GGA), using the

conjugate gradient algorithm and converged to a force tolerance of 0.01 eV/Å per

atom, while electronic self-consistency is considered to an accuracy of 10−7 eV.

Of these, only the most energetically favourable structures at each level of inter-

calant concentration were considered. To account for the inaccurate calculation

of exchange in GGA functionals, the HSE06 hybrid functional [130,135,265] was

also used for a selection of systems. Monkhorst-Pack grids [140] of k-points
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Figure 5.1: Comparison of the T-phase (left) and α-phase (right) of LiScS2.

equivalent to a 6× 6× 6 grid in the supercells are used throughout.

Phonon band structures were obtained using the frozen-phonon method em-

ployed with Phonopy [159]. For these, the primitive unit cells of the pristine

and intercalated structures were geometrically relaxed to a force tolerance of

0.0001 eV/Å per atom, and electronic convergence of 10−8 eV. From these, the

unique displacements were generated in supercells of 6×6×1. Elastic properties

were determined using these primitive cell for the pristine and interalated T-phase

and α-phase ScS2. The elastic and internal strain tensors were computed from

the second order derivatives of the total energy with respect to the position of the

ions and changes to the size and shape of the unit cell, as employed in VASP.

From the elastic tensor, various elastic moduli were also computed.

One possible method commonly used to modify the properties of electrodes is

through the introduction of other elements, in particular substitution with transition

metals [373–375] or lithium [87]. We consider the substitution of these metals

in place of the scandium, which can be achieved through additional precursor

materials. For low quantities of alternative metals this results in a substitutional

doping [82], and for higher concentrations this results in metal mixing akin to how

cobalt in lithium cobalt oxide is replaced with nickel and manganese in NMC.

Seeing the effects of doping and metal mixing in other materials, it offers the

natural question as to whether it can be employed to enhance the properties of
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ScS2. Here, we consider the metals Co, Cr, Fe, Hf, Mn, Nb, Ni, Sn, Ta, Ti, V,

and Zr for this substitution, which were chosen to ensure a sufficient spread of

species from across the transition metal block. We have also considered lithium

as substitutions could occur during synthesis or cycling.

Due to the number of possible concentrations (and the configurations of each of

those concentrations) available for metal mixing in the α-phase, we have limited

this part of our study to the T-phase. Different concentrations of substitutions were

considered, with all unique configurations being considered for each concentra-

tion of mixed metals. For Sc1−xMxS2, concentrations of 0
8
≤ x ≤ 8

8
in increments

of 1
8

were considered, with x = 0
8

= 0 corresponding to the ScS2 composition and

x = 8
8

= 1 corresponding to the MS2 composition. The configurations of mixing

used are equivalent to the different configurations used for lithium intercalation,

with the same indexing being used for the metal species instead of the interca-

lated lithium. Once the Sc1−xMxS2 compound is synthesised, the metal species

M becomes ‘locked’ in the host structure due to bonding with the sulfur atoms.

It is thus more difficult for the metal species to reconfigure into a lower energy

configuration than it would be for intercalated species such as lithium. As such,

we consider a random configuration of metal mixing by taking the average of the

different configurations considered.

5.3.1 RAFFLE

The pseudoRandom Approach For Finding Local Energetic minima (RAFFLE)

has been developed in a similar manner to the approaches postulated by AIRSS

[376], CALYPSO [377, 378], CrySPY [379], and GASP [380] in the field of struc-

ture search. RAFFLE draws from said previous methodologies by repeatedly

sampling the structure space in question in order to approach a heuristic conver-

gence to the energy landscape of prospective new structures.

The beginning of any RAFFLE exploration consists of determining the stoichiome-

tries of interest; taking ScS2 with intercalant lithium as an example, the Sc : S : Li

ratios of interest are 1 : 2 : (0−1), with non integer lithium fractions corresponding

to larger supercells. This suite of stoichiometries provides a basis for structural
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generation; in this case, the fully intercalated picture (e.g. a ratio of 1 : 2 : 1) is

considered to explicitly explore the structures with a stoichiometry equal to that of

the fully-intercalated layered structure.

The process behind any structure search is to generate random structures, and

then rank them using a suitable metric. In the case of RAFFLE we use forma-

tion energy per atom. The process for generating the random structures is as

follows: Our first stage begins with a volume estimation, which is estimated from

a packing fraction approach. This range is adjusted by ±50% to allow for different

packing radii in compounds as opposed to elemental bulk. The unit cells are then

constructed by randomly varying the ratios between the six unit cell defining pa-

rameters (a, b, c, α, β, γ), with a skewed normal distribution designed to prevent

extremely small angles and lattice constants (i.e. below the atomic radii).

Atoms are placed within the resultant unit cell according to a set of 2-, 3-, and 4-

body distribution functions. These functions are initially populated with structural

information from databases such as the Materials Project [340], but as the data

set grows to encompass relaxed structures, these structures are encoded into the

distribution functions according to their relative energetic favorability; those which

are more stable contribute their distributions more heavily to future generations.

The essence of the methodology is distilled as follows: replicating the pseudo-

local favourable chemistry of atoms leads to more energetically stable structures,

thus a set of descriptors of local chemistry must be obtained that is sufficient to

replicate key features inversely. The expansion to ith-body could be continued

arbitrarily far, but from an anecdotal standpoint 3-body (angular) is simply not

sufficient and 5-body would be more expensive than is practical, thus 4-body

is a determined to be a suitable compromise. Utilising algorithms designed to

place atoms in sensible locations, all the atoms are placed sequentially within

the cell, according to the positions which maximise similarity between the seeded

distribution functions and that of the new structure.

Once the structure is generated, the unit cell is relaxed using standard method-

ologies employed in this thesis. Relaxed structures are characterised and their

distributions are added to the distribution functions mentioned above. This pro-

cess is repeated until the apparent ground state structure has been repeated
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Figure 5.2: 5.2a presents the calculated formation energies per atom for the 20 lowest-

energy structures of LiScS2 found using the RAFFLE structural prediction algorithm. The

results have been shifted such that the lowest-energy structure has a formation energy

of 0 eV/atom. The typical structures obtained from this search are presented 5.2b, with

the layered structures having octahedral or tetrahedral coordination, and the non-layered

structure being orthorhombic.

several times, and the lowest ranked structures are then considered to be the

found structures. We have here limited our calculations to small unit cells of up to

16 atoms.

5.4 Determination of Structure

5.4.1 RAFFLE Structure Search

We first explore the phase space of LiScS2 using our random structure search

RAFFLE. Of the over 800 structures generated and structurally relaxed, the ener-

gies of the 20 lowest-energy systems are presented in Figure 5.2a. Of these, the

eight lowest-energy systems are are all T-phase structures possessing hexago-

nal symmetry, with the differences in energy arising from different coordination

of the lithium with the ScS2 layers, relative shifts of the ScS2 layers, and small

structural fluctuations arising from the tolerances of the search. These are in-

dicated in 5.2b, where the structures with octahedrally-coordinated lithium are

lower in energy [191,233,272,273] than the equivalent systems with tetrahedrally-
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(a) (b)

Figure 5.3: Octahedral (5.3a) and tetrahedral (5.3b) coorindation of an intercalant with

sulfur in intercalated ScS2.

Phase Relative Energy of Intercalation Site

Octahedral (eV) Tetrahedral (eV)

T 0 0.04

Hc 0 0.31

Tp 0 0.38

Table 5.1: Relative energies for the different Li intercalation sites considered for T-, Hc-,

and α-ScS2 phases.

coordinated lithium due to the higher coordination between lithium and sulfur.

There is then a large jump of 42.1 meV per atom to the next group of structures,

which have orthorhombic unit cells. As this energy exceeds typical values associ-

ated with thermal energy, we conclude that the layered structure will preferentially

form.

5.4.2 Intercalation Site

The results of the structure search show that layered structures are the most

favourable, and so we we explicitly investigate them further. As with all partially

heuristic methods of structure searching, the result is never guaranteed to be the

true ground state. So, to ensure that we do not limit our investigation to the results

of the random structure search, further layered polymorphs of intercalated ScS2
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Figure 5.4: Nudged elastic band results used to determine site of intercalation. The

routes through T-ScS2 are presented in 5.4a, and the resultant barrier is shown in 5.4b.

Similarly, 5.4c shows the routes through α-ScS2, resulting in the barriers presented in

5.4d. The intercalation sites these routes are between, the octahedrally coordinated (O)

and tetrahedrally coordinated (T), are also indicated.

were also considered. Specifically, we focused on the TMDC 1T-phase (following

the results of the random structure search), the TMDC 2Hc-phase, and the α-

ScS2 phase (following experimental evidence [228,229]).

We first determine the preferred site of intercalation into the three different ScS2

polymorphs using two different methods. The first method was by intercalating at

known interacalation sites for other TMDC structures in the literature [191, 233,

272, 273, 381]. For the T- and H-phases, the intercalation sites considered were

the octahedrally coordinated site above the scandium atom, and the tetrahedrally

coordinated site above the chalcogen atom. These are depicted in Figure 5.3. For

α-ScS2, the sites considered also have octahedral and tetrahedral coordination,
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but their positions with respect to the scandium atom are different due to the

shift of the layers. Geometric relaxations were performed on these to obtain the

relative energy of the two sites. The data for this is presented in Table 5.1, where

for all three phases it can be seen that the octahedral site is lowest in energy (due

to the higher Li-S coordination).

To ensure a more thorough exploration of the potential intercalation sites, climbing-

image nudged elastic band (CI-NEB) calculations, as employed in VASP, were

used to consider transition states for lithium diffusion through the system [156,

157] (using the PBE functional). These CI-NEB calculations were performed

along three different routes between two intercalation sites in bilayer systems with

fixed positions of the scandium atoms, for each of the phases considered, using

lithium as the intercalant. The specific sites considered were the octahedrally-

coordinated (O) and the tetrahedrally coordinated (T) discussed above. The CI-

NEB routes between two equivalent O sites (Route A), between adjacent O and

T sites (Route B) and between two equivalent T sites (Route C) were considered,

and are shown in Figure 5.4a for the T-phase and Figure 5.4c for the α-phase.

The results of the CI-NEB calculation are then presented in 5.4b and 5.4d, and

again show that the most favourable intercalation site for each of the phases

is the octahedral-coordination (O) site. This is in agreement with other TMDC

works [191,233,272,273], as well as the results of the structure search.

We are also able to comment on the diffusion properties of intercalants in ScS2.

As the rate of diffusion follows an Arrhenius equation, the height of the activation

barriers is a key parameter for characterizing electrode materials. For both T- and

α-phases we see that, whilst Route A offers the most direct path between two oc-

tahedral sites, diffusion along Route B has a lower activation energy. Route A in

the T-phase demonstrates a barrier height of 0.58 eV, and 0.37 eV along Route B

(and 0.12 eV in the reverse direction). These compare very well with the 0.67 eV

and 0.34 eV see for lithium diffusion along monolayer T-ScS2 [247]. We see the

same for the α-phase ScS2, though we do note significantly larger barriers of

1.87 eV along Route A and 1.55 eV along Route B (0.01 eV in the reverse direc-

tion). These larger barriers are partially caused by the particular method (fixing

the scandium positions) used for generating these CI-NEB barriers. However a
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No. Intercalant Ions Sites Filled No. Intercalant Ions Sites Filled

0 - 8 bcegijkl

1 a 8 bcehijkl

4 abcd 8 bcfgijkl

4 abce 8 cdefhijk

4 abch 8 cdefhijl

4 abei 8 cdefhikl

4 abfi 8 cdefhjkl

4 abgi 8 cdeghjkl

4 abgj 8 cdfghjkl

4 abgk 8 defgijkl

4 abgl 8 dfghijkl

4 adeh 8 efghijkl

4 adfg 11 abcdefghijk

4 adfg 12 abcdefghijkl

Table 5.2: Different intercalation configurations considered for α phase.

more significant cause is due to the relative layer shift seen for the α-phase com-

pared to the T-phase resulting in an ‘interlocking’ of layers, and hence a sulfur of

one layer protrudes into the void space of the next. Thus we see a larger barrier

to ionic movement.

5.4.3 Intercalation Configuration

As stated above, the T-, Hc-, and α-phases of ScS2 have been considered, with

supercells of (2×2×2) for the T-phase, (2×2×1) for the Hc-phase, and (2×2×1)

for the α-phase being used for intercalation. For these supercell sizes, there were

many symmetrically equivalent octahderal sites available for intercalation. For the

T- and Hc-phases there are eight different intercalation sites (indexed a-h), and for

the α-phase there are twelve different intercalation sites (indexed a-l). These sites

are indicated with the green spheres in Figure 5.5. These different intercalation

sites allow various symmetrically-unique configurations of intercalants which were
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(a) (b) (c)

Figure 5.5: The different intercalation sites available in the supercells of T- (5.5a), Hc-

(5.5b), and α-ScS2 (5.5c) considered in this work.
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Figure 5.6: Convex hulls for Sc-S (5.6a) and Sc-O (5.6b) compounds.

each explored for obtaining the intercalation voltage. These configurations are

presented in Table 3.1 for the T- and Hc-phases, and in Table 5.2 for α-phases,

where the sites occupied with an intercalant are indicated with the letters (a-h)

and (a-l). Due to the number of intercalation sites (and hence the number of

intercalation configurations) for the α-phase, we have performed a more limited

investigation across the intercalation range.
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5.4.4 Convex Hull for Sc-S and Sc-O Compounds

So far, we have concluded that the intercalated form of ScS2 is layered, we have

highlighted the T-, Hc, and α-phases for explicit investigation, and have deter-

mined that the preferred sites for ionic intercalation are those with octahedral co-

ordination. However, we are also interested in the structure of ScS2 when the in-

tercalants are removed, and so we have investigated a range of Sc-S stoichiome-

tries to determine the stability of ScS2. As the data available within literature and

on databases such as the ICSD and Materials Project [340] for scandium-sulfide

compounds is fairly limited, we have also used the structures of scandium-oxide

analogues. The results of this are presented in the convex hull shown in Fig-

ure 5.6a. For the composition ScS2, the layered structures are most favourable,

with the T-structure again being shown to be the lowest in energy. However, it lies

0.37 eV above the convex hull, and a mixture of Sc2S3 and S would be preferred.

Figure 5.6b presents the generated convex hull for compounds of scandium and

oxygen with different stoichiometries, where we note that the compounds with

stoichiometry ScO2 do not lie on the hull. Furthermore, the layered structures

are the least energetically favourable of the structures considered for that com-

position, lying 0.62 eV above the hull. Of the structures investigated for the ScO2

composition, the lowest energy belongs to the monoclinic structure similar to that

of Baddeleyite. Clearly, the layered ScO2 structure would be prone to form the

monoclinic structure instead, or a decomposition reaction 2ScO2 → Sc2O3 +

1
2
O2.

5.5 Comparison of Intercalated Phases

Having determined the layered TMDC phases to be of primary interest for inter-

calated ScS2, we now compare the different polymorphs with intercalant concen-

tration. We present in Figure 5.7a the energies (per formula unit) of each of the

considered phases of LiaScS2. This allows for easy comparison of the different

phases and indicates which phases are energetically preferred for different inter-

calation concentrations. For visual aid we have included a linear fit, which allows



5.5. Comparison of Intercalated Phases 177

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a in Li
a
ScS

2

0

1

2

3

4

5

6

7

8

E
n

e
rg

y
 (

e
V

)

T calculated
T fit
α calculated
α fit
Hc calculated
Hc fit
a=0.1439

T α

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a in Na
a
ScS

2

0

1

2

3

4

5

6

E
n

e
rg

y
 (

e
V

)

T calculated
T fit
α calculated
α fit
Hc calculated
Hc fit
a=0.1009

T α

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a in K
a
ScS

2

0

1

2

3

4

5

6

E
n

e
rg

y
 (

e
V

)

T calculated
T fit
α calculated
α fit
Hc calculated
Hc fit
a=0.1201

T α

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a in Mg
a
ScS

2

0

1

2

3

4

5

6

E
n

e
rg

y
 (

e
V

)

T calculated
T Fit
α calculated
α Fit
Hc calculated
Hc Fit
a=0.1283

T α

Figure 5.7: Relative energy per formula unit of T, α and Hc phases of MaScS2 (M =

Li,Na,K,Mg) for a range of concentrations a. 5.7a shows the data for LiaScS2, 5.7b

shows the data for NaaScS2, 5.7c shows the data for KaScS2, and 5.7d shows the data

for MgaScS2. Linear fits have been presented in each as visual aid to identify the crossing

points.

us to determine that the T-phase is the lowest in energy for low intercalant con-

centrations (a < 0.15 in LiaScS2), whereas for higher concentrations the α-phase

is preferred.

Whilst we have not performed the RAFFLE structure search for ScS2 intercalated

the other intercalants considered, due to the similar chemistry (for the Group I

intercalants Na and K) and ionic size (for the Group II intercalant Mg), we argue

that similar conclusions about the layered structure would be reached. However,

to compare the relative energies of the different phases of ScS2 intercalated with

the different intercalants, and hence determine the polymorph that is energetically

preferred, we also present in Figure 5.7 energy per formula unit for each of the

considered phases. For visual aid we have again included a linear fits to the
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Figure 5.8: Corrections to the total energy that would arise from finite-temperature lattice

vibrations in intercalated ScS2. The figures presented are for LiScS2 (5.8a), NaScS2

(5.8b), KScS2 (5.8c), and MgScS2 (5.8d).

Na, and K intercalated systems. For each of these, we can determine that the

T-phase is the lowest in energy for low intercalant concentrations (a < 0.15 in

MaScS2, M = Na, K), whereas for higher concentrations the α-phase is preferred.

These boundaries are indicated in each of the Figures 5.7b for Na, and 5.7c for K

with vertical dashed lines. However, the double valency of magnesium results in

two changes to the oxidation state of the host material. This can be seen with the

change in gradient of the line from 0 < a < 0.5 and 0.5 < a < 1. It is noted that

for all of the phases and each of the intercalants, the Hc-phase of ScS2 is always

the highest in energy, hence we focus on the T- and α-phases for the remainder

of this Chapter. Thus, we see the same results for the beyond-lithium intercalant

species as we did for lithium.
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5.5.1 Dynamic Corrections

In most scenarios, the total internal energy obtained from DFT calculations is

useful for comparisons for different phases of the same material, but it is not

able to account for dynamic effects such as zero-point energy (ZPE) motion and

vibrations due to finite temperature. To include these dynamic effects we instead

use,

UDyanmic = UDFT + UZPE − TSvib, (5.1)

where UDFT is the energy obtained from the DFT calculation (presented in Fig-

ure 5.7), UZPE is the energy associated with the zero-point motion of the lattice,

and TSvib is the energy from finite temperature vibrations. The last two of these

terms are given by,

UZPE =
∑
ν,q

1

2
~ων,q, (5.2)

and,

Svib =
1

2T

[∑
ν,q

~ων,q coth

(
~ων,q
2kBT

)]
− kB

[∑
ν,q

ln

(
2 sinh

( ~ων,q
2kBT

))]
. (5.3)

The origins of these expressions are presented in Appendix D

The size of the TSvib corrections are presented in Figure 5.8 for each of the

phases intercalated with each of the intercalants, and the values of UZPE, TSvib(T =

400 K), and the resultant correction (UZPE − TSvib(T = 400 K)) are presented in

Table 5.3. The values of ων,q were obtained from the phonon band structures pre-

sented below. For each of the Group I intercalants, the T-phase has the largest

TSvib value whilst the α-phase has the smallest. The ordering is reversed for

magnesium intercalation. Interestingly, the corrections that arise from consider-

ing these dynamic effects for each phase are all of the order of 0.7 eV, with minor
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UZPE TSvib(T = 400 K) Correction

Intercalant Phase (eV) (eV) (eV)

Li T 0.174 0.529 -0.355

Li Hc 0.176 0.523 -0.347

Li α 0.176 0.519 -0.343

Na T 0.154 0.584 -0.430

Na Hc 0.158 0.566 -0.408

Na α 0.159 0.562 -0.403

K T 0.142 0.620 -0.478

K Hc 0.146 0.606 -0.460

K α 0.146 0.601 -0.455

Mg T 0.175 0.525 -0.350

Mg Hc 0.170 0.531 -0.355

Mg α 0.168 0.540 -0.372

Table 5.3: Dynamics corrections to the total energy of intercalated ScS2. UZPE is the

zero-point energy calculated using equation (5.2), and TSvib(T = 400 K) is the energy

arising from finite-temperature vibrations calculated using equation (5.3) at a temperature

of T = 400 K.

variation (< 0.02 eV) for each of the intercalants. As a result, the ordering of

the intercalated phases presented in Figure 5.7 is not affected by the inclusion of

these additional terms, and so these corrections have not been included in the

proceeding discussions of results.

5.5.2 Lattice Constants

The real-space lattice constants for the different phases of ScS2, intercalated with

the different intercalants, obtained using the PBE and HSE06 functionals in this

work are presented in Table 5.4. Where possible, lattice constants found within

the literature have also been presented. With the PBE functional, we see that the

calculated values for the in-plane lattice constants for Group I-intercalated α-ScS2

are in very good agreement with the experimental values, being within 1%. The

out-of-plane lattice constants deviate from the experimental values slightly more,
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Material a (Å) c (Å) c/a Source

T-LiScS2 3.610 6.135 1.699 This work (PBE)

Hc-LiScS2 3.569 12.409 3.477 This work (PBE)

α-LiScS2 3.652 17.910 4.904 This work (PBE)

α-LiScS2 3.641 17.841 4.901 This work (HSE)

LiScS2 3.687 18.318 4.968 van Dijk [228]

T-NaScS2 3.694 6.736 1.824 This work (PBE)

Hc-NaScS2 3.638 13.553 3.725 This work (PBE)

α-NaScS2 3.732 19.467 5.216 This work (PBE)

α-NaScS2 3.717 19.382 5.214 This work (PBE)

NaScS2 3.751 19.744 5.264 van Dijk [228]

T-KScS2 3.774 7.432 1.969 This work (PBE)

Hc-KScS2 3.701 15.151 4.093 This work (PBE)

α-KScS2 3.800 21.806 5.738 This work (PBE)

α-KScS2 3.787 21.735 5.740 This work (HSE)

KScS2 3.814 21.726 5.697 Havlak [229]

KScS2 3.811 21.719 5.700 Havlak [229]

T-MgScS2 3.598 6.234 1.733 This work (PBE)

Hc-MgScS2 3.584 12.621 3.522 This work (PBE)

α-MgScS2 3.612 18.491 5.119 This work (PBE)

α-MgScS2 3.592 18.372 5.115 This work (HSE)

Table 5.4: Lattice constants of the different phases of ScS2 intercalated with different

species.
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Figure 5.9: 5.9a shows the percentage volume change (% = 100× V−V0
V0

) of T-ScS2 and

α-ScS2 caused by intercalation.

but still remain within 2.5%. The use of the HSE06 hybrid functional produces

lattice constants of intercalated α-ScS2 that differ from those of the PBE functional

by less than 1%, reducing both the a and c lattice constants.

5.6 Volumetric Expansion

For intercalation electrodes, the volume change of ScS2 upon cycling needs to

remain suitably small to prevent material fracturing and improve device lifetime.

Figure 5.9a shows the volumetric expansion that arises in T-ScS2 and α-ScS2

upon intercalation. This is given as a percentage of the unintercalated bulk ma-

terial volume, using % = 100 × V−V0
V0

, where V0 is the volume of the uninterca-

lated bulk material. From the figure, we see that as the size of the intercalant is

increased from Li to Na to K, the expansion increased by a larger percentage ac-

cordingly: the volume change from intercalating with lithium to LiScS2 is 6.51%,

which is comparable to the 8% observed for NMC [279]. However, for NaScS2 the

expansion exceeds 20%, and for KScS2 is exceeds 40%. Interestingly, intercala-

tion with magnesium leads to a volume expansion of 7.53%, comparable to that
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Phase Intercalant

Species

Charge of Sc

(|e|)

Charge of S

(|e|)

Charge of

Intercalant (|e|)

T

- 2.21 -1.11 -

Li 2.23 -1.55 0.88

Na 2.23 -1.54 0.85

K 2.23 -1.51 0.79

Mg 2.01 -1.84 1.67

Hc

- 2.19 -1.10 -

Li 2.21 -1.55 0.88

Na 2.22 -1.53 0.85

K 2.20 -1.50 0.78

Mg 1.95 -1.82 1.69

α

- 2.21 -1.11 -

Li 2.23 -1.56 0.88

Na 2.23 -1.54 0.85

K 2.23 -1.51 0.80

Mg 2.02 -1.85 1.69

Table 5.5: Bader charge values of species in pristine and fully-intercalated ScS2, for the

different phases considered in this work.

arising from intercalation with lithium, which is due to the larger nuclear charge

on the Mg resulting in a reduced ionic radius.

5.7 Charge Analysis

Before assessing the key electrode properties of ScS2, it will be useful to first

discuss the charge transfer upon intercalation, as charge transfer is ultimately the

source of the energy storage in electrodes. We first do this with Bader charge

analysis, the data for which is presented in Table 5.5. We note that the intercalant

charge remains unchanged with intercalation into the different phases of ScS2,

highlighted best with lithium which possesses a charge of 0.88 |e| in each of the

phases. Between the different intercalants, though, there is a more significant
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(a) (b)

(c) (d)

Figure 5.10: The charge difference plots arising from intercalation of T-ScS2 obtained

using ∆ρ = ρMScS2 − [ρM + ρScS2 ] for intercalants M = Li (5.10a), Na (5.10b), K (5.10c)

and Mg (5.10d). In these, red isosurfaces show electron depletion and blue isosurfaces

show electron accumulation. The ScS2 layers are shown with purple and yellow atoms.

difference. In α-ScS2, the charge on lithium is 0.88 |e|, the charge on sodium is

0.85 |e|, and the charge on potassium is 0.80 |e|. Magnesium, being a Group

II element, possesses twice the valence electrons as its Group I neighbour of

sodium. It is therefore unsurprising to see that magnesium possesses a charge

of 1.69 |e|, twice the charge of sodium.

To evaluate charge transfer between intercalant ions and the host ScS2 more

rigorously, the geometrically-relaxed intercalated structures were separated into

the host ScS2 and the intercalant ions. Retaining the size and shape of the unit

cell, and keeping the positions of the ions the same as in the intercalated material,
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Figure 5.11: The planar-average of ∆ρ = ρMScS2−[ρM+ρScS2 ] for intercalants M = Li (red),

Na (blue), K (green) and Mg (orange). Positive values correspond to regions of electron

accumulation, and negative values correspond to regions of electron depletion. The black

dashed line indicates zero change. Labels indicating the positions of the constituent

atoms have also been included, where the repeated ‘M’ label shows the periodicity of the

cell.

the electronic charge densities were obtained. By comparing the charge density

of the full structure with those of the ScS2 structure and the intercalant [276], i.e.

∆ρ = ρMScS2 − [ρM + ρScS2 ], it is possible to comment on the charge transfer upon

intercalation. This is shown in Figure 5.10 for the T-phase of ScS2 intercalated

with each of lithium, sodium, potassium, and magnesium, and the planar average

values are presented in Figure 5.11.

For each of the Group I intercalants, it is clear to see in Figure 5.10 the loss of

electronic charge from the intercalant into a bond with the sulfur atom, shown with

the red (depletion) regions around the intercalant, and the blue (accumulation)

regions. This is further highlighted with the planer-averaged values of Figure 5.11,

where we notice the peaks in the electron density accumulation around c = 0.2

and c = 0.8. We also notice a further transfer of charge from the scandium to

the sulfur-scandium bonding. For magnesium, we see a larger loss of electronic

charge from the magnesium, corresponding to approximately double that of the

Group I intercalants, as would be expected. This charge can again be seen

to collect in the intercalant-sulfur bonding region. However, upon magnesium

intercalation the scandium appears to gain electrons from the scandium-sulfur

bonding region, opposite to what was seen for the Group I intercalants.
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Figure 5.12: Intercalation voltages obtained when ScS2 is intercalated with lithium

(5.12a), sodium (5.12b), potassium (5.12c), and magnesium (5.12d).

5.8 Voltages of ScS2 Cathodes

ScS2 has several properties which are attractive as a cathode. First, in Fig-

ure 5.12 we present the voltage profiles for each of the phases, with each of

the considered intercalants. For α-ScS2 intercalated with Group I metals, our cal-

culations show that the voltages at low levels of intercalation reach above 4.5 V.

As the concentration of the intercalant increases, the decrease in voltage across

the range explored is less than 1.5 V, and so the final voltage remains above 3 V.

The α-phase shows for Li, Na and K no change in the voltage for concentrations

of a > 0.4. Increasing the atomic number of the Group I intercalant results in a

small decrease in the average intercalation voltage: Whilst for Li intercalation the

average voltage is 3.977 V, this drops to 3.874 V for Na, and to 3.799 V for K.

This drop in voltage is due to the reduced charge transfer from the intercalated

species to the host material, as is shown through the Bader charge analysis pre-
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sented above, where the lithium charge is 0.88 |e|, the sodium charge is 0.85 |e|,

and the potassium charge is 0.80 |e|.

For the other phases of intercalated ScS2, we see that there is much less varia-

tion in the voltage compared to that for the α-phase for each of the intercalated

species, with the profiles being demonstrating smaller drops as the concentra-

tion is increased. For lithium intercalation, the average intercalation potentials

are 3.655 V, 3.414 V, and 3.977 V for the T-, Hc-, and α-phases, respectively.

Similarly, the voltages for sodium intercalation are 3.554 V (T), 3.320 V (Hc), and

3.874 V (α), and for potassium intercalation the voltages are 3.496 V (T), 3.187 V

(Hc), and 3.799 V (α). These show that the voltages of the α-phase are greater

than those for the T-phase, which are greater than the Hc-phase, and that the

voltage obtained from T-ScS2 is about 0.3 V lower than that obtained from the

equivalent α-ScS2 structure for each of the intercalants. As the structures of the

individual ScS2 layers are the same in each of the T- and α-phases, the increase

in output voltage must be due to the change in bonding environment arising from

the relative shift in the ScS2 layers. However, for Li, Na and K, irrespective of

phase the voltages remain above 3 V for all concentrations considered.

For magnesium intercalation the voltage behaviour is different from that of the

Group I elements. The average voltage is 1.474 V for α-ScS2, but changes con-

siderably by 2.5 V across the range. This is due to the double valency of mag-

nesium allowing for two changes in oxidation state of the host material. This

behaviour is also present in the T- and Hc-phases. All phases, when fully inter-

calated (a = 1), decrease to voltages below 0.6 V. The voltages of the T-phase

and Hc-phase are 1.499 V and 1.498 V respectively, where we see the ordering

of the phases is different to what is observed for the Group I intercalants, and the

differences between each of the voltages is much lower (∼0.03 V).

5.9 Thermodynamic Stability of ScS2 Cathodes

One can construct thermodynamic phase diagrams in terms of the chemical po-

tentials of scandium and the intercalated species to determine the stability of
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Figure 5.13: 5.13a, 5.13b, 5.13c, and 5.13d show the phase diagrams for α-ScS2 inter-

calated with different concentrations of Li, Na, K and Mg, respectively. The insets show

the corresponding values of EIS .

the intercalated structure against undesirable conversion reactions, as outlined in

Chapter 3. We use this to evaluate the capacity of the material, reasoning that

the formation of Li2S (or equivalent product) will result in irreversible loss of the

layered structure and hence cyclability.

The phase diagrams for α-ScS2 intercalated with each of the intercalants are

presented in Figure 5.13, and the resultant values of EIS for each of the inter-

calants is presented in the insets. It is clear to see that, for the range of intercala-

tion concentrations presented here, ScS2 has a sizeable window of stability with

EIS values in excess of 3 eV, much greater than equivalent values for the other

TMDCs (as shown in Chapter 3). This means that ScS2 has a total capacity of

243.99 mAhg−1 at full intercalation for the Group I intercalants, and a capacity of

487.98 mAhg−1 when intercalated with magnesium.
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a in Old EIS Intercept New EIS

Phase Intercalant MaScS2 (eV) (eV) (eV)

α Na 12
12

3.949 0.134 3.815

α K 12
12

3.891 0.192 3.699

α Mg 12
12

3.698 0.651 3.047

α Mg 8
12

4.644 0.350 4.293

T Na 8
8

3.637 0.082 3.554

T K 8
8

3.629 0.133 3.496

T Mg 8
8

3.690 0.659 3.031

T Mg 4
8

5.415 0.168 5.247

Hc Na 8
8

3.592 0.562 3.030

Table 5.6: Adjusted values ofEIS taking into account the boundary described by equation

4 in the main article. New value of EIS obtained from ENewIS = EOldIS − Intercept.

For the Group I intercalants, EIS remains relatively unchanged with intercalant

concentration, but we note that the thermodynamic stability behaviour for magne-

sium intercalation is different. It has very favourable energetics for low intercala-

tion, but for higher concentrations EIS dramatically reduces. This arises from a

significant upward shift of the phase boundary between ScS2 and MgaScS2, given

by the magnesium-equivalent of equation (3.19). This behaviour is not dependent

on the phase of the ScS2, and can be seen in the equivalent phase diagrams

(presented in Appendix D) for the intercalation stability of T-ScS2 (Figure D.1) and

Hc-ScS2 (Figure D.2). This is due to the double valency of magnesium compared

to the Group I metals, resulting in a different orbital being filled, and hence a

second redox transition being stimulated with the second electron.

5.9.1 Additional Considerations for EIS

The definition of EIS above does not account for the limits imposed by the bulk

species. The lines defined by equations (3.20) and (3.23), and presented in Fig-

ure 5.13, may cross above ∆µM = 0. This violates the condition given by equation

(3.18) requiring that the elemental bulk form of the intercalant species does not
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form. As such, the values of EIS presented in the inset of Figure 5.13 are opti-

mistic and require correction. These adjusted values are presented in Table 5.6.

It is clear to see that the corrected values of EIS are still remarkably large, and so

the conclusions presented above hold.

5.10 Dynamic Stability

The thermodynamic phase diagrams presented in the previous section allowed

us to determine the range of concentrations for which the intercalated materi-

als are stable against conversion reactions. However, it is also important to as-

sess whether these materials are dynamically stable by considering their phonon

modes. Figure 5.14 presents the phonon band structures for pristine α-ScS2,

and α-ScS2 intercalated with lithium. As can be seen, the fully intercalated struc-

ture is phonon-stable, whereas for bulk α-ScS2, it is clear to see the presence

of imaginary phonon modes in the Γ-M path of the Brillouin zone which result in

dynamic instability. The motions associated with imaginary modes at -1.16 THz

(-38.7 cm−1) correspond to longitudinal in-plane oscillations of the ScS2 sheets,

as indicated in Figure 5.14b. This behaviour holds for Na, K, and Mg intercalated

into ScS2.

By comparing the phonon band structures for the different intercalants, simi-

lar features can be seen for the Group I metals. The key difference between

them being a reduction in frequency of the optical bands. This is highlighted at

the zone centre, with the highest optical band having frequency of 12.19 THz

(406.49 cm−1) for lithium intercalation, 11.52 THz (384.12 cm−1) for sodium inter-

alation, and 11.10 THz (370.21 cm−1) for potassium intercalation. This reduction

amounts to ∼0.5 THz between each. There is a significant change in the phonon

band structure for magnesium intercalation, however, with the resulting phonon

bands being much less dispersive than those of the Group I intercalants.

Our results show that LiScS2 is phonon stable, and at some point, as the con-

centration of lithium is decreased, the phonon-stability is lost. The evaluation of

the phonon band structures for intermediate lithium concentrations (Figure 5.15)
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Figure 5.14: Phonon band structures for pristine α-ScS2, and α-ScS2 intercalated with

different metal species. 5.14a shows the phonon band structure for pristine bulk α-

ScS2, with 5.14b showing the atomic structure and motions associated with the imaginary

modes at Γ. Similarly, the band structures for LiScS2, NaScS2, KScS2, and MgScS2 are

shown in 5.14c, 5.14d, 5.14e, and 5.14f respectively.

allows us to determine the lowest concentration of lithium we can access be-

fore the intercalated layered structure becomes dynamically unstable. For the

α-phase, the instability is also seen up to and including Li 2
12

ScS2. Similarly for

T-ScS2, Li 1
8
ScS2 is unstable whereas Li 2

8
ScS2 is not. We can therefore conclude
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that the lowest concentration of lithium that can be reached (corresponding to the

depth of discharge and hence the maximum reversible capacity) in ScS2 lies in

the range 0.125 < a < 0.25. Taking the range of intercalation to be 0.25 < a < 1,

corresponding to 75% of the theoretical capacity, this gives a charge capacity

of 182.99 mAhg−1, which is comparable to the ∼200 mAhg−1 of other materi-

als [36,38,40,41,82–86]. The 75% of the maximum capacity compares well with

the 60%-80% available in NMC materials [83].
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Figure 5.15: Phonon band structures for T-ScS2 intercalated to Li 1
8
ScS2 (5.15a) and

Li 2
8
ScS2 (5.15b), and for α-ScS2 intercalated to Li 1

12
ScS2 (5.15c), and Li 2

12
ScS2 (5.15d).

5.11 Elastic Properties

For stable intercalation cycling it is desirable for the electrode material to be re-

sistant to the associated stresses. However, to evaluate the various elastic prop-

erties of a material, we first need to obtain the elastic tensor. Using the elements

of the elastic tensor, the bulk (B) and shear (G) moduli can be determined, from

which many other elastic properties can be determined [279]. Upper bounds of
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these quantities, denoted BV and GV , can be found using the Voigt scheme (see

(4.19)), with the bulk modulus being given by,

BV =
1

9

[
(c11 + c22 + c33) + 2(c12 + c23 + c31)

]
GV =

1

15

[
(c11 + c22 + c33)− (c12 + c23 + c31) + 3(c44 + c55 + c66)

]
.

(5.4)

From these, the Young’s modulus, Y, the Poisson ratio, ν, and the Pugh ratio, R,

can be obtained:

Y =
9BG

3B + G

ν =
3B− 2G

2(3B + G)

R =
B

G
.

(5.5)

5.11.1 Elastic Tensor

Both the pristine and intercalated α-ScS2 found to be rhombohedral with space

group number 164 (space group P3m1 and point group 3m). Rhombohedral crys-

tals have elastic tensors of the form,



c11 c12 c13 c14

· c11 c13 −c14

· · c33

· · c44

c44 c14

· c66


, (5.6)

with six independent elastic constants due to the symmetry constraints and the

relation c66 = 1
2
(c11 − c12). To ensure elastic stability, there are certain conditions

that are necessary to be met [357], as we outlined in equation (4.30).

We find the elastic tensor (with elements in units of GPa) of the pristine α-ScS2

structure to be,
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Intercalant Space

Group

c11

(GPa)

c12

(GPa)

c13

(GPa)

c33

(GPa)

c44

(GPa)

c14

(GPa)

c66

(GPa)

Li 164 142.65 36.93 32.74 112.61 34.11 -1.07 52.87

Na 164 125.28 32.81 32.32 98.58 35.57 7.95 46.23

K 164 101.36 28.46 29.46 103.76 32.45 10.56 36.45

Mg 164 165.39 49.00 58.22 158.47 68.70 17.48 58.20

Table 5.7: Elements of the elastic matrix, cij in units of GPa, of α-MScS2 (M = Li, Na, K,

Mg).



69.64 36.67 27.91 7.78 0.00 0.00

69.64 27.91 −7.78 0.00 0.00

17.38 0.00 0.00 0.00

−25.85 0.00 0.00

−25.85 7.78

16.48


, (5.7)

which does not meet conditions (b) and (d), due to the negative values of the

c44 elements. This elastic instability is also seen for the T-phase structure, and

demonstrates again that the pristine ScS2 is not stable. This places a limit on

lowest intercalant concentration that could be accessed in a practical setup, to

avoid this instability.

In Table 5.7 we present the non-zero elements of the eleastic matrix for the fully in-

tercalated α-ScS2 structure. The elements of each of these satisfies the imposed

elastic condition listed above, and so we conclude that they are each elastically

stable.

5.11.2 Elastic Constants

From the elastic tensors presented above, the elastic properties can be deter-

mined. We present in Figure 5.16 the bulk and shear moduli, as calculated using

the Voigt upper bound method, and the corresponding Young’s modulus for the
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Figure 5.16: Elastic properties of α-ScS2 (5.16a) and T-ScS2 (5.16b) in its intercalated

forms. The bulk and shear moduli were calculated using the upper-bound Voigt scheme.

α- and T-phases of ScS2. We present only the data for the intercalated structures

and omit the results for the pristine structure due to the elastic instability arising

from the negative values of the c44 elements.

For the Group I intercalants, as the nuclear mass increases we identify a gradual

decrease in each of the elastic moduli. However, we note that magnesium inter-

calation results in a higher stiffness. For intercalation with Group I intercalants,

the α-phase demonstrates a reduction in the bulk modulus from 66.77 GPa (Li)

to 60.45 GPa (Na) to 53.47 GPa (K). However, intercalation with magnesium pro-

duces a bulk modulus of 91.12 GPa. This trend is also seen with the T-phase

structure. The shear modulus similarly drops from 43.92 GPa (Li) to 40.25 GPa

(Na) to 34.88 GPa (K), and then increases to 60.71 GPa (Mg), as does the

Young’s modulus, from 108.12 GPa (Li) to 98.82 GPa (Na) to 85.94 GPa (K),

and then increases to 149.02 GPa (Mg).

We rationalise the above results using Bader charge analysis (as will be pre-

sented later): as the atomic number of the Group I intercalant is increased, the

ionic charges on the intercalant and the chalcogen are reduced (closer to zero).

This results in a smaller Coulombic attraction between the layers, and so less en-

ergy is required to stretch the material. For intercalation with magnesium, whilst

the binding energy of magnesium with the ScS2 host is lower, the higher charge

of the intercalant species results in significantly higher Coulomb forces and thus a

stiffer system. Comparing between the elastic properties of both the intercalated
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α- and T-phases of ScS2, we find that the behaviour with changing intercalant

holds for both forms.

A key metric for assessing the elasticity of a material is the Pugh ratio, given as

the ratio of the bulk modulus and shear modulus, which can be used as an in-

dicator of how ductile or brittle a material is. For Pugh ratios greater than 1.75

materials are usually considered ductile, whereas ratios of less than 1.75 are con-

sidered brittle. Similarly, Poisson ratios greater than 0.26 indicate a material will

be ductile, whereas it will be brittle for ratios smaller than 0.26 [279, 335]. The

inset of Figure 5.16 presents both the Poisson and Pugh ratios. The Poisson

ratio for each if the intercalated ScS2 structures is 0.23, just below the 0.26 limit.

We can also see that the Pugh ratios are well below 1.75. It has been indicated

previously [277, 279] that the change in the elastic moduli as a function of con-

centration is near linear. As such, these materials could be expected to become

more ductile as the concentration of the intercalants are decreased. Compared

to other layered materials, such as LiCoO2 and graphite [277], ScS2 and its inter-

calated forms are much more ductile, and so are more attractive for use in flexible

electronics.

5.12 Electronic Structure

As many electrode materials require conductive additives (such as graphitic car-

bon) to allow for electronic conduction during cycling of a cell, determining the

material electronic structure is also necessary. In Figure 5.17 we present the elec-

tronic band structure and orbital-decomposed density of states (DOS) for pristine

ScS2 (Figure 5.17a and Figure 5.17b), LiScS2 (Figure 5.17c and Figure 5.17d),

and MgScS2 (Figure 5.17e and Figure 5.17f). Equivalent electronic structure data

for NaScS2 and KScS2 are qualitatively similar to LiScS2, and so have not been

explicitly presented here.

In the unintercalated form, α-ScS2 is shown to have a metallic nature with a Fermi

level intersecting a band. This metallic nature is also seen for the T- and Hc-

phases, and is also seen using the HSE06 functional, which is capable of in-
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Figure 5.17: Electronic band structure (5.17a, 5.17c, and 5.17e) and orbital-decomposed

density of states (5.17b, 5.17d, and 5.17f) for α-ScS2 compounds. Pristine bulk data is

presented in 5.17a and 5.17b, data for LiScS2 is presented in 5.17c and 5.17d, and data

for MgScS2 is presented in 5.17e and 5.17f. In each, all data has been normalised such

that the highest occupied state (EFermi) is set to 0 eV.

troducing band gaps into metallic systems. This is ideal for electrode materials,

as it means that conductive additives are not necessary to facilitate the electron

conduction. From the orbital-projected density of states, it can be seen that the

valence bands of each of the phases are dominated by sulfur p-states and the

conduction bands are dominated by scandium d-states.
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Equivalent data for the intercalated ScS2 structures show that the addition of the

Group I intercalants provides electrons, filling the previously unoccupied sulfur p-

orbitals, shifting the Fermi level (located mid-band in ScS2) upwards. This is also

shown with the charge analysis presented above. Upon intercalation to the point

of MScS2 with Group I metals, the intercalated structure develops a semiconduct-

ing nature with an occupied valence band separated from the conduction band by

an moderate PBE-functional band gap of size ∼1 eV. Specifically for LiScS2, the

PBE band gap is 1.36 eV and the HSE06 band gap is 2.32 eV, though we note

from previous work that the HSE06 functional can overestimate the band gap of

TMDC structures [292]. This gives a limit on the intercalation potential obtainable

for practical uses: the insulating nature at this point would inhibit electronic con-

duction during cycling, and any intercalation past this point would require ScS2 to

be mixed with conductive additives to account for the insulating behaviour.

Magnesium intercalated into ScS2 has different conducting behaviour compared

to the Group I elements, due to its double valency, as shown in Figure 5.17e

and Figure 5.17f. Whilst the unintercalated system is conducting, intercalating

to Mg0.5ScS2 fills the unoccupied sulfur p-orbitals and results in the structure

losing its conductive nature, possessing a band gap of over 1.5 eV using the

PBE functional. This would provide a practical limit during cycling, and would re-

quire conductive additives to be used to help facilitate intercalation past this point.

However, past this the added magnesium provides electrons that begin to fill the

unoccupied scandium d-states above the band gap.

5.13 HSE06 Results

It is important to make a careful choice of exchange-correlation functional in first-

principles calculations, as it can lead to discrepancies in the electronic struc-

ture [264, 382] and material energetics [289, 290, 383]. Here, we compare our

PBE results with those obtained from the HSE06 functional for a limited number of

cases to determine the sensitivity of the results to functional choice. With the use

of the HSE06 hybrid functional, we note the intercalation voltage is significantly

increased to 4.440 V (Li), 4.420 V (Na), 3.953 V (K), and 1.719 V (Mg). These
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Material Voltage (V) Intercalation Capacity

(mAhg−1)

Volume

Change (%)

LiScS2 3.977 182.99 6.51

LiCoO2 3.9–4.7 [42] 190-215 [42] 3.25 [278]

NMC 2.85-3.41 [41] 160-189 [41] 8.44 [279]

LiFePO4 3.5 [36,38,40] 95 [36], 140.9 [38], 156 [40] 6.81 [384]

LiMn2O4 4.13, 4.25 [37],

3.9, 4.1 [39]

111.5 [385], 106.3 [37],

105.2 [39]

4.7 [386]

Table 5.8: Comparison table of key lithium-ion electrode properties for ScS2 and other

presently practiced electrode materials. Data for LiScS2 was obtained in this work.

are higher than the PBE voltages by 0.463 V, 0.546 V, 0.154 V, and 0.245 V, re-

spectively. However, the voltage ordering is maintained and thus both functionals

indicate that the ScS2 would be very suitable for a cathode material.

We also note differences in the constructed phase diagrams, and hence the val-

ues of EIS. We find that the diagonal line, corresponding to the boundary between

the intercalated ScS2 and the Li2S crystal, remains relatively unchanged. The

discrepancy between the phase diagrams using the HSE06 and PBE function-

als, therefore, arises from the modification to the horizontal line, corresponding to

the boundary between the intercalated and pristine ScS2 structure. Across each

of the phases and intercalants presented here, the amount that the horizontal

line is modified with the use of HSE06 varies, though it is consistently shifted

downwards (hence increasing the region of stability). However, these results do

not change the main conclusions of the Chapter, nor invalidate the potential of

ScS2 as a cathode material. Graphical representations of the voltage profiles and

phase diagrams using the HSE06 are presented in Appendix D.

5.14 Extending ScS2

Of the intercalant metals presented, lithium is the smallest and lightest, presents

the highest (average) voltage of nearly 4 V, and has the lowest volumetric expan-

sion. As such, lithium is identified as the best ion for ScS2 to be used as an inter-
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calation electrode. We summarise the key electrode properties in Table 5.8, along

with the properties of other presently practiced electrode materials for lithium-

ion batteries, where it is clear to see that ScS2 offers a serious competitor to

these materials. Below, we focus on lithium for exploring intercalation beyond the

LiScS2 composition, the usual limit considered for intercalation of TMDC materi-

als, and for considering the effect of substitution of different transition metals for

the scandium site in ScS2.

5.14.1 Intercalation Beyond a=1

The intercalated LiScS2 structures show both dynamic stability (with no imaginary

phonon modes) and thermodynamic stability against conversion (with positive val-

ues of EIS), and so the question as to the maximum possible lithium capacity still

remains. As each of the octahedral sites is occupied at LiScS2, any further ad-

dition of lithium results in the occupation of the tetrahedrally-coordinated sites.

For the supercell sizes considered, the first step of intercalation past LiScS2 re-

sulted in a stoichiometry of Li 13
12

ScS2. As this compound still possesses a sizeable

value of EIS = 3.209 eV, it is still remarkably stable against conversion reactions

and demonstrates a robustness in this material to lithium intercalation beyond

the usual limit considered for layered materials. However, there is a dramatic de-

crease in the intercalation voltage (with respect to the LiScS2 structure) to 0.436 V,

which indicates a clear cutoff in the practical uses for ScS2 as a cathode material.

With further intercalation the value of EIS drops, reaching a value of -0.735 eV

at Li2ScS2. At these relatively high lithium concentrations the large repulsion

between these positively charged ions results in the intercalated structure being

destabilised and becoming more susceptible to conversion.

5.14.2 Metal Mixing

One possible method commonly used to modify the properties of electrodes is

through the introduction of other elements (M), in particular transition metals [373,

374] or with excessive lithium [87], resulting in the LiSc1−xMxS2 compound. We
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Figure 5.18: Formation energy of substituting scandium with different metal species,

calculated with equation (5.8).

first consider the formation energy of metal mixing for a range of metal species,

using,

Eform =
[
E(Sc1−xMxS2) + xE(Sc)

]
−
[
E(ScS2) + xE(M)

]
. (5.8)

This gives an indication of the cost to do the metal substitution, with positive

values corresponding to unfavourable swaps, and therefore a cost in energy.

Our results, presented in Figure 5.18, show that for low concentrations (x < 0.25),

the energetic cost is low or even negative, with lithium showing the highest for-

mation energy of 0.61 eV at x = 0.125. The Group IV metals (Ti, Zr and Hf)

have negative formation energies, and so it is energetically favourable to perform

this substitution. We also see negative values of Eform for Group V elements Nb

and Ta for mixing values of x < 0.5, whilst the other metals considered here (and

x > 0.5 for Nb and Ta) demonstrate positive values of formation energy.

In Figure 5.19a, we show the variation in voltage as scandium is substituted for

different metals. For each of the transition metals, it is clear to see a reduction

in the intercalation potential as the proportion of scandium is reduced. The ex-

ception to this is demonstrated with lithium where, for a mixing concentration of



202 Chapter 5. Intercalation of Scandium Disulfide

(a)

0 0.25 0.5 0.75 1

x in Sc
1-x

M
x
S

2

1.5

2

2.5

3

3.5

4

A
v
e

ra
g
e

 V
o

lt
a

g
e
 (

V
)

Co
Cr
Fe
Hf
Mn
Nb
Ni

0 0.25 0.5 0.75 1

x in Sc
1-x

M
x
S

2

1.5

2

2.5

3

3.5

4

A
v
e

ra
g
e

 V
o

lt
a

g
e
 (

V
)

Sn
Ta
Ti
V
Zr
Li

(b)

0 0.25 0.5 0.75 1

x in Sc
1-x

M
x
S

2

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
IS

 (
e

V
)

Co
Cr
Fe
Hf
Mn
Nb
Ni

0 0.25 0.5 0.75 1

x in Sc
1-x

M
x
S

2

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

E
IS

 (
e

V
)

Sn
Ta
Ti
V
Zr
Li

Figure 5.19: Energetic results for metal mixing in T-ScS2. 5.19a gives the average volt-

age for various metal mixing, calculated by taking the difference between the fully interca-

lated (LiSc1−xMxS2) and pristine structures (Sc1−xMxS2), and 5.19b gives the obtained

values of EIS .

x = 0.125, the average voltage is increased past the 3.655 V of ScS2 to 3.668 V.

The values of EIS (at full lithium intercalation) for transition metal mixing demon-

strate a similar trend, as shown in Figure 5.19b.

In general, the voltage and EIS values for the mixed materials falls below the

weighted average of the two component materials. The greatest difference from

the weighted average result is most dramatically show with Sc0.5Ta0.5S2. For volt-

age, the average of the two components is 2.706 V, whereas the actual voltage

obtained is 2.264 V. Similarly for the value of EIS, the average of the ScS2 and

TaS2 materials is 1.857 eV, whereas the value obtained is 1.381 eV. With chang-

ing metal composition, one might expect that the resulting values of voltage and

EIS would lie on a straight line connecting the respective values at x = 0 and

x = 1. However, there is a varying amount of deviation from this expected linear

trend for different metal species mixed. For example, the voltage and EIS values

for Hf (yellow), Sn (dark blue), and Zr (black) appear to follow very closely to a

linear trend, whereas the trends of the other metals considered are much more

convex. The convex shape is highlighted best with Ta (purple data), where there

is a clear deviation from the straight line that would connect the ScS2 and TaS2

limits.

The energetic cost of formation of ScS2 can be reduced by the inclusion of other
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Figure 5.20: Summary of the key results presented in this Chapter.

metals, Sc1−xMxS2. However, we see that this results in both a decrease in the

obtainable voltage and a decrease in the thermodynamic stability indicated by

EIS. Whilst the mixing of these systems reduces the suitability of ScS2 as a

cathode, the mixing of scandium into other materials for cathodes could be highly

beneficial, increasing their voltages or improving their stability. In particular, the

transition metal oxides currently being utilised and explored as cathode materials,

such as the NMC variants, could benefit from the inclusion of scandium into their

structures, though further investigation is required to assess this.

5.15 Summary

In this Chapter, we have presented a thorough first-principles study into the per-

formance of layered ScS2 as a potential cathode electrode material. We have

applied a random structure search to demonstrate that the ground state phase for

the intercalated material is a layered structure, agreeing with experimental studies

and supporting its use as an electrode. From this, different layered-phases of the

material were investigated and intercalated with different metal species. It was

found that the T- and α-phases to be energetically preferred, though they are not
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dynamically stable (determined through analysis of the phonon band structures)

for low intercalation concentrations. The lowest achievable intercalant concen-

tration is thus determined to be a = 0.25, and so a capacity corresponding to

75% of the theoretical capacity is predicted, corresponding to a charge capacity

of 182.99 mAhg−1.

For Group I intercalants, ScS2 is found to have a high voltage of nearly 3.5 V

which is ideal for cathodes. Whilst this is reduced to 1.5 V for intercalation with

magnesium (a Group II metal), the double valency offers a larger range of charge

transfer and hence a comparable energy density. This low voltage also offers

some promise for an anode. Thermodynamic phase diagrams were constructed

to evaluate the stability of the layered ScS2 material against the conversion reac-

tion forming Li2S (or equivalent compound), a reaction commonly seen for TMDC

sulfides when intercalated. ScS2 was found to have a remarkably large window of

stability, particularly when compared to the related TMDC materials. Beyond this,

ScS2 was shown to have a Fermi level which lies within a band, indicating a con-

ductive nature that is convenient for device cycling. It also has a low volumetric

expansion (below 10%) when intercalated with lithium or magnesium, something

that is essential for extended device lifetime. These results are summarised in

Figure 5.20.

To explore methods that could offer some improvement to the core properties

of ScS2 material, we also considered metal mixing (substitutionally swapping

out scandium atoms with transition metal elements, similar to what is done with

NMC). With mixing of other metals, we find a gradual drop in both the voltage and

the size of the phase diagram window of stability which suggests that this would

be detrimental to the performance of a ScS2 electrode. However, this does high-

light the potential advantage scandium could provide if mixed into other layered

systems such as the layered transition metal oxides.

So far, we have assessed various properties of individual layered TMDC ma-

terials for use as electrodes in Li-ion and beyond-Li-ion batteries. This Chap-

ter highlighted that ScS2 in particular shows potential as a cathode material for

lithium-ion batteries, with theoretical estimates of the capacity comparable with

NMC and similar materials. We hope that our study encourages further develop-
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ment of this material for lithium-ion batteries. In the following Chapter, we extend

the study of TMDCs to consider how the formation of their superlattices modifies

their properties.





Chapter 6

Intercalation of TMDC Superlattices

“No, actually it’s a highly sophisticated inter-locking brick system.”

The Man Upstairs, The Lego Movie, 2014

6.1 Introduction

Following the work of Whittingham [35,67] and Goodenough [71,72] in the 1970s

and 1980s, and more recently the success of Novoselov and Geim [179–181]

and their isolation of graphene, materials which possess a layered structure have

received a lot of attention for energy storage. Materials such as NMC and its

variants [41, 82–86], and the MXenes [183, 387–389] all demonstrate ideal elec-

trode properties, and we have seen in previous Chapters the promise of TMDC

materials. This is largely owing to the fact that their intrinsic structures posses

van der Waals gaps provides natural channels for intercalated ions to occupy and

travel through during the cycling of a cell. However, many of these materials

are still plagued by slow charging rates and low capacities [171], and we saw in

Chapter 3 that many TMDCs offer voltages that lie outside of ideal anode/cathode

ranges and are susceptible to conversion reactions.

One clear extension to these layered materials can be achieved through the for-

mation of superlattices and heterostructures, consisting of layers of different ma-

terials akin to stacking Lego bricks on top of each other (see Figure 6.1). This



208 Chapter 6. Intercalation of TMDC Superlattices

Figure 6.1: Schematic showing the 1:1 pairing of two lattice-matched TMDCs to form a

superlattice.

not only allows for utilisation of both the properties of the component materials,

but also the novel physics that can arise from their interface. Being able to design

composite materials with specific properties, perfectly suited for specific functions,

might be considered a trivial task considering the range of materials we have at

our disposal. Unfortunately, combining different materials to form a composite in

a way that either preserves the desired properties of the constituents or utilises

the new physics that arises from their combination remains a challenge in mate-

rials science, and currently has no universal solution. However, the development

of techniques such as molecular beam epitaxy, chemical vapour deposition [390],

liquid exfoliation [391], and nucleation growth [392] allow for monolayer control of

materials synthesis [190, 393, 394], and has led to many investigations into the

properties of such materials in recent years.

In this Chapter, we report on a theoretical modelling of TMDC superlattices, with

a focus on their properties for use as electrode materials in Li- and Mg-ion cells.

We present the material voltage profiles, showing how these change between

single constituents and compounds, and also discuss how the thermodynamic

stability of these materials upon intercalation can be used as a way to estimate

the charge storage capacity. We also discuss other properties that are important

for possible electrode materials, such as the volumetric expansion that arises from

intercalation, changes to the mechanical and elastic properties, and the resultant

electronic structure which is important for efficient electronic conduction. This

allows us to offer insight into how careful choice of materials in a superlattice can
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be used to improve these materials for electrode applications.

6.2 Background

With heterostructure or superlattice formation, the resultant electronic structure

is typically of the most interest, and has most widely been determined using An-

derson’s rule [395–397], which states that band alignment depends purely on the

relative positions of the constituent work functions/hole affinities. Though very

few experimental investigations validated this approach for 3D systems (due to

the presence of broken/reorganised bonds), more recent explorations of weakly

interacting 2D materials have allowed for a development in the understanding of

band alignment in such systems. Whilst Anderson’s rule has been shown to be

an accurate model for predicting the electronic structure of heterostructures con-

structed of 2D materials, some works have shown that effects such as strain and

orbital hybridisation must also be accounted for [264,398–400].

There has already been some interest in utilising heterostructures for energy-

storage applications [401–406]. Of course, graphitic carbon has been used as a

popular additive to many TMDCs, such as with MoS2 [404, 407] and SnS2 [238,

256,408], but beyond this many other pairings have also been considered. Exper-

imental investigations into the intercalation of TMDC superlattices have shown im-

provements to the cyclability [254], and first-principles studies have found a reduc-

tion in diffusion barriers and reduced volumetric expansions [213, 215]. Hence,

there is clearly great potential in using superlattice formation to enhance the per-

formance of TMDCs for intercalation electrodes whilst preserving their favourable

properties. Unfortunately, due to the immense number of possible combinations

no study can be exhaustive, and previous works have been limited to a few select

cases of heterostructures or superlattices. Nevertheless, a comprehensive study

of TMDCs and their composites is needed to better understand how superlattice

formation can enhance electrode properties, offer insight into heterostructures

and superlattices composed of similarly layered materials, and to allow us to fully

exploit these superlattice materials.
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6.3 Computational Details

In this work, first principles techniques based on density functional theory were

used to determine structural and energetic properties of superlattice structures

composed of vertically stacked layered MX2 materials, and to evaluate how these

properties change when intercalated with varying levels of lithium or magnesium.

This build upon the results of Chapter 3 which focused on the performance of

individual TMDCs as intercalation electrodes.

We focus on superlattices with 1T-phase TMDC components as we determined in

Chapter 3 that these are generally the preferred phase in their pristine and inter-

calated forms. Whilst other phases [195,196] are possible for the TMDCs, such as

3R and the α-NaFeO2-like structure, their intercalation environments are similar

to that of the 1T-phase, and so only the 1T-phase is considered. To investigate a

range of superlattices based on TMDCs, we paired various TMDC materials with

a second lattice-matched TMDC in a 1:1 match, as shown in Figure 6.1. To be

considered ‘lattice-matched’, the two MX2-materials are required to have a lattice

constant within 5% of each other. Whilst the pairing of non-lattice matched MX2-

materials could be considered, there is a much larger combination space to in-

vestigate. Phenomena such as Moiré rotation effects [409–411], consideration of

relative in-plane translations of the two atomic layers [196], and rippling [412,413]

are each deserving of a study of their own. Further to this, analysis of the effects

of edge formation [414–416] and the investigation of defects [291] would also be

required for a thorough description of a material in a working electrode. However,

none of these can be explored until the fundamental properties of the core super-

lattices have been established. As such, we limit our investigation to pristine bulk

superlattices formed through combinations of aligned MX2-materials with similar

in-place lattice constants, with the addition of MoS2|SnS2 which shows strains

between 5% and 10%. Further details of the material pairings, including the re-

sultant strain and the formation energy are presented in Appendix E.

To achieve a finer sampling of intercalant concentrations than would be accessi-

ble through consideration of only the primitive unit cells, supercells consisting of

(2× 2× 2) unit cells were used for the individual TMDC materials and supercells
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consisting of (2×2×1) unit cells were used for the superlattice structures. Each of

these corresponds to 24 atoms, eight MX2 formula units, and two TMDC layers.

These were then used as the bulk unit cells into which lithium and magnesium

were intercalated for evaluation of voltages and thermodynamic stability, giving

us access to intercalant concentrations equivalent to Li 1
8
MX2 and Mg 1

8
MX2.

We determine the preferred site of intercalation to be those with octahedral co-

ordination, further discussion of which is presented in the Supplementary Mate-

rial. Using the supercell sizes described above, we thus have access to eight

potential octahedrally-coordinated intercalation sites, which allow for 24 potential

intercalant filling configurations. Each of these has been explored, and com-

binations of different concentrations have been used to emulate clustering ef-

fects [233, 239, 269, 270]. Further details of these are presented in the Supple-

mentary Material. For a given intercalant concentration, the configuration that

results in the lowest energy structure is used for evaluation of key electrode prop-

erties, such as calculation of the intercalation voltage and assessment of the

thermodynamic stability.

The calculations performed here employed the Vienna Ab initio Simulation Pack-

age (VASP) [161–164]. The valence electrons included for each species are in-

dicated Table 2.1. The projector augmented wave method [139] was used to

describe the interaction between core and valence electrons, and a plane-wave

basis set was used with an energy cutoff of 700 eV. All structural relaxations

were completed using the Perdew-Burke-Ernzerhof (PBE) [119] functional form

of the generalised gradient approximation (GGA), and converged to a force tol-

erance of 0.01 eV/Å per atom, while electronic self-consistency is considered to

an accuracy of 10−7 eV. Monkhorst-Pack grids [140] of k-points equivalent to a

6 × 6 × 6 grid in the supercells are used throughout, and we have allowed for

optimisation of collinear spin. Van der Waals interactions have been addressed

using the zero damping DFT-D3 method of Grimme [155]. Upon intercalation,

local charge transfer leads to local electric fields within the structure, making it

impossible to align the electronic structures of pristine and intercalated materials

using typical means of core-state alignment [262] or with respect to the vacuum

level [262–264]. Instead, we have qualitatively aligned to the high-energy occu-
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pied states of the unintercalated superlattice at Γ, allowing us to comment on the

relative position of the Fermi level.

6.4 Methods for Material Evaluation

6.4.1 Intercalation Voltage

To compare different levels of lithium-intercalated superlattice (SL = MX2M′X′2) the

voltage, V , can be calculated using,

V = −
ELib2SL −

[
ELib1SL + (b2 − b1)ELi

]
(b2 − b1)× ze

, (6.1)

for total lithium content b2 > b1, and energy of the superlattice structure with b

intercalant atoms per SL formula unit ELibSL. In this work, we consider values of

0 ≤ b ≤ 2, with b = 2 corresponding to one intercalant ion per metal atom of the

host structure. z is the valency of the intercalant (z = 1 for the case of lithium,

z = 2 for magnesium) and ELi is the energy of a lithium atom as found in bulk.

Each occurrence of Li should be replaced with an equivalent Mg for magnesium

intercalation.

6.4.2 Thermodynamic Phase Diagrams

For an arbitrary superlattice consisting of two lattice-matched TMDC materials

(SL = MX2M′X2
′) when intercalated with b lithium (LibSL) we define the Gibbs free

energy of formation of relevant products:

∆G(LibSL) = E(LibSL)− [bµ0
Li + µ0

M + µ0
M′ + 2µ0

X + 2µ0
X′ ], (6.2)

∆G(SL) = E(SL)− [µ0
M + µ0

M′ + 2µ0
X + 2µ0

X′ ], (6.3)

∆G(Li2X) = E(Li2X)− [2µ0
Li + µ0

X], (6.4)
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and,

∆G(Li2X′) = E(Li2X′)− [2µ0
Li + µ0

X′ ]. (6.5)

We have again used ∆G(A) to denote the Gibbs free energy of formation of the

compound A, E(A) gives the energy of the compound A, and µ0
B = E(B) gives

the chemical potential of elemental species B when it is in its elemental bulk

structure.

The thermodynamic equilibrium condition requires,

∆G(LibSL) = b∆µLi + ∆µM + ∆µM′ + 2∆µX + 2∆µX′ , (6.6)

where we have used the notation ∆µB = µB − µ0
B, with µB being the chemical

potential of elemental species B in LibSL. This simply states that the energy of

the superlattice structure is the sum of the chemical potentials of the constituent

atoms. Rearranging the thermodynamic equilibrium condition gives,

∆µX + ∆µX′ =
1

2

{
∆G(LibSL)− [b∆µLi + ∆µM + ∆µM′ ]

}
. (6.7)

We require that Li2X, Li2X′, SL, and the bulk forms of the component elements

do not form. For superlattices in particular, it is unreasonable to assume that

the layered structure would be obtained upon reversal of the conversion reaction.

Therefore,

∆µM + ∆µM′ + 2∆µX + 2∆µX′ ≤ ∆G(SL), (6.8)

2∆µLi + ∆µX ≤ ∆G(Li2X), (6.9)

2∆µLi + ∆µX′ ≤ ∆G(Li2X′), (6.10)

and,

∆µLi,M,M′,X,X′ ≤ 0. (6.11)

Substituting (6.7) into (6.8) and rearranging,

1

b

{
∆G(LibSL)−∆G(SL)

}
≤ ∆µ

(2)
Li . (6.12)
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This then gives the thermodynamic limit on the lithium chemical potential such

that the intercalation of the superlattice is preferred to the pristine superlattice

and bulk lithium. We now add equations (6.9) and (6.10) to get,

4∆µLi ≤ ∆G(Li2X) + ∆G(Li2X′)−∆µX −∆µX′ , (6.13)

and make use of equation (6.7) to get,

∆µ
(1)
Li ≤

1

8− b
[
2∆G(Li2X) + 2∆G(Li2X′)−∆G(LibSL) + ∆µM + ∆µM ′

]
. (6.14)

We now have two equations describing the boundary conditions for the chemical

potential of lithium, given ∆µ
(1)
Li and ∆µ

(2)
Li . These each define a plane, analo-

gous to the one-dimensional boundaries for individual TMDCs, giving the ther-

modynamic limits on the chemical potential of the lithium so that the conversion-

reaction products Li2X and Li2X′ do not form.

For the case where the two component TMDCs are the same (i.e. M = M′, X = X′

and b = 2a), these simplify to:

∆µ
(1)
Li ≤

1

4− a
[
2∆G(Li2X)−∆G(LiaMX2) + ∆µM

]
, (6.15)

and,

1

a

[
∆G(LiaMX2)−∆G(MX2)

]
≤ ∆µ

(2)
Li , (6.16)

which are equations (3.19) and (3.20) presented in Chapter 3.

It should be noted, by considering the equations (6.2)-(6.5), that the limiting con-

ditions are also independent of µ0
X,X′, and hence ∆µX,X′. As a result, the phase

diagrams are only dependent on the chemical potentials of lithium and the rele-

vant metals, ∆µLi,M,M′.

Using equations (6.11), (6.12) and (6.14), we can construct thermodynamic phase

diagrams. A schematic of such a phase diagram is shown in Figure 6.2, which

can be viewed as a three-dimensional extension of the two-dimensional equiva-

lent presented in Chapter 3. We again restrict ourselves to the negative-negative

quadrant to ensure that the elemental bulks do not form. Above the diagonal

plane, coloured red in Figure 6.2, the experimentally observed Li2S crystal (or

equivalent chalcogen) is favoured, as opposed to the intercalated superlattice.
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Figure 6.2: Schematic indicating the phase diagrams constructed for the superlattice

structures. This is a 3D-equivalent of those presented in Figure 3.7, with the planes

being described by equation (6.12) and (6.14).

Below the horizontal plane, coloured white in Figure 6.2, the pristine superlattice

structure is preferred to intercalation. As with the phase diagrams of Chapter 3,

this results in a window of stability. Outside of this window, the secondary prod-

ucts are favourable to form. Though a transition to these is not guaranteed, the

intercalated superlattice structure becomes meta-stable. Whilst other compounds

could have their respective boundaries determined to be included in these phase

diagrams, such as Li2X2 or MX, these first require the disintegration of the inter-

calated superlattice material into Li2X, MgX, and/or elemental bulks. Hence, we

only consider the limits outlined above.

To quantitatively compare the phase diagrams for the different concentrations

considered, we can evaluate the difference between the intercepts of the two

planes with the ∆µLi-axis. EIS is then defined as,

ELi
IS = ∆µ

(1)
Li (∆µM,M′ = 0)−∆µ

(2)
Li (∆µM,M′ = 0). (6.17)

where ∆µ
(1/2)
Li (∆µM,M′ = 0) is the value of the boundary plane 1/2 at the point

where ∆µM,M′ = 0. Using (6.14) and (6.12), this can be written in terms of the

relevant values for formation Gibbs free energy,

ELi
IS =

2

8− b
[
∆G(Li2X) + ∆G(Li2X′)

]
+

1

b
∆G(SL)− 8

8b− b2
∆G(LibSL). (6.18)
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Figure 6.3: Resultant strains on the component TMDCs when combined in the superlat-

tice structure. For a superlattice of the form MX2|M′X′2 = A|B, the strain on A is given as

% =
a
P/I
SL −a

P/I
A

a
P/I
A

× 100.

For magnesium intercalation, we have the equivalent expression,

EMg
IS =

2

4− b
[
∆G(MgX) + ∆G(MgX′)

]
+

1

b
∆G(SL)− 4

4b− b2
∆G(MgbSL).

(6.19)

6.4.3 Lattice Matching

To minimise the strain on each of the component materials comprising a super-

lattice, a close matching of each of the respective in-plane lattice constants is

required. Here, we evaluate how well-matched different pairings are when com-

bined in a superlattice. We focus on selected systems SnS2|SnSe2, NiS2|TiS2,

HfS2|PdS2, ZrS2|ZrSe2, NbS2|TaS2, GeS2|SnS2, SnSe2|ZrTe2, HfS2|ZrS2, and

MoS2|SnS2. Details of other superlattices considered in this work are presented

in Appendix E. In Figure 6.3 we see the percentage strain on the pristine TMDCs

when at the lattice constant of the formed superlattice without intercalants. For

component A (with lattice constant aPA) strained to the lattice constant of the su-

perlattice (aPSL), the strain is calculated using % =
aPSL−a

P
A

aPA
× 100. Similarly, we

also present the percentage strain on the intercalated TMDCs when at the lattice

constant of the intercalated superlattice. For component A of lattice constant aIA
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Figure 6.4: Formation energy of pristine and intercalated superlattice formation from

the pristine and intercalated components. Calculated using Eform = [E
P/I
SL − (E

P/I
A +

E
P/I
B )]/S.

strained to the lattice constant aISL, the strain is calculated using % =
aISL−a

I
A

aIA
×100.

With the exception of MoS2|SnS2, all TMDCs show strains of less than 5%, indi-

cating that the paired systems are well lattice-matched. The MoS2|SnS2 pairing

has been included to see if larger values of strain have significant effects on the

determined properties of superlattices.

6.4.4 Formation Energy

We evaluate the energy (per formula unit) required to form the superlattice, in both

the pristine and intercalated systems. This has been calculated using Eform =

[E
P/I
SL − (E

P/I
A + E

P/I
B )]/S, with interface surface area S, energies of the super-

lattice, EP/I
SL , and component TMDC materials, EP/I

A and EP/I
B . Positive values of

Eform indicate superlattices where it costs energy to combine the components,

whereas negative values indicate superlattices in which it is energetically pre-

ferred for the components to be combined rather than exist as their respective

bulk materials. These results are presented in Figure 6.4. Formation energies for

most of the systems are small (remaining below 5 meV/Å2), with several struc-

tures demonstrating negative formation energy. We generally see that systems
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Figure 6.5: Different NEB routes (A, B, C, D) considered, between different octahedral

(denoted ‘O’) and tetrahedral (denoted ‘T’) sites.

with lower strains result in more favourable formation energies, resulting in the

most strained system (MoS2|SnS2) demonstrating the highest formation energy.

Interestingly, the formation energy is reduced with the introduction of an inter-

calant, as highlighted with the NiS2|TiS2 system which has a formation energy of

2.23 meV/Å2, which is reduced to 0.08 meV/Å2 with lithium intercalation, and to

-4.34 meV/Å2 with magnesium intercalation.

6.5 Diffusion

We have performed climbing-image nudged elastic band (CI-NEB) calculations

on each of the selected superlattice structures, along the routes indicated in Fig-

ure 6.5. In Figure 6.6 we show the results for lithium and magnesium intercalation

into the SnS2|SnSe2 superlattice, with the equivalent results for the component

TMDCs for easy comparison. Due to the global minimum of the intercalation site

with octahedral coordination, we confirm the preference for intercalation into the

octahedrally coordinated (O) site over the site with tetrahedral coordination (T),

as was shown for the TMDCs in Chapter 3. We are also able to show that the

preferred diffusion path for lithium and magnesium between two of these O sites

is via a T site. This is due to the significantly smaller barrier than the one that

arises from diffusion directly between two adjacent O sites.
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Figure 6.6: Nudged elastic band diffusion barriers for lithium (6.6a) and magnesium

(6.6b) along unique routes in SnS2|SnSe2 (purple), SnS2 (red), and SnSe2 (blue). In the

individual TMDCs, Route B and Route D are equivalent.

Generally, we note that the diffusion barrier for the superlattice is intermediate

to the barriers arising from the component TMDCs. For example, the barrier to

lithium (magnesium) diffusion along Route A is 1.25 eV (2.34 eV) in the super-

lattice, whereas it is 1.10 eV (2.20 eV) in SnS2 and 1.34 eV (2.43 eV) in SnSe2.

Along Route B these values are 0.52 eV (1.00 eV) in the superlattice, 0.47 eV

(1.00 eV) in SnS2, and 0.59 eV (1.01 eV) in SnSe2. Similarly along Route C

these values are is 0.56 eV (1.03 eV) in the superlattice, 0.47 eV (1.00 eV) in

SnS2, and 0.59 eV (1.01 eV) in SnSe2. In a single TMDC, diffusion Routes B and

D are equivalent, and hence the diffusion barriers are identical. Due to the chemi-

cal and structural similarity of SnS2 and SnSe2, Routes B and D are very similar in

Figure 6.6. However, other pairings which involve more dissimilar TMDCs demon-

strate a greater asymmetry between these routes, the results of which we include

in Appendix E.

Using the results of the CI-NEB calculations, we can also comment on the ionic

rates of diffusion through the superlattices. We first note from Figure 6.6 that,

whilst the T-site is higher in energy, the barrier between an O- and T-site is lower

than the barrier between two O-sites. As to the rate of diffusion is governed by an

Arrhenius equation, these asymmetries can lead to a significant bias to diffusion

along different routes. Due to the exponential dependence on the diffusion barrier

in the Arrhenius rate, the rate of diffusion through a superlattice (with the barrier

being approximately the average of the two components) is lower than the aver-
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Figure 6.7: Volume expansion with intercalation for the selected TMDC superlattices, cal-

culated with respect to the unintercalated structures using % = V−V0
V0
× 100. Figure 6.7a

presents the data for lithium intercalation, and Figure 6.7b presents the data for mag-

nesium intercalation. In each of these, the x-axis gives the number of intercalant ions

(NLi/Mg) per metal atoms of the host structure (NM +NM ′).

age of the rates of the two components, but faster than the rate of the component

with the largest barrier.

6.6 Volumetric Expansion

One important metric for assessing the promise of a material for electrode appli-

cations is the volumetric expansion arising from intercalation. We calculate this

expansion with respect to the unintercalated structure, using % = V−V0
V0
× 100

for initial volume V0 and final volume V . Importantly for electrode applications,

we show that there is minimal volumetric expansion with intercalation of these

superlattices, and highlight this with some examples inFigure 6.7. When interca-

lated with lithium (magnesium), we see that the SnS2|SnSe2 superlattice has a

total volumetric expansion of 10.9% (21.4%), for ZrS2|ZrSe2 we see a total ex-

pansion of 1.8% (3.3%), and for NbS2|TaS2 we see a total expansion of 10.2%

(12.9%). Thus, the minimal expansion demonstrated by layered materials holds

upon formation of the superlattice, with most superlattices expanding by less than

20% (30%). These values compare well with other layered materials that have



6.6. Volumetric Expansion 221

demonstrated success as intercalation electrodes, including LiCoO2 [277, 278]

(2-3.25%), NMC [279] (8.44%), and graphite [280] (13.2%), as well as the < 30%

seen for the TMDCs in general.

We note the surprising reduction in volume expansion of ZrS2 as lithium content

increases beyond a = 4
8
, and this behaviour extends to the superlattice structure.

The same can be seen as magnesium content increases beyond a = 2
8

(corre-

sponding to the same amount of charge transfer to the host structure as a = 4
8

of

lithium), though the volume increases again for larger intercalant concentrations.

We also notice in Figure 6.7b a larger increase in the volume for SnS2 and TaS2

with magnesium intercalation beyond a = 4
8
, and this behaviour carries over to

the corresponding superlattices.

A closer evaluation shows that, for lithium intercalation, the volumetric expansions

of the superlattices fall within 2% of the mean of the volumetric expansion for

the relevant components. Thus, if the superlattice volumetric expansion were to

be estimated by calculating the mean of the volumetric expansion arising in the

component TMDCs, we could expect the result to deviate by up to a 2% error from

what is observed in the actual superlattice. This close agreement is not surprising

considering the vdW gaps between MX2 layers.

We note a larger expansion upon magnesium intercalation than with lithium in-

tercalation, and attribute this to the greater charge donation from magnesium

than with lithium. This can be seen in Figure 6.7. For example, SnS2|SnSe2

expands by 10.69% when half-intercalated with magnesium, and 10.92% when

fully-intercalated with lithium (hence having similar levels of charge donation).

Similarly, ZrS2|ZrSe2 expands by 1.67% when half-intercalated with magnesium

and by 1.18% when fully-intercalated with lithium, and NbS2|TaS2 expands by

8.74% when half-intercalated with magnesium and by 10.21% when fully-intercalated

with lithium. We rationalise this as the chalcogen species in the intercalated struc-

tures have larger negative charges, and the metal species have smaller posi-

tive charges. Consequently, there is a reduced attraction between the M and X

species but an increased repulsion between X species. This leads to a ‘stretching’

of the MX2 layers along the c-axis. Comparable results are also seen for the other

superlattices considered, further details of which are presented in Appendix E.
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We note a larger expansion upon magnesium intercalation than with lithium inter-

calation, and attribute this to the greater charge donation from magnesium than

with lithium. The chalcogen species in the intercalated structures have larger

negative charges, and the metal species have smaller positive charges, and so

there is a reduced attraction between the M and X species but an increased re-

pulsion between X species. This leads to a ‘stretching’ of the MX2 layers along

the c-axis. Comparable results are also seen for the other superlattices consid-

ered. Further details of the volumetric expansion, along with comparisons to the

component materials, are presented in Appendix E.

6.7 Voltages

In Figure 6.8, we present the voltage profiles and thermodynamic stability (indi-

cated by EIS) of the highlighted superlattices with lithium and magnesium inter-

calation. For easy comparison, we have also included the results of the relevant

individual TMDCs which were presented in our previous work. In general, we find

that the intercalation voltage of the formed superlattice is an intermediate of the

profiles of the component materials. We highlight this best with lithium intercala-

tion into the SnS2|SnSe2 superlattice: SnS2 is shown to have a flat voltage profile

at 1.80 V, and SnSe2 has a flat voltage of 1.85 V, with a minor step at the start

of intercalation (0 < a < 1) of 1.89 V. The superlattice then shows an almost flat

voltage of 1.83 V, intermediate in value to the those of the components in both

shape and magnitude. It also presents the minor step at the start of the intercala-

tion range with a value of 1.84 V, which is intermediate to the constant voltage of

1.80 V of SnS2 and the 1.89 V shown by SnSe2. We show a similar result for the

NbS2|TaS2 superlattice with lithium intercalation, where the more distinct features

of the NbS2 and TaS2 components are reproduced, maintaining the intermediate

voltage profile.

For intercalation with magnesium, the same result is observed. We highlight this

with the SnS2|SnSe2 and GeS2|SnS2 structures, again showing how the flat volt-

age profiles of the components result in a similarly flat voltage profile in the su-

perlattices, and also show that the dramatic drop in voltage for high magnesium
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Figure 6.8: Intercalation voltages and EIS for selected superlattices. 6.8a presents the

results for lithium intercalation, and 6.8b presents the results for magnesium intercalation.

In each of these, the top shows the voltage profile, and the bottom shows the variation

of EIS with intercalation. Superlattice data is presented in purple, and the data for the

component materials is color-coded in red or blue.

concentrations in ZrTe2 produces a similar drop in the voltage for high magne-

sium concentrations in the SnSe2|ZrTe2 superlattice. This SnSe2|ZrTe2 superlat-
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tice also suggests an exciting use of superlatticing: whereas the drop seen for

ZrTe2 reaches a voltage of -0.64 V, the voltage drop demonstrated by the super-

lattice reaches a value of -0.02 V. Although this value is still negative, it suggests

that the inclusion of the SnSe2, a material which retains a constant voltage across

the concentration range, limits the drop shown by the superlattice. The HfS2|ZrS2

further supports this: though the HfS2 component shows a negative voltage at

high concentrations, the superlattice retains a positive value due to the inclusion

of the ZrS2. This effect has been observed before, both using first principles

methods [191] and experimentally [254].

Whilst there are some materials that deviate from this with voltages profiles that

extend beyond the bounds of the component materials, such as with the lithium-

intercalated NiS2|TiS2 and MoS2|SnS2, and the magnesium-intercalated NbS2|TaS2

and MoS2|SnS2, these deviations do not remove the underlying shape of the

component materials. Further, comparing the average voltages of the superlat-

tice with those of the components highlights that taking a simple average of the

component materials is a reliable method to predict the voltage of the formed

superlattice. These comparisons, along with the results of 41 other superlattice

structures which show the same result are presented in Appendix E.

As mentioned above, electrode materials should ideally have a well-defined volt-

age [283], and so, based only on the voltage profiles in Figure 6.8a, pairings

such as MoS2|SnS2 can be ruled out as a promising electrode material for lithium

ion batteries. As one of the components has a large variation in the voltage, in

this case MoS2, the resultant voltage for the superlattice can also be expected

to have large variation. Similarly, the magnesium-intercalation voltage profiles of

NbS2|TaS2, SnSe2|ZrTe2, and MoS2|SnS2 vary significantly across the magne-

sium concentration range, due to the large variation of one or both of the com-

ponent TMDCs. However, this does also suggest that a large variation seen for

a TMDC can be reduced by pairing with a TMDC with a constant voltage pro-

file. For example, TiS2 varies by 0.59 V from across the concentration range

considered here. However, when paired with NiS2 (which varies by 0.11 V), the

variation of the resultant NiS2|TiS2 superlattice is 0.17 V. Therefore, if a particular

TMDC is desirable for use as an electrode, but possesses a voltage which varies
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Figure 6.9: Reversible gravimetric charge capacity of selected superlattices and their

component TMDCs for lithium (top) and magnesium (bottom) intercalation. Superlattice

results are presented in purple, and the corresponding results for component materials

are presented in red and blue. Missing bars indicate materials with zero reversible ca-

pacity.

significantly, its voltage could be ‘pinned’ by pairing it with a suitable partner.

The intercalation voltage of anode materials should be lower than 2 V, ideally in

the range 0.5-1.5 V [283], and for cathode materials it should exceed 3 V [284].

As the pairing of two TMDCs results in a voltage that is intermediate to them

both, it would only be sensible to combine materials that are energetically alike.

For anodes two TMDCs with low voltages should be combined, and for cathodes

two TMDCs with high voltages should be combined. If a low voltage TMDC (e.g.

SnS2 with a voltage of 1.80 V) were to be combined with a high voltage TMDC

(e.g. ScS2 with a voltage of 3.66 V [230]), the voltage of the superlattice (e.g.

2.69 V, see Appendix E) would be poor for both anode and cathode applications.

6.8 Thermodynamic Stability

The values of EIS for a range of intercalant concentrations within the superlat-

tices are also shown in Figure 6.8a and Figure 6.8b. As was demonstrated with

the evolution of the intercalation voltage with concentration, the evolution of EIS
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with intercalant concentration follows a trend that is an intermediate of the two

component materials, and the value of EIS of a superlattice at a given concen-

tration is well approximated by calculating the average of the component mate-

rials. This suggests that, as EIS is an indicator of the thermodynamic stability

of a given TMDC against conversion, a highly stable material (characterised by

a high, positive value of EIS) can be paired with a material that is susceptible to

conversion (characterised by a low or negative value of EIS) to make a superlat-

tice that is also resistant to conversion. This is shown with pairings SnS2|SnSe2,

GeS2|SnS2, and MoS2|SnS2 with lithium intercalation. In each of these, SnS2 is

the component with a negative value of EIS across the range of lithium concen-

tration. However, the formed superlattices have positive values of EIS, indicating

the stability that has arisen from the inclusion of a thermodynamically stable com-

ponent. We see the same result of a conversion-resistant component stabilising

a conversion-susceptible component with pairings NiS2|TiS2 and HfS2|PdS2 for

magnesium intercalation.

The importance of this result is further highlighted by consideration of the gravi-

metric charge capacity, a quantity that is crucial for characterising a material for

electrode applications. We have used the range over which EIS has a positive

value to calculate the reversible gravimetric charge capacities for each of the su-

perlattice structures, which are presented in Figure 6.9, along with the capacity

of the component materials for easy comparison (see Chapter 3). Aside from

the improvements in stability, we can also expect improvements in the capacity

simply due to the inclusion of a lighter material. For example, hafnium is a Period-

VI element and so the specific capacity of 109.7 mAhg−1 for lithium intercalation

(219.4 mAhg−1 for magnesium intercalation) is relatively low despite it possess-

ing positive values of EIS across the intercalation range. However, combining

with a TMDC composed of a lighter transition metal, such as ZrS2 in HfS2|ZrS2,

increases this to 140.5 mAhg−1 (281.0 mAhg−1). Further, superlattice formation

can in some cases provide a reversible charge capacity that is better than either

of the components. This is highlighted with the intercalation of SnS2|SnSe2: SnS2

is shown to be susceptible to conversion reactions, and so the capacity is zero.

However, combination with SnSe2 (which possesses a positive EIS for both inter-

calants) results in a capacity of 120.9 mAhg−1 (241.8 mAhg−1). We can therefore
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improve not just the voltage (through ‘pinning’) and thermodynamic stability (by

increasing EIS) of a TMDC through superlatticing, but also the gravimetric charge

capacity.

6.9 Elastic Properties

Here we present the elastic properties of the superlattices that we highlight. We

find each to possess a trigonal symmetry, and so the only unique non-zero el-

ements are c11, c12, c13, c33, c44, c14, and c66. We find that most of the pris-

tine, lithium-intercalated, and magnesium-intercalated structures are elastically

stable, by assessing the Born stability criteria outlined in Chapter 4 However,

we find that magnesium-intercalated HfS2|PdS2 is elastically unstable, break-

ing the same conditions that are broken by magnesium-intercalated PdS2. Fur-

ther, magnesium-intercalated MoS2|SnS2 is also found to be elastically unstable

(breaking the requirements of c11 > |c12| and c2
14 <

1
2
c44(c11− c12) = c44c66) despite

neither of its components being elastically unstable. This could be due to the

larger strain on each of these systems (> 5%) compared to the other superlat-

tices.

In Table 6.1, we present the polycrystalline bulk (B), shear (G), and Young’s (Y)

moduli for each of the superlattice structures. We also include the Poisson (ν)

and Pugh (R) elastic ratios which are commonly used to describe the ductility of

a material. A ductile material typically has a Poisson ratio greater than 0.26, and

Pugh ratios greater than 1.75. Each of these quantities has been calculated using

the elastic matrices presented above and the Voigt-Reuss-Hill average scheme.

With the exception of SnS2|SnSe2, we find that the bulk modulus of the super-

lattice is increased with the introduction of an intercalant, with a larger increase

seen for lithium than for magnesium intercalation.
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A|B Intercalant B (GPa) G (GPa) Y (GPa) ν R

- 96.73 30.53 82.87 0.36 3.17

SnS2|SnSe2 Li 44.51 19.26 50.49 0.31 2.31

Mg 61.31 31.11 79.82 0.28 1.97

- 45.67 31.27 76.38 0.22 1.46

NiS2|TiS2 Li 54.78 41.29 99.00 0.20 1.33

Mg 97.12 49.21 126.31 0.28 1.97

- 38.37 26.24 64.10 0.22 1.46

HfS2|PdS2 Li 65.02 32.81 84.26 0.28 1.98

Mg* 79.24 -16.55 -53.38 0.61 -4.79

- 33.08 22.67 55.36 0.22 1.46

ZrS2|ZrSe2 Li 63.04 43.43 105.95 0.22 1.45

Mg 95.56 53.11 134.42 0.27 1.80

- 42.39 27.02 66.86 0.24 1.57

NbS2|TaS2 Li 85.55 48.11 121.54 0.26 1.78

Mg 121.46 62.82 160.74 0.28 1.93

- 34.30 20.93 52.19 0.25 1.64

GeS2|SnS2 Li 49.38 17.14 46.08 0.34 2.88

Mg 69.08 38.39 97.17 0.27 1.80

- 26.61 16.13 40.27 0.25 1.65

SnSe2|ZrTe2 Li 39.45 23.94 59.73 0.25 1.65

Mg 47.38 10.67 29.76 0.40 4.44

- 36.05 24.68 60.29 0.22 1.46

HfS2|ZrS2 Li 70.61 47.71 116.82 0.22 1.48

Mg 109.82 62.36 157.31 0.26 1.76

- 37.94 26.89 65.25 0.21 1.41

MoS2|SnS2 Li 64.14 35.48 89.86 0.27 1.81

Mg* 76.57 3.21 9.48 0.48 23.89

Table 6.1: Elastic properties for each of the pristine and intercalated superlattices high-

lighted in this Chapter. These have been calculated using the Voigt-Reuss-Hill average

scheme. Materials marked with an asterisk (*) are elastically unstable.
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Figure 6.10: Electronic band structures and density of states (DOS) for pristine and

intercalated superlattice structures. NbS2|TaS2 data is presented in 6.10a and 6.10d,

HfS2|ZrS2 in 6.10b and 6.10e, and GeS2|SnS2 in 6.10c and 6.10f. Pristine data is pre-

sented in black, data for lithium-intercalated structures in red, and data for magnesium-

intercalated structures in blue. Each has been aligned with high energy occupied states

of the pristine superlattice material. The energy of the Fermi level (EFermi) is indicated

with dashed lines.

6.10 Electronic Structure

One of the main reasons the TMDCs have received a lot of attention in recent

years is for the wide range of electronic properties the family can exhibit, and

their superlattices/heterotructures have been of further interest for the electronic

physics that can arise from the combination of two materials [264, 400]. For

electrode applications, materials with an electronically-conductive nature are pre-

ferred so that compensating electrons from an external circuit can balance the

positively-charged lithium/magnesium ions. However, the introduction of ionic

species into the host structure dramatically changes the nature of inter-layer

bonding, and consequent changes to the electronic structure can be expected.

Here, we investigate how the electronic structure of superlattice structures change

with intercalation.
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We find that the electronic structure of a superlattice can crudely be obtained by

superimposing the electronic structures of the constituent TMDC materials. As a

result, combining TMDCs which offer a relative type II band alignment (staggered

gap) results in a superlattice with a band gap that is smaller than either of the

components, and combination of a metallic TMDC with a TMDC which possesses

a band gap results in a superlattice that is also metallic. Though exact band gap

values can be sensitive to the choice of functional and the level of strain induced

from lattice matching, this observation agrees with many previous works [264]

and shows that construction of a superlattice provides a simple method through

which the electrical conductivity can be improved.

The introduction of ionic species into the host structure dramatically changes the

nature of inter-layer bonding, however, and consequent changes to the electronic

structure can be expected. Here, we investigate how the electronic structure

of superlattice structures change with intercalation. In Figure 6.10 we present

the electronic band structures and corresponding density of states (DOS) for

NbS2|TaS2 (6.10a and 6.10d), HfS2|ZrS2 (6.10b and 6.10e), and GeS2|SnS2 (6.10c

and 6.10f). These show the electronic structure for the unintercalated superlat-

tices, along with the limit of lithium and magnesium intercalation corresponding to

one intercalant per metal atom in the host supercell. Due to the presence of inter-

calants and local charge transfer leading to local electric fields, it is not possible

to align these band structures using typical means of core-state alignment [262]

or with respect to the vacuum level [262–264]. Instead, we have qualitatively

aligned to the high-energy occupied states of the unintercalated superlattice at Γ,

allowing us to comment on the relative position of the Fermi level.

We identify several broad groups describing what happens with the electronic be-

haviour: the superlattice either i) retains a conductive nature with intercalation, ii)

undergoes a transition from semiconductor to conductor, iii) possesses an insulat-

ing nature before intercalation and at the b = 2 intercalation level, or iv) undergoes

a transition from conductor to semiconductor. The superlattice NbS2|TaS2 is an

example of group i), possessing no band gap at the start and end of intercalation.

We can see from Figure 6.10a that this is due to the Fermi lying in the middle of

a linear band that extends from −0.5 eV at M to 2.5 eV between K and Γ. Elec-
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trons that are transferred from the intercalants to the host then simply occupy

the unoccupied states in this band, and so the Fermi level progressively rises.

Due to the greater charge transfer with magnesium, the Fermi level is raised to a

higher level than with lithium. For HfS2|ZrS2, an example of group ii), we see a

very similar behaviour, but the presence of an initial band gap means that there

is a much larger initial jump in the position of the Fermi. However, the continuous

range of bands beyond this allows for a gradual rise in the Fermi level as was

seen for group i). This is presented in Figure 6.10b. Figure 6.10c then shows

the electronic structure for the GeS2|SnS2 superlattice and its intercalated forms,

where we see the pristine structure possesses a band gap of ∼ 0.6 eV. Upon

lithium intercalation, the Fermi shifts to intersect the two lowest-energy unoccu-

pied states of the pristine structure, becoming metallic as with a type ii) material.

However, intercalation with magnesium (and, it is expected, further intercalation

with lithium), these states become fully occupied, and the Fermi level then sits at

the bottom of a further band gap.

As there is minimal change to the electronic structure of component TMDCs upon

formation of a superlattice/heterostructure [264, 400], the behaviour of superlat-

tices described above is very similar to what has been observed for the compo-

nent materials.

6.11 Charge Analysis

We compare the Bader charges for the lithium-intercalated (Figure 6.11a) and

magnesium-intercalated (Figure 6.11b) systems. Surprisingly, whilst there is more

charge transfer than is seen with the pristine systems, this remains relatively

small. However, some systems, for example lithium-intercalated NbS2|TaS2 and

magnesium-intercalated HfS2|PdS2, show significant charge transfer between the

component layers. The intercalants themselves maintain almost constant charges,

as has been shown for intercalation into the individual TMDCs. Across the differ-

ent superlattices, the charge of lithium varies between 0.87−0.88, and magnesium

varies between 1.65− 1.67. Specific values are presented in Appendix E.
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Figure 6.11: Bader charges for the different metal and chalcogen species in superlat-

tices and the relevant component TMDCs, when intercalated with lithium (6.11a) and

magnesium (6.11b). The included numbers indicate the difference in charge between the

superlattice and individual TMDC components, QSL −QTMDC .

To supplement the results of the Bader charge analysis, we have also considered

the differences in the charge density arising from intercalation: Whilst maintain-

ing the positions of the constituent atoms, the electronic charge densities were

obtained, and compared using ∆ρ = ρLiSL− [ρLi +ρSL]. We present in Figure 6.12

the planar-averaged values of ∆ρ for the SnS2|SnSe2 superlattice intercalated

with lithium (Figure 6.12a) and magnesium (Figure 6.12b). The results for the

component SnS2 and SnSe2 structures have also been included.

For SnS2|SnSe2, the tin atoms (purple) are positioned at c = 0.25 and c = 0.75, the

chalcogen (yellow sulfur, green selenium) atoms are positioned at c values±0.125

either side of these, and the intercalant species (orange) are positioned at c = 0

(periodic image at c = 1) and c = 0.5. For both lithium and magnesium, we see

significant electron depletion from the intercalant regions (at c = 0, 0.5, 1) as these

species donate electrons to the parent superlattice structure. This charge is seen

to accumulate in the bonding regions between chalcogen and intercalant. Due to

this additional charge on the chalcogen species, the electrons used in the M-X

bond are able to redistribute back to the host metal. This is seen with a depletion

of electronic charge between the metal and chalcogen (c = 0.15− 0.20, c = 0.30−

0.35, c = 0.65− 0.70, c = 0.80− 0.85), and by a charge donation to the metal. We

find that charge transfer to each of the layers in the superlattice closely matches

the charge transfer seen for the respective TMDC on its own. For example, with
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(a) (b)

Figure 6.12: The planar-average of ∆ρ = ρLiSL − [ρLi + ρSL] for the SnS2|SnSe2 super-

lattice (and the component materials) intercalated with lithium (6.12a) and magnesium

(6.12b). Positive values correspond to regions of electron accumulation, and negative

values correspond to regions of electron depletion. The corresponding structure is over-

layed on these plots, with purple tin atoms, yellow sulfur, green selenium, and orange

intercalant.

magnesium intercalation, the charge transfer from the intercalated magnesium to

the SnS2 layer of the superlattice (Figure 6.12b, purple line, c = 0 − 0.5) very

closely resembles the profile of charge transfer seen for magnesium intercalation

into SnS2 (same figure, red line).

We continue our discussion of charge analysis in Figure 6.13a and Figure 6.13b,

which depict 3D visualisations of this charge transfer for lithium and magnesium

intercalation, respectively. The isosurfaces chosen are the chosen by the ratio of

intercalant Bader charges ( qMg

qLi
= 1.65

0.88
). In Figure 6.13c, we further show a 2D slice

through this charge difference along the (1 1 0) plane, passing through host metal

atoms, chalcogen atoms, and the intercalated lithium. In each of these 2D and 3D

visualisations, red isosurfaces show electron depletion and blue isosurfaces show

electron accumulation. These offer further detail of the structure of the charge

transfer, and show the similarity for both lithium and magnesium intercalation.

We find a very similar results to those presented in the above discussion for the

other superlattices, examples of which have been presented in Appendix E.

As the charge transfer upon formation of the superlattice remains small, and the

charge transfer that follows the inclusion of an intercalant mirrors the transfer that
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(a) (b) (c)

Figure 6.13: The 3D visualisation of this charge transfer in SnS2|SnSe2 is shown in 6.13a

and 6.13b for lithium (isosurface 2.5 me−/Å3) and magnesium (isosurface 4.7 me−/Å3)

intercalation, respectively. 6.13c shows a 2D slice through the (1 1 0) plane of the Li-

(SnS2|SnSe2) charge-difference distribution. Red isosurfaces show electron depletion

and blue isosurfaces show electron accumulation.

arises in each of the constituent TMDC layers, it is therefore clear as to why the

superlattice energetics (i.e. the intercalation voltage and the stability metric of

EIS) take on intermediate values to those of the component TMDCs.

6.12 Summary

In this Chapter, we have presented the results of an investigation of intercalation

into transition metal dichalcogenide superlattices with both lithium and magne-

sium. Though we established the electrode properties of the individual TMDCs

in Chapter 3, the question remained as to how these properties would change

when combined, as indicated by Figure 6.14. Such composite materials have

received much attention in recent years due to the advent of synthesis methods

allowing for nanoscale control. We have therefore extended the work of Chapter 3

to explicitly consider such structures.

The volumetric expansion, electronic structure, intercalation voltages, and ther-

modynamic stability determined through phase diagrams have all been consid-

ered as the information they provide is essential for the consideration of materials

for use as an electrode. Upon formation of a superlattice, we find that many of
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Figure 6.14: Summary of the work presented in this Chapter.

these properties can be well approximated through consideration of the equiva-

lent property for the component layers. For example, if the superlattice volumetric

expansion were to be estimated by calculating the mean of the volumetric ex-

pansion arising in the component TMDCs, we could expect the result to deviate

by up to a 2% error from what is observed in the actual superlattice, and the

voltage profiles of the component materials provide bounds to the voltage profile

exhibited by the constructed superlattice. Further, the unoccupied states of the

host material are progressively filled with the addition of an intercalant, which fol-

lows the behaviour observed with the individual TMDCs. Most interestingly, the

formation of superlattices allows for many improvements to component materi-

als: formation of a superlattice results in a reduction of the electronic band gap,

improving electronic conductivity; conversion-resistant materials can be used to

increase the stability of conversion-susceptible materials, extending their cycla-

bility and lifetime; and materials can be chosen such that the overall voltage can

be tuned towards specific values.

The conclusions presented in this Chapter should also extend to other layered

materials. In particular, the layered transition metal oxides offer a group of ma-

terials that are very closely related to the TMDCs used to construct the super-

lattices here, and have already demonstrated success as electrodes. Using the

ideas used here, however, they could have their voltages tuned, their intercalation
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stability improved, and ultimately have an increased energy storage capacity.



Chapter 7

Outlook

“I have only made this letter longer because I have not had the time to make it shorter.”

Blaise Pascal, 1657

7.1 Summary

In this work, ab initio density functional theory methods have been used to as-

sess the suitability of layered transition metal dichalcogenides and their super-

lattices as intercalation electrodes in lithium-ion and beyond-lithium-ion batteries.

Chapter 1 provided the key methods of energy storage and how these have been

utilised in technology and society thus far, with particular focus being given to the

function and development of modern intercalation batteries. In Chapter 2 we then

outlined the core physics and mathematical tools often used in electronic struc-

ture calculations, and provided a more focused discussion of the first principles

methods utilised throughout this thesis.

Whilst numerous studies have shown that layered materials (and in particular, the

TMDCs) offer much promise as rechargeable intercalation electrodes, with large

electrochemically active surface areas, high capacities, and good cycling stability,

much of the family is yet to be explored. There was a clear need for a comprehen-

sive study of the key electrode properties, such as the volume expansion, the volt-

age, and the reversible intercalation capacity. With this in mind, in Chapter 3 we
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presented a first principles investigation of lithium- and magnesium-intercalation

into each of the layered transition metal dichalcogenides to explore such these

metrics. Comparison of the two commonly observed layered TMDC polymorphs

showed that the T-phase is typically the preferred phase, but that phase changes

could be induced with intercalation, particularly for the Group IV, V, and VI materi-

als. We were able to demonstrate that the layered structure ensured generally low

volume expansions, and characterised the intercalation voltage profile for each of

the materials. Using thermodynamic phase diagrams, constructed around the

stability of the host against conversion reactions, we were able to provide an es-

timate of the reversible capacity, a key indicator for the energy storage and the

lifetime. We showed that most TMDCs are stable with lithium intercalation, though

this stability is reduced for magnesium intercalation due to the extra charge of the

intercalant. Assessment of the material electronic structures showed that most of

the TMDCs retain a conductive nature across the range of intercalant concentra-

tions considered, though some materials do become insulating at concentrations

of a = 1 in LiaMX2 or MgaMX2.

We identified TMDC sulfides to be the best in general for lithium intercalation,

highlighting the Group IV, V, and VI in particular for their low volumetric expan-

sion, moderate intercalation voltages, and high stability against conversion reac-

tions. In particular, ScS2 and YS2 were identified as promising cathode materials,

offering high voltages close to 4 V and high intercalation stability allowing for the-

oretical capacities of 243.99 mAhg−1 and 173.91 mAhg−1, respectively. Finally,

we also suggested that the Group VIII and IX materials are also worthy of fur-

ther investigation. For magnesium intercalation, we demonstrated that the early

transition metals offer the best performance as anodes, but also show that many

other materials show ideal voltages and sufficient thermodynamic stability over a

significant concentration range.

In Chapter 4, we extended the work of Chapter 3 to explore the elastic and me-

chanical properties of the TMDCs. Such properties play an important role in many

industrial applications, but are particularly important for the cycling of electrodes

in a working cell. We therefore presented a first-principles study into the elastic

behaviour of layered TMDCs and their lithium- or magnesium-intercalated struc-
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tures. Assessment of the elastic matrices allow us to evaluate key properties such

as the bulk, shear, and Young’s moduli. These showed a general increase with

the addition of an intercalant species, though TMDCs composed of late-Group

transition metals break this trend. We also assessed elastic ratios which describe

the ductility of a material, allowing us to conclude that the pristine materials are

brittle, but become more ductile with the addition of lithium or magnesium. The

anisotropy of these materials was also assessed using a combination of the uni-

versal anisotropy metric and a direct calculation of the angular dependence of the

Young’s modulus. The pristine van der Waals materials demonstrated a high de-

gree of anisotropy due to their relatively weak interactions across the vdW spac-

ing, but the introduction of an ion within the vdW region reduced this anisotropy.

Finally, we have also explored intermediate intercalant concentrations on elas-

tic properties for selected systems, where we conclude that different intercalant

configurations or the use of multivalent intercalant species can cause significant

deviations from commonly-used linear extrapolations.

The growing demand for high efficiency portable batteries has prompted a deeper

exploration for alternative cathode materials. From the results of Chapter 3 and

Chapter 4, we highlighted ScS2 as a particularly promising cathode candidate.

Due to low Earth abundance, scandium has not received much attention, how-

ever its low atomic mass makes it ideal for high gravimetric capacity electrodes.

In Chapter 5 we performed a comprehensive first-principles study to assess the

performance of layered ScS2 as a potential cathode for lithium-ion and beyond-

lithium-ion batteries. We explored the configuration space of ScS2 and its interca-

lated compounds using a mix of machine learning and ab initio techniques, finding

the ground state geometry to be layered in nature. This layered structure is found

to have a high voltage, reaching above 4.5 V for Group I intercalants, ideal volume

expansions below 10% for lithium and magnesium intercalation, is electronically

conductive, and is ductile once intercalated. Of the intercalants considered, we

find that lithium is the best choice for cathode applications, for which we have

used a combination of thermodynamic phase diagrams, ab intio phonon calcu-

lations, and evaluation of the elastic tensor to conclude that ScS2 possesses a

reversible capacity of 182.99 mAhg−1, on par with current state of the art cathode

materials such as LiCoO2, NMC, and NCA. Finally, we substitute foreign metal
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species into the ScS2 material to determine their effect on key cathode proper-

ties, but find that these are overall detrimental to the performance of ScS2. This

does, however, highlight the potential for improvement if scandium were mixed

into other layered systems such as the layered transition metal oxides.

Following the work of the previous Chapters, we presented in Chapter 6 a first

principles investigation of the properties of superlattices made from transition

metal dichalcogenides for use as electrodes in lithium-ion and magnesium-ion

batteries. From of a study of 50 pairings, we were able to show that, in general,

the volumetric expansion, intercalation voltages, and thermodynamic stability of

vdW superlattice structures can be well approximated with the average value of

the equivalent property for the component layers. Further, we were also able to

show that the band gap can be reduced, improving the electronic conductivity.

Thus, we conclude that superlattice formation can be used to improve material

properties through tuning of intercalation voltages towards specific values, and

by increasing the stability of conversion-susceptible materials. For example, we

demonstrate how pairing SnS2 with systems such as MoS2 can change it from a

conversion to an intercalation material, thus opening it up for use in intercalation

electrodes.

7.2 Future Work

Many of the points and ideas presented in this thesis warrant further investigation.

The work presented in Chapter 3 considered the ‘perfect’ TMDC structures. Of

course, when fabricated and when cycled in real devices such perfect structures

are not always guaranteed. Indeed, defects such as vacancies or impurities can

be present and could offer some modification to the material operation. Whilst

the effects of these defects on, for example, the voltage and volumetric expan-

sion could be expected to be small, they could reduce the structural and chemical

stability of a TMDC such that it degrades/degrades quicker with repeated cycling.

Before utilisation of any material presented in the study, then, a thorough investi-

gation of likely and possible defects and how the electrode properties can change

should be completed. In a similar vein, the formation of a surface (as would be
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required when constructing a finite electrode) should also be considered. Such

surfaces could also be investigated for use with a complimentary electrolyte or

with a resulting solid-electrolyte interphase. Though possible to complete such

investigations using the first principles methods used in this thesis, methods be-

yond DFT would likely be more appropriate due to the inclusion of organics and/or

ionic liquids.

The motivation behind Chapter 4 was to allow for study of materials using meth-

ods based on solid-state diffusion and continuum mechanics. We therefore hope

for the results presented in the Chapter to be used in models beyond the atomic

scale. The work in this Chapter looked at the mechanical properties of these ma-

terials and how they change with intercalation. An alternative approach to com-

plete such an investigation would be through the study of the material phonon

band structures. We commented that this has not been done in an exhaustive

manner here because of the higher computational demand, however such a study

would be interesting for comparison to the result obtained here. Further, it would

allow for further development into the thermal conductivity of these materials and

how this evolves with intercalation. Not only is this another crucial assessment

that should be made for the cycling of electrode materials, but would also be of

interest for other areas of materials science and energy materials, such as for the

thermoelectrics community.

Whilst scandium dioxide does not exhibit the layered structure, in Chapter 5 we

suggested the mixing of scandium into transition metal oxides that are layered to

modify the voltage, stability, and other electrode properties, similar to what has

been done with the mixing of nickel, manganese, and cobalt in NMC compounds.

As scandium disulfide was shown to offer many desirable properties, and we see

a smooth evolution of these properties with metal mixing, we proposed that the

mixing of scandium into the transition metal oxides may be able to benefit to other

materials that have successfully performed as cathode materials. However, the

primary extension for the work presented in Chapter 5 is through experimental

verification.

In Chapter 6 we only considered vertical superlattices. However, there has been

recent interest in the formation of lateral heterotstructures and Janus structure,
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where the chemical composition changes within a single TMDC layer. Other lay-

ered materials beyond the TMDCs should also be investigated with the conclu-

sions of Chapter 6 in mind, to verify whether the same ‘averaging’ rule extends to

other materials, and whether the properties of such materials can be similarly op-

timised. Though we expect these trends to extend to other layered materials, the

question as to whether this rule is broken and the physics around that could be

of interest to those interested in layered materials and their composites. We have

also only considered superlattices consisting of lattice-matched materials. Due to

the vdW interactions between layers, this is not a restriction in reality, with lattice

mismatches being allowed and can result in Moiré structures. Such structures are

also worth exploring, where we expect a minor modification to the averaging rule

as the relative intercalant concentrations would be different for two component

materials.



Appendix A

Supplementary Information to

Chapter 2

A.1 Born-Oppenheimer Approximation

Here, we present a more detailed discussion of the origins and validity of the

Born-Oppenheimer approximation. If we consider the many body problem dis-

cussed above, we have a system of electrons and nuclei. For brevity in the

following, we will denote the set of nuclear coordinates {R} as X, and the set

of electronic coordinates {r} as x. Due to the much larger masses, and hence

much lower speeds, of the nuclei, the associated kinetic energy of the nuclei is

much smaller than the kinetic energy associated with the electrons. As such, we

can consider the reduced Hamiltonian Ĥ0 for electrons for fixed nuclei, Ĥ0,

Ĥ0 = T̂el + V̂el−el + V̂el−ion + V̂ion−ion, (A.1)

where we have separated out the terms of the Hamiltonian corresponding to the

electron kinetic energy (T̂el), the electron-electron interaction potential (V̂el−el),

the electron-ion interaction potential (V̂el−ion), and the ion-ion interaction potential

(V̂ion−ion) as in Chapter 2. The actual Hamiltonian of the system can then be

written as Ĥ = Ĥ0 +T̂ion, for which solutions can be found by considering the ionic

kinetic energy T̂ion a perturbation (so long as it is small) upon the Hamiltonian Ĥ0.

For a perturbative approach, we use the expansion parameter κ = ( m
M0

)
1
4 [417–
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419], for electronic mass m and nuclear reference mass M0, which can be either

the average mass of the nuclear system, or any one of the nuclear masses. This

will be useful later on, when we consider the kinetic energy term for the ions as a

perturbation. If we let

Ĥ1 =
∑
I

M0

MI

P̂2
I

2m
, (A.2)

for ionic index I, then,

T̂ion = κ4Ĥ1 = −
∑
I

~2

2MI

∂2

∂X2
, (A.3)

with

Ĥ1 = −
∑
I

M0

MI

~2

2m

∂2

∂X2
, (A.4)

and the total Hamiltonian has the form,

Ĥ = Ĥ0 + κ4Ĥ1. (A.5)

The Schrödinger equation for the total system is,

(Ĥ0 + κ4Ĥ1 − ε)Ψ = 0. (A.6)

As κ → 0, we recover the Schrödinger equation representing the electronic mo-

tion for stationary nuclei. We replace ε with E to highlight this, giving,

(Ĥ0 − E)ψ(x;X) = 0. (A.7)

We assume that this eigenvalue problem is solved, with electronic eigenfunctions

ψ that depend parametrically upon nuclear coordinates [419]. We can further

specify the nth eigenvalue, E0
n, corresponding to nth normalised eigenfunction ψn,

where n is understood to be the electronic quantum number [417–419],

(Ĥ0 − En(X))ψn(x;X) = 0. (A.8)

Here we assume that En is a non-degenerate eigenvalue, and the dependence

of En on X is explicitely written. Whilst this may be an inaccurate assumption to

make for physical systems, we are only concerned with the approximate proce-

dure, and will not consider possible degeneracies [417,418].

If we consider functions ψn to be known for a certain nuclear configuration, X0,

we can make the assumption that nuclear motion is confined to small deviations
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from X0 to solve the exact equation (A.6). This assumption, justified by its suc-

cess [417,418], can be expressed as,

X −X0 = κu. (A.9)

Replacing X0 with X = X0 + κu, and differentiating En(X) with respect to κ, we

obtain the expansion,

En(X0 + κu) = E(0)
n + κE(1)

n + κ2E(2)
n + · · · , (A.10)

where the coefficients of the powers of κ are homogeneous polynomials in u,

E(0)
n = En(X0),

E(1)
n =

∑
i

ui
∂En
∂Xi

,

E(2)
n =

1

2

∑
ij

uiuj
∂2En
∂Xi∂Xj

,

· · ·

(A.11)

Similarly expanding ψn and reduced Hamiltonian Ĥ0 we get,

ψn(X0 + κu) = ψ(0)
n + κψ(1)

n + κ2ψ(2)
n + · · ·

Ĥ0(X0 + κu) = Ĥ
(0)
0 + κĤ

(1)
0 + κ2Ĥ

(2)
0 + · · · .

(A.12)

We notice that E(0)
n is independent of u, E(1)

n is linear in u, E(2)
n is quadratic in u,

and so on.

Combining equations (A.10) and (A.12) with equation (A.8) we get,[
(Ĥ

(0)
0 +κĤ

(1)
0 +κ2Ĥ

(2)
0 +· · · )−(E(0)

n +κE(1)
n +κ2E(2)

n +· · · )
]
(ψ(0)

n +κψ(1)
n +κ2ψ(2)

n +· · · ) = 0,

(A.13)

and equating the coefficients for the same powers of κ, we obtain:

(a) (Ĥ
(0)
0 − E(0)

n )ψ(0)
n = 0,

(b) (Ĥ
(0)
0 − E(0)

n )ψ(1)
n = −(Ĥ

(1)
0 − E(1)

n )ψ(0)
n ,

(c) (Ĥ
(0)
0 − E(0)

n )ψ(2)
n = −(Ĥ

(1)
0 − E(1)

n )ψ(1)
n − (Ĥ

(2)
0 − E(2)

n )ψ(0)
n ,

· · ·

(A.14)

To solve the exact equation (A.6), we use the expansions (it can be shown that

E
(0)
n = ε

(0)
n [419]),

εn = E(0)
n + κε(1)

n + κ2ε(2)
n + · · · ,

Ψn = Ψ(0)
n + κΨ(1)

n + κ2Ψ(2)
n + · · · .

(A.15)
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By noting that ∂
∂X

= 1
κ
∂
∂u

, we can rewrite the perturbation,

T̂ion = κ4Ĥ1 = κ2Ĥ
(2)
1 , (A.16)

with,

Ĥ
(2)
1 = −

∑
I

M0

MI

~2

2m

∂2

∂u2
, (A.17)

which shows that the kinetic energy of the nuclei only contributes a term of order

κ2 to the Hamiltonian. Thus, combining this with the reduced Hamiltonian, we

obtain the full Hamiltonian Ĥ:

Ĥ(X0 + κu) = Ĥ
(0)
0 + κĤ

(1)
0 + κ2(Ĥ

(2)
0 + Ĥ

(2)
1 ) + · · · , (A.18)

We combine equations (A.15) and (A.18) with equation (A.6) and compare co-

efficients for powers of κ, as we did for the reduced system, to get the set of

equations:

(a) (Ĥ
(0)
0 − E(0)

n )Ψ(0)
n = 0,

(b) (Ĥ
(0)
0 − E(0)

n )Ψ(1)
n = −(Ĥ

(1)
0 − ε(1)

n )Ψ(0)
n ,

(c) (Ĥ
(0)
0 − E(0)

n )Ψ(2)
n = −(Ĥ

(1)
0 − ε(1)

n )Ψ(1)
n − (Ĥ

(2)
0 + Ĥ

(2)
1 − ε(2)

n )Ψ(0)
n .

· · ·

(A.19)

A.1.1 Zeroth and First Order: Equilibrium of Nuclei

As Ĥ(i)
0 are operators with respect to electronic coordinates, we can multiply the

solutions ψ(0)
n by an arbitrary function in u (to be determined by higher order equa-

tions), allowing us to determine general solutions. It follows from equation (A.19a)

that the normalised eigenfunction Ψ
(0)
n is a general solution of the zeroth order

equation, with eignevalue E(0)
n = En(X0) and general form [417–419]:

Ψ(0)
n = χ(0)

n (u)ψ(0)
n (x;X0), (A.20)

with arbitrary function of ionic coordinates χ
(0)
n (u). At this point, we are able to

separate the electronic wave function from the arbitrary function coupling the elec-

trons to the nuclear cores. However, we will consider higher order terms.

Equation (A.19b), (Ĥ
(0)
0 −E

(0)
n )Ψ

(1)
n = −(Ĥ

(1)
0 −ε

(1)
n )Ψ

(0)
n , is a linear inhomogeneous

differential equation with respect to x. The solubility condition requires that the
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right hand side be orthogonal to the solution, ψ(0)
n , of the homogeneous equation.

As such, ∫
ψ(0)
n (x;X0) (Ĥ

(1)
0 − ε(1)

n ) Ψ(0)
n (x, u) dx

=χ(0)(u)

∫
ψ(0)
n (x;X0) (Ĥ

(1)
0 − ε(1)

n )ψ(0)
n (x;X0) dx

=χ(0)(u)
{

(Ĥ
(1)
0 )nn − ε(1)

n

}
= 0.

(A.21)

where (Ĥ
(1)
0 )nn is the diagonal matrix element of the operator Ĥ(1)

0 . Born and Op-

penheimer [417,418] showed that we require (Ĥ
(1)
0 )nn = ε

(1)
n = 0. Using equation

(A.11), we thus get,

(Ĥ
(1)
0 )nn = ε(1)

n =
∑
i

ui
∂εn
∂Xi

. (A.22)

We therefore require that the set of ionic coordinates Xi correspond to an ex-

tremal value of the energy εn(X).

If we now compare equations (A.14) and (A.19), with ε(1)
n = 0 substituted,

(Ĥ
(0)
0 − E(0)

n )ψ(1)
n = −Ĥ(1)

0 ψ(0)
n

(Ĥ
(0)
0 − E(0)

n )Ψ(1)
n = −Ĥ(1)

0 Ψ(0)
n ,

(A.23)

we see that Ψ
(1)
n = χ

(0)
n ψ

(1)
n is a solution. To this, we may add a solution, ψ(0)

n , of the

homogeneous equation, multiplied by an arbitrary function of nuclear coordinates,

χ
(1)
n (u), resulting in the general solution,

Ψ(1)
n (x, u) = χ(0)

n (u)ψ(1)
n (x;u) + χ(1)

n (u)ψ(0)
n (x). (A.24)

A.1.2 Second and Third Order: Nuclear Vibrations

To consider higher order approximations, we substitute equations (A.20) and

(A.24) into equation (A.19c), giving,

(Ĥ
(0)
0 − E(0)

n )Ψ(2)
n = −Ĥ(1)

0

[
χ(0)
n ψ(1)

n + χ(1)
n ψ(0)

n

]
− (Ĥ

(2)
0 + Ĥ

(2)
1 − ε(2)

n )χ(0)
n ψ(0)

n .

(A.25)

Multiplying reduced-system equation1 (A.14b) by χ(1)
n gives:

(Ĥ
(0)
0 − E(0)

n )χ(1)
n ψ(1)

n = −Ĥ(1)
0 χ(1)

n ψ(0)
n , (A.26)

1Recalling that Ĥ(i)
0 does not operate on u.
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and multiplying reduced-system equation1 (A.14c) by χ(0)
n gives:

(Ĥ
(0)
0 − E(0)

n )χ(0)
n ψ(2)

n = −Ĥ(1)
0 χ(0)

n ψ(1)
n − (Ĥ

(2)
0 − E(2)

n )χ(0)
n ψ(0)

n . (A.27)

Subtracting these from equation (A.25) then gives,

(Ĥ
(0)
0 − E(0)

n )
[
Ψ(2)
n − χ(1)

n ψ(1)
n − χ(0)

n ψ(2)
n

]
= −(Ĥ

(2)
1 + E(2)

n − ε(2)
n )χ(0)

n ψ(0)
n . (A.28)

Again, the solubility condition for this requires,

(Ĥ
(2)
1 + E(2)

n − ε(2)
n )χ(0)

n = 0, (A.29)

hence,

(Ĥ
(0)
0 − E(0)

n )
[
Ψ(2)
n − χ(1)

n ψ(1)
n − χ(0)

n ψ(2)
n

]
= 0. (A.30)

Equation (A.29) represents the equation for nuclear motion, and shows that the

ions move with kinetic energy κ2Ĥ
(2)
1 (from equation (A.16)), in an effective poten-

tial κ2E
(2)
n due to electrons. This effective potential, E(2)

n , is the clamped ion en-

ergy of the system, often referred to as the ‘Born-Oppenheimer energy surface’,

and is the ground state energy of a system of interacting electrons moving in a

field of fixed nuclei [420]. As mentioned previously, the function E(2)
n is a quadratic

function of nuclear coordinate u (see equation (A.11)), and so the above equation

leads to harmonic vibrations of the nuclei. As such, this is called the harmonic

approximation [419]. Within this approximation, the wave function is only given

to zeroth order: this is given by the product of the zeroth order nuclear wave

function, χ(0)
n , and the zeroth order electronic wave function, ψ(0)

n .

The harmonic approximation provides a simple description for the motions of a

system: electrons move as though they are in the presence of fixed nuclei, and the

nuclei move in an effective potential of quadratic form. However, many important

properties of crystals are not described by the harmonic approximation, and a

discussion of such properties requires higher levels of approximation.

Comparing equation (A.30) with the general second order equation, (A.19c), we

see that,

Ψ(2)
n − χ(1)

n ψ(1)
n − χ(0)

n ψ(2)
n = χ(2)

n ψ(0)
n , (A.31)
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hence,

Ψ(2)
n = χ(1)

n ψ(1)
n + χ(0)

n ψ(2)
n + χ(2)

n ψ(0)
n , (A.32)

where χ
(2)
n is a function of u. If we collect our expressions for Ψ

(0)
n , Ψ

(1)
n and Ψ

(2)
n

in equation (A.15),

Ψn = (χ(0)
n ψ(0)

n ) + κ(χ(0)
n ψ(1)

n + χ(1)
n ψ(0)

n ) + κ2(χ(1)
n ψ(1)

n + χ(0)
n ψ(2)

n + χ(2)
n ψ(0)

n ) + · · ·

= ψ(0)
n (χ(0)

n + κχ(1)
n + κ2χ(2)

n ) + κψ(1)
n (χ(0)

n + κχ(1)
n ) + κ2ψ(2)

n χ(0)
n + · · · .

(A.33)

We can rewrite this wave function, to the same order of accuracy [419], as,

Ψn =
[
χ(0)
n (u) + κχ(1)

n (u) + κ2χ(2)
n (u)

]
ψn(x;u). (A.34)

The above wave function can be easily interpreted: the term in braces describes

the nuclei, with small harmonic motions, and ψn(x;u) describes the electrons,

moving as though the nuclei were fixed in their instantaneous positions [419]. In

this case, the electrons are said to move adiabatically with the nuclear motion.

This assumes that, whilst the electronic wave functions and the energy of the

state might change, electrons remain in the same state as the nuclei move: the

electronic states are deformed with nuclear motion, but the electrons remain in

their initial states [93]. Terminating the approximation here, we see that we have

been able to write the wave function as the product of electronic and ionic wave

functions, with ionic wave function depending on the positions of the ions, and

the electronic wave function having a continuous dependence on the static ionic

configuration. This allows us to separate out the electronic Schrödinger equa-

tion [94]:

Ĥel = T̂el(r) + V̂el−el(r) + V̂el−ion(r,R), (A.35)

which is an eigenvalue equation for the electrons only. Thus, we can separate the

electrons from the nuclei, and only consider the electronic Schrödinger equation.

This is referred to as the ‘adiabatic approximation’, a phrase regularly used in-

terchangeably with ‘Born-Oppenheimer approximation’ as it is the most common

termination of the Born-Oppenheimer expansion considered. Higher order terms

can be considered, and result in electronic motion that is not adiabatic. The Born-

Oppenheimer approximation is sufficient for most purposes, however it may begin
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Figure A.1: Convergence of TiS2 properties with cutoff energy.

to break down when two or more solutions of the Schrödinger equation are close

in energy.

The third order wave function has the form,

Ψ(3)
n (x, u) = χ(0)

n (u)ψ(3)
n (x;u) + χ(1)

n (u)ψ(2)
n (x;u) + χ(2)

n (u)ψ(1)
n (x;u)

+ χ(3)
n (u)ψ(0)

n (x) + F (x, u),
(A.36)

as given in references [417–419]. Here, F (x, u) is an involved factor of x and

u. This level of approximation, and indeed considering higher order terms, takes

us beyond the simple model of harmonic motion in the adiabatic approximation.

Whilst higher order terms are required for the accurate discussion of some crystal

properties, most crystal properties can at least be understood with the supposi-

tion that the nuclei move within a potential, akin to that discussed in equation

(A.29) [419].

A.2 Convergence Testing

In Chapter 2, we commented that the size of basis sets and the density of k-

point grids can affect the results of electronic structure calculations. Larger basis

sets should allow for a better description of electronic wave functions, allowing for

lower energy states to be achieved (see Section 2.3.4). Similarly, the number of
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Figure A.2: Convergence of TiS2 properties with k-point sampling.

k-points is also important for sums involved in the calculation of electronic prop-

erties (see Section 2.6.2). However, whilst infinitely large basis sets or infinitely

dense k-point grids would produce precise results, we are limited in practice by

the time it takes to complete a calculation and the computational hardware that

is required. A trade-off must therefore be made, reducing calculation accuracy

(small basis sets or coarser grids) to allow for reasonable use of resources. To

assess this trade-off, we here present a small investigation into the convergence

of our results. Such convergence testing is particularly important for broad stud-

ies such as those presented in the Chapters of this thesis. Previous works [421]

have assessed the accuracy of VASP calculations, finding results to be within

0.6 meV per atom of all-electron calculations. We therefore consider a calcula-

tion to be converged if the increase of a computational parameter results in an

improvement to the total energy of less than 1 meV. Due to the number of ma-

terials investigated and the calculations performed, it is not viable to check the

convergence of results for every system considered. Instead, we have assessed

a small subset of materials to determine appropriate cutoff energies (hence the

size of the basis set) and the k-point grids for the remainder of the materials

investigated. We have selected TiS2 for a case study.

In Figure A.1, we demonstrate the convergence of the plane wave cutoff energy

through assessment of the total energy and the resulting band gap. We present
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the resulting total energy per atom of TiS2, normalised so that the lowest energy

obtained (at a cutoff energy of 700 eV). We see that with increasing cutoff energy,

the energy is reduced, highlighting the improved description of the wave function

attainable with a larger basis set. Increasing the cutoff energy from 600 eV to

700 eV there is a minimal reduction in energy of less than 0.07 meV per atom.

Increasing from 700 eV to 800 eV, we actually see a small increase in energy of

less than 0.02 meV per atom. As the larger basis set includes all of the basis

functions used in the smaller basis set, the inclusion of any other basis functions

should allow a reduction in the total energy. This increase therefore shows that

we are now limited by other computational errors that are beyond our control,

and inclusion of more basis functions will only serve to increase computational

time and cost. We also show convergence of the electronic band gap with cutoff

energy in Figure A.1. We see that there is minimal change to the band gap

beyond a cutoff energy of 500 eV.

In Figure A.2, we similarly assess the convergence of the k-point grid through

the total energy. As the sampling of the Brillouin zone is increased, we see a

dramatic drop in the total energy for coarse grids. However, increasing the grids

from 11× 11× 11 to 12× 12× 12 results in a small energy decrease of 0.08 meV

per atom. Increasing the sampling to grids of 18× 18× 18 leads to a small energy

increase of 0.02 meV per atom, similar to what was seen for increasing the cutoff

energy from 700 eV to 800 eV. This shows that we again in the domain where

other computational errors become more significant, and so finer grids only serve

to increase computational cost with no improvement in accuracy.

From the above discussion, we conclude that a plane wave basis set cutoff energy

of 700 eV and a k-point grid of 12×12×12 in the primitive unit cell are suitable for

the calculations performed in this thesis. They show good convergence, achieving

results that are comparable to larger sets and finer grids, offer improvement to

smaller basis sets and coarser grids, and allow for other materials requiring larger

sets or finer grids.
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Supplementary Information to

Chapter 3

B.1 Bader Charges for Selenide and Telluride Ma-

terials

In Chapter 3, we analysed the ionic charges in the sulfide TMDCs and how they

changed with intercalation. In Figure B.1, we present the equivalent results for

the selenide and telluride materials.

B.2 Geometry

In Section 3.8, we presented the volumetric expansion of the TMDCs with inter-

calation, and briefly commented on the broad changes to the unit cells and ionic

geometry that are seen with intercalation. Here, we develop on these comments,

and present data relevant to the geometric changes.
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Figure B.1: Bader charges for the metal, chalcogen, and intercalant atoms in the bulk,

LiMX2, and MgMX2 selenide and telluride structures. Blue circles correspond to the

metal atom (M) in the bulk MX2 structure, red squares correspond to M atom in the

intercalated structure, green diamonds correspond to the chalcogen atom (S) in the bulk

MX2 structure, black triangles correspond to X atom in the intercalated structure, and the

orange line indicates the charge of the intercalated species in the intercalated structure.

The data for the lithium- and magnesium-intercalated selenides are presented in B.1a and

B.1b, and the data for the lithium- and magnesium-intercalated tellurides are presented

in B.1c and B.1d.

B.2.1 Lattice

In Figure B.2a we present the in-plane lattice constants for the pristine (black),

lithium-intercalated (red), and magnesium-intercalated (blue) structures. In gen-

eral, we see an increase of the in-plane lattice constant with intercalation. This is

emphasised in Figures B.2b and B.2c, where we show the resultant percentage

expansion of the in-plane lattice constant due to lithium (B.2b) and magnesium
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Figure B.2: In-plane lattice constants for the pristine (black), lithium-intercalated (red),

and magnesium-intercalated (blue) TMDCs. Sulfide data is presented in the top, se-

lenide data is presented in the middle, and telluride data is presented in the bottom. The

percentage expansion is then presented in B.2b for lithium intercalation, and in B.2c for

magnesium intercalation.

(B.2c) intercalation. There is a larger percentage expansion for TMDCs com-

posed of transition metals from Period IV, but this is simply due to the smaller

initial lattice constant of the unintercalated structures. For lithium intercalation,

most of the TMDCs exhibit in-plane lattice expansion of 5 - 10%, and there are

larger expansions under intercalation with magnesium. Somewhat surprisingly,

we identify a contraction of the sulfides and selenides paired with Group IV and

V metals. Overall, however, we show that most of these materials demonstrate

in-plane expansions within ±10%, which is ideal for electrode applications.
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Figure B.3: Out-of-plane lattice constants for the pristine (black), lithium-intercalated

(red), and magnesium-intercalated (blue) TMDCs. Sulfide data is presented in the top,

selenide data is presented in the middle, and telluride data is presented in the bottom.

The percentage expansion is then presented in B.3b for lithium intercalation, and in B.3c

for magnesium intercalation.

As intercalation into the vdW gap changes the nature of the out-of-plane bond-

ing, changes to the out-of-plane lattice constant can be expected. We present

in Figure B.3a the out-of-plane lattice constants for the pristine (black), lithium-

intercalated (red), and magnesium-intercalated (blue) structures. For TMDC sul-

fides, and materials composed of transition metals in Groups III to VII, and XIV,

we see a large expansion (∼20%) of the lattice constant with intercalation. How-

ever, for transition metals in Groups VIII to XI there is either a very small (<5%)

expansion or a contraction of the out-of-plane lattice. We indicate this with the
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percentage expansions in Figure B.3b (lithium intercalation) and in Figure B.3c

(magnesium intercalation).

(a)

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

III IV V VI VII VIII IX X XI XIV

Sulfides - Supercell
Sulfides - Primitive Cell

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

V
ol

um
e 

pe
r 

F
or

m
ul

a 
U

ni
t (

Å
3 )

Selenides - Supercell
Selenides - Primitive Cell

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

Tellurides - Supercell
Tellurides - Primitive Cell

(b)

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

III IV V VI VII VIII IX X XI XIV

Sulfides - Supercell
Sulfides - Primitive Cell

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

V
ol

um
e 

pe
r 

F
or

m
ul

a 
U

ni
t (

Å
3 )

Selenides - Supercell
Selenides - Primitive Cell

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

Tellurides - Supercell
Tellurides - Primitive Cell

(c)

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

III IV V VI VII VIII IX X XI XIV

Sulfides - Supercell
Sulfides - Primitive Cell

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
40
60
80

100
120

V
ol

um
e 

pe
r 

F
or

m
ul

a 
U

ni
t (

Å
3 )

Selenides - Supercell
Selenides - Primitive Cell

Sc Y Ti Zr Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni Pd Pt Cu Ag Au Ge Sn Pb
60
80

100
120
140
160

Tellurides - Supercell
Tellurides - Primitive Cell

Figure B.4: Volumes of pristine (B.4a), lithium-intercalated (B.4b) and magnesium-

intercalated (B.4c) TMDCs. In each of these, sulfide data is presented in black (top),

selenide data is presented in red (middle), and telluride data is presented in blue (bot-

tom).

In Figure B.4, we then present the formula unit volumes of the pristine (Fig-

ure B.4a), lithium-intercalated (Figure B.4b), and magnesium-intercalated (Fig-

ure B.4c) structures. We have included the volumes for the primitive and super-

cell (2 × 2 × 2), used for determining the volumetric expansion presented in the

main article.

B.2.2 Ions

We indicate our labelling of the different ionic distances for the following discus-

sion in Figure B.5. This includes the in-plane metal-metal distance (dMM), the
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(a) (b)

Figure B.5: Labels used for discussions of TMDC geometry. B.5a shows a ‘top-down’

view of the TMDC basal plane, and B.5b shows a side-view of the TMDC structure.

bond length/distance between the host transition metal and the chalcogen (dMX),

the bond length/distance between the host chalcogen of the host and the inter-

calant species (dXI), and the distance between the host transition metal and the

intercalant (dMI). We also consider the vertical separation of the host transition

metal and chalcogen (∆MX), the vertical separation between chalcogen atoms

on opposing sides of a TMDC sheet (∆XX), and the vertical separation between

chalcogen species on opposing sides of the vdW gap (∆XX′).

Above, we commented on a general expansion of the in-plane lattice constant

under intercalation. This leads to an increase in the distance between transition

metal atoms within a layer of the host TMDC material, as is shown in Figure B.6a.

The exceptions to this are the sulfide and selenide materials composed of Group

IV and V metals, which demonstrated a small contraction of the in-plane structure,

and here show a shortening of the M-M distance.

The distances between the host transition metal and chalcogen ions are shown in

Figure B.6b. We identify a slight lengthening of the metal-chalcogen bond length

when an intercalant is introduced to the TMDC structure. We attribute this to

the significant charge donation from the intercalant to the host material, and a

Coulombic attraction between the chalcogen and intercalant species. For the se-

lenide and telluride materials in particular, the M-X bond length is approximately
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Figure B.6: Characteristic distances of the host TMDC materials. B.6a presents the val-

ues of dMM, and B.6b presents the values of dMX. The sulfides (top), selenides (middle),

and telluride (bottom) materials are included, with the results for the pristine bulk struc-

tures presented with circles, lithium-intercalated presented with pluses, and magnesium-

intercalated presented with crosses.

the same with both lithium and magnesium intercalation.

Above, we saw the general expansion of the c lattice vector with intercalation,

and here aim to offer some insight into this expansion. In Figure B.7a we show

the vertical separation between chalcogen species on opposing sides of the vdW

spacing (∆XX′). This gives an indication of the separation between consecutive

TMDC layers, where we see a clear increase in this separation (with the exception

of the Cr, Mn, Re, Ge, and Sn materials, for which there is little change). The ex-

pansion is to be expected from the introduction of an intercalant as it dramatically

changes the nature of the out-of-plane bonding.

We similarly show in Figure B.7b the vertical separation between intralayer chalco-

gen species of the same TMDC sheet but on opposing basal planes (∆XX): This

gives a measure of the thickness of each TMDC sheet. Groups III-IV, X-XI, and

XIV all show a vertical stretching of the TMDC layer with intercalation, with mag-

nesium intercalation resulting in a greater stretching than lithium intercalation.

Groups V and VI show a mixture of expansion and contraction. Groups VII-IX,

finally, show a contraction, with magnesium intercalation again showing the most

dramatic change.

A closer look at the M-X bonding is revealed in Figure B.7c, where we show
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Figure B.7: Characteristic distances of the host TMDC materials. B.7c presents the val-

ues of ∆MX, B.7b presents the values of ∆XX, and B.7a presents the values of ∆XX′ .

The sulfides (top), selenides (middle), and telluride (bottom) materials are included, with

the results for the pristine bulk structures presented with circles, lithium-intercalated pre-

sented with pluses, and magnesium-intercalated presented with crosses.

the vertical separation between the metal atom and its nearest six coordinated

chalcogens. This is another useful descriptor for the thickness of a TMDC layer.

We identify the same trends with ∆MX as we did for ∆XX, with Groups III-IV, X-

XI, and XIV all show a vertical stretching of the TMDC layer with intercalation,

with magnesium intercalation resulting in a greater stretching than lithium inter-

calation; Groups V and VI show a mixture of expansion and contraction; and

Groups VII-IX show a contraction. In each of these, magnesium intercalation

again results in the most dramatic changes to the structure. We also note the

more significant effect the intercalant has on the sulfides compared with heavier

chalcogens. In particular, the Group III, IV, X, XI, and XIV tellurides all show min-

imal changes to ∆MX which are pronounced in the case of the sulfides. Whilst
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we saw a very uniform changes to the length of the M-X bond (as was discussed

above in Figure B.6b), there is a much more varied behaviour for the vertical sep-

aration between the M and X species. This results in a wide range of bonding

angles.
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Figure B.8: Characteristic distances of the host TMDC materials. The sulfides (top),

selenides (middle), and telluride (bottom) materials are included, with the results for

lithium-intercalated structures presented with pluses, and magnesium-intercalated pre-

sented with crosses.

In Figure B.8 we show the distances between the host transition metal and the

intercalant (Figure B.8a), dMI, and the distance between the intercalant and the

nearest six chalcogens of the host material (Figure B.8b), dXI.

B.3 Selenide and Telluride Data

In Chapter 3, we presented results of the sulfide TMDCs and their properties

when intercalated. Here, we present the equivalent results for the selenide and

telluride materials. In Figure B.9 we compare the T- and Hc-phase energies in the

pristine and intercalated TMDC forms, as we did for the sulfides in Figure 3.8. In

Figure B.10 we compare the octahedrally-coordinated and tetrahedrally-coordinated

intercalation sites, like was presented in Figure 3.10. Presenting the energetic

results, then, we see the intercalation voltages in Figure B.11 (analogous to Fig-

ure 3.19) and the thermodynamic stability indicated by EIS in Figure B.12 (anal-

ogous to Figure 3.22). Overall, these results offer the same trends demonstrated
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Figure B.9: Comparison of the TMDC T- and Hc-phase energies in the pristine bulk and

intercalated forms, for the selenide (B.9a) and telluride (B.9b) TMDCs. Positive values

indicate a more favourable T-phase, whereas negative values indicate a more favourable

Hc-phase. Group V-like behaviour is tracked with the magenta boxes, and Group VI-like

behaviour is tracked with the green boxes.

by the sulfide materials, and so the conclusions of Chapter 3 hold.
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Figure B.10: Relative energy of the tetrahedral intercalation site compared to the octa-

hedral intercalation site for the selenides (B.10a) and tellurides (B.10b). Data for lithium

intercalation is presented in black, and data for magnesium intercalation is presented in

red.
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Figure B.11: Average intercalation voltages for each of the TMDC selenide and telluride

materials when intercalated with lithium and magnesium. The average lithium intercala-

tion voltages are given in B.11a and B.11c for the selenides and tellurides, respectively.

Equivalent data for the magnesium intercalation voltages are given in B.11b, and B.11d

for the selenides and tellurides, respectively.
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Figure B.12: Average EIS values for each of the TMDCs intercalated with lithium and

magnesium. B.12a and B.12c present the values of EIS for the selenides and tellurides

intercalated with lithium, respectively. B.12b and B.12d present the values of EIS for

the selenides and tellurides intercalated with magnesium, respectively. The reversible

intercalation capacity, determined from the range over which EIS remains positive, is

given at the bottom of each figure in mAhg−1.
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B.4 HSE06 Results

As we discussed in Section 3.12, the choice of functional can have a significant

effect on the results, particularly for materials composed of transition metal ele-

ments. Using a limited investigation into these materials using the HSE06 hybrid

functional we have assessed the effect of changing the functional. We present

the voltage profiles and phase diagrams for the MoX2 materials in Figure B.13,

and for SnS2, ScS2, and IrS2 in Figure B.13.

B.5 H-Phase Data

We here the value of a in LiaMX2 at which the T- and Hc-phases are equal in

energy, determined by using linear fits between the MX2 and LiMX2 compounds.

For the Group IV TMDCs, the transition is from T-phase to Hc-phase, for Group

V TMDCs the crossover indicates the T-Hc phase transition, with negative val-

ues indicating that the T phase is never favourable, and for the Group VI TMDCs

the transition is from Hc-phase to T-phase for increasing a. For magnesium to

MgaMX2, this single linear fit is not sufficient as there are two behaviours aris-

ing from the double valency of the magnesium intercalant. We instead extrapo-

late a linear fit between the unintercalated MX2 and Mg0.5MX2 compounds, with

the charge transferred in Mg0.5MX2 corresponding to the full charge transfer of

LiMX2 due to the double valency of magnesium, and a second fit between the

Mg0.5MX2 and MgMX2 points. We identify that the Group IV TMDCs undergo

T- to H-phase transitions, whereas the Group V and VI TMDCs undergo H- to

T-transitions. MgVTe2 does not transition (indicated by the negative crossover

value), remaining in the T-phase throughout.

B.6 Orbital-Projected Density of States

In Chapter 3, we commented on the nature of the valence and conduction bands

in terms of their orbital character. In Figure B.15 we present the orbital-projected
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Crossover Average Voltage

(V)

EIS (eV)

TMDC Li Mg Li Mg Li Mg

TiS2 1.311 0.877 2.671 1.088 1.820 1.785

ZrS2 0.991 0.608 2.608 1.063 1.967 2.384

HfS2 1.196 0.648 2.272 0.835 1.527 1.495

VS2 -0.164 0.268 2.452 0.596 1.220 -1.107

NbS2 -0.378 0.817 2.406 0.657 1.399 -0.140

TaS2 -0.282 0.782 2.168 0.321 1.059 -1.552

CrS2 0.372 0.258 1.327 0.792 -0.397 -0.675

MoS2 0.481 0.283 0.780 -0.039 -0.923 -3.388

WS2 0.483 0.945 0.462 -0.138 -1.389 -3.913

Table B.1: Data for intercalated H-phase TMDC sulfides, including the intercalant con-

centration for phase crossover (a in LiaMS2 or MgaMS2), average intercalation voltage,

and EIS values at a = 1.

Crossover Average Voltage

(V)

EIS (eV)

TMDC Li Mg Li Mg Li Mg

TiSe2 1.435 1.052 2.229 0.797 1.274 0.872

ZrSe2 1.104 0.690 2.225 0.802 1.488 1.555

HfSe2 1.337 0.719 1.912 0.590 1.040 0.617

VSe2 0.482 0.082 1.939 0.396 0.560 -1.708

NbSe2 -0.628 0.474 1.972 0.446 0.817 -0.871

TaSe2 -3.305 0.716 1.759 0.205

CrSe2 0.035 0.293 -10.184 0.743 -15.759 -0.786

MoSe2 0.459 0.270 0.561 -0.049 -1.219 -3.318

WSe2 0.463 0.738 0.279 -0.121 -1.675 -3.844

Table B.2: Data for intercalated H-phase TMDC selenides, including the intercalant con-

centration for phase crossover (a in LiaMSe2 or MgaMSe2), average intercalation voltage,

and EIS values at a = 1.
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Figure B.13: Comparison of results using the PBE and HSE06 functionals. B.13a, B.13c,

and B.13e present the voltages for MoS2, MoSe2, and MoTe2, respectively. B.13b, B.13d,

and B.13f present the phase diagrams for MoS2, MoSe2, and MoTe2, respectively. The

insets show the values of EIS .

density of states for the selection of materials that were highlighted in the main

article, i.e. NbS2, HfS2, and GeS2. From these, it is clear to see the dominant

p-character of the valence band (indicated by the magenta) of all three materials.
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Figure B.14: Comparison of results using the PBE and HSE06 functionals. B.14a, B.14c,

and B.14e present the voltages for SnS2, ScS2, and IrS2, respectively. B.14b, B.14d, and

B.14f present the phase diagrams for SnS2, ScS2, and IrS2, respectively. The insets

show the values of EIS .

For the NbS2 and HfS2 materials, it is clear to see the d-character of the conduc-

tion band (indicated by green). However, GeS2 does not show this d-character of

the conduction bands, instead presenting further p-character due to the position
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Crossover Average Voltage

(V)

EIS (eV)

TMDC Li Mg Li Mg Li Mg

TiTe2 2.208 1.364 1.676 0.477 0.641 0.156

ZrTe2 1.701 0.791 1.715 0.520 0.890 0.913

HfTe2 1.770 0.803 1.486 0.369 0.521 0.119

VTe2 -0.033 -0.004 1.367 0.018 -0.051 -2.520

NbTe2 1.178 0.775 1.470 0.225 0.238 -1.239

TaTe2 0.080 0.731 1.318 0.069 -2.187

CrTe2 0.337 0.158 1.284 0.483 -0.304 -1.088

MoTe2 0.416 0.923 0.369 -0.186 -1.364 -3.285

WTe2 0.403 0.783 0.153 -0.209 -1.818 -3.875

Table B.3: Data for intercalated H-phase TMDC tellurides, including the intercalant con-

centration for phase crossover (a in LiaMTe2 or MgaMTe2), average intercalation voltage,

and EIS values at a = 1.

of Ge within the p-block on the periodic table.
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Figure B.15: Atomic-orbital decomposed density of states for selected materials, NbS2

(B.15a, B.15d, and B.15g), HfS2 (B.15b, B.15e, and B.15h), and GeS2 (B.15c, B.15f, and

B.15i). These have been aligned as the electronic structures presented in the main article

have been.
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C.1 k-Point Convergence

C.1.1 Graphite Results

The elastic tensor for AB stacked graphite was calculated using k-point grids of

18×18×9 (2,916 total, 185 irreducible), 24×24×12 (6,912 total, 427 irreducible),

and 30 × 30 × 15 (13,500 total, 728 irreducible). More k-points are used in the

grids compared to the TMDCs presented in the main article due to the smaller

lattice constant of graphite. However, the density of k-points used for the study of

graphite is comparable to the density of k-points used for the study of the TMDCs.

The elements of the tensor, along with values found within literature, are pre-

sented in Table C.1. As can be seen, for the tensor elements of c11, c12, c33, and

c66 the difference between the higher k-point grids considered and the experiment

and other theoretical results is small. Disagreement between experiment and cal-

culations is observed in the values of c13 and c44. For c13 the range of theoretical

data and the choice of approach presents a large range of values with the only

measured value being provided by sonic scattering. Similarly, the c44 value shows

a similar range. Critically, all the data presented shows that the minimum k-point
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density required corresponds to the 24 × 24 × 12 grid (which is similar to that we

have adopted for the TMDCs). From these elastic tensor elements we can obtain

several elastic properties, as given by the discussions of the main article. We

present these in Table C.2, where we see close agreement with literature values.
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C.1.2 Lithium Cobalt Oxide Results

The elastic tensor for LiCoO2 was calculated using k-point grids of 12 × 12 × 4

(576 total, 164 irreducible), 18×18×6 (1,944 total, 202 irreducible), and 24×24×

8 (4,608 total, 449 irreducible). Fewer k-points are used along the kc direction

compared to the TMDCs presented in the main article due to the larger lattice

constant of LiCoO2. However, the density of k-points used for the study of LiCoO2

is comparable to the density of k-points used for the study of the TMDCs. The

elements of the tensor, along with values found within literature, are presented in

Table C.3. We then compare in Table C.4 various elastic values calculated in this

work and presented in literature.

In contrast to graphite, for LiCoO2 experimental values of many of the elastic el-

ements could not be found. Thus we limit our comparison of the elements of the

tensor to strict comparison with other calculations, as presented in Table C.3. As

can be seen, for the tensor elements of c11, c12,c13 c33, c44, and c66 the difference

between the higher k-point grids considered and other theoretical first principle

results is small. Disagreement between various methods arises in the value of

c14. In our results, the variation in c14 with k-point density is very small and whilst

it captures the negative value shown in several works, the precise value is open

to contention. Again, as noted for graphite, the data presented shows that the

k-point density 18 × 18 × 6 grid (which is similar to that we have adopted for the

TMDCs) is more than sufficient. Given the natural structural comparisons be-

tween LiCoO2 and the TMDCs this provides the basis for our k-point grid choice.

From these elastic tensor elements we can obtain several elastic properties, as

given by the discussions of the main article. We present these in Table C.4,

where we see that our results demonstrate small deviations from the experimen-

tally measured values, with the Reuss scheme generally being the closest to the

experimentally derived values.
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C.2 Elastic Stability

In Table C.5, we highlight the materials which break one or more of the elastic

stability conditions, along with the conditions that are broken. The elastic stability

conditions have been outlined elsewhere for different crystal systems [357], which

for trigonal crystals are,

(a) c11 > |c12|

(b) c44 > 0

(c) c2
13 <

1

2
c33(c11 + c12)

(d) c2
14 <

1

2
c44(c11 − c12) = c44c66,

(C.1)

as given by equation (4.30).
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MX2 Conditions

Broken

LiMX2 Conditions

Broken

MgMX2 Conditions

Broken

ScS2 b d LiFeS2 a d MgCrS2 c

YS2 b d LiCuS2 d MgMnS2 a c

RuS2 d LiAgS2 b d MgPdS2 b d

PbS2 b d LiAuS2 a b d MgPtS2 a b d

ScSe2 b d LiMnSe2 a b c d MgCuS2 d

YSe2 b d LiAuSe2 b d MgAgS2 b d

FeSe2 a c d LiCrTe2 c MgAuS2 a b d

RuSe2 d LiMnTe2 c MgCrSe2 a c d

RhSe2 d LiReTe2 a d MgReSe2 a d

PbSe2 a b d LiPbTe2 a d MgPdSe2 d

YTe2 b d MgPtSe2 b d

PdTe2 a b d MgCuSe2 b d

MgAgSe2 b d

MgAuSe2 b d

MgCrSe2 a c d

MgReSe2 a d

MgPdSe2 d

MgPtSe2 b d

MgCuSe2 b d

MgAgSe2 b d

MgAuSe2 b d

MgTaTe2 a c d

MgMnTe2 c

MgCuTe2 b d

MgAgTe2 b d

MgAuTe2 b d

Table C.5: Table indicated which materials are not elastically stable, and the stability

conditions they break (given by equation (4.30)).
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C.3 Elastic Quantities

In the main article, we highlighted the elastic properties of the sulfide materials.

Here, we present the equivalent data for the analogous selenide and telluride

materials. The bulk and shear moduli are shown in Figure C.1. The Hill values of

bulk (BV RH) and shear (GV RH) moduli provide an intermediate to the Voigt upper

limit and the Reuss lower limit. Many of the other elastic properties are derived

from these values of bulk and shear moduli, and we only present those calculated

from BV RH and GV RH in the main article for brevity and clarity of figures. In

the following, we also include the values determined with the Voigt and Reuss

schemes. Figure C.2 presents the Young’s modulus, and Figure C.3 presents the

elastic ratios indicating material ductility.
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Figure C.1: Bulk modulus for sulfide (C.1a), selenide (C.1c), and telluride (C.1e) TMDC

materials. We similarly show the shear modulus for sulfide (C.1b), selenide (C.1d), and

telluride (C.1f) materials. Values calculated using the VRH scheme are presented with

crosses, and the corresponding Reuss and Voigt results are presented as error bars.

Data for the pristine bulk, lithium-intercalated, and magnesium-intercalated structures is

presented in black, red, and blue, respectively. Materials which are not elastically stable

are indicated with shaded regions.
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Figure C.2: Young’s modulus for sulfide (C.2a), selenide (C.2b), and telluride (C.2c)

TMDC materials. Values calculated using the VRH scheme are presented with crosses,

and the corresponding Reuss and Voigt results are presented as error bars. Data for the

pristine bulk, lithium-intercalated, and magnesium-intercalated structures is presented in

black, red, and blue, respectively. Materials which are not elastically stable are indicated

with shaded regions.
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Figure C.3: Values of Poisson ratio for sulfides (C.3a), selenides (C.3c), and tellurides

(C.3e), and Pugh ratio for sulfides (C.3b), selenides (C.3d), and tellurides (C.3f). Crosses

indicate those calculated using the VRH scheme, and the corresponding Reuss and Voigt

results are presented as error bars. Data for the pristine bulk, lithium-intercalated, and

magnesium-intercalated structures is presented in black, red, and blue, respectively. A

Poisson ratio of 0.26 and a Pugh ratio of 1.75 are indicated with horizontal dashed lines.

Materials which are not elastically stable are indicated with shaded regions.



284 Appendix C. Supplementary Information to Chapter 4

(a)

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb
0
2
4
6
8

10
12

III IV V VI VII VIII IX X XI XIV

B
u
lk

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb
0
1
2
3
4
5
6

U
n
iv

e
rs

a
l 
A

n
is

o
tr

o
p
y

L
i 
In

t.

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb

Metal Species

0
1
2
3
4
5
6

M
g

 I
n
t.

(b)

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb
0
2
4
6
8

10
12

III IV V VI VII VIII IX X XI XIV

B
u
lk

1
9
.7

0

1
4
.8

2

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb
0
1
2
3
4
5
6

U
n
iv

e
rs

a
l 
A

n
is

o
tr

o
p
y

L
i 
In

t.

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb

Metal Species

0
1
2
3
4
5
6

M
g

 I
n
t.

(c)

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb
0
2
4
6
8

10
12

III IV V VI VII VIII IX X XI XIV

B
u
lk

3
2
.8

2

1
8
.0

1

6
2
.4

9

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb
0
1
2
3
4
5
6

U
n
iv

e
rs

a
l 
A

n
is

o
tr

o
p
y

L
i 
In

t.

Sc Y Ti Zr
Hf V Nb Ta Cr Mo W Mn Re Fe Ru Os Co Rh Ir Ni

Pd Pt Cu Ag Au Ge Sn Pb

Metal Species

0
1
2
3
4
5
6

M
g
 I
n
t.

(d)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

G
V
/G

R

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

B
V
/B

R

A
U

 =
 0

.0

A
U

 =
 0

.5

A
U

 =
 1

.0

A
U

 =
 1

.5

A
U

 =
 2

.0

A
U

 =
 2

.5

A
U

 =
 3

.0

A
U

 =
 3

.5
A

U
 =

 4
.0

Bulk
Lithium-Intercalated
Magnesium-Intercalated

Figure C.4: Universal anisotropy values for the sulfide (C.4a), selenide (C.4b), and

telluride (C.4c) materials, and data for the pristine bulk, lithium-intercalated, and

magnesium-intercalated structures is presented in black, red, and blue, respectively. Ar-

rows with labels indicate values that lie outside of the plotted range. Materials which are

not elastically stable are indicated with shaded regions. C.4d shows the elastic anisotropy

diagram, with data for all materials included.

C.4 Material Anisotropy

The universal anisotropy AU is presented in Figure C.4, and the elastic constants

c11 and c33 are shown in Figure C.5 for the sulfide, selenide, and telluride materi-

als.
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Figure C.5: Elements of the elastic matrix, c11 and c33, for the sulfide (C.5a), selenide

(C.5b), telluride (C.5c) TMDC materials. Data for the pristine bulk, lithium-intercalated,

and magnesium-intercalated structures is presented in black, red, and blue, respectively.

Materials which are not elastically stable are indicated with shaded regions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.6: Three-dimensional heat maps showing the angular-dependent Young’s mod-

ulus for TiSe2 (C.6a), LiTiSe2 (C.6b), MgTiSe2 (C.6c), ZrS2 (C.6d), LiZrS2 (C.6e), MgZrS2

(C.6f), NbS2 (C.6g), LiNbS2 (C.6h), and MgNbS2 (C.6i).

Anisotropic Young’s Modulus

In Chapter 4, we presented the angular dependence of the Young’s modulus for

TiS2, showing how this changed with lithium and magnesium intercalation. We

include here similar graphics for several other TMDC materials. In Figure C.6

we show the anisotropic Young’s modulus for TiSe2, ZrS2, and NbS2, in their

pristine and intercalated forms, and we show in Figure C.7 the anisotropic Young’s

modulus for MoS2, WS2, and SnS2, in their pristine and intercalated forms.

In each of these, we see that the out-of-plane Young’s modulus for the pristine

structures is significantly smaller (with values below 50 GPa) than the in-plane

Young’s modulus (with values exceeding 100 GPa). Due to the strong in-plane

covalent bonding and weak out-of-plane vdW bonding, this is to be expected.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure C.7: Three-dimensional heat maps showing the angular-dependent Young’s mod-

ulus for MoS2 (C.7a), LiMoS2 (C.7b), MgMoS2 (C.7c), WS2 (C.7d), LiWS2 (C.7e), MgWS2

(C.7f), SnS2 (C.7g), LiSnS2 (C.7h), and MgSnS2 (C.7i).

With the introduction of lithium, there is an increase in the in-plane Young’s mod-

ulus, but a more dramatic increase in the out-of-plane component. This indicates

the strengthened bonding between consecutive TMDC layers, facilitated by the

lithium ion. We see a similar effect with magnesium intercalation, but high Young’s

modulus values are achieved due to the larger charge transfer.
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D.1 Vibrational Entropy

Here, we outline the origin of the expressions for vibrational entropy, Svib, as given

in equation (5.3), which was used for the calculation of vibrational free energy

Fvib = TSvib. For a single harmonic oscillation of frequency ωi = εi
~ , the partition

function is given by,

Zi =
∞∑
n=0

exp

(
−β
(
n+

1

2

)
εi

)
= exp

(
−1

2
βεi

) ∞∑
n

exp(−βnεi)

= exp

(
−1

2
βεi

) ∞∑
n

exp(−βεi)n,

(D.1)

where if we write r = exp(−βεi) < 1, we note that the above expression is a ge-

ometric series,
∑∞

n rn = 1−rn+1

1−r as n → ∞, multiplied by a prefactor exp
(
−1

2
βεi
)
.

Hence, we can write,

Zi =
exp
(
−1

2
βεi
)

1− exp(−βεi)
. (D.2)

For a harmonic solid consisting of N atoms, we need to consider 3N independent

harmonic oscillators. The partition function for such a system is given by the
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product of the partition functions of the independent oscillators,

ZN =
3N∏
i

Zi

=
3N∏
i

exp
(
−1

2
βεi
)

1− exp(−βεi)
.

(D.3)

With the above partition function, we are now able to calculate the vibrational free

energy due to phonons using F = −kBT lnZ, hence,

Fvib = −kBT lnZN

= −kBT ln
∏
i

Zi

= −kBT
∑
i

lnZi

= −kBT
∑
i

ln
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2
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ln
(
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(D.4)

The first of these terms is the zero-point energy term, and the second is the

term due to vibrations due to finite temperatures. The vibrational entropy (due to

phonons) is then obtained by differentiating Fvib with respect to the temperature,

T ,

Svib = −dFvib
dT

= − d

dT

[∑
i

εi
2

+ kBT
∑
i

ln
(
1− exp(−βεi))

]
=

d
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[
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∑
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]
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(
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(D.5)



290 Appendix D. Supplementary Information to Chapter 5

Using sinhx = exp(x)−exp(−x)
2

= 1−exp(−2x)
2 exp(−x)

, we get,
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)
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(D.6)

which is the second term in the expression for Svib. For the first term, we start

with,

1

exp(βεi)− 1
=

exp(−βεi)
1− exp(−βεi)

=
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2 sinh
(
βεi
2
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(D.7)

Using exp(−x) = cosh x− sinhx and cosh(−x) = cosh(x),
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(D.8)

which is the first term in the expression for Svib. Combining these, we get,
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(D.9)

If we replace the oscillator energy εi with the energy of a phonon in band ν with

wave vector q, we get an alternative expression for the vibrational entropy in terms

of sums over the individual phonon states,

Svib =
1

2T

[∑
ν,q

~ων,q coth

(
~ων,q
2kBT

)]
− kB

[∑
ν,q

ln

(
2 sinh

( ~ων,q
2kBT

))]
. (D.10)



D.2. Phase Diagrams 291

(a)

-5 -4 -3 -2 -1 0

∆µ
Sc

 (eV)

-5

-4

-3

-2

-1

0
∆

µ
L
i (

e
V

)

LiScS
2

Li
0.5

ScS
2

Li
0.25

ScS
2

Li
0.125

ScS
2

0

1

2

3

E
IS

 (
e

V
)

(b)

-5 -4 -3 -2 -1 0

∆µ
Sc

 (eV)

-5

-4

-3

-2

-1

0

∆
µ

N
a
 (

e
V

)

NaScS
2

Na
0.5

ScS
2

Na
0.25

ScS
2

Na
0.125

ScS
2

0

1

2

3

E
IS

 (
e
V

)

(c)

-5 -4 -3 -2 -1 0

∆µ
Sc

 (eV)

-5

-4

-3

-2

-1

0

∆
µ

K
 (

e
V

)

KScS
2

K
0.5

ScS
2

K
0.25

ScS
2

K
0.125

ScS
2

0

1

2

3

E
IS

 (
e

V
)

(d)

-5 -4 -3 -2 -1 0

∆µ
Sc

 (eV)

-6

-5

-4

-3

-2

-1

0

∆
µ

M
g
 (

e
V

)

MgScS
2

Mg
0.5

ScS
2

Mg
0.25

ScS
2

Mg
0.125

ScS
2

2

3

4

5

E
IS

 (
e

V
)

Figure D.1: D.1a, D.1b, D.1c, and D.1d show the phase diagrams for T-ScS2 intercalated

with different concentrations of Li, Na, K and Mg, respectively. The insets show the

corresponding values of EIS .

D.2 Phase Diagrams

In Chapter 5, we presented the phase diagrams for α-phase ScS2 intercalated

with the different ionic species, and how they evolved with intercalant concentra-

tion. Here, we present equivalent phase diagrams for the other phases of ScS2,

namely the T-phase (Figure D.1) and Hc-phase (Figure D.2). In these, we very

similar behaviour as was demonstrated by the α-phase, but a reduced value of

EIS corresponding to the higher energy of these phases.
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Figure D.2: D.2a, D.2b, D.2c, and D.2d show the phase diagrams for Hc-ScS2 interca-

lated with different concentrations of Li, Na, K and Mg, respectively. The insets show the

corresponding values of EIS .

D.3 HSE06 Results

As we discussed in Chapter 5, the choice of exchange-correlation functional can

lead to differences in predictions of material properties. Here, we present the

voltages and phase diagrams for each of the TMDC phases considered, for each

of the intercalants, making comparison between the PBE and HSE06 functionals.

Figures for lithium-, sodium-, potatssium-, and magnesium-intercalated ScS2 are

presented in Figure D.3, Figure D.4, Figure D.5, and Figure D.6, respectively.

With the use of the HSE06 hybrid functional, we note the intercalation voltage is

significantly increased to 4.440 V (Li), 4.420 V (Na), 3.953 V (K), and 1.719 V

(Mg). These are higher than the PBE voltages by 0.463 V, 0.546 V, 0.154 V, and

0.245 V, respectively. However, the voltage ordering is maintained and thus both
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functionals indicate that the ScS2 would be very suitable for a cathode material.

Consideration of the constructed phase diagrams also offers insight into the ef-

fect of using a different functional. We find that the diagonal line, corresponding

to the boundary between the intercalated ScS2 and the Li2S (or equivalent) crys-

tal, remains relatively unchanged. However, discrepancies between the phase

diagrams arise from the modification to the horizontal line, corresponding to the

boundary between the intercalated and pristine ScS2 structures. Across each

of the phases and intercalants considered, the amount that the horizontal line

is modified with the use of HSE06 varies, though it is consistently shifted down-

wards (hence increasing the region of stability, and the corresponding value of

EIS). However, these results do not change the conclusions presented in Chap-

ter 5, nor do they invalidate the potential of ScS2 as a cathode material.
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Figure D.3: Comparison of PBE and HSE06 results for the different phases of ScS2

intercalated with Li. D.3a, D.3c, and D.3e show the comparison of intercalation potentials

for T-, Hc-, and α-phases, respectively. D.3b, D.3d, and D.3f show the comparison of

phase diagrams for T-, Hc-, and α-phases, respectively, for an intercalation concentration

LiScS2.
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Figure D.4: Comparison of PBE and HSE06 results for the different phases of ScS2

intercalated with Na. D.4a, D.4c, and D.4e show the comparison of intercalation potentials

for T-, Hc-, and α-phases, respectively. D.4b, D.4d, and D.4f show the comparison of

phase diagrams for T-, Hc-, and α-phases, respectively, for an intercalation concentration

NaScS2.
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Figure D.5: Comparison of PBE and HSE06 results for the different phases of ScS2

intercalated with K. D.5a, D.5c, and D.5e show the comparison of intercalation potentials

for T-, Hc-, and α-phases, respectively. D.5b, D.5d, and D.5f show the comparison of

phase diagrams for T-, Hc-, and α-phases, respectively, for an intercalation concentration

KScS2.
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Figure D.6: Comparison of PBE and HSE06 results for the different phases of ScS2 in-

tercalated with Mg. D.6a, D.6b, and D.6c show the comparison of intercalation potentials

for T-, Hc-, and α-phases, respectively.
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Chapter 6

E.1 Diffusion Barriers

E.2 Volumetric Expansion

As we discussed in Chapter 6, the volumetric expansion that arises from interca-

lation is an important factor that must be considered for any potential electrode

material. In Table E.1 and Table E.2 we show the volumetric expansion for the

investigated superlattices as they are intercalated with lithium from MX2M′X2 to

Li2MX2M′X2. Similarly, Table E.3 and Table E.4 we show the volumetric expansion

arising from magnesium intercalation. These have each been calculated using

% = V−V0
V0
× 100 for initial volume V0 and final volume V . We have also included

the corresponding expansions for the component TMDCs for easy comparison.

From this, we conclude that the average volumetric expansion of the component

TMDCs provides a good estimate for the volumetric expansion that arises in the

formed superlattice.
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Superlattice Superlattice Component A Component B

A|B Expansion (%) Expansion (%) Expansion (%)

CuS2|OsS2 24.87 29.39 15.81

CuS2|RhS2 28.18 29.39 23.70

GeS2|SnS2 11.15 12.15 10.17

GeS2|SnSe2 12.52 12.15 10.02

GeS2|TiSe2 11.86 12.15 9.74

GeSe2|HfS2 7.13 12.41 0.32

GeSe2|NiSe2 22.48 12.41 26.67

GeSe2|SnSe2 11.98 12.41 10.02

GeSe2|TaTe2 16.26 12.41 13.66

GeSe2|TiSe2 11.08 12.41 9.74

GeSe2|TiTe2 15.66 12.41 14.80

HfS2|PdS2 7.80 0.32 16.54

HfS2|PtS2 7.69 0.32 23.58

HfS2|SnS2 6.76 0.32 10.17

HfS2|SnSe2 6.26 0.32 10.02

HfS2|ZrS2 0.27 0.32 0.31

HfTe2|PbSe2 13.38 7.38 17.93

HfTe2|SnSe2 10.72 7.38 10.02

MoS2|SnS2 11.02 15.06 10.17

MoS2|VS2 12.04 15.06 12.26

MoS2|WS2 10.86 15.06 12.87

MoS2|WSe2 11.82 15.06 14.35

MoTe2|OsS2 19.36 14.22 15.81

NbS2|TaS2 7.86 10.93 9.04

Table E.1: Superlattice and component volumetric expansion for the considered super-

lattices intercalated with lithium.
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Superlattice Superlattice Component A Component B

A|B Expansion (%) Expansion (%) Expansion (%)

NiS2|SnS2 11.55 26.67 10.17

NiS2|TiS2 14.79 26.67 6.61

NiTe2|PbSe2 20.13 21.35 17.93

NiTe2|SnSe2 20.44 21.35 10.02

OsS2|RhS2 21.27 15.81 23.70

OsTe2|SnSe2 18.12 14.08 10.02

PbS2|PbSe2 18.83 19.77 17.93

PbS2|YS2 13.89 19.77 5.21

PbSe2|SnTe2 17.77 17.93 17.30

PbSe2|ZrTe2 13.38 17.93 7.96

PtS2|ZrS2 8.07 23.58 0.31

ScS2|SnS2 10.76 8.42 10.17

ScS2|TiTe2 15.71 8.42 14.80

ScTe2|SnSe2 13.97 13.16 10.02

SnS2|SnSe2 10.92 10.17 10.02

SnS2|TiSe2 9.58 10.17 9.74

SnS2|TiTe2 12.44 10.17 14.80

SnS2|ZrS2 6.02 10.17 0.31

SnS2|ZrSe2 8.36 10.17 2.17

SnSe2|TiTe2 11.68 10.02 14.80

SnSe2|ZrTe2 10.92 10.02 7.96

VS2|WS2 11.00 12.26 12.87

ZrS2|ZrSe2 1.18 0.31 2.175

Table E.2: Superlattice and component volumetric expansion for the considered super-

lattices intercalated with lithium.
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Superlattice Superlattice Component A Component B

A|B Expansion (%) Expansion (%) Expansion (%)

CuS2|OsS2 35.07 42.66 24.38

CuS2|RhS2 39.16 42.66 32.07

GeS2|SnS2 23.07 26.56 26.56

GeS2|SnSe2 23.20 26.56 24.40

GeS2|TiSe2 21.17 26.56 15.65

GeSe2|HfS2 13.11 24.40 2.01

GeSe2|NiSe2 33.91 24.40 35.42

GeSe2|SnSe2 22.80 24.40 24.40

GeSe2|TaTe2 24.39 24.40 22.08

GeSe2|TiSe2 19.81 24.40 15.65

GeSe2|TiTe2 24.03 24.40 19.84

HfS2|PdS2 14.18 2.01 34.62

HfS2|PtS2 12.86 2.01 30.95

HfS2|SnS2 15.27 2.01 26.56

HfS2|SnSe2 12.45 2.01 24.40

HfS2|ZrS2 1.92 2.01 2.04

HfTe2|PbSe2 20.03 12.98 26.27

HfTe2|SnSe2 21.81 12.98 24.40

MoS2|SnS2 20.36 19.95 26.56

MoS2|VS2 25.49 19.95 21.50

MoS2|WS2 17.81 19.95 15.97

MoS2|WSe2 18.56 19.95 18.57

MoTe2|OsS2 28.52 16.80 24.38

NbS2|TaS2 12.87 13.93 11.36

Table E.3: Superlattice and component volumetric expansion for the considered super-

lattices intercalated with magnesium.
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Superlattice Superlattice Component A Component B

A|B Expansion (%) Expansion (%) Expansion (%)

NiS2|SnS2 21.64 42.10 26.56

NiS2|TiS2 23.32 42.10 12.21

NiTe2|PbSe2 30.34 32.62 26.27

NiTe2|SnSe2 30.44 32.62 24.40

OsS2|RhS2 29.32 24.38 32.07

OsTe2|SnSe2 27.87 21.50 24.40

PbS2|PbSe2 27.35 28.34 26.27

PbS2|YS2 17.76 28.34 2.51

PbSe2|SnTe2 26.88 26.27 27.37

PbSe2|ZrTe2 18.39 26.27 12.09

PtS2|ZrS2 13.06 30.95 2.04

ScS2|SnS2 18.11 9.43 26.56

ScS2|TiTe2 19.93 9.43 19.84

ScTe2|SnSe2 20.59 15.09 20.36

SnS2|SnSe2 21.39 26.56 20.36

SnS2|TiSe2 18.55 26.56 15.65

SnS2|TiTe2 23.55 26.56 19.84

SnS2|ZrS2 12.77 26.56 2.04

SnS2|ZrSe2 19.28 26.56 4.73

SnSe2|TiTe2 19.15 24.40 19.84

SnSe2|ZrTe2 17.15 24.40 12.09

VS2|WS2 19.12 21.50 15.97

ZrS2|ZrSe2 3.33 2.04 4.73

Table E.4: Superlattice and component volumetric expansion for the considered super-

lattices intercalated with magnesium.
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Figure E.1: Diffusion barrier heights calculated using the CI-NEB method for lithium

and magnesium in the highlighted superlattice materials, SnS2|SnSe2 (E.1a), NiS2|TiS2

(E.1b), HfS2|PdS2 (E.1c), ZrS2|ZrSe2 (E.1d), NbS2|TaS2 (E.1e), GeS2|SnS2 (E.1f),

SnSe2|ZrTe2 (E.1g), HfS2|ZrS2 (E.1h), and MoS2|SnS2 (E.1i).

E.3 Energetics

We here show and discuss the intercalation energetics for the superlattice struc-

tures. The average voltages (over the intercalant concentration range considered)

and EIS values (at intercalant concentrations of Li2MX2M′X′2 and Mg2MX2M′X′2)

for the superlattices and the relevant components are presented in Table E.5 and

Table E.6 for lithium intercalation, and in Table E.7 and Table E.8 for magnesium

intercalation. In each of these, the component voltages and EIS values are also

presented for easy comparison with the superlattice value. The components in

a given pairing have been ordered alphabetically, and then each pairing listed in

the tables alphabetically.
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Figure E.2: Asymmetry of intercalant position in superlattices that display values of EIS

greater than their component TMDCs, using the lithium-intercalated HfTe2|PbSe2 as an

example. Solid lines indicate the planes of atoms, dashed line indicates the mid-point

within the vdW space.

We find that, for the further pairings considered, the average values of voltage

and EIS of the component materials provide bounds for the values exhibited by

the superlattice, and the average of these values provides a good estimate. We

do highlight some exceptions to this general rule, however.

For example, the values of EIS for lithium-intercalated HfTe2|PbSe2, HfTe2|SnSe2,

and PbSe2|ZrTe2, and magnesium-intercalated CuS2|RhS2, SnS2|TiTe2, and SnSe2|ZrTe2

exceed the values of the component materials. However, closer study of the ge-

ometry of these superlattices reveals a difference from their component TMDCs

and the other superlattices: For most superlattices and component TMDCs, the

intercalant species occupies a space in the vdW gap that close to half way be-

tween each of the neighbouring TMDC layers. However, for the exceptions listed

above, the intercalant species is instead significantly closer to one of the com-

ponent layers. For individual TMDCs this bias is not possible due to each layer

being equivalent, and though there are some small deviations from the midpoint

in other superlattices, these deviations are relatively small compared to the six

exception highlight above. This is depicted in Figure E.2, where the position of

the lithium ions within the vdW spacing of HfTe2|PbSe2 (indicated with a solid
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line) lies away from the mid-point (indicated with a dashed line). This asymmetry

is seen for each of the intercalant concentrations, and not just the Li2MX2|M′X′2

and Mg2MX2|M′X′2, though it becomes slightly more pronounced with higher in-

tercalant concentrations.

E.4 Charge Analysis

The first consideration is of charge transfer changes during the formation of su-

perlattices and during intercalation. Upon formation of a superlattice, and more

importantly upon intercalation, there can be large charge transfers between the

constituent atoms. The magnitude of this charge transfer and where the charge

is transferred to/from plays an important role in determining how much energy is

involved with forming a superlattice or intercalating a layered material. Numerical

values are presented in Table E.9 - Table E.17.

E.4.1 Superlattice Formation

Upon formation of a superlattice (without the inclusion of any intercalant), we

would expect minimal charge transfer between the component layers due to the

presence of the vdW gap. In Figure E.3 we present the Bader charges of the

species in the highlighted superlattices, along with the Bader charges of the

species in the individual components. We find that the charges on both the metal

and chalcogen species are largely preserved compared to their charges in the in-

dividual MX2 components. For the pristine systems, Bader charges are shown in

Figure E.3a, where the charges of the metal and chalcogen species are seen to

be effectively unchanged between the individual pristine TMDCs and the super-

lattices. In fact, the largest difference between the component and superlattice is

found to be 0.04 |e| in the HfS2|PdS2 system.
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Superlattice Superlattice Component A Component B ELi
IS Superlattice ELi

IS A ELi
IS B

A|B Voltage (V) Voltage (V) Voltage (V) (eV) (eV) (eV)

CuS2|OsS2 2.41 2.23 2.57 0.29 0.04 0.62

CuS2|RhS2 2.42 2.23 2.50 0.50 0.04 0.88

GeS2|MoSe2 2.11 2.06 2.04 0.37 0.07 0.53

GeS2|SnS2 1.98 2.06 1.80 0.03 0.07 -0.09

GeS2|SnSe2 2.04 2.06 1.85 0.15 0.07 0.13

GeS2|TiSe2 2.06 2.06 1.96 0.62 0.07 1.05

GeSe2|HfS2 1.88 2.08 1.73 0.58 0.22 1.02

GeSe2|NiSe2 1.87 2.08 1.69 0.04 0.22 -0.08

GeSe2|SnSe2 2.01 2.08 1.85 0.21 0.22 0.13

GeSe2|TaTe2 1.76 2.08 1.41 0.17 0.22 0.05

GeSe2|TiSe2 2.03 2.08 1.96 0.64 0.22 1.05

GeSe2|TiTe2 1.87 2.08 1.52 0.48 0.22 0.55

HfS2|PdS2 1.92 1.73 1.94 0.60 1.02 -0.00

HfS2|PtS2 1.60 1.73 1.43 0.43 1.02 -0.49

HfS2|SnS2 1.75 1.73 1.80 0.45 1.02 -0.09

HfS2|SnSe2 1.68 1.73 1.85 0.41 1.02 0.13

HfS2|ZrS2 1.88 1.73 2.03 1.21 1.02 1.38

HfTe2|PbSe2 2.17 1.25 2.22 0.90 0.34 0.39

HfTe2|SnSe2 1.67 1.25 1.85 0.40 0.34 0.13

MoS2|SnS2 2.26 2.47 1.80 0.54 1.05 -0.09

MoS2|VS2 2.41 2.47 2.33 1.07 1.05 1.04

MoS2|WS2 2.39 2.47 2.28 0.92 1.05 0.74

MoS2|WSe2 1.86 2.47 1.90 0.22 1.05 0.24

MoTe2|OsS2 1.71 1.60 2.57 -0.11 0.10 0.62

NbS2|TaS2 2.12 2.23 2.01 0.99 1.14 0.84

Table E.5: Average voltage and ELi
IS values (corresponding to Li2MX2M′X′2) for consid-

ered superlattices. The values of the component TMDCs are also presented for easy

comparison with the superlattice value.
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Superlattice Superlattice Component A Component B ELi
IS Superlattice ELi

IS A ELi
IS B

A|B Voltage (V) Voltage (V) Voltage (V) (eV) (eV) (eV)

NiS2|SnS2 2.04 2.10 1.80 0.11 0.23 -0.09

NiS2|TiS2 2.26 2.10 2.33 0.91 0.23 1.51

NiTe2|PbSe2 1.82 1.18 2.22 0.24 -0.31 0.39

NiTe2|SnSe2 1.55 1.18 1.85 -0.04 -0.31 0.13

OsS2|RhS2 2.40 2.57 2.50 0.57 0.62 0.88

OsTe2|SnSe2 1.68 1.64 1.85 -0.06 -0.08 0.13

PbS2|PbSe2 2.41 2.62 2.22 0.46 0.57 0.39

PbS2|YS2 3.08 2.62 3.85 1.86 0.57 3.58

PbSe2|SnTe2 1.92 2.22 1.66 0.29 0.39 0.19

PbSe2|ZrTe2 2.23 2.22 1.51 1.01 0.39 0.73

PdS2|PtS2 1.73 1.94 1.43 -0.19 0.00 -0.49

PtS2|ZrS2 1.75 1.43 2.03 0.47 -0.49 1.38

ScS2|SnS2 2.69 3.66 1.80 1.52 3.22 -0.09

ScS2|TiTe2 2.28 3.66 1.52 1.55 3.22 0.55

ScTe2|SnSe2 2.11 2.40 1.85 0.98 1.89 0.13

SnS2|SnSe2 1.83 1.80 1.85 0.01 -0.09 0.13

SnS2|TiSe2 1.92 1.80 1.96 0.51 -0.09 1.05

SnS2|TiTe2 1.74 1.80 1.52 0.34 -0.09 0.55

SnS2|ZrS2 1.89 1.80 2.03 0.61 -0.09 1.38

SnS2|ZrSe2 1.87 1.80 1.81 0.58 -0.09 1.09

SnSe2|TiTe2 1.76 1.85 1.52 0.43 0.13 0.55

SnSe2|ZrSe2 1.83 1.85 1.81 0.60 0.13 1.09

SnSe2|ZrTe2 1.77 1.85 1.51 0.55 0.13 0.73

VS2|WS2 2.31 2.33 2.28 0.91 1.04 0.74

ZrS2|ZrSe2 1.90 2.03 1.81 1.20 1.38 1.09

Table E.6: Average voltage and ELi
IS values (corresponding to Li2MX2M′X′2) for consid-

ered superlattices. The values of the component TMDCs are also presented for easy

comparison with the superlattice value.
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Superlattice Superlattice Component A Component B EMg
IS Superlattice EMg

IS A EMg
IS B

A|B Voltage (V) Voltage (V) Voltage (V) (eV) (eV) (eV)

CuS2|OsS2 1.49 1.54 1.10 -0.22 -0.05 -1.41

CuS2|RhS2 1.53 1.54 1.09 0.51 -0.05 -0.41

GeS2|MoSe2 0.85 1.35 0.35 -1.26 -0.02 -2.45

GeS2|SnS2 1.32 1.35 1.22 0.06 -0.02 0.01

GeS2|SnSe2 1.33 1.35 1.18 0.23 -0.02 0.42

GeS2|TiSe2 0.99 1.35 0.63 0.23 -0.02 0.52

GeSe2|HfS2 0.80 1.34 0.43 0.09 0.39 0.44

GeSe2|NiSe2 1.11 1.34 0.89 -0.19 0.39 -0.73

GeSe2|SnSe2 1.29 1.34 1.18 0.45 0.39 0.42

GeSe2|TaTe2 0.60 1.34 -0.06 -1.29 0.39 -2.79

GeSe2|TiSe2 0.99 1.34 0.63 0.49 0.39 0.52

GeSe2|TiTe2 0.84 1.34 0.37 0.17 0.39 0.01

HfS2|PdS2 0.92 0.43 1.16 0.39 0.44 -0.55

HfS2|PtS2 0.55 0.43 0.64 -0.76 0.44 -2.02

HfS2|SnS2 0.87 0.43 1.22 0.39 0.44 0.01

HfS2|SnSe2 0.80 0.43 1.18 0.36 0.44 0.42

HfS2|ZrS2 0.57 0.43 0.70 0.96 0.44 1.45

HfTe2|PbSe2 1.03 0.10 1.64 0.98 -0.58 1.57

HfTe2|SnSe2 0.71 0.10 1.18 0.19 -0.58 0.42

MoS2|SnS2 1.05 0.65 1.22 -0.64 -1.50 0.01

MoS2|VS2 0.77 0.65 0.87 -0.77 -1.50 -0.13

MoS2|WS2 0.46 0.65 0.28 -2.35 -1.50 -3.17

MoS2|WSe2 0.34 0.65 0.05 -2.80 -1.50 -3.97

MoTe2|OsS2 0.53 0.05 1.10 -2.27 -2.94 -1.41

NbS2|TaS2 0.59 0.77 0.41 -0.57 0.17 -1.32

Table E.7: Average voltage and EMg
IS values (corresponding to Mg2MX2M′X′2) for con-

sidered superlattices. The values of the component TMDCs are also presented for easy

comparison with the superlattice value.
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Superlattice Superlattice Component A Component B EMg
IS Superlattice EMg

IS A EMg
IS B

A|B Voltage (V) Voltage (V) Voltage (V) (eV) (eV) (eV)

NiS2|SnS2 1.28 1.22 1.22 -0.09 -0.26 0.01

NiS2|TiS2 1.10 1.22 0.86 0.72 -0.26 1.24

NiTe2|PbSe2 0.97 0.45 1.64 0.17 -0.86 1.57

NiTe2|SnSe2 0.79 0.45 1.18 -0.31 -0.86 0.42

OsS2|RhS2 1.07 1.10 1.09 -1.02 -1.41 -0.41

OsTe2|SnSe2 0.92 0.76 1.18 -0.40 -0.82 0.42

PbS2|PbSe2 1.80 1.98 1.64 1.60 1.75 1.57

PbS2|YS2 1.77 1.98 1.45 2.95 1.75 3.76

PbSe2|SnTe2 1.23 1.64 0.97 0.94 1.57 0.77

PbSe2|ZrTe2 1.08 1.64 0.30 1.25 1.57 0.33

PdS2|PtS2 0.94 1.14 0.63 -1.16 -0.55 -2.02

PtS2|ZrS2 0.67 0.64 0.70 -0.32 -2.02 1.45

ScS2|SnS2 1.38 1.52 1.22 1.92 3.68 0.01

ScS2|TiTe2 0.72 1.52 0.37 1.17 3.68 0.01

ScTe2|SnSe2 1.01 0.80 1.18 1.39 2.22 0.42

SnS2|SnSe2 1.20 1.22 1.18 0.17 0.01 0.42

SnS2|TiSe2 0.99 1.22 0.63 0.47 0.01 0.52

SnS2|TiTe2 0.86 1.22 0.37 0.24 0.01 0.01

SnS2|ZrS2 0.96 1.22 0.70 0.71 0.01 1.45

SnS2|ZrSe2 0.94 1.22 0.52 0.67 0.01 0.82

SnSe2|TiTe2 0.80 1.18 0.37 0.28 0.42 0.01

SnSe2|ZrSe2 0.83 1.18 0.52 0.52 0.42 0.82

SnSe2|ZrTe2 0.76 1.18 0.30 0.47 0.42 0.33

VS2|WS2 0.53 0.87 0.28 -1.82 -0.13 -3.17

ZrS2|ZrSe2 0.60 0.70 0.52 1.06 1.45 0.82

Table E.8: Average voltage and EMg
IS values (corresponding to Mg2MX2M′X′2) for con-

sidered superlattices. The values of the component TMDCs are also presented for easy

comparison with the superlattice value.
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Figure E.3: Bader charges for the different metal and chalcogen species in the uninter-

calated pristine superlattices and the relevant component TMDCs. The included numbers

indicate the difference in charge between the superlattice and individual TMDC compo-

nents, QSL −QTMDC .

E.4.2 Intercalated Superlattices

We compare the Bader charges for the lithium-intercalated (Figure E.4a) and

magnesium-intercalated (Figure E.4b) systems. Surprisingly, whilst there is more

charge transfer than is seen with the pristine systems, this remains relatively

small. However, some systems, for example lithium-intercalated NbS2|TaS2 and

magnesium-intercalated HfS2|PdS2, show significant charge transfer between the

component layers. The intercalants themselves maintain almost constant charges,

as has been shown for intercalation into the individual TMDCs. Across the differ-

ent superlattices, the charge of lithium varies between 0.87−0.88, and magnesium

varies between 1.65− 1.67.

E.4.3 Charge Tables

We present in Table E.9 - Table E.17 the numerical Bader charge values for each

of the superlattice structures and their component TMDCs, each in their pristine
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Figure E.4: Bader charges for the different metal and chalcogen species in superlattices

and the relevant component TMDCs, when intercalated with lithium (E.4a) and magne-

sium (E.4b). The included numbers indicate the difference in charge between the super-

lattice and individual TMDC components, QSL −QTMDC .

and intercalated forms.
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Species Charge of species in Charge of species in Charge of species in

bulk SnS2 (|e|) bulk SnSe2 (|e|) bulk superlattice (|e|)

Sn1 1.55 - 1.53

S -0.78 - -0.78

Sn2 - 1.22 1.25

Se - -0.61 -0.61

Species Charge of species in Charge of species in Charge of species in

intercalated LiSnS2 (|e|) intercalated LiSnSe2 (|e|) intercalated superlattice (|e|)

Sn1 1.22 - 1.16

S -1.05 - -1.07

Sn2 - 1.00 1.04

Se - -0.94 -0.91

Li 0.88 0.87 0.88

Species Charge of species in Charge of species in Charge of species in

intercalated MgSnS2 (|e|) intercalated MgSnSe2 (|e|) intercalated superlattice (|e|)

Sn1 0.99 - 0.95

S -1.33 - -1.32

Sn2 - 0.83 0.87

Se - -1.23 -1.24

Mg 1.67 1.63 1.65

Table E.9: Bader charge values for SnS2, SnSe2, and their superlattice.



313

Species Charge of species in Charge of species in Charge of species in

bulk NiS2 (|e|) bulk TiS2 (|e|) bulk superlattice (|e|)

Ni 0.67 - 0.70

S1 -0.34 - -0.33

Ti - 1.77 1.76

S2 - -0.89 -0.90

Species Charge of species in Charge of species in Charge of species in

intercalated LiNiS2 (|e|) intercalated LiTiS2 (|e|) intercalated superlattice (|e|)

Ni 0.69 - 0.70

S1 -0.78 - -0.82

Ti - 1.64 1.65

S2 - -1.25 -1.23

Li 0.87 0.87 0.87

Species Charge of species in Charge of species in Charge of species in

intercalated MgNiS2 (|e|) intercalated MgTiS2 (|e|) intercalated superlattice (|e|)

Ni 0.72 - 0.66

S1 -1.20 - -1.26

Ti - 1.45 1.52

S2 - -1.56 -1.50

Mg 1.68 1.68 1.68

Table E.10: Bader charge values for NiS2, TiS2, and their superlattice.
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Species Charge of species in Charge of species in Charge of species in

bulk HfS2 (|e|) bulk PdS2 (|e|) bulk superlattice (|e|)

Hf 3.97 - 3.97

S1 -1.98 - -1.98

Pd - 0.58 0.62

S2 - -0.29 -0.31

Species Charge of species in Charge of species in Charge of species in

intercalated LiHfS2 (|e|) intercalated LiPdS2 (|e|) intercalated superlattice (|e|)

Hf 3.96 - 3.96

S1 -2.42 - -2.35

Pd - 0.50 0.53

S2 - -0.69 -0.77

Li 0.87 0.87 0.87

Species Charge of species in Charge of species in Charge of species in

intercalated MgHfS2 (|e|) intercalated MgPdS2 (|e|) intercalated superlattice (|e|)

Hf 2.44 - 3.90

S1 -2.05 - -2.58

Pd - 0.39 0.39

S2 - -1.03 -1.24

Mg 1.67 1.68 1.66

Table E.11: Bader charge values for HfS2, PdS2, and their superlattice.
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Species Charge of species in Charge of species in Charge of species in

bulk ZrS2 (|e|) bulk ZrSe2 (|e|) bulk superlattice (|e|)

Zr1 2.05 - 2.07

S -1.02 - -1.04

Zr2 - 1.85 1.83

Se - -0.93 -0.91

Species Charge of species in Charge of species in Charge of species in

intercalated LiZrS2 (|e|) intercalated LiZrSe2 (|e|) intercalated superlattice (|e|)

Zr1 1.75 - 1.75

S -1.31 - -1.33

Zr2 - 1.61 1.61

Se - -1.24 -1.22

Li 0.87 0.87 0.87

Species Charge of species in Charge of species in Charge of species in

intercalated MgZrS2 (|e|) intercalated MgZrSe2 (|e|) intercalated superlattice (|e|)

Zr1 1.45 - 1.46

S -1.56 - -1.59

Zr2 - 1.39 1.37

Se - -1.52 -1.49

Mg 1.68 1.64 1.66

Table E.12: Bader charge values for ZrS2, ZrSe2, and their superlattice.
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Species Charge of species in Charge of species in Charge of species in

bulk NbS2 (|e|) bulk TaS2 (|e|) bulk superlattice (|e|)

Nb 1.66 - 1.64

S1 -0.83 - -0.83

Ta - 2.73 2.76

S2 - -1.37 -1.37

Species Charge of species in Charge of species in Charge of species in

intercalated LiNbS2 (|e|) intercalated LiTaS2 (|e|) intercalated superlattice (|e|)

Nb 1.44 - 1.47

S1 -1.16 - -1.20

Ta - 2.27 2.47

S2 - -1.57 -1.64

Li 0.87 0.88 0.87

Species Charge of species in Charge of species in Charge of species in

intercalated MgNbS2 (|e|) intercalated MgTaS2 (|e|) intercalated superlattice (|e|)

Nb 1.23 - 1.27

S1 -1.45 - -1.50

Ta - 2.06 2.07

S2 - -1.86 -1.85

Mg 1.68 1.67 1.67

Table E.13: Bader charge values for NbS2, TaS2, and their superlattice.
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Species Charge of species in Charge of species in Charge of species in

bulk GeS2 (|e|) bulk SnS2 (|e|) bulk superlattice (|e|)

Ge 1.31 - 1.28

S1 -0.66 - -0.64

Sn - 1.55 1.57

S2 - -0.78 -0.78

Species Charge of species in Charge of species in Charge of species in

intercalated LiGeS2 (|e|) intercalated LiSnS2 (|e|) intercalated superlattice (|e|)

Ge 1.06 - 0.99

S1 -0.97 - -0.99

Sn - 1.22 1.28

S2 - -1.05 -1.02

Li 0.88 0.88 0.88

Species Charge of species in Charge of species in Charge of species in

intercalated MgGeS2 (|e|) intercalated MgSnS2 (|e|) intercalated superlattice (|e|)

Ge 0.86 - 0.84

S1 -1.26 - -1.25

Sn - 0.99 1.00

S2 - -1.33 -1.34

Mg 1.67 1.67 1.67

Table E.14: Bader charge values for GeS2, SnS2, and their superlattice.
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Species Charge of species in Charge of species in Charge of species in

bulk SnSe2 (|e|) bulk ZrTe2 (|e|) bulk superlattice (|e|)

Sn 1.22 - 1.20

Se -0.61 - -0.62

Zr - 1.52 1.52

Te - -0.76 -0.73

Species Charge of species in Charge of species in Charge of species in

intercalated LiSnSe2 (|e|) intercalated LiZrTe2 (|e|) intercalated superlattice (|e|)

Sn 1.00 - 0.92

Se -0.94 - -1.02

Zr - 1.44 1.48

Te - -1.15 -1.03

Li 0.87 0.86 0.87

Species Charge of species in Charge of species in Charge of species in

intercalated MgSnSe2 (|e|) intercalated MgZrTe2 (|e|) intercalated superlattice (|e|)

Sn 0.83 - 0.74

Se -1.23 - -1.34

Zr - 1.25 1.34

Te - -1.41 -1.31

Mg 1.63 1.59 1.60

Table E.15: Bader charge values for SnSe2, ZrTe2, and their superlattice.
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Species Charge of species in Charge of species in Charge of species in

bulk HfS2 (|e|) bulk ZrS2 (|e|) bulk superlattice (|e|)

Hf 3.97 - 3.97

S1 -1.98 - -1.99

Zr - 2.05 2.05

S2 - -1.02 -1.03

Species Charge of species in Charge of species in Charge of species in

intercalated LiHfS2 (|e|) intercalated LiZrS2 (|e|) intercalated superlattice (|e|)

Hf 3.96 - 3.96

S1 -2.42 - -2.39

Zr - 1.75 1.73

S2 - -1.31 -1.33

Li 0.87 0.87 0.87

Species Charge of species in Charge of species in Charge of species in

intercalated LiHfS2 (|e|) intercalated LiZrS2 (|e|) intercalated superlattice (|e|)

Hf 2.44 - 2.46

S1 -2.05 - -2.04

Zr - 1.45 1.43

S2 - -1.56 -1.58

Mg 1.67 1.68 1.67

Table E.16: Bader charge values for HfS2, ZrS2, and their superlattice.
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Species Charge of species in Charge of species in Charge of species in

bulk MoS2 (|e|) bulk SnS2 (|e|) bulk superlattice (|e|)

Mo 1.79 - 1.82

S1 -0.90 - -0.91

Sn - 1.55 1.55

S2 - -0.78 -0.77

Species Charge of species in Charge of species in Charge of species in

intercalated LiMoS2 (|e|) intercalated LiSnS2 (|e|) intercalated superlattice (|e|)

Mo 1.62 - 1.67

S1 -1.25 - -1.24

Sn - 1.22 1.20

S2 - -1.05 -1.07

Li 0.87 0.88 0.87

Species Charge of species in Charge of species in Charge of species in

intercalated MgMoS2 (|e|) intercalated MgSnS2 (|e|) intercalated superlattice (|e|)

Mo 1.47 - 1.54

S1 -1.57 - -1.43

Sn - 0.99 0.81

S2 - -1.33 -1.41

Mg 1.67 1.67 1.67

Table E.17: Bader charge values for MoS2, SnS2, and their superlattice.
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