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Abstract
Aims/hypothesis Several studies have identified associations between type 2 diabetes and DNA methylation (DNAm). How-
ever, the causal role of these associations remains unclear. This study aimed to provide evidence for a causal relationship 
between DNAm and type 2 diabetes.
Methods We used bidirectional two-sample Mendelian randomisation (2SMR) to evaluate causality at 58 CpG sites pre-
viously detected in a meta-analysis of epigenome-wide association studies (meta-EWAS) of prevalent type 2 diabetes in 
European populations. We retrieved genetic proxies for type 2 diabetes and DNAm from the largest genome-wide association 
study (GWAS) available. We also used data from the Avon Longitudinal Study of Parents and Children (ALSPAC, UK) when 
associations of interest were not available in the larger datasets. We identified 62 independent SNPs as proxies for type 2 
diabetes, and 39 methylation quantitative trait loci as proxies for 30 of the 58 type 2 diabetes-related CpGs. We applied the 
Bonferroni correction for multiple testing and inferred causality based on p<0.001 for the type 2 diabetes to DNAm direction 
and p<0.002 for the opposing DNAm to type 2 diabetes direction in the 2SMR analysis.
Results We found strong evidence of a causal effect of DNAm at cg25536676 (DHCR24) on type 2 diabetes. An increase in 
transformed residuals of DNAm at this site was associated with a 43% (OR 1.43, 95% CI 1.15, 1.78, p=0.001) higher risk of 
type 2 diabetes. We inferred a likely causal direction for the remaining CpG sites assessed. In silico analyses showed that the 
CpGs analysed were enriched for expression quantitative trait methylation sites (eQTMs) and for specific traits, dependent 
on the direction of causality predicted by the 2SMR analysis.
Conclusions/interpretation We identified one CpG mapping to a gene related to the metabolism of lipids (DHCR24) as a 
novel causal biomarker for risk of type 2 diabetes. CpGs within the same gene region have previously been associated with 
type 2 diabetes-related traits in observational studies (BMI, waist circumference, HDL-cholesterol, insulin) and in Mende-
lian randomisation analyses (LDL-cholesterol). Thus, we hypothesise that our candidate CpG in DHCR24 may be a causal 
mediator of the association between known modifiable risk factors and type 2 diabetes. Formal causal mediation analysis 
should be implemented to further validate this assumption.
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Abbreviations
2SMR  Two-sample Mendelian randomisation
ALSPAC  Avon Longitudinal Study of Parents and 

Children
ARIES  Accessible Resource for Integrated Epig-

enomic Studies
DNAm  DNA methylation
GoDMC  Genetics of DNA Methylation Consortium
GWAS  Genome-wide association study
HDL-C  HDL-cholesterol
LD  Linkage disequilibrium
LDL-C  LDL-cholesterol
MAF  Minor allele frequency
Meta-EWAS  Meta-analysis of epigenome-wide associa-

tion studies
mQTL  Methylation quantitative trait loci
MR  Mendelian randomisation

Introduction

There is growing interest in understanding the role of DNA 
methylation (DNAm) in the context of type 2 diabetes. In 
epidemiological studies, associations have been identified 

between DNAm and both prevalent [1–8] and incident 
[9–14] type 2 diabetes. Associations between DNAm and 
type 2 diabetes may arise through different mechanisms. For 
example, changes in DNAm may be causal for type 2 dia-
betes. Conversely, type 2 diabetes may induce consequent 
changes in DNAm. It is also possible that the observed asso-
ciation between DNAm and type 2 diabetes arises as a result 
of confounding from a third factor that is independently 
associated with both type 2 diabetes and DNAm. Defining 
the causal relationship between DNAm and type 2 diabe-
tes is important because it provides new information about 
the molecular pathways involved in disease incidence, and 
potentially progression, allowing new insights into targets 
for intervention. A method that uses genetic variants to esti-
mate the causal direction of effect between a modifiable 
exposure and an outcome, while controlling for unobserved 
confounders, is Mendelian randomisation (MR) [15].

Previous studies have investigated the causal direction of 
effect between DNAm and type 2 diabetes using MR. In the 
context of incident type 2 diabetes, MR was used to assess 
the causal link between 18 incident type 2 diabetes-associated 
CpG sites and type 2 diabetes [11]. Methylation quantitative 
trait loci (mQTL) were available for 16 of the 18 type 2 dia-
betes-associated CpG sites. There was nominal evidence for 
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a direct causal association of cg00574958 (CPT1A) with type 
2 diabetes. The authors of this study also assessed the causal 
effects of BMI and glycaemic traits on methylation at the 18 
CpG sites associated with incident type 2 diabetes but found 
no evidence to support this causal pathway [11]. In the context 
of prevalent type 2 diabetes, a study of 232 participants with 
type 2 diabetes and 197 control participants from a Korean 
cohort identified 12 CpG sites associated with type 2 diabetes. 
The association between these CpG sites and metabolic traits 
was measured in a further 1018 individuals [7]. MR analyses 
revealed that there was a likely causal effect of fasting glucose 
on cg00574958 (CPT1A). There was no evidence to suggest a 
causal effect of type 2 diabetes on methylation in this study [7].

In a study using genotype as a causal anchor to assess future 
risk of type 2 diabetes, DNAm did not appear to be on the causal 
pathway between known type 2 diabetes genetic risk variants 
and type 2 diabetes, with the exception of KCNQ1 [16]. A fur-
ther study of type 2 diabetes genetic risk variants that were also 
cis-mQTLs (defined as local variants <1 Mb from the DNAm 
site) assessed the causal pathway from methylation to type 2 
diabetes using MR. This study identified CpG sites at four loci 
(HNF1B, KCNJ11, IGF2BP2 and WFS1) that were likely to 
be causally associated with future risk of type 2 diabetes [17].

While efforts have been made to estimate the causal direc-
tion of effect between DNAm and type 2 diabetes, conclusions 
remain sparse and inconsistent. In part, this is because previ-
ous studies have used modestly sized datasets (<1000 indi-
viduals). The first aim of this study was to comprehensively 
investigate the causal direction of effect between DNAm and 
type 2 diabetes using a bidirectional two-sample MR (2SMR) 
approach, selecting genetic instruments that were (1) strongly 
associated with the exposure; (2) associated with the outcome 
solely via the exposure; and (3) not related to the confounders 
[18]. DNAm was assessed at CpG sites identified in the largest 
meta-EWAS of prevalent type 2 diabetes available in European 
populations (340 individuals with type 2 diabetes and 3088 
control participants) [6]. The second aim of this study was to 
determine the functional role of CpGs stratified by their likely 
causal direction of effect on type 2 diabetes. We hypothesised 
that CpGs may have different causal directions of association 
with type 2 diabetes and that this may indicate their specific 
mechanism of action in type 2 diabetes onset and progression.

Methods

Study samples

Forward 2SMR: type 2 diabetes as causal of differences in 
DNAm at candidate CpGs We extracted 148 genetic variants 
(SNPs) associated with type 2 diabetes from four DIAGRAM 
consortium GWAS [19] (see electronic supplementary 

material [ESM] Table 1). Three included multiethnic sam-
ples [20–22] and one included people of European ancestry 
[23]. We selected a SNP if it was (1) identified as an index 
variant in a GWAS meta-analysis; (2) found within a 99% 
credible set from an index variant, with an equal or higher 
posterior probability than the index variant; and (3) identi-
fied in the exome mapping close to a well-established locus 
for type 2 diabetes, with a minor allele frequency (MAF) 
>0.05. Two levels of significance were considered in the 
selection of SNPs: a genome-wide significance threshold 
of p<5.0×10–8 and a locus-wide significance threshold of 
p<1.0×10–5 (genome-wide complex trait analysis joint 
regression model). SNPs were excluded if they had incom-
plete risk allele data, no reported effect estimate (OR), no 
p value or a MAF <0.05. After quality control in MR-Base 
[24], the initial list of 148 type 2 diabetes SNPs was reduced 
to 62 SNPs (linkage disequilibrium [LD] r2<0.2) [25] in our 
outcome sample (ALSPAC-ARIES) (ESM Table 2).

We used data from ALSPAC-ARIES [26–28] (ESM 
Methods S1) to extract estimates of the association between 
the 62 type 2 diabetes SNPs and DNAm levels at 58 CpG 
sites previously associated with prevalent type 2 diabetes 
at p<1.0×10–5 (six of 58 CpGs had an epigenome-wide 
p<1.33×10–7) [6]. For this analysis, we included cross-sec-
tional data from 1243 middle-aged participants (age range 
31–75 years) irrespective of their type 2 diabetes status. We 
could not use the Genetics of DNA Methylation Consor-
tium (GoDMC) [29] as our outcome sample because type 2 
diabetes SNPs, or related SNPs in high LD (r2>0.6), were 
associated with CpGs of interest at p>10–8, which was the 
maximum p value threshold used by GoDMC to report sum-
mary data. Figure 1 shows the study design used to conduct 
the forward 2SMR analysis.

Reverse 2SMR: DNAm at candidate CpGs as causal risk factors 
for type 2 diabetes Using GoDMC summary data [29], we 
retrieved 41 mQTL associated with DNAm in blood at 31 
of the 58 CpG sites previously reported in a meta-EWAS of 
type 2 diabetes [6] (ESM Methods S2). We selected mQTL 
with a p<10–8 for cis-mQTL (SNP <1 Mb from CpG site) 
and a p<10–14 for trans-mQTL (defined as distal variants 
>1 Mb from the CpG site). In total, five of 41 mQTL identi-
fied were trans-mQTL. When there were multiple mQTL 
for a single CpG, we used the clump_data function in the R 
package TwoSampleMR to select independent SNPs (ESM 
Methods S3). Data for each mQTL were obtained using a 
fixed-effect meta-analysis, with effect estimates interpreted 
as a unit change in inverse normal transformed residuals of 
DNAm, per additional effect allele.

We verified that mQTL used in the reverse MR were 
independent of SNPs for type 2 diabetes in the forward MR 
using a LD threshold of r2<0.01 to avoid bias in the causal 
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estimate due to pleiotropic effects or reverse causation [30]. 
The correlation between type 2 diabetes SNPs and mQTL 
was calculated using Ldlink (version 3, https:// ldlink. nci. nih. 
gov/) [31], selecting as the reference panel genetic data from 
European samples in the 1000 Genomes project phase 3.

As our outcome sample, we selected the two largest 
type 2 diabetes GWAS available [20, 32]. Associations 
of mQTL with type 2 diabetes were extracted using the 

MRInstruments and TwoSampleMR R packages. When 
mQTL information was not available in the outcome sample, 
MR-Base looked for alternative SNPs with a LD r2>0.8 with 
the target mQTL SNP. After MR-Base data harmonisation, 
we were able to successfully extract outcome data for 39 of 
the initial 41 mQTL SNPs typing 30 meta-EWAS CpGs. The 
study design used to conduct the reverse 2SMR analysis is 
shown in Fig. 2.

58 CpGs
(meta-EWAS of T2D)

T2D
(case/control)

Confounders
Age, sex, ethnicity, smoking, predicted 

WBCs, technical variability

62 independent GWAS 
SNPs

β SNPs-T2D
N DIAGRAM ~144,814 

β T2D-DNAm

β Confounders-SNPs
N ALSPAC-ARIES/DIAGRAM =  
1243-144,814 

β SNPs-DNAm
N ALSPAC-ARIES = 1243

Fig. 1  Study design of the forward 2SMR analysis investigating the causal effect of type 2 diabetes on differences in DNAm at 58 CpG sites. 
CpGs were previously identified in association with type 2 diabetes in a meta-EWAS. T2D, type 2 diabetes; WBC, white-blood cell

T2D
(case/control)

30 meta-EWAS CpGs 
successfully proxied

Confounders
Age, sex, ethnicity, smoking, predicted 

WBCs, technical variability

39 independent mQTL

β IV-DNAm
N GoDMC ~32,851 

β DNAm-T2D

β Confounders-mQTL
N GoDMC/DIAGRAM-UKB = 
32,851-120,286 

β mQTL-T2D
N DIAGRAM/UKB = 
110,452-120,286

Fig. 2  Study design of the reverse 2SMR analysis investigating the 
causal effect of differences in DNAm on type 2 diabetes risk. A total 
of 58 CpGs were previously identified in association with type 2 
diabetes in a meta-EWAS, but only 30 of them were proxied by an 

mQTL SNP in GoDMC with available GWAS data for type 2 dia-
betes in MR-Base. IV, instrumental variable; T2D, type 2 diabetes; 
UKB, UK Biobank; WBC, white-blood cell

https://ldlink.nci.nih.gov/
https://ldlink.nci.nih.gov/
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Statistical analyses

Forward 2SMR: conducting a SNP–CpG analysis in 
ALSPAC‑ARIES We measured associations between 62 
independent type 2 diabetes SNPs and 58 CpG sites previ-
ously reported in a meta-EWAS of type 2 diabetes using 
a standardised protocol [29]. We conducted linear regres-
sions with the genotype for type 2 diabetes as the exposure 
and DNAm (inverse normal transformed residuals) at each 
CpG site as the outcome using an additive genetic model. 
Briefly, in the first stage of the analysis, we extracted com-
plete genetic and DNAm data for 1243 middle-adults in 
ALSPAC-ARIES (age range 31–75 years) and performed 
quality control on each dataset separately (ESM Meth-
ods S4–S6). For genome-wide SNPs and CpG sites that 
passed the quality control, we selected only those corre-
sponding to type 2 diabetes SNPs and meta-EWAS CpGs, 
respectively, and conducted regression analyses using the 
MatrixeQTL R package version 2.3 [33]. We tested the 
direct effect of the genotype for type 2 diabetes on DNAm 
at meta-EWAS CpGs at p<1.4×10–5 or α=0.05/62 type 2 
diabetes SNPs×58 CpGs. We interpreted effect estimates 
in the SNP–CpG analysis as the difference in residuals of 
DNAm (inverse normal transformed values), per additional 
risk allele for type 2 diabetes.

Mendelian randomisation and MR-Base analysis MR is 
a statistical method used to infer causality in observational 
associations that has been documented in detail elsewhere 
[15]. For this study, we carried out a 2SMR analysis using 
summary data from two independent but comparable popu-
lations [34], both with moderate power. MR-Base was used 
to conduct causal analyses [24]. Further detail is provided 
in ESM Methods S3. Estimated causal effects were inter-
preted as the effect of type 2 diabetes on a unit increase 
in residuals of DNAm (forward 2SMR) or as the odds of 
type 2 diabetes per unit increase in residuals of DNAm 
(reverse 2SMR).

Determining the true direction of association For associations 
analysed bidirectionally, we inferred the likely causal direc-
tion using the causal effect estimate with the smallest p value, 
which was also consistent with the direction of association 
found in the observational analysis (i.e. meta-EWAS of type 
2 diabetes). ‘Inconclusive’ associations with bidirectional MR 
data had a p value >0.1 in each direction of the analysis. Asso-
ciations with analysed MR data that were in a single direction 
only were regarded as ‘inconclusive, single direction’.

We used the Steiger test to confirm that the true direction 
of association was the one specified in the analysis. This test 
has its limitations [35] and it may perform better when using 
continuous rather than categorical exposures (i.e. more reli-
ability when testing directionality in the reverse rather than 
in the forward 2SMR analysis).

Functional inspection of MR signals using publicly available data‑
bases We classified meta-EWAS CpGs into three subgroups 
based on their most likely causal direction of association with 
type 2 diabetes: (1) type 2 diabetes causal of DNAm variation; 
(2) DNAm causal of type 2 diabetes risk; and (3) inconclusive 
direction of association. We looked for cis-eQTM associated 
with meta-EWAS CpGs in the BIOS QTL browser (https:// 
molge nis26. gcc. rug. nl/ downl oads/ biosq tlbro wser/) [36]. In 
addition, results from the EWAS Catalog [37] were grouped into 
related phenotypes [38] and tested for enrichment among the 58 
meta-EWAS CpGs analysed. Enrichment of each CpG subgroup 
for specific phenotypes was reported using ORs and 95% CIs. 
The p values in the enrichment analysis were one-sided. We 
considered evidence of enrichment at p<0.05 per traits analysed.

Ethical disclosure

Ethical approval for ALSPAC and its substudy ARIES was 
obtained from the ALSPAC Ethics and Law Committee and 
the Local Research Ethics Committees. Consent for use of 
biological samples was collected in accordance with the 
Human Tissue Act (2004).

Results

Forward 2SMR: type 2 diabetes is suggestively 
associated with lower DNAm at cg20812370 (PBX1), 
previously identified in a meta‑EWAS of type 2 
diabetes

Summary statistics of type 2 diabetes–SNP associations are 
shown in ESM Table 2. Association estimates between type 
2 diabetes SNPs and CpGs are presented in ESM Table 3.

Using forward 2SMR, we observed evidence of causal-
ity (adjusted p<0.001 or unadjusted p<0.05) between type 2 
diabetes and lower levels of DNAm at the CpGs cg20812370 
(PBX1) (p=0.002) and cg01577083 (RBFOX1) (p=0.023) 
(Fig. 3, ESM Figs 1 and 2, ESM Methods S7). The causal 
effects at both CpGs were directionally consistent with the 
results of the observational analysis (meta-EWAS), but 
absolute effect sizes were always larger in the MR analysis 
than in the observational analysis (Table 1). For associa-
tions at cg20812370 (PBX1) and cg01577083 (RBFOX1), 
there was little evidence of heterogeneity in the effect of 62 
type 2 diabetes SNPs on DNAm levels based on the results 
of the Cochran’s Q test (Q range 52.9–74.8, p value range 
0.10–0.75).

Using MR-Egger, weighted mode and weighted median as 
sensitivity analyses, we observed four CpGs with evidence 
of causality with type 2 diabetes at p<0.05: the previously 
detected cg20812370 (PBX1) and cg01577083 (RBFOX1) plus 
cg20456243 (SPEG) and cg26766064 (MIR657) (Table 2). In 

https://molgenis26.gcc.rug.nl/downloads/biosqtlbrowser/
https://molgenis26.gcc.rug.nl/downloads/biosqtlbrowser/
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all cases, the magnitude and direction of the effect estimates 
were similar across analyses, but smaller p values were gener-
ally seen when using the weighted median than when using 
the weighted mode and MR-Egger regressions. The results of 
these sensitivity analyses were directionally consistent with 
estimates of the inverse variance weighted (IVW) regression 
and with the observational analysis (meta-EWAS).

Overall, in the forward 2SMR analysis, we found no 
evidence of weak instrument bias based on values of the F 
statistic, which ranged from 19.7 to 274.8 (strong instru-
ment if F statistic >10).

Reverse 2SMR: elevated DNAm at cg25536676 
(DHCR24) is associated with an increased risk of type 
2 diabetes

Summary estimates of the association between the 39 mQTL 
SNPs and 30 meta-EWAS CpGs are shown in ESM Table 4. 
Association estimates of the 39 mQTL SNPs with type 2 
diabetes are presented in ESM Table 5. Overall, none of 
these mQTL was directly associated with type 2 diabetes 
at the GWAS significance threshold (p<5.0×10–8). Four 

Fig. 3  Forest plot showing causal effect estimates from the 2SMR 
analysis of the effect of prevalent type 2 diabetes on the difference 
in DNAm at five meta-EWAS CpGs with the strongest evidence of 
causality in the forward 2SMR analysis. The black diamond repre-

sents the mean causal effect for each CpG and MR method and the 
horizontal line shows the 95% CI. p, unadjusted p value. Associations 
were borderline significant at an unadjusted p<0.05 and significant at 
an adjusted p<0.001. T2D, type 2 diabetes

Table 1  Observational associations and estimates of causal effect between prevalent type 2 diabetes and differences in DNAm at five CpGs 
observed to have the strongest evidence of causality in the forward 2SMR analysis

a Meta-EWAS of prevalent type 2 diabetes (n=3428) [6]
Associations were considered significant at p<0.001 or α=0.05/58 CpGs analysed in the forward 2SMR analysis

CpG Chr Nearest gene Meta-EWAS of type 2  diabetesa MR IVW regression

Effect (95% CI) p value n Effect (95% CI) p value

cg20812370 1 PBX1 −0.007 (−0.009, −0.004) 7.40×10−7 3428 −0.184 (−0.301, −0.066) 0.002
cg20456243 2 SPEG −0.007 (−0.011, −0.004) 9.99×10−6 3428 −0.066 (−0.193, 0.06) 0.304
cg24686009 12 RAP1B −0.002 (−0.003, −0.001) 1.19×10−6 3428 0.004 (−0.113, 0.122) 0.942
cg01577083 16 RBFOX1 −0.011 (−0.016, −0.006) 7.93×10−6 3428 −0.151 (−0.281, −0.021) 0.023
cg26766064 17 MIR657 −0.007 (−0.009, −0.004) 5.17×10−6 3428 −0.100 (−0.217, 0.018) 0.096



1253Diabetologia (2023) 66:1247–1259 

1 3

mQTL tagging the CpGs cg08857797 (VPS25), cg00144180 
(HDAC4), cg16765088 (SYNM) and cg25536676 (DHCR24) 
were suggestively associated with type 2 diabetes, with an 
unadjusted GWAS p<0.05 (ESM Table 5).

In the reverse 2SMR analysis, we identified a strong 
causal effect (p<0.002 or α=0.05/30 CpGs) between 
cg25536676 (DHCR24) and type 2 diabetes using the Wald 
ratio (Table 3). For this CpG, we found an opposite direc-
tion of association between the causal and the observational 
analysis. Similar causal associations with type 2 diabetes 
were seen at cg25536676 using the IVW regression (ESM 
Table 6), with no evidence of heterogeneity (Cochran’s 
Q=2.4, p=0.30). The Steiger test suggested that the true 
direction of the association at cg25536676 was from DNAm 
to type 2 diabetes (Steiger p=3.8×10–147, R2 for CpG=0.04, 
R2 for type 2 diabetes=5.3×10–5). We conducted MR sen-
sitivity analysis for the association at cg25536676 (ESM 
Table 6), but these results may be unreliable because of the 
small number of mQTL used as instruments (n=3).

We observed evidence (unadjusted p<0.05) of a causal 
effect of DNAm on type 2 diabetes at four other CpG sites 
(Table 3). Estimates of the causal and the observational anal-
ysis were consistent for most of these associations, except for 

the CpG in SYNM. No other MR analyses were carried out 
at these four CpGs as they were proxied by a single mQTL.

Overall, the results of the Steiger test confirmed that, for 
the top CpGs identified in the reverse 2SMR analysis, the 
true direction of association was from DNAm to type 2 dia-
betes (Steiger p value range 1.2×10–164–1.5×10–94, mean R2 
for CpGs=0.03 vs mean R2 for type 2 diabetes=2.3×10–5). 
A mean value of the F statistic of 20.3 suggested a low 
probability of obtaining biased results as a result of weak 
instruments. Figure 4 provides volcano and forest plots 
summarising the results of the reverse 2SMR analysis.

Bidirectional interrogation of associations 
identified in the 2SMR analysis

To determine the true direction of the associations with type 
2 diabetes, we summarised the bidirectional causal effects 
derived from the 2SMR analysis. For the seven top CpGs 
with bidirectional 2SMR data (two detected in the forward 
2SMR and five in the reverse 2SMR analysis) (Table 4), we 
confirmed that the true direction of association was the one 
we originally interrogated in the single-direction analysis. At 
cg10082515 (EIF3IP1), we observed the same direction of 

Table 2  Estimates of the causal effect between prevalent type 2 diabetes and difference in DNAm at five CpGs using additional MR sensitivity 
analyses for the forward 2SMR analysis

MR-Egger: sensitivity analysis to account for horizontal pleiotropy. Weighted median and weighted mode: sensitivity analyses that allow for 
some instruments to be invalid, while generating unbiased causal estimates with the set of valid proxies
Associations were considered significant at p<0.001 or α=0.05/58 CpGs analysed in the forward 2SMR analysis

CpG Chr Nearest gene MR-Egger regression Weighted median Weighted mode

Effect (95% CI) p value Effect (95% CI) p value Effect (95% CI) p value

cg20812370 1 PBX1 −0.166 (−0.413, 0.082) 0.194 −0.218 (−0.399, −0.038) 0.018 −0.205 (−0.406, −0.003) 0.051
cg20456243 2 SPEG −0.372 (−0.625, −0.119) 0.005 −0.255 (−0.444, −0.065) 0.008 −0.284 (−0.489, −0.079) 0.009
cg24686009 12 RAP1B −0.253 (−0.5, −0.005) 0.050 −0.117 (−0.312, 0.078) 0.238 −0.141 (−0.337, 0.056) 0.165
cg01577083 16 RBFOX1 −0.261 (−0.535, 0.013) 0.067 −0.227 (−0.411, −0.044) 0.015 −0.236 (−0.465, −0.007) 0.047
cg26766064 17 MIR657 −0.187 (−0.434, 0.06) 0.143 −0.230 (−0.420, −0.040) 0.018 −0.229 (−0.44, −0.019) 0.037

Table 3  Observational associations and estimates of causal effect between prevalent type 2 diabetes and differences in DNAm at five CpGs 
observed to have the strongest evidence of causality in the reverse 2SMR analysis

a GWAS used to extract information on the genotype–outcome associations
b Meta-EWAS of prevalent type 2 diabetes (n=3428) [6]
Associations were considered significant at p<0.002 or α=0.05/30 CpGs analysed in the reverse 2SMR analysis

CpG Chr Nearest gene GWASa Meta-EWAS of type 2  diabetesb MR Wald ratio

Effect (95% CI) p value OR (95% CI) Effect (95% CI) p value

cg25536676 1 DHCR24 Mahajan et al [20] −0.008 (−0.011, −0.004) 5.39×10−6 1.43 (1.15, 1.78) 0.36 (0.14, 0.58) 0.001
cg11851382 1 PPAP2B (PLPP3) Wood et al [32] −0.008 (−0.011, −0.005) 6.42×10−6 0.29 (0.12, 0.67) −1.24 (−2.09, −0.4) 0.004
cg10082515 7 EIF3IP1 Wood et al [32] −0.013 (−0.019, −0.008) 7.46×10−6 0.68 (0.52, 0.89) −0.38 (−0.65, −0.11) 0.005
cg07212837 8 GRINA Mahajan et al [20] 0.006 (0.004, 0.009) 3.28×10−6 1.09 (1.02, 1.17) 0.09 (0.02, 0.16) 0.018
cg16765088 15 SYNM Wood et al [32] −0.011 (−0.014, −0.007) 5.50×10−10 1.72 (1.02, 2.9) 0.54 (0.02, 1.07) 0.040
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association between the observational and the bidirectional 
causal analysis (Table 4). For four of the top six CpGs previ-
ously identified in a meta-EWAS of type 2 diabetes that had 
bidirectional 2SMR data (CpGs in TXNIP, HDAC4, SYNM 
and ABCG1), the observational and causal effects were con-
sistent only at HDAC4 (cg00144180). At this CpG, the MR 
results suggested that the true direction of association was 
from DNAm to type 2 diabetes, similar to what we observed 
at the CpG cg16765088 in SYNM (ESM Table 7). For the 
CpGs cg19693031 (TXNIP) and cg06500161 (ABCG1), 
the results of the 2SMR analysis were inconclusive (i.e. 
large p values in both directions of the analysis). The CpG 
cg00574958 in CPT1A, previously shown as causally associ-
ated with fasting glucose [7], was not associated with type 
2 diabetes in the single direction in which it was analysed 
(forward 2SMR: type 2 diabetes to DNAm).

In silico interrogation of the functional role 
of meta‑EWAS CpGs analysed by bidirectional 2SMR

Results of the in silico analysis suggested that CpGs included 
in the bidirectional 2SMR analysis were enriched for eQTMs 
(OR 5.4, 95% CI 2.7, 11.1, p=1.5×10–7) (Table 5). We also 
interrogated the enrichment of meta-EWAS CpGs for traits 
included in the EWAS Catalog, categorising CpGs into three 
groups according to their likely causal direction of effect based 
on the bidirectional 2SMR analysis (see Methods, Functional 
inspection of MR signals using publicly available databases). 
Common to all groups was enrichment for ancestry/ethnicity 

and anthropometric and cardiometabolic traits. Unique to the 
first group (type 2 diabetes likely to be causal of DNAm) was 
enrichment for neurological and perinatal traits, while unique 
to the second group (DNAm likely to be causal of type 2 
diabetes) was enrichment for lipid lipoproteins, alcohol and 
metabolites. In the third group of CpGs with an inconclusive 
direction of association, we found enrichment for all the above 
traits in addition to age and tissue type. Forest plots summa-
rising the results of the enrichment analysis are presented in 
ESM Fig. 3.

Discussion

In this study we conducted a bidirectional 2SMR analysis to 
investigate the direction of causality between prevalent type 
2 diabetes and DNAm at 58 CpGs previously identified in 
a meta-EWAS of type 2 diabetes among European popula-
tions. In the forward 2SMR analysis, in which we exam-
ined if type 2 diabetes was causal of differences in DNAm, 
we interrogated causality at all 58 meta-EWAS CpGs. No 
tests passed our p value threshold. The CpG cg20812370 
(PBX1) had the smallest p value (p=0.002), with similar 
results found in sensitivity analyses. For the reverse 2SMR 
analysis, in which DNAm was the exposure, we tested cau-
sality at 30 of the 58 meta-EWAS CpGs. We demonstrated 
that elevated DNAm at cg25536676 (DHCR24) was causally 
associated with an increased risk of type 2 diabetes, which 
is inconsistent with previous observational evidence. By 
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Fig. 4  Summary of evidence from the reverse 2SMR analysis for the 
association between inverse normal transformed residuals of DNAm 
at five meta-EWAS CpGs and risk of prevalent type 2 diabetes. The 
CpGs illustrated showed the smallest p values in the reverse 2SMR 
analysis. (a) Volcano plot showing MR estimates using the Wald 
ratio and a single SNP as a proxy for each CpG analysed. The CpG 
highlighted in red (cg25536676 [DHCR24]) was identified as caus-
ally associated with type 2 diabetes (p=0.001). The green dots repre-

sent CpGs with an unadjusted p<0.05 or –log10 (p value) >1.3 in the 
2SMR analysis. The vertical dashed line represents the line of null 
associations at OR=1.0. (b) Forest plot showing means and SEMs 
of the causal estimates of the association between DNAm and T2D 
(outcome) for the top five CpGs identified in the reverse 2SMR analy-
sis. The results for each CpG are shown according to the MR method 
applied, which differed only for the CpG cg25536676 (DHCR24), 
proxied by three mQTL. T2D, type 2 diabetes
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assessing the MR and observational estimates, we attempted 
to infer the likely causal direction for the 30 CpGs analysed 
bidirectionally. Considering the consistency of the direction 
of causality with estimates from the observational analysis, 
as well as the smallest p value in the 2SMR analysis (p<0.1), 
we concluded that, for 15 (50%) of the 30 CpGs, DNAm 
was likely to be causal of type 2 diabetes and for 10 (33%) 
of the 30 CpGs type 2 diabetes was likely to be causal of 
DNAm; for the remaining five (17%) CpGs the results were 
inconclusive. In silico analyses showed that some of the 
CpGs analysed correspond to eQTMs, and that CpGs may 
be enriched for specific traits depending on the direction of 
causality predicted by the 2SMR analysis.

Findings of the forward 2SMR analysis

No associations were identified in the forward 2SMR analy-
sis. This may be because there were power limitations of 
the data available for the analysis of the genotype–outcome 
association (i.e. ALSPAC-ARIES vs GoDMC). We could 
not confirm the previously reported nominal and robust asso-
ciations of CPT1A methylation with type 2 diabetes [11] and 
fasting glucose [7] in our 2SMR analysis.

Findings of the reverse 2SMR analysis

The results of the bidirectional 2SMR analysis suggested that 
most associations identified relate to differences in DNAm 
influencing the risk of type 2 diabetes, rather than the oppo-
site, with the most robust evidence obtained at cg25536676 
(DHCR24). We found that increased levels of inverse normal 
transformed residuals of DNAm at this CpG were associ-
ated with a 43% higher risk of type 2 diabetes and this result 
was consistent in various sensitivity analyses; however, this 
was opposite to the result found in the observational analysis 
[6]. One reason for the opposite direction of effect observed 
between the observational meta-EWAS and the MR analysis 
at cg25536676 is residual confounding of the observational 
analysis. Potential confounding factors include BMI, lipid pro-
file or medication status [39]. Observational analysis at other 
DHCR24 CpG sites has also identified an inverse relationship 
between methylation and incident type 2 diabetes but this was 
attenuated after adjusting for smoking, BMI and follow-up time 
[12]. We are not aware of other studies assessing the causal 
association between a CpG in DHCR24 and type 2 diabetes, but 
there is evidence of causality with LDL-cholesterol (LDL-C) 
levels in the same locus [40] and the direction of association 

Table 4  Bidirectional comparison of MR estimates obtained for CpGs associated with type 2 diabetes with significance or borderline signifi-
cance in either direction of the 2SMR analysis

a Meta-EWAS of prevalent type 2 diabetes (n=3428) [6]
Associations were considered significant at p<1.33×10–7 in the meta-EWAS of T2D, at p<0.001 in the forward 2SMR analysis and at p<0.002 
in the reverse 2SMR analysis
b CpGs identified as having significance or borderline significance (p<0.05) in the reverse 2SMR analysis. CpGs did not have significance or bor-
derline significance in the forward 2SMR analyses
c CpGs identified as having borderline significance (p<0.05) in the forward 2SMR analysis, either in IVW (this table) or in sensitivity analyses 
(MR-Egger, weighted mode or weighted median; see Table 2 for test statistics)
d The causal direction for CpGs was deemed to be inconclusive when 2SMR data were available in only one direction and p>0.1, or if 2SMR 
data were available bidirectionally but in both cases p>0.1

CpG Nearest gene Meta-EWAS of  T2Da Forward 2SMR Reverse 2SMR Likely causal 
direction

(T2D → DNAm) (DNAm → T2D)

Estimate (95% CI) p value Estimate (95% CI) p value 
(IVW)

Estimate (95% CI) p value 
(Wald 
ratio)

cg11851382 PPAP2Bb 
(PLPP3)

−0.008 (−0.011, −0.004) 6.42×10−6 0.03 (−0.09, 0.15) 0.603 −1.24 (−2.09, −0.40) 0.004 DNAm → T2D

cg20812370 PBX1c −0.007 (−0.009, −0.004) 7.40×10−7 −0.18 (−0.30, −0.07) 0.002 – – T2D → DNAm
cg25536676 DHCR24b −0.008 (−0.011, −0.004) 5.39×10−6 0.04 (−0.08, 0.16) 0.490 0.36 (0.14, 0.58) 0.001 DNAm → T2D
cg20456243 SPEGc −0.007 (−0.011, −0.004) 9.99×10−6 −0.07 (−0.19, 0.06) 0.304 0.08 (−0.12, 0.29) 0.429 T2D → DNAm
cg10082515 EIF3IP1b −0.013 (−0.019, −0.008) 7.46×10−6 −0.05 (−0.16, 0.07) 0.443 −0.38 (−0.65, −0.11) 0.005 DNAm → T2D
cg07212837 GRINAb 0.006 (0.004, 0.009) 3.28×10−6 −0.07 (−0.2, 0.06) 0.304 0.09 (0.02, 0.16) 0.018 DNAm → T2D
cg24686009 RAP1Bd −0.002 (−0.003, −0.001) 1.19×10−6 0.004 (−0.11, 0.12) 0.942 – – Inconclusive
cg16765088 SYNMb −0.011 (−0.014, −0.007) 5.50×10−10 −0.08 (−0.20, 0.04) 0.188 0.54 (0.02, 1.07) 0.04 DNAm → T2D
cg01577083 RBFOX1c −0.011 (−0.016, −0.006) 7.93×10−6 −0.15 (−0.28, −0.02) 0.023 0.00 (−0.32, 0.32) 1.00 T2D → DNAm
cg26766064 MIR657c −0.007 (−0.009, −0.004) 5.17×10−6 −0.10 (−0.22, 0.02) 0.096 – – T2D → DNAm
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is consistent between both traits (type 2 diabetes and LDL-C). 
Thus, the association we found in the MR analysis between type 
2 diabetes and DNAm at cg25536676 (DHCR24) may reflect 
an underlying effect of LDL-C on DNAm at DHCR24. No evi-
dence of heterogeneity or pleiotropic effects was found for the 
association at cg25536676 (DHCR24). DNAm at cg25536676 
has been previously found in association with total cholesterol 
[41] in whole blood and with perinatal traits such as gestational 
age [42] and birthweight [43] in cord blood.

Other CpGs in the region of DHCR24 (cg17901584 and 
cg27168858) have been associated with HDL-cholesterol 
(HDL-C) [41], triglycerides [44], fasting insulin [45, 46], 
BMI,  HbA1c, incident type 2 diabetes [46], statin use [39], 
waist circumference [47] and LDL-C [40]. Both nearby CpGs 
in DHCR24 were positively associated with levels of HDL-C 
and LDL-C, but only cg17901584 was negatively associ-
ated with the remaining cardiometabolic traits. Using causal 
analysis to overcome the effect of residual confounding, it 
was previously demonstrated that LDL-C, but not HDL-C, 
was causally associated with methylation at DHCR24 [40]. 
In addition, it was suggested that the causal direction of effect 
was from LDL-C to changes in DNAm at DHCR24 and not 
the opposite. Our MR result at the type 2 diabetes-related 
CpG cg25536676 is directionally consistent with the associa-
tion identified with LDL-C at the nearby CpG in DHCR24. 
Evidence of causality has been identified between BMI 
(exposure) and DHCR24 DNAm (outcome) [46]. Because 
obesity and lipid dysregulation are well-known hallmarks 
of type 2 diabetes, and because DHCR24 encodes for an 
enzyme related to the metabolism of cholesterol (3-hydrox-
ysterol-24 reductase) [41], an association between methyla-
tion at DHCR24 and type 2 diabetes is plausible. Thus far, 
evidence suggests that cg25536676 (DHCR24) may act as a 
causal mediator in the association between known risk fac-
tors (i.e. LDL-C) and type 2 diabetes. However, a formal 
two-step 2SMR analysis needs to be implemented to prove 
this hypothesis. For LDL-C, there is observational [48] 
and causal [49] evidence supporting an inverse association 

between circulating LDL-C levels and type 2 diabetes. This 
association is in the opposite direction to that proposed for a 
putative mediating role of cg25536676 (DHCR24) in LDL-C 
metabolism and type 2 diabetes. Taken together, our results 
suggest that cg25536676 may be a new DNAm target for the 
early detection and treatment of type 2 diabetes.

Functional analysis

The in silico analysis using data from the previous EWAS 
showed that CpGs detected as being potentially causal of type 
2 diabetes may be associated with lipid lipoproteins, metabo-
lites and anthropometric and cardiometabolic traits, all of 
which are involved in the onset of type 2 diabetes. For com-
parison, CpGs that were likely to be secondary to the effects 
of type 2 diabetes (in PBX1, SPEG, MIR657 and RBFOX1) 
based on the results of the 2SMR analysis were enriched for 
perinatal and neurological traits in addition to cardiometabolic 
and anthropometric traits. Although not conclusive, these 
results indicate that DNAm may be involved in the devel-
opment and progression of type 2 diabetes through different 
mechanisms related to specific stages in the pathophysiology 
of the disease. We hypothesise that the observed enrichment 
for ancestry/ethnicity among type 2 diabetes CpG sites iden-
tified in European populations may highlight common con-
founders or exposures (e.g. differences in cell composition or 
type 2 diabetes risk factors) between populations [50].

Strengths and limitations

Our study has several strengths. First, we leveraged large exist-
ing datasets to extract genetic associations with type 2 diabe-
tes and DNAm. Second, we analysed causality bidirectionally 
to disentangle the true direction of association and ruled out 
reverse causation at CpGs previously detected in the context of 
prevalent type 2 diabetes. We also conducted sensitivity analy-
ses to validate assumptions of the MR analysis and we demon-
strated that in each direction of the analysis we were unlikely 

Table 5  Look up of eQTMs among meta-EWAS CpGs included in the bidirectional 2SMR analysis

a Association estimates as retrieved from the BIOS QTL browser [36]

CpG Transcript Chr CpG position Transcript position Nearest gene Beta (SE)a p  valuea FDR

cg14476101 ENSG00000092621 1 120255944 120202421 PHGDH 0.34 (0.04) 2.1×10−55 <0.001
cg19693031 ENSG00000117289 1 145441552 145438469 TXNIP −0.12 (0.04) 7.1×10−8 9.3×10−6

cg12593793 ENSG00000160789 1 156074135 156052364 LMNA −0.21 (0.04) 5.1×10−18 <0.001
cg20456243 ENSG00000072195 2 220352428 220299568 SPEG 0.08 (0.04) 2.4×10−5 6.0×10−3

cg00574958 ENSG00000110090 11 68607622 68611878 CPT1A −0.17 (0.04) 3.1×10−20 <0.001
cg11024682 ENSG00000072310 17 17730046 17740325 SREBF1 −0.19 (0.04) 4.5×10−15 <0.001
cg18181703 ENSG00000184557 17 76354573 76356158 SOCS3 0.13 (0.04) 1.1×10−6 3.3×10−4

cg27037013 ENSG00000237945 21 35320619 35287838 LINC00649 0.14 (0.04) 4.8×10−7 1.3×10−4

cg06500161 ENSG00000160179 21 43656587 43619799 ABCG1 −0.32 (0.04) 2.2×10−37 <0.001
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to be affected by weak instrument bias. In addition, we ran in 
silico functional analyses to facilitate biological interpretation 
of the MR findings. Study limitations included the use of a 
smaller outcome sample in the forward 2SMR analysis. In the 
reverse 2SMR analysis (DNAm to type 2 diabetes), we had few 
proxies to predict DNAm at the CpGs of interest (~1 mQTL/
CpG). This prevented us from obtaining stronger evidence of 
causality and conducting MR sensitivity analyses. Because up 
to 9.2% overlap was present between the exposure and the out-
come samples in the reverse 2SMR analysis, the results need 
to be interpreted with caution because of potential bias. CpGs 
were selected from an observational EWAS of type 2 diabetes 
in European populations, which may limit the generalisability 
of the results to other population groups. Use of blood DNA 
rather than metabolically active tissue samples may limit inter-
pretability. Finally, the validity of the observational and causal 
associations at DHCR24 need to be confirmed before this evi-
dence can be clinically implemented in the early detection and 
treatment of type 2 diabetes. Future studies would benefit from 
the use of multiethnic cohorts throughout the observational 
and causal inference stages of the analysis. Similarly, a two-
step 2SMR analysis may be required to investigate the role of 
DNAm as a potentially causal mediator between known risk 
factors and type 2 diabetes.

Conclusions

This study assessed causality between DNAm and type 2 
diabetes in a bidirectional 2SMR framework at CpG sites 
identified from a meta-EWAS of prevalent disease. We had 
more power to identify causality from DNAm to type 2 dia-
betes than in the reverse direction, for which PBX1 was the 
signal most likely to be associated with type 2 diabetes. We 
demonstrated that a CpG at DHCR24, a gene related to the 
metabolism of lipids, was causally associated with type 2 
diabetes. Further validation of causal associations is needed 
using larger and better-powered samples to extract genetic 
associations, especially when DNAm is the exposure.
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