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Protocols for classically training quantum generative models on probability distributions
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Quantum generative modeling (QGM) relies on preparing quantum states and generating samples from
these states as hidden—or known—probability distributions. As distributions from some classes of quantum
states (circuits) are inherently hard to sample classically, QGM represents an excellent test bed for quantum
supremacy experiments. Furthermore, generative tasks are increasingly relevant for industrial machine learning
applications, and thus QGM is a strong candidate for demonstrating a practical quantum advantage. However, this
requires that quantum circuits are trained to represent industrially relevant distributions, and the corresponding
training stage has an extensive training cost for current quantum hardware in practice. In this work, we propose
protocols for classical training of QGMs based on circuits of the specific type that admit an efficient gradient
computation, while remaining hard to sample. In particular, we consider instantaneous quantum polynomial
(IQP) circuits and their extensions. Showing their classical simulability in terms of the time complexity, sparsity,
and anticoncentration properties, we develop a classically tractable way of simulating their output probabil-
ity distributions, allowing classical training to a target probability distribution. The corresponding quantum
sampling from IQPs can be performed efficiently, unlike when using classical sampling. We numerically
demonstrate the end-to-end training of IQP circuits using probability distributions for up to 30 qubits on a regular
desktop computer. When applied to industrially relevant distributions this combination of classical training
with quantum sampling represents an avenue for reaching advantage in the noisy intermediate-scale quantum
(NISQ) era.

DOI: 10.1103/PhysRevA.108.042406

I. INTRODUCTION

Recent breakthrough works in quantum computing
demonstrated an improved scaling for sampling problems,
leading to so-called quantum supremacy [1]. While an exact
boundary of classical simulation is still to be established [2],
for the carefully selected tasks of random circuit sampling
and boson sampling [3,4] one achieves an exponential
separation for the task of generating samples (bit strings
from measurement readout). Generally, the task of generating
samples from underlying probability distributions is the basis
of generative modeling, and represents a highly important part
of classical machine learning. Its quantum version—quantum
generative modeling (QGM)—relies on training quantum
circuits as adjustable probability distributions that can model
sampling from some particular desired distribution [5–10].
QGM exploits the inherent superposition properties of a
quantum state generated from a parametrized unitary, along
with the probabilistic nature of quantum measurements,
to efficiently sample from a trainable model. QGMs have
potential applications in generating samples from solutions
of stochastic differential equations (SDEs) for simulating
financial and diffusive physical processes [11,12], scrambling
data using a quantum embedding for anonymization [13–15],
and generating solutions to graph-based problems like max-
imum independent set or maximum clique [16,17], among
many others. Given the successes of quantum sampling
this makes QGM a promising contender for achieving a
quantum advantage. However, to date demonstrating QGM
of practical significance has eluded the field as training

specific generative models is a complex time-intensive
task.

The key asset of quantum generative modeling is that
quantum measurements (collapsed to one of the eigenstates
of a measurement operator) provide a new sample with each
shot. Depending on the hardware platform, generating one
sample can take on the order of a few hundreds of microsec-
onds to several milliseconds [18–24]. For large probability
distributions, represented by entangled 50+ qubit registers,
performing the classical inversion is indeed much more costly.
However, often the challenge comes from the inference side,
when quantum circuits are required to match specific dis-
tributions. Typically, training of quantum generative models
utilizes gradient-based parametric learning, similarly to train-
ing of deep neural networks [25]. Parametrized quantum
circuits (also referred as quantum neural networks, QNNs)
are trained by estimating the gradient of gate parameters θ.
Moreover, the gradient of a full QGM loss has to be estimated
with respect to θ. For quantum devices this can be done by
the parameter-shift rule and its generalization [26–28], where
number of circuits estimation increases linearly with the num-
ber of parameters. The overall training cost corresponds to
the measurement of the loss function at each iteration step.
In the case of quantum circuit Born machine the loss may cor-
respond to Kullback-Leibler (KL) divergence [9], Sinkhorn
divergence [29], or maximum mean discrepancy (MMD) [30],
and may require extensive sampling for resolving the loss
as an average. For quantum generative adversarial networks
(QGAN) the loss minimization is substituted by the minimax
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FIG. 1. Schematic of different steps in training a quantum
generative model using QCBM and DQGM architectures. In a con-
ventional QCBM setup, the loss and gradient estimation is done
using input data samples directly, while in our work we focus on
an explicit version of QCBM and DQGM, allowing for classical
training.

game [31,32] requiring multicircuit estimation. In all cases the
convergence is not guaranteed due to exponential reduction of
gradients [33].

In this work we investigate the possibility of training the
parameters of quantum generative models classically, while
still retaining the quantum advantage in sampling [34]. For in-
stance, the ability of classical training for a different paradigm
was shown for Gaussian boson sampling (GBS) devices [35],
but under certain conditions of fixing an initial set of samples
and nonuniversal operation. For the digital quantum comput-
ing operation, results from previous works [36,37] motivate
the possibility that estimating probability density classically
can be feasible without losing the sampling complexity. We
explore this possibility in more detail and use this further
to develop methods to train circuits classically to output
a desired distribution using a gradient-based approach. We
show that our method is feasible using numerics for up to
30 qubits on a regular desktop computer. We explore dif-
ferent families of quantum circuits in detail and perform
numerical studies to study their sampling complexity and
expressivity. For expressivity studies in particular, we look at
training a differentiable quantum generative model (DQGM)
[38–40] architecture which allows training in the latent
(or “frequency”) space, and sampling in the bit-basis. This
presents a good testing ground for applying the proposed
method to explicit quantum generative models. We also show
that quantum circuit Born machines (QCBMs) can be trained
classically for certain distributions, while still hard to sam-
ple. Our protocols contribute towards tools for achieving the
practical advantage in sampling once the target distributions

are chosen carefully. We highlight the differences between
well-known strategies for QGM and the method discussed in
the paper in Fig. 1.

II. METHODS

A. Preliminaries: QCBM and DQGM as implicit
vs explicit generative models

Generally, there are two types of generative mod-
els. Explicit generative models assume a direct access
(or “inference”) to probability density functions (PDF). At
the same time, implicit generative models are described by
hidden parametric distributions, where samples are produced
by transforming randomness via inversion procedure. These
two types of models have crucial differences. For example,
training explicit models involves loss functions measuring
distances between a given PDF, ptarget (x), and a model PDF,
pmodel(x), for example, with a mean square error (MSE) loss
which is defined as

LMSE =
∑

x

|pmodel(x) − ptarget (x)|2, (1)

where explicit knowledge of the ptarget (x) is used. On the
other hand, training implicit models involves comparing
the samples generated by the model with given data sam-
ples (e.g., with a MMD loss [30]). The MMD loss is
defined as

LMMD = E
x∼pmodel,y∼pmodel

K (x, y) − 2 E
x∼pmodel,y∼ptarget

K (x, y)

+ E
x∼ptarget,y∼ptarget

K (x, y), (2)

where K (x, y) is an appropriate kernel function. The MMD
loss measures the distance between two probability distribu-
tions using samples drawn from the respective distributions as
shown in the above equation. In the context of QGM, QCBM
is an excellent example of implicit training where typically
a MMD like loss-function is used. On the other hand, recent
work showcases how explicit quantum models such as DQGM
[38] and quantum quantile mechanics [11] benefit from a
functional access to the model probability distributions, al-
lowing input-differentiable quantum models [39,40] to solve
stochastic differential equations or to model distributions with
differential constraints.

Let us consider a quantum state |�〉 created by apply-
ing a quantum circuit Û (which can be parametrized) to
a zero basis state. For a general Û , simulating the output
PDF values that follow the Born rule pmodel(x) = |〈x|�〉|2
and producing samples from |�〉 are both classically hard.
But what if estimating the PDF for certain Û to sufficient
accuracy is classically tractable? In this case one can use
an explicit training, and at the inference stage have access
not only to probabilities but also the capacity to sample
efficiently via quantum measurements. This scenario de-
scribes a potential for classical training of quantum generative
models.

To enable the classical training, we propose a strategy
described in a schematic shown in Fig. 2. Here, our goal
is finding circuits satisfying “classical training + quantum
sampling” conditions.
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FIG. 2. Workflow used for classical training of quantum samplers, both in the DQGM and the QCBM setting. First, we identify circuits
Û suitable for classically tractable probability estimation and hard sampling (see the right chart). For this we (1) check that a circuit admits
additive polynomial estimation of probability; (2) compare the time complexity for exact probability calculation with known circuit families;
(3) verify the sparseness of the probability distributions, depending on the number of qubits n; and (4) measure anticoncentration/t-sparseness
or cross entropy difference using sampling. Analyzing these properties, we confirm whether Û admits classical training and computationally
hard sampling. After the classical training is performed variationally by minimizing DQGM/QCBM loss, we use optimized parameters for
quantum sampling circuits.

B. π-simulable circuits that are hard to sample

We note that certain families of quantum circuits, including
Clifford [41,42] and match-gate sequences [43–45], admit a
classical tractable estimation of probabilities pmodel(x). At the
same time, for these circuits the generation of samples is also
classically “easy,” thus limiting the potential for achieving a
quantum advantage. However, there exist families of quantum
circuits that allow for complexity separation between the two
tasks. For instance, in Ref. [36] the authors show that one can
estimate probabilities for IQP (instantaneous quantum poly-
nomial) circuits [46,47] up to an additive polynomial error,
while retaining a classical hardness for sampling. For a typical
IQP circuit with input |0⊗n〉, the amplitude to obtain a certain
bit string x at output is given by

�(x) = 〈x|ĤÛ Ĥ |0⊗n〉, (3)

where Û consists of single and two-qubit Z-basis rotations
and Ĥ represents the Hadamard gate applied to all the
qubits. Moreover, it is known to be classically hard to even
approximately sample from IQP circuits in an average case
[48]. Therefore, such circuits offer an opportunity for explicit
training of a quantum generative model, and a potential for
quantum advantage in sampling. IQP circuits by its structure
are also strongly related to the so-called forrelation problem
[49–51], they only differ by an additional Ĥ layer in the
middle. This corresponds to calculating an overlap between
states defined as

� = 〈0⊗n|ĤÛ2ĤÛ1Ĥ |0⊗n〉 (4)

after the action of quantum circuit ÛF := ĤÛ2ĤÛ1Ĥ , where
Û1, Û2 are circuits that consist of z-basis rotations R̂z

and Ising-type propagators R̂zz. Hereafter, Ĥ is a layer of
Hadamard gates applied to all n qubits. It was shown that �

can be calculated efficiently classically. Therefore, from the
squared forrelation |�|2 one can estimate the probability to

obtain |0⊗n〉 at the output after the action of ÛF, provided the
input is |0⊗n〉. At the same time, in the following we show
that the variant of forrelation can be used for achieving the
sampling advantage.

Classical estimation of probability using the forrelation has
been shown to be possible [52] under the condition that the
circuit’s entangling properties are constrained. To understand
this, we use the concept of connectivity in graph theory. Con-
sider a graph G with n nodes, where each node represents
a qubit in a quantum circuit. Two nodes are connected by
an edge if there is a two-qubit entangling gate between the
corresponding qubits in the circuit. Typically IQP circuits
have all-to-all connectivity, usually by using a two-qubit en-
tangling gate. However, if we restrict the connectivity such
that the resulting connectivity graph is bipartite, we can obtain
probabilities up to an additive polynomial error classically
efficiently for these “extended-IQP” circuits. More concretely,
whenever the connectivity graph can be partitioned into two
disjoint subsets such that the tree-decomposition of each of
the subsets has a small tree width, then a classical algorithm
is possible with a run time of O(n4wε−2), where w is the
maximum tree width of the decomposition [52], n is the
number of qubits, and ε is error in the estimated probability.
We show examples of a bipartite graph with four nodes and
a complete graph in Appendix, as well as the corresponding
circuits. In the rest of the text, we use the term extended-IQP
circuits to mean these quantum circuits which have a bipartite
connectivity graph and an additional Hadamard layer between
the set of commuting gates.

C. Training a DQGM efficiently classically

We focus on DQGM circuits as an explicitly trained
generative methodology, although the ideas hold also for
architectures typically considered as implicit, like QCBM
[29,30] or QGAN [53]. DQGMs allow for separation of
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training and the sampling stages and allow leveraging of
frequency taming techniques like feature map sparsification,
qubit-wise learning, and Fourier initialization for improving
and simplifying the training. DQGM also naturally allows for
generative modeling for sampling from solutions to stochastic
differential equations, inspired by physics-inspired neural
networks (PINN) [54,55] and derivative quantum circuit
(DQC)-like [38] approaches for finding solutions to the
time-dependent probability density function and sampling
from that. The training part of the DQGM consists of a
kernel Ûφ (x) followed by a variational circuit Ûθ . Following
Ref. [38], we define Ûφ (x) as

Ûφ (x) =
n∏

i=1

[
R̂z

i

(
2πx

2i

)]
Ĥ , (5)

where R̂z
i are single-qubit rotation gates around the

z axis, which are preceded by Ĥ = ∏n
i=1 Ĥi as the layer

of single-qubit Hadamard gates. The operator Ûφ (x) maps
an initial state |φ〉 (taken as a state of |0⊗n〉 for all qubits) to
a product state |x̃〉, which is a latent space representation of
the variable x. The transform ÛT φ transforms this to a binary
state |x〉 as a bijection. This circuit is dependent on the feature
map and for the above described map [Eq. (5)] corresponds to
the inverse quantum Fourier transform (iQFT). The training
stages can be described as a sequence of steps,

|φ〉 Ûφ (x)−−→ |x̃〉 ÛT φ−−→ |x〉 ÛθÛ †
T φ−−−→ Ptrain(0⊗n), (6)

where Ptrain(0⊗n) denotes finding classically the probability
of observing 0⊗n bit string.

Similarly, for the sampling stage we have

|φ〉 ÛT φÛ †
θ−−−→ Psampling(|x〉〈x|), (7)

where at the end we perform quantum measurements in the
computational basis. It can be shown that for a given x,
Ptrain(0⊗n) = Psampling(|x〉〈x|). We therefore train Ûθ so that
Ptrain(0⊗n) = ptarget (x) for all values of x, where ptarget (x) is
the target probability distribution we want to sample from.

Next, to be able to train the DQGM efficiently, we now
rewrite the corresponding circuits Ûφ (x)Ûθ as an extended-
IQP circuit. The extended IQP has the form ĤÛ1ĤÛ2Ĥ where
the depth is doubled. Thus, we can assign Ûφ (x) = ĤÛ1(x)
and Ûθ = Û1ĤÛ2Ĥ . Here we have split up Û1 so that part
of it can be used as a feature map (consisting of single-qubit
x-dependent R̂z rotations) and the remaining consisting of R̂z

and R̂zz with bipartite connectivity as a part of the variational
ansatz Ûθ . Similarly, the DQGM training circuit can be written
as an IQP circuit by setting Ûφ (x) = ĤÛ1 and Ûθ = Û2Ĥ .
Note that in the case of IQP Û1 and Û2 do not have to be
limited to bipartite connectivity.

We now show that gradients with respect to circuit pa-
rameters θ can also be classically estimated efficiently for
an extended-IQP circuit. Here we assume a DQGM setting,
although the conclusions hold for a QCBM as well (which we
show in the next section). We have seen that for an extended-
IQP circuit, we can estimate the probability of having output
|0⊗n〉, i.e., pmodel(x) = p(0) = tr{|0⊗n〉〈0⊗n|ρ̂out} can be es-
timated efficiently, where ρ̂out is the output density matrix.

Suppose we have a gate Û2, j = eiθ j P̂j/2 in Û2 where P̂j are the
Pauli operators. Then the gradients using parameter-shift rule
[26] can be written as

∂ pmodel(x)

∂θ j
= tr[|0⊗n〉〈0⊗n|ĤÛ2,l: j+1Û2, j (π/2)ρ̂ j

× Û †
2, j (π/2)Û †

2,l: j+1Ĥ ]

− tr[|0⊗n〉〈0⊗n|ĤÛ2,l: j+1

× Û2, j (−π/2)ρ̂ jÛ
†
2, j (−π/2)Û †

2,l: j+1Ĥ ], (8)

where ρ̂ j = Û2,1: j ĤÛ1Ĥ |0⊗n〉〈0⊗n|ĤÛ †
1 ĤÛ †

2,1: j . Since both
the terms in the above equation are probabilities of obtaining
|0⊗n〉 from the extended-IQP circuit, they can be estimated
efficiently. A similar approach also works for an IQP circuit.

Note that in the context of solving SDEs [11,38,56], it
can be shown that differentials with respect to x such as
d pmodel(x)/dx and higher-order derivatives can also be esti-
mated efficiently classically.

We now show how gradients of probabilities with respect
to circuit parameters θ can be estimated classically efficiently.
Working in the DQGM setting and using the extended-IQP
architecture, we know that

p(x) = P(0) = |�|2, (9)

where we use the definition of forrelation � from Eq. (4) and
write Û1 = Û1(θ1) and Û2 = Û2(θ2) as parametrized trainable
layers. Following Ref. [52], � can be written as

� =
∑

y

P(y)R(y), (10)

where R(y) = 〈β|y〉
〈α|y〉 , |α〉 = (ĤA ⊗ ÎB)Û1Ĥ |0⊗n〉, |β〉 = (ĤB ⊗

ÎA)Û †
2 Ĥ |0⊗n〉, and P(y) = |〈y|α〉|2. Thus, � can be estimated

by sampling from P(y). One way of calculating the gradients
with respect to θ would be to use the parameter shift rule,
which has been described in Eq. (8). However, this would
involve resampling from P(y) with shifted circuit parameters.
For a large number of parameters this becomes inefficient.
Instead, we now use the following approach: The derivative
of |�|2 can be written as

d|�|2
dθ

= �∗ d�

dθ
+ d�∗

dθ
�. (11)

Using Eq. (10), we differentiate � with respect to θ and get

d�

dθ
=

∑
y

dP(y)

dθ
R(y) +

∑
y

P(y)
dR(y)

dθ
. (12)

The second term can be estimated using the same samples
used to estimate �. For the first term we can write∑

y

dP(y)

dθ
R(y) =

∑
y

P(y)
1

P(y)

dP(y)

dθ
R(y). (13)

Now, using samples drawn from P(y) we can estimate the
value of 1

P(y)
dP(y)

dθ
R(y). Thus, this method avoids the need

for repeated resampling from P(y) to estimate gradients.
Equations (11)–(13) can then be used to estimate the gradients
for |�|2.
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Although we have focused on using estimating probability
densities classically for training, for solving general QGM
problems we would also like to be able to estimate more
general observables or “cost functions.” These can involve
different sets of operators other than the zero state overlap. We
now show that for an extended-IQP circuit, also more general
expectation values can be calculated classically efficiently. For
example, let us consider an expectation value of the operator
� = ∑

i, j ZiZ j , where i, j index the qubits. These terms occur
in an Ising Hamiltonian which is used in the formulation of
binary optimization problems using digital or analog quantum
devices. For the extended-IQP circuit we can write

〈�〉 =
∑
i, j

〈0⊗n|ĤÛ †
p ĤÛ †

q ĤZiZ jĤÛqĤÛpĤ |0⊗n〉. (14)

We now consider a single term in the summation and consider
the term Z1Z2, and writing Î12 = ∑

a,b∈{0,1} |zazb〉〈zazb|, we get

〈Z1Z2〉 =
∑

a,b,c,d∈{0,1}
〈0⊗n|ĤÛ †

p Ĥ |zazb〉

× 〈zazb|Û †
q ĤZ1Z2ĤÛq|zczd〉〈zczd |ĤÛpĤ |0⊗n〉.

(15)

A single term in the summation can be written as

〈Ẑ1Ẑ2〉abcd =〈zazb|Û12|zczd〉〈0⊗n|ĤÛ †
p Ĥ |zazb〉

× 〈zczd |ĤÛpĤ |0⊗n〉, (16)

where Û12 = Û †
q,12Ĥ1Ĥ2Z1Z2Ĥ1Ĥ2Ûq,12, with Ĥi being the

Hadamard gate acting on qubit i, and the terms in Ĥ , Ûq which
do not contain terms for qubits 1,2 commute through Z1, Z2

and meet their conjugates and are converted to identity. This
term can be calculated classically efficiently since it is only
a two-qubit overlap integral. The second term in the above
product can be written as

〈0⊗n|ĤÛ †
p Ĥ |zazb〉〈zczd |ĤÛpĤ |0⊗n〉 =

= 〈0⊗n|ĤÛ †
p δ̂ÛpĤ |0⊗n〉,

(17)

where δ̂ = Ĥ |zazb〉〈zczd |Ĥ , which is a tensor product opera-
tor. The authors of Ref. [52] prove that this term can also
be calculated classically efficiently up to an additive poly-
nomial error. Hence, 〈Z1Z2〉 and consequently 〈�〉 can be
calculated classically efficiently. It can be similarly shown that
expectation values for operators like

∑
Zi can be calculated

classically efficiently. This means various expectation values
and thus different loss/cost functions can be estimated classi-
cally efficiently up to additive polynomial error. Therefore, the
extended-IQP circuits can be classically trained using not just
probability densities, but also a variety of cost functions based
on measuring expectation values of different observables. This
may be useful, for example, when one had to sample bit
strings which minimized a certain Hamiltonian.

D. Training a QCBM efficiently classically

In the QCBM setting, we estimate pmodel(x) directly using
classically simulated output bit strings for fixed input |0⊗n〉.
The amplitude to obtain a certain bit string x at the output of

an extended-IQP circuit can be written as

�x = 〈x|ĤÛ2ĤÛ1Ĥ |0⊗n〉. (18)

Writing |x〉 = (
∏k

i=1 Xi )|0⊗n〉, where i is indexed over loca-
tions where 1 occurs in state |x〉. Thus, we can write

�x = 〈0⊗n|
(

k∏
i=1

X̂i

)
ĤÛ2ĤÛ1Ĥ |0⊗n〉

= 〈0⊗n|Ĥ
(

k∏
i=1

Ẑi

)
Û2ĤÛ1Ĥ |0⊗n〉, (19)

where we used the fact that ĤiX̂i = ẐiĤi. Absorbing the
Ẑ gates into Û2, the above equation can be written as a
forrelation and thus can be computed classically efficiently.
Using Eq. (19), pmodel(x) can be computed. Similarly, just like
Eq. (8), the gradients with respect to θ can be written as

∂ pmodel(x)

∂θ j
= tr{|x〉〈x|ĤÛ2,l: j+1Û2, j (π/2)ρ̂ j

× Û †
2, j (π/2)Û †

2,l: j+1Ĥ ] − tr[|x〉〈x|Ĥ
×Û2,l: j+1Û2, j (−π/2)ρ̂ jÛ

†
2, j (−π/2)Û †

2,l: j+1Ĥ},
(20)

where ρ̂ j = Û2,1: j ĤÛ1Ĥ |0〉〈0|ĤÛ †
1 ĤÛ †

2,1: j . Since both the
terms in the above equation are probabilities of obtaining a
certain bit string x at the output of an extended-IQP circuit,
using Eqs. (18) and (19), they can be estimated classically.
However, as described in the previous section, estimating gra-
dients using the parameter shift rule will require re-sampling
from P(y) for shifted parameters. Similar to the DQGM
setting, we can estimate the gradients without the need for
resampling for each parameter by replacing � with �x and
using Eqs. (11)–(13).

E. Complexity of classical simulability:
Probabilities and sampling

As discussed before, to enable classical training and hard
sampling we need to check the properties of quantum cir-
cuits that we train. For this, we develop a workflow used for
studying different properties of the chosen circuits (see the
chart in Fig. 2, right). We start selecting a family of circuits
that allows additive polynomial estimation of probabilities.
To show that it is still hard to sample from, we show that
probabilities generated from these circuits are not polysparse
[36,42]. We use two different approaches to show this. One
approach involves numerical random sampling of these cir-
cuits and looking at their anticoncentration properties [57,58].
An output distribution of a unitary Û for some settings of its
parameters is said to anticoncentrate when

PrÛ∼μ

(
|〈x|Û |0〉|2 � α

N

)
� β (21)

for constants α, β, where N = 2n and Û is drawn from a
certain measure μ. For example, Ref. [58] shows a class
of families for which β = 1/e. The probability distributions
of these circuits along with families discussed in Ref. [59]
converge to the Porter-Thomas distribution. In Ref. [36], the
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authors prove that the anticoncentration and polysparsity can-
not coexist. Thus, if we show that probability distributions
from a family anticoncentrate, then we can conclude that
the probability distributions are not polysparse and hence are
hard to sample from. We use the approach discussed above
for studying systems with up 20 qubits. For a larger number
of qubits we use the fact that the probability distributions
converge to the Porter-Thomas distribution and use the cross-
entropy difference to approximately measure the distance with
the Porter-Thomas distribution. The cross-entropy difference
is defined as

�H (psamp) ≈ H0 − 1

m

m∑
j=1

ln
1

pU
(
xsamp

j

) , (22)

where H0 = ln(N ) + γ , and γ ≈ 0.577 is Euler’s constant.
pU (xsamp

j ) corresponds to the probability computed classically
for the generated samples only. The error in �H (psamp) is
given by κ/

√
m, where κ ≈ m. Thus, if we have a way of

generating a finite number of samples, we can approximately
characterize the distribution without the need of calculating all
the probabilities. This is especially useful for larger registers
(n � 25) where state-vector calculations for all the probabili-
ties (needed to measure anticoncentration or sparsity) rapidly
becomes unfeasible. This approach has been used for classical
benchmarking of data from random quantum circuits for ∼50
qubits [1,59].

To study resource requirements of various circuit families
we use tensor networks to represent our quantum circuits, and
we analyze their properties with classical simulation. Tensor
networks use a tree-based decomposition to estimate the time
complexity of calculating probabilities. This is done by es-
timating the size of the largest tensor during the contraction
process [60]. The maximum size depends on the contraction
order, and various algorithms are used to find the contraction
order which gives the smallest tensor size [2,61,62].

Apart from using anticoncentration, we can also measure
whether a probability is polysparse or not. This is done by
measuring the number of terms needed to ε-approximate it
with a sparse distribution. A t-sparse distribution, with only
t nonzero terms, can ε-approximate a probability distribution
P(X ) if and only if

∑
x |P(x) − Pt (x)| � ε [37]. Here, Pt (x) is

the probability distribution containing only the highest t terms
from Pt (x) as the nonzero terms. We know that for ε = 0, t =
N , where N = 2n (n is the number of qubits). Therefore, we
can approximate the behavior of t as t (ε) = N[1 − f (1/ε)],
where function f shows a polynomial behavior if the distri-
bution is polysparse. For an exponential behavior f ∼ e−1/ε ,
the distribution is dense. Therefore, after calculating t for
different values of ε, we calculate f (1/ε) = 1 − t/N and plot
this as a function of 1/ε.

III. RESULTS

We proceed to implement the proposed strategies in
practice. For enabling the classical training, we choose dif-
ferent quantum circuit families that include extended-IQP
circuits compared with product, Hadamard, IQP, and IQP one-
dimensional (1D)-chain circuits (see corresponding diagrams
in the Appendix). First, we compare the time complexity for

number of qubits
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FIG. 3. Time complexity for different families of circuits shown
on a logarithmic scale. We observe that for IQP and extended-IQP
the time complexity scales exponentially. Simple Hadamard circuits
has a constant complexity. For product circuits and IQP circuits in a
1D chain, we see that the complexity has a saturation behavior and
thus only a polynomial increase (also see inset).

different families shown in Fig. 3. These plots have been gen-
erated using Julia libraries YAOTOEINSUM for tensor network
representation of quantum circuits built in YAO, which is based
on the generic tensor contraction tool OMEINSUM [61–64]. As
expected, for product, Hadamard, and 1D chain, the maximum
size of the tensor during the contraction grows and quickly
saturates (see inset in Fig. 3). For IQP and extended IQP,
the time complexity grows linearly in the logarithmic scale.
This implies that the classical computational complexity for
calculating exact probabilities of the extended-IQP circuits,
just like for IQPs, is exponential in the number of qubits.

Next, we study the anticoncentration properties of quantum
circuits. Figure 4 shows the anticoncentration as a fraction of
nonuniform probabilities compared to random circuits with

number of qubits
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FIG. 4. Figure shows the anticoncentration properties of ex-
tended IQP, which has a bipartite connectivity graph, and IQP with
full connectivity. The fraction of probabilities � 1/2n is very close
to 1/e, which is shown by a dotted line. The error bars show the
standard deviation over 100 instances of unitary matrices for each
family.
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FIG. 5. Figure shows the total variation distance with respect to
the Porter-Thomas distribution. The distance rapidly approaches zero
as we increase the number of qubits. The plot shows the mean and
the variance for the total variation distance over 100 distributions for
each qubit number.

bipartite connectivity. The randomness is chosen as follows.
The first layer, the middle layer, and the end layer are all
composed of Hadamard gates. The R̂zz(θ ) and the R̂z(θ ) gates
are chosen such that θ = kπ/8, with k uniformly randomly
chosen from [0,1,...,7] [48]. We observe that this set of gates
approximates Û drawn uniformly randomly from the Haar
measure [33]. Specifically, we observe from Fig. 4 that the
fraction of probabilities >1/2n is very close to 1/e (dashed
line), which is a good indicator that the probabilities do indeed
anticoncentrate. The averaging is performed over 100 random
circuits for each qubit number.

We can also show that probabilities for these circuits
converge towards Porter-Thomas distribution for a greater

number of qubits, with the variance reducing as well. Figure 5
shows the total variation distance measured for numerically
obtained probability distributions for the extended-IQP circuit
for 100 random configurations with respect to the Porter-
Thomas distribution. The corresponding PDF is PPT(p) =
Ne−N p. Following Ref. [58], the variation distance is
defined as

||P − Q||TV := 1

2

∑
X∈�

|P(X ) − 1/m|, (23)

where we divide the set of probabilities into m equally
weighted bins [p0, ..., pm] and take

∫ pi+1

pi
PPTd p = 1/m. The

set � is the set of probabilities in the interval [pi, pi+1], where
i goes from 0 to m. Q is the set of probabilities observed
numerically over the set �. We observe the distance rapidly
approaching zero as the number of qubits is increased. We
continue to study the sparsity. In Figs. 6(a)–6(d) we show the
log-log plots of f (1/ε) vs 1/ε for different numbers of qubits.
The results are for a single random distribution. The down-
ward curvature shows a superpolynomial decay rate, which
indicates that the probability distribution is not polysparse.

Figure 7 shows the results of training a quantum generative
model as QNN based on the extended-IQP architecture for
six qubits for a Gaussian probability density function. The
circuit consists of an initial phase feature map as a part of
the extended-IQP architecture. Using the training stage as de-
scribed in Sec. II [Eq. (6)], we try to maximize Ptrain(0⊗n) for
different values of x by training Ûθ . For the cost function we
use the mean square error, L = ∑

x |pmodel(x) − ptarget (x)|2.
We see from Fig. 7(a) that the trained QGM is able to closely
follow the curve over the entire domain. The training has been
performed using 128 points and a phase-feature map defined
in Eq. (5). We then use the trained circuit to generate samples
using the sampling stage [Eq. (7)]. The results for 20 000 shots
is shown in Fig. 7(b).

FIG. 6. Plot of f (ε−1) vs ε−1 for a random probability distribution for different number of qubits (10, 12, 14, and 16) as a log-log plot. The
downward curvature is an indication of superpolynomial behavior of f (ε−1).
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FIG. 7. (a) Results for training QNN based on an extended-IQP circuit to generate a Gaussian probability density for six qubits. The
figure shows an excellent fit between the trained and the target distribution. (b) Result of using the trained circuit in the training stage to
generate samples. The plot shows count density for 20 000 shots. (c) How the MSE loss goes down for 100 training steps.

We also performed training for 30 qubits using the classical
algorithms to estimate probabilities and their gradients based
on Eqs. (10)–(13). To avoid issues related to barren plateau
for training a large number of qubits, we choose a particular
probability distribution for training. Specifically, we choose
p(x) to be a Gaussian probability density function from 0 to 63
and thus can be generated by effectively training qubits 1–6.
For qubits from 7 to 30, we apply the identity transformation
as an initial setting. To do this, while still using the code for
training 30 qubits, we apply the setup as shown in Fig. 8(a).
The feature map is applied to qubits 1–6. To apply an identity
transformation for the rest of the qubits we use the following
fixed settings:

1. The θs for all the two-qubit gates involving qubits 7–30
are set to 0.

2. The θs for all the single-qubit gates are set to π/2 (which
effectively sets the angle to π/4). These gates, along with the
three Ĥ layers in the extended-IQP architecture, effectively
implement identity transformation on these qubits.

We now allow all the parameters to be trained (including
for qubits 7–30). Starting with an initial identity transfor-
mation for qubits 7–30 ensures that the nonzero probability

density largely remains confined to the events involving qubits
1–6 during the entire course of the training. Figure 8(b) shows
the results of training for 32 points and 100 training steps. The
loss function value at convergence is 6.22 × 10−6. This simu-
lation took approximately 42 h on a regular desktop computer.
While effectively the distribution is defined over six qubits,
we stress that calculation of quantities like R(y), sampling
from P(y), and calculation of � as defined in Eq. (10) and
calculation of gradients involved all 30 qubits.

IV. CONCLUSIONS AND OUTLOOK

Our results show that certain circuit families, which we
here call extended IQP, can be trained classically by estimat-
ing probabilities up to an additive polynomial error, using the
explicit generative modeling paradigm. We show that these
circuits can be trained by estimating gradients classically in
QCBM and DQGM settings. Using these techniques, we train
a probability distribution for 30 qubits on a regular desktop
computer. At the same time we show that these circuits still
retain quantum advantage in terms of sampling. This we did
by looking at the anticoncentration as well as the t-sparseness

(a) (b)

,1:6( )∅ 1:6

∅ 7:30

FIG. 8. (a) Setup used to train a probability distribution for 30 qubits. Only the parameters involving qubits 1–6 are updated during
training, while the remaining qubits are kept unmodified. (b) Results of training the DQGM circuit with an extended-IQP architecture to output
a Gaussian probability distribution for x between 1 and 64 with 32 equally spaced training points (integers label consecutive bit strings).
The estimates to the model probability density after training are obtained using Eq. (9) with the obtained trained parameters. Loss values of
6.22 × 10−6 are reached at convergence.
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FIG. 9. (a) Qubit connectivity graph for all-to-all and bipartite qubit connectivity. (b) Extended-IQP circuit for qubits with bipartite
connectivity.

properties of the probability distributions up to 16 qubits. For
higher numbers of qubits, cross-entropy benchmarking using
samples based on tensor networks will be studied.

Recent work [65] has highlighted the difficulty of training
quantum generative models in the worst case, provided one
has access only to estimates of quantities related to the target
probability distribution. While in the case of QCBM training
using MMD loss this could be very important, in our case this
issue does not arise since we are assuming knowledge of the
target probability distribution.

So far we have focused on a single layer of Hadamards
in the middle of commuting gates. But it may be possible
to also extend these results to other single-qubit operators. In
addition it has been shown [52] that depth = 2 QAOA circuits
also allow additive polynomial estimation of the 〈ψ |Ĥprob|ψ〉,
thus allowing classical training of these circuits while still
showing quantum advantage in sampling. It could be an in-
teresting possibility to classically simulate quantum annealing
schedules to optimize annealing parameters. It would further-

more be interesting to study applications for this architecture
for optimization problems [66,67].
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APPENDIX: CIRCUITS

Figure 9(a) shows an example of a qubit connectivity graph
for an all-to-all (top) and bipartite (bottom) qubit connectivity.
Our extended-IQP circuits are limited to bipartite connectivity
to ensure classical training. Figure 9(b) show the extended-
IQP circuit corresponding to the bipartite graph in Fig. 9(a).

Figure 10 shows different architectures studied for compar-
ison of time-complexity with extended-IQP circuits in Fig. 3.
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FIG. 10. Different architectures studied: (a) Hadamard, (b) product, (c) IQP, and (d) IQP 1D chain.
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