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a b s t r a c t

The processing of numerals as visual objects is supported by an “Inferior Temporal Nu-

meral Area” (ITNA) in the bilateral inferior temporal gyri (ITG). Extant findings suggest

some degree of hemispheric asymmetry in how the bilateral ITNAs process numerals.

Pollack and Price (2019) reported such a hemispheric asymmetry by which a region in the

left ITG was sensitive to digits during a visual search for a digit among letters, and a ho-

mologous region in the right ITG that showed greater digit sensitivity in individuals with

higher calculation skills. However, the ITG regions were localized with separate analyses

without directly contrasting their digit sensitivities and relation to calculation skills. So, the

extent of and reasons for these functional asymmetries remain unclear. Here we probe

whether the functional and representational properties of the ITNAs are asymmetric by

applying both univariate and multivariate region-of-interest analyses to Pollack and Price’s

(2019) data. Contrary to the implications of the original findings, digit sensitivity did not

differ between ITNAs, and digit sensitivity in both left and right ITNAs was associated with

calculation skills. Representational similarity analyses revealed that the overall represen-

tational geometries of digits in the ITNAs were also correlated, albeit weakly, but the

representational contents of the ITNAs were largely inconclusive. Nonetheless, we found a

right lateralization in engagement in alphanumeric categorization, and that the right ITNA

showed greater discriminability between digits and letters. Greater right lateralization of

digit sensitivity and digit discriminability in the left ITNA were also related to higher

calculation skills. Our findings thus suggest that the ITNAs may not be functionally iden-

tical and should be directly contrasted in future work. Our study also highlights the

importance of within-individual comparisons for understanding hemispheric
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asymmetries, and analyses of individual differences and multivariate features to uncover

effects that would otherwise be obscured by averages.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Regardless of the writing scripts our native languages adopt,

almost everyone has to master the Arabic numeral system,

comprising the digits 0e9, to function successfully in modern

societies. As the foundational years of formal education

typically have separate numeracy and literacy classes, the

learning of Arabic numerals and native language writing

systems tends to be highly contextualized. The repeated and

predictable use of Arabic numerals mostly in numeracy con-

texts may influence how our brains are organized to identify

and distinguish Arabic numerals from other character cate-

gories (Gauthier, 2000; see Hannagan, Amedi, Cohen,

Dehaene-Lambertz, & Dehaene, 2015, for a review; Yeo,

Pollack, Merkley, Ansari, & Price, 2020).

An emerging body of work using functional magnetic

resonance imaging (fMRI), and intracranial recording and

stimulation has shown a consistent location in the right

posterior inferior temporal gyrus (ITG) (MNI2 55, �50, �12; see

Yeo, Wilkey, & Price, 2017, for a meta-analysis) and/or its left

homolog that works with other cortical regions to support the

processing of Arabic numerals (Amalric & Dehaene, 2016;

Grotheer, Jeska, & Grill-Spector, 2018; Grotheer, Herrmann, &

Kovacs, 2016; Pollack & Price, 2019; Roux, Lubrano, Lauwers-

Cances, Giussani, & Demonet, 2008; Shum et al., 2013). It is

usually identified as a region in the occipitotemporal cortex

that exhibits greater sensitivity in terms of response ampli-

tude to Arabic numerals than to other stimuli such as letters

and novel characters. Hereafter, wewill refer to such a ventral

occipitotemporal (vOT) node of the neural circuit underlying

numeral identification as the “Inferior Temporal Numeral

Area” (ITNA). This label follows the naming convention of

other category-selective regions in specifying its anatomical

location and its category preference (Grill-Spector & Weiner,

2014; Grotheer et al., 2018) without presupposing the fea-

tures of a stimulus it represents (e.g., shape as presumed in its

former label “Number Form Area”) (Yeo et al., 2020). The ITNA

label is also useful for distinguishing it from an adjacent

neuronal population that is not selective for Arabic numerals,

but to any stimuli used in mathematical manipulation, such

as arithmetic (Daitch et al., 2016; Grotheer et al., 2018;

Pinheiro-Chagas, Daitch, Parvizi, & Dehaene, 2018). Last but

not least, labeling the ITG node as ITNA does not imply that it

functions in isolation, but in interactive loops with other re-

gions in the parietal and frontal associative cortices (Baek,

Daitch, Pinheiro-Chagas, & Parvizi, 2018; Daitch et al., 2016).

Although evidence from split-brain patients suggests that

the visual systems in both hemispheres are capable of
rainmap.org/icbm2-
recognizing and processing single Arabic digits (Cohen &

Dehaene, 1996; Colvin, Funnell, & Gazzaniga, 2005; see

Dehaene & Cohen, 1995, for a review; Sergent, 1990; Seymour,

Reuter-lorenz, & Gazzaniga, 1994; Teng & Sperry, 1973),

studies that employed a variety of numerical tasks including

multi-digit numeral naming, same-different judgment,

magnitude comparison, and arithmetic in patients with left

vOT lesions (Cohen & Dehaene, 1991, 1995, 2000; Miozzo &

Caramazza, 1998) or split brains (Cohen & Dehaene, 1996;

Gazzaniga & Smylie, 1984; Seymour et al., 1994) suggest that

the left and right ITNAs (and the circuits they are a part of) are

neither a single functional unit, nor functional duplicates

working in parallel, but are functionally dissimilar and inde-

pendent depending on the task contexts. Moreover, cerebral

hemispheres are more efficient in identifying alphanumeric

characters independently in isolation than when they had to

communicate with each other (Teng & Sperry, 1973), which

suggests stronger intra-hemispheric interactions than inter-

hemispheric interactions. Such neuropsychological evidence

led Cohen andDehaene (1995) to propose thatwe possess “two

number identification systems, possibly residing in different

hemispheres, and which may be separately called upon

depending on the task” (p. 123).

According to the “Triple-codeModel” of number processing

(Dehaene, 1992; Dehaene & Cohen, 1995), numbers can be

representedmentally and neurally via three distinct codes: (1)

a visual number form code, in which numbers are represented

as a structured array of Arabic digits; (2) a magnitude code, in

which numbers are represented semantically as distributions

of activation on a mental number line (Dehaene & Changeux,

1993; Verguts & Fias, 2004); and (3) a verbal word frame code, in

which numbers are represented asemantically as a sequence

of words. The left hemispheric number identification system

is hypothesized to be necessary for tasks that rely on verbal

processes (e.g., reading aloud multi-digit numerals and

retrieval of verbally encoded arithmetic facts) due to its co-

lateralization with the left-lateralized language system

(Cohen & Dehaene, 1995; Dehaene & Cohen, 1997; Pinel &

Dehaene, 2010) (see Fig. 1). Regions involved in the visual

number form code were originally referred to as “visual

number form” areas (Grotheer, Herrmann, & Kovacs, 2016;

Shum et al., 2013), following the naming of its better-known

word-selective counterpart, the “visual word form area”

(Dehaene & Cohen, 2011).

Although there is now a significant body of evidence

supporting the existence of bilateral ITNAs in adults, a non-

systematic and non-exhaustive review in Table 1 shows that

lateralization of numeral processing is not uncommon. In

fact, a recent meta-analysis of fMRI studies that contrasted

Arabic numerals to other familiar symbol categories

revealed a convergence only in a right ITNA (Yeo et al., 2017).
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Fig. 1 e A schematic of the functional and anatomical assumptions of the Triple-code Model adapted from Dehaene and

Cohen (1995).
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One possibility for the lack of meta-analytic convergence in

a left ITNA could be due to greater variability in its location,

possibly resulting from competition for neuronal space by

spatially varied left-lateralized letter- and word-preferring

regions (Glezer & Riesenhuber, 2013). Another possibility is

that varied task demands involving the left-hemispheric

language system may recruit a left ITNA to different ex-

tents across studies.

Among the fMRI studies that observed a bilateral engage-

ment of the numeral identification systems in Table 1, some

found no hemispheric differences in the activation profiles of

the bilateral ITNAs to a diverse range of object and written

character categories (Grotheer et al., 2018; Grotheer,

Herrmann, & Kovacs, 2016), while others do report evidence

of hemispheric asymmetry in certain functional properties of

the bilateral ITNAs (Amalric & Dehaene, 2016; Pollack & Price,

2019). In a study by Amalric and Dehaene (2016), the authors

examined the response profile of each ITNA using separate

group-level region-of-interest analyses. Compared to non-

mathematicians, professional mathematicians had an

enhanced sensitivity to well-known mathematical constants

in Arabic numeral format (e.g., 3.14159 [p]) relative to non-

symbolic object categories in the left ITNA, but not in the

right ITNA (Amalric & Dehaene, 2016). Mathematicians also

had an enhanced sensitivity to mathematical formulas in the

bilateral ITNAs (Amalric & Dehaene, 2016). Although the au-

thors did not speculate how mathematical expertise defined

categorically might underlie the left lateralization, it is

possible that the frequent use of those well-known mathe-

matical constants and formulas could have led to their lexi-

calization in mathematicians. Such lexicalization may rely on

a left-lateralized verbal pathway. It is not clear, however,

whether hemispheric asymmetry exists in non-

mathematicians, although a trend for greater sensitivity and

selectivity to Arabic numerals in the right ITNA relative to the

left ITNA was observed (see Figure 8E in Amalric & Dehaene,

2016).

Recently, an intriguing hemispheric asymmetry in the

bilateral ITNAs was observed in a study by Pollack and Price
(2019). In that study, adults performed a visual search task

in which they had to detect whether a digit was present

among a string of letters (e.g., ‘T S N 2 R’) or not (e.g., ‘A H T

N R’). In a whole-brain localization analysis, they found that

a region in the left (but not the right) ITG (MNI -57, �52, �11)

was more engaged when a digit was present than when a

digit was absent (i.e., [Digit Present > Digit Absent]; here-

after, we refer to this differential response as “digit sensi-

tivity”) (Fig. 2a). A brain-behavior correlational analysis

revealed a homologous region in the right ITG (but not the

left) (MNI 54, -52, �14) in which individuals with higher

symbolic calculation skills showed greater digit sensitivity

(Fig. 2a). Both of these regions (with the left region mirrored

in the right hemisphere) contained the peak coordinates of

Yeo et al.'s (2017) meta-analytically identified right ITNA

(MNI 55, -50, �12), suggesting that the regions could be

considered ITNAs or at the very least contained the ITNAs.

Nonetheless, as with the findings by Amalric and Dehaene

(2016), the hemispheric asymmetry of the bilateral ITNAs

found by Pollack and Price (2019) was also based on separate

group-level analyses e one localized by a contrast of two

conditions, and another by a brain-behavior correlation.

Whether the functional and representational properties of

the bilateral ITNAs differ within an individual remains

unexplored.

Using the Triple-code Model as a framework, we specu-

lated that the following non-mutually exclusive explana-

tions might account for such a hemispheric asymmetry

during visual search for digits observed by Pollack and Price

(2019). The first possible explanation is that the left-

hemispheric pathway may be recruited in most partici-

pants due to a reliance on the verbal system, possibly in

retrieving the character names or identities as one scans the

character string. Indeed, evidence from split-brain patients

suggest a slight left-hemispheric advantage for the identifi-

cation of digits (Cohen & Dehaene, 1996; Corballis, 1994;

Seymour et al., 1994). The second possible explanation is

that the right-hemispheric pathway may be less obligatory

for a categorization task that does not require distinguishing
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between digits precisely (i.e., a digit was detected regardless

of whether it was a 2 or a 7) but is almost always recruited in

tasks in which the quantitative meanings or visuospatial

aspects of numerals are necessary. In particular, reading

numerals in many contexts involves precise place-value

encoding. For example, ‘35’ is numerically different from

‘53’ even though they comprise the same digits. Whereas the

left hemisphere may favor analytic processing of the

decomposed digits, the right hemisphere may favor holistic

processing of digit strings that integrates place values

(Knops, Nuerk, Sparing, et al., 2006; Ratinckx, Nuerk, van

Dijck, & Willmes, 2006). This may result in the predomi-

nance and a causal role of a right-hemispheric pathway in

automatic magnitude processing of numerals (i.e., even

when the quantitative meanings are irrelevant for an over-

learned task). For example, Cohen Kadosh et al. (2007, 2012)

found that transcranial magnetic stimulation of the right

intraparietal sulcus, but not the left, impaired automatic

magnitude processing in a numerical Stroop task. Moreover,

representations of numbers and space are inextricably

related in the putative mental number line in which smaller

numbers are represented to the left and larger numbers to

the right (Hubbard, Piazza, Pinel, & Dehaene, 2005), and vi-

suospatial processing tends to be right lateralized (De

Schotten et al., 2011; J. J. Vogel, Bowers, & Vogel, 2003).

Hence, it is reasonable to infer that semantic processing of

numerals requires right hemisphere brain structures. Stim-

ulation studies using transcranial magnetic or electrical

stimulation have also revealed causal evidence of a right

lateralization for number line bisection (perception of

midpoint of number intervals) and place-value processing

(Artemenko, Moeller, Huber, & Klein, 2015; for a recent re-

view, see Faye et al., 2019; G€obel, Calabria, Farn�e, & Rossetti,

2006). Taken together, it is therefore plausible that in-

dividuals who are more skilled in calculation (most involve

multi-digit numerals) would tend to automatically engage

the right-hemispheric pathway to a greater extent.

It has also been proposed recently, as an extension to

the Triple-code Model, that the left hemisphere may be

recruited for numerical tasks that are more novel,

attention-demanding and effortful (e.g., symbolic arith-

metic), whereas the right hemisphere may be recruited for

tasks that have been familiar, overlearned and automatized

(e.g., recognizing digits) (for a review, see Arsalidou,

Pawliw-Levac, Sadeghi, & Pascual-Leone, 2018; Skagenholt,

Tr€aff, V€astfj€all, & Skagerlund, 2018). If the hypothesis

were true, the digit detection task, which poses low diffi-

culty for adults, should recruit the left ITG to a lower extent

than the right ITG. In contrast, performance on an out-of-

scanner standardized assessment of calculation skills,

which is a more difficult task than the in-scanner digit

detection should be associated with greater activity in the

left ITG rather than the right ITG. However, Pollack and

Price's (2019) data do not seem to be consistent with both

predictions from this hypothesis, at least not for the inte-

rior temporal nodes involved in the numerical tasks

examined. Therefore, it is unlikely that the hemispheric

asymmetry findings by Pollack and Price (2019) could be

fully accounted for by an effortful-automatic continuum of

cognitive processing.
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Fig. 2 e Regions of interest (ROIs) and a schematic of the representational similarity analyses (RSA). (a) Left and right IT ROIs

from Pollack and Price (2019) derived from a random-effects analysis of [Digits Present > Digits Absent] contrast maps

(yellow), a correlational analysis of those contrast maps with calculations skills (green), respectively, and their overlap

(blue). (b) Example stimuli for letter detection task. (c) For each ROI, response patterns reliably evoked by correctly detected

target across different character strings [Digit/Letter Present > Fixation] were correlated in a pairwise manner to construct

participant-specific representational dissimilarity matrices (RDMs). Purely for representational purposes across different

scales used for the neural and candidate model RDMs (see (d)), the RDM values were standardized to a range of 0 (similar) to

1 (dissimilar). 2D plots of the representational geometries in each ROI obtained by multidimensional scaling (MDS). The

RDMs and MDS plots above are the group means for a representative illustration. Hemispheric asymmetry was assessed by

correlating the (full or subset) RDMs of the left and right IT ROIs (e.g., black border indicates the Digits-only RDMs). (d)

Candidate model RDMs. Black border indicates the Digits-only RDM.
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1.1. Current study

In this study, we re-analyzed Pollack and Price's (2019) data

with two aims. While Pollack and Price (2019) focused on

localization of the ITNAs using mass-univariate voxel-wise
analyses (i.e., the activation or response of each voxel is

analyzed independently), our first aim was to use region-of-

interest (ROI) based univariate analyses (i.e., taking the

mean response across all voxels in a region specified a priori)

and within-participant comparisons to further characterize the

hemispheric asymmetries of the bilateral ITNAs in their digit

https://doi.org/10.1016/j.cortex.2023.08.018
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sensitivities and their relation to symbolic calculation skills.

Our second aim was to characterize any hemispheric asym-

metries in the representational properties of the ITNAs

indexed by multivoxel pattern analyses (i.e., the pattern of

response across multiple voxels in a region is analyzed

simultaneously) and to relate them to calculation skills. It is

well demonstrated across several studies that univariate

regional-average activation andmultivariate pattern analyses

can provide contrasting, but complementary information

(Coutanche, 2013; Jimura & Poldrack, 2012; McGugin, Van

Gulick, Tamber-Rosenau, Ross, & Gauthier, 2015). This in-

depth investigation of the functional and representational

properties allows us to test and further inform models of

numerical processing, such as the Triple-code Model.

1.2. Is there within-individual hemispheric asymmetry
in the ITNAs' digit sensitivity?

Due to the original univariate findings (Pollack & Price, 2019),

we predict that, on average, digit sensitivity will be greater in

the left than in the right ITNA. We also predict that higher

calculation skills will be associated with less left lateraliza-

tion,3 or greater right lateralization.

1.3. Do the multivoxel patterns in the ITNAs
discriminate between digits and letters?

Although the right ITNA did not appear to be sensitive to digits

in terms of its regional mean response amplitude, an analysis

of multivoxel response patterns may reveal category dis-

criminability (Yeo et al., 2020). Specifically, the response pat-

terns in the ITNAs evoked by each single target allow us to

examine the multi-dimensional organization of exemplar-

level neural representations e commonly referred to as

“representational geometry” within the representational

similarity analysis (RSA) framework (Kriegeskorte, Mur, &

Bandettini, 2008). With RSA, the neural representations of

detected digit and letter targets could form separate clusters.

Based on the original univariate finding on digit sensitivity, we

predict that the left ITNA will show greater category dis-

criminability than the right ITNA. However, based on prior

meta-analytic and multivoxel pattern findings (Yeo et al.,

2017, 2020), category discriminability could also be greater in

the right than in the left ITNA. We also predict that higher

calculation skills will be associated with greater category

discriminability in both ITNAs, but we have no specific pre-

diction for its laterality.

1.4. Do the multivoxel patterns in the ITNAs
discriminate between digit exemplars?

Regardless of whether category discriminability was evident

in the ITNAs, it would be informative to assess whether digit
3 Conditioned on the observed positive correlation between
calculation skills and digit sensitivity in the right IT reported by
Pollack and Price (2019), an association between calculation skills
and greater left lateralization would imply a stronger relation
between calculation skills and digit sensitivity of the left ITNA
than with the digit sensitivity of the right ITNA. This was, how-
ever, not the case.
discriminability was evident. This is because the identity and

category of a character are represented in parallel rather than

serially (McCloskey& Schubert, 2014; Taylor, 1978). We predict

that digit discriminability will be observed in both ITNAs, but

it will be greater in the left than in the right ITNA. We also

predict that higher calculation skills will be associated with

greater digit discriminability in both ITNAs, but we have no

specific prediction for its laterality.

1.5. Are digit representations organized similarly
between the ITNAs?

Finally, we explored whether we could describe the repre-

sentational geometries using hypothetical ‘candidate’ repre-

sentational models. Given that the numeral identification

systems function as an integrative network, the representa-

tional geometries being studied in the ITNAs likely reflect

both bottom-up and top-down influences from the visual,

verbal, and magnitude codes within each hemispheric

pathway (Bar et al., 2006; Gwilliams & King, 2020; Kay &

Yeatman, 2017; Price & Devlin, 2011). Given the left hemi-

sphere's dominance for language processing and based on the

Triple Code Model, we hypothesize that if response patterns

in the left ITNA are primarily influenced by phonological

representations from the verbal code, characters with similar

phonological formwill evoke similar response patterns in the

left ITNA. On the other hand, if the response patterns in both

ITNAs are primarily influenced by the magnitude code

(Grotheer et al., 2018), we would expect digits that are

numerically closer (e.g., 8 vs 9) to evoke more similar

response patterns than digits that are numerically distant

(e.g., 2 vs 9) (Piazza, Pinel, Le Bihan, & Dehaene, 2007; S. E.

Vogel et al., 2015, 2017). We also predict that higher calcula-

tion skills will be associated with greater dissimilarity in the

representational geometries of digits in the ITNAs. In either

case, we predict that the representational geometries in both

ITNAs will not be adequately described by visual form simi-

larity (Yeo et al., 2020).
2. Methods

We report how we determined our sample size, all data ex-

clusions, all inclusion/exclusion criteria, whether inclusion/

exclusion criteria were established prior to data analysis, all

manipulations, and all measures in the study. No parts of the

study procedures or analysis plans were preregistered prior to

the research being conducted.

2.1. Participants

Thirty-two neurologically typical and right-handed adults

(MAge ¼ 19.38, SD ¼ 1.50, 21 females) were included in the

current analyses. These are the exact same data that were

analyzed in the initial univariate functional localization study

by Pollack and Price (2019). The study was approved by the

university's Institutional Review Board, and all participants

gave written informed consent. As the current aims precluded

a priori power analyses, we performed sensitivity analyses

and reported them in the Supplemental Materials.

https://doi.org/10.1016/j.cortex.2023.08.018
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2.2. Tasks

2.2.1. fMRI tasks
To localize digit-related vOT regions, participants completed

visual search tasks involving alphanumeric characters in the

MRI scanner. During digit detection, participants determined

whether a digit was present among a string of letters (Fig. 2a)

by pressing one of two assigned buttons (i.e., one button for

target present and another button for target absent). During

letter detection, participants determined whether a letter was

present among a string of digits (Fig. 2b). The single target digit

or letter, which could be digits 1e9 and letters A, C, D, E, H, R,

N, S, and T, was presented in either the 2nd, 3rd, or 4th posi-

tion of the 5-character string. Each target digit/letter exemplar

was presented in three unique strings per run (see Table S1 for

stimulus list). Each run comprised 16 s of fixation baseline at

the start and the end of the run, and 54 trials (27 Target Pre-

sent trials across all 9 digit/letter exemplars, and 27 Target

Absent trials). On each trial, the character string was pre-

sented for 1 s, and the inter-stimulus interval was 2, 4, or

6 s (M ¼ 4 s). Justifications for the design of the stimulus sets

can be found in Pollack and Price (2019).

All participants completed four runs each of digit detection

andletterdetection,hence,acrossall four runs, each targetdigit/

letter exemplar was presented a total of 12 times. Based on pre-

determined criteria for excessive motion (>3 mm maximum

displacement and/or three degrees of volume-to-volume

displacement), one digit run and one letter run from one

participant, and one letter run from another participant, were

excluded from the analyses in Pollack and Price (2019). Mean

accuracies for the conditions critical to our key analyses (Digit

Present and Letter Present) were at least 92 %. See Table S3 for

full descriptive statistics of the task performance, and Pollack

and Price (2019) for analyses of the behavioral measures.

2.2.2. Standardized cognitive assessments
Calculations skills were measured using the Calculation and

Math Fluency subtests of the Woodcock-Johnson III Tests of

Achievement (WJ III ACH; Woodcock, McGrew, & Mather,

2001). The Calculation subtest is an untimed test that as-

sesses arithmetic, algebra, trigonometry, and calculus. The

Math Fluency subtest assesses the ability to solve as many

simple addition, subtraction, and multiplication problems

with the numerals 0e10 as possible within 3 min. A Calcula-

tion Skills cluster score was computed from a composite of

Calculation and Math Fluency measures. As a proxy for

domain-general symbol decoding, the Letter-Word Identifi-

cation (ID) subtest of the WJ III ACH was used. The Letter-

Word ID subtest is an untimed test that assesses the ability

to read aloud a list of letters and words accurately. See Table

S3 for descriptive statistics of these measures. For consis-

tency with the original study, in all analyses involving the

Calculation Skills cluster measure, we used the residuals after

regressing the Calculation Skills standard scores on Letter-

Word ID standard scores.

Legal copyright restrictions prevent public archiving of the

subtests from the Woodcock-Johnson III Tests of Achieve-

ment, which can be obtained from the copyright holders in the

cited references.
2.3. Neuroimaging data acquisition

Structural and functional brain images were acquired using a

3T Philips Intera Achieva scanner with a 32-channel head coil.

High-resolution 3D anatomical scans were collected over

approximately 6 min with TR/TE ¼ 8.1/3.8 ms, flip angle ¼ 5�,
field of view (FOV) ¼ 256 mm, and 1 mm isotropic voxels. T2*-

weighted single-shot echo-planar imaging sequence func-

tional images were acquired with TE ¼ 25 ms, TR ¼ 2000 ms,

flip angle ¼ 90�, FOV ¼ 240 mm, matrix size ¼ 96 � 96 mm,

2.5 � 2.5 � 3 mm3 voxels, with .25 mm gap between the 3-mm

thick slices, 40 slices, and 151 volumes per run. Five additional

dummy volumes acquired at the start of each run to allow for

steady-state magnetization were discarded.

2.4. fMRI data preprocessing

Structural and functional images were preprocessed and

analyzed using BrainVoyager 20.4 (Brain Innovation, Inc.,

Maastricht, the Netherlands). Functional images were cor-

rected for differences in slice time acquisition (cubic spline

interpolation), head motion (trilinear-sinc interpolation), and

high-pass filtered (GLM approach with Fourier basis set, 2

cycles) to remove linear and non-linear trends. Functional

data were co-registered to the structural data using boundary-

based registration, normalized to MNI space, and re-sampled

to 3-mm isotropic voxels. Univariate analyses were conduct-

ed on spatially-smoothed datawith a Gaussian kernel of 6mm

at full-width half-maximum. Multivariate analyses were

conducted on spatially unsmoothed data.

2.5. Neuroimaging statistical modeling

2.5.1. Univariate analyses
For each participant, all included runs were modeled with a

two-gamma hemodynamic response function. The data were

analyzed simultaneously using a random-effects multi-sub-

ject General Linear Model (GLM), corrected for serial correla-

tions with a second-order autoregressive method. The GLM

included a regressor each for Digit Present (correct only), Digit

Absent (correct only), Letter Present (correct only), Letter Ab-

sent (correct only), errors of commission and omission, and

six regressors of motion parameters (translational and rota-

tional in x, y, and z axes) for each run.

2.5.2. Multivariate analyses
Each of the nine target digit/letter exemplarswas presented 12

times across all digit or letter detection runs. Given the pres-

ence of characters from the non-target category (e.g., letters in

‘T S N 2 R’ for digit detection) on each Target Present trial, we

attempted to minimize the influence of the non-target char-

acters in our analyses by modeling all instances of a target

exemplar that was detected correctly across all runs (e.g., [‘H

N 1 D C’, ‘R 1 D T E’, ‘T C S 1 D’] � 3 or 4 runs to estimate the

voxel-wise response to a detected ‘1’). This approach ensured

that the voxel-wise responses estimated from the [Target

Present - Fixation] contrast would be reliably specific to the

target exemplar common to the modeled trials (see Fig. 2c).

However, as the original study was not designed with

https://doi.org/10.1016/j.cortex.2023.08.018
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4 Although these analyses are post hoc and therefore non-
independent from the analyses reported by Pollack and Price
(2019), the authors did not compute a within-participant differ-
ence score to directly assess hemispheric asymmetry.

5 A more widely used formula is LI ¼ L�R
jLjþjRj (for reviews, see

Bradshaw, Bishop, & Woodhead, 2017; Seghier, 2008). This LI
formula is typically used for classification purposes (left- or right-
lateralized, or bilateral), but is problematic for analyses of indi-
vidual differences because it lacks meaningful variation
(Bradshaw et al., 2017; Jansen et al., 2006) and it is not a proper
distance metric (Seghier, 2019).
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exemplar-level representations in mind, some characters

from the non-target category always co-occurredwith some of

the target exemplars, such as ‘D’ was always present in all

Digit Present trials with the target ‘1’. We reasoned that if the

co-occurring characters were also reliably represented in the

activation patterns of the target exemplar, then the activation

pattern of the non-target character (e.g., ‘D’) would be highly

similar to the activation pattern of the target exemplar (e.g.,

‘1’). However, across all the affected pairs, we did not find any

evidence that the target exemplar was more correlated with

the co-occurring non-target exemplar (e.g., ‘1’ with ‘D’) than

other non-co-occurring characters (e.g., ‘1’ with ‘H’, ‘N’, ‘C’,

etc.) (see supplemental analyses and Table S4). This suggests

that the co-occurring characters were not reliably represented

in the activation patterns of the target exemplar. These find-

ings ruled out the possibility that the co-occurring characters

from the non-target category might have strongly influenced

the results of the multivariate analyses.

To further ensure that we could reliably estimate the

response patterns at the exemplar level for each participant,

we used an arbitrary cut-off of 50 % accuracy (i.e., at least 6

correct Target Present trials) per exemplar as an inclusion

criterion for multivariate analyses. All participants but one

had at least six correct trials per digit/letter exemplar to reli-

ably estimate an exemplar-level response pattern. That one

participant had only 1 to 5 correct trials for 7 out of 9 letters.

Hence, for all analyses involving letter exemplar representa-

tions, we excluded that participant. The mean number of

remaining correct Target Present trials per exemplar was 11

for both digits and letters.

For each participant, all included runsweremodeledwith a

two-gamma hemodynamic response function and analyzed

simultaneously using a fixed-effects single-subject GLM, cor-

rected for serial correlations with a second-order autore-

gressive method. The GLM included a regressor each for the

nine target digits (correct only), a regressor for Digit Absent

(correct only), a regressor for each of the nine target letters

(correct only), a regressor for Letter Absent (correct only), four

regressors for errors of commission and for omission (sepa-

rately modeled for digit and letter detection), and six re-

gressors of motion parameters for each run.

2.6. Regions of interest (ROIs)

The current study is not only interested in how the left and

right IT regions are functionally and representationally

different, but also inwhy they were localized in Pollack and Price

(2019) in different ways. Fig. 2a shows the left and right IT

functional (i.e., data-driven) ROIs from Pollack and Price

(2019), which are used as proxies for the left and right

ITNAs, respectively. Specifically, a t-test of [Digit

Present >Digit Absent] contrastmaps revealed a left IT cluster

(but not in the right IT), and a brain-behavior correlation of the

same contrast maps and residualized calculations skills

scores revealed a right IT cluster (but not in the left IT). The

statistical thresholds used for both analyses were identical:

voxel-level threshold of p < .005, and cluster-level threshold of

p < .05 via Monte Carlo simulations. The peaks of the ROIs are

within ±3 mm (i.e., one functional voxel) along each dimen-

sion (left: MNI -57, �52, �11 and right: MNI 54, -52, �14).
Although both ROIs have 59 functional voxels, the spatial

extents of the ROIs (left: 728 mm3; right: 670 mm3) are non-

homotopic. Flipping one ROI onto the other hemisphere

revealed that the spatial overlap is about 15 % (105 mm3),

which contains the meta-analytic peak of the ITNA from Yeo

et al. (2017) (MNI 55, -50, �12) (see Fig. 2a).

2.7. Statistical analyses

Most of the analyses reported below pertain to the digit

detection task. Where applicable, we also performed an

identical set of analyses for the letter detection task to assess

the category specificity of the digit-related findings. Detailed

results of the letter detection task are reported in the Sup-

plementary Materials.

2.7.1. Univariate analyses
To fully characterize the IT ROIs in terms of their regional

mean digit sensitivity (i.e., response amplitudes evoked by

detected digits) beyond the findings reported by Pollack and

Price (2019), we conducted the following post hoc analyses4:

(1) We tested whether, on average, there was within-

individual asymmetry in the left and right ITs' digit sensi-

tivity (i.e., mean beta values from the [Digit Present e Digit

Absent] contrast) (paired samples t-test, two-tailed); (2) We

also probed whether the degree of right lateralization in the

digit sensitivity was positively correlated with calculation

skills. To compare the degree of lateralization across in-

dividuals normalized for individual differences in digit

sensitivity, we computed a dissimilarity-like5 laterality index,

LI ¼ L�R
max ðjLj;jRjÞ, where L and R are the mean digit sensitivity of

the left and right ROIs, respectively (Seghier, 2019). A positive

LI indicates left lateralization and a negative LI indicates right

lateralization. The participant-specific LI scores were then

correlated with the residualized Calculation Skills scores

(Pearson's correlation, one-tailed).

As the effects for the [Digit Presente Digit Absent] contrast

could be driven by the Digit Present and/or Digit Absent con-

dition, we further explored whether these predicted effects

also pertained to the condition versus baseline contrasts (i.e.,

[Digit Present e Fixation] and [Digit Absent e Fixation]).

2.7.2. Representational similarity analyses
2.7.2.1. NEURAL REPRESENTATIONAL DISSIMILARITY MATRICES (RDMS).
For each participant and each ROI, the response pattern

evoked by each correctly detected digit or letter exemplar

from the [Digit/Letter Present e Fixation] contrast was char-

acterized by the spatial distribution of t-values (Misaki, Kim,

Bandettini, & Kriegeskorte, 2010) (Fig. 2c). For each

https://doi.org/10.1016/j.cortex.2023.08.018
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participant, some voxels might not have valid or complete

functional data across all runs. To ensure comparable degrees

of freedom across all voxels included in the statistical ana-

lyses, BrainVoyager applies an intensity threshold (an arbi-

trary units of 100) to exclude such voxels. All individual

functional coverage maps were visually checked to determine

that the threshold was reasonable for all subjects. Following

the statistical computations, the values of these voxels in the

statistical maps were set to zero across all conditions. As they

do not contribute any information about condition-specific

activation, they were considered non-informative. Non-

informative voxels were excluded from subsequent analyses.

This resulted in 53e59 voxels (M ¼ 58.09) per participant for

the left IT ROI, and 58e59 voxels (M¼ 58.97) per participant for

the right IT ROI. We then computed the pairwise correlational

distances (1 e Pearson's r) to construct participant-specific

18 � 18 representational dissimilarity matrices (Full-RDMs)

for the left and right IT ROIs (Fig. 2c). For all key analyses, we

focused on the 9� 9 Digits-RDMs (i.e., digits subset of the Full-

RDMs; N ¼ 32).

2.7.2.2. CATEGORY DISCRIMINABILITY. To assess the degree of

category discriminability (digits versus letters) within each ROI,

we computed a participant-specific category discriminability

index (CDI) using the formula CDI ¼ Mbetween�category dissimilarities

e Mwithin�category dissimilarities from the Full-RDM (Nili, Walther,

Alink, & Kriegeskorte, 2020) after Fisher's z transformation of

the r values. A higher CDI indicates greater category discrimi-

nability. We tested whether the mean CDI was statistically

greater than zero (one-sample t-test, right-tailed). To also

assess whether greater category discriminability in each ROI

was associated with higher calculation skills, we correlated the

participant-specific CDIs with the residualized Calculation

Skills scores (Pearson's correlation, right-tailed). We also tested

whether laterality of category discriminability (LI ¼ L�R
max ðjLj;jRjÞ)

was associated with higher calculation skills (Pearson's corre-

lation, two-tailed).

Although both ROIs were either directly or indirectly

localized using the contrast [Digit Present > Digit Absent] (and

not [Letter Present > Letter Absent]), one might argue that

univariate activation differences between digits and letters

detected already presupposed category discriminability in

these ROIs. However, these new analyses focused on the

similarity of exemplar-level multivoxel response patterns for

Target Present relative to baseline (e.g., how similar the

response pattern for a detected ‘4’ was to a detected ‘N’).

Moreover, their similarities were assessed using correlational

distance, which standardizes the response amplitudes and

therefore reduces the influence of mean amplitude

differences.

2.7.2.3. EXEMPLAR DISCRIMINABILITY. To assess the degree of

exemplar discriminability6 within each ROI, we first split each
6
“Exemplar discriminability” is used as a general term to refer

to discriminability among digits, among letters, or among both
digits and letters. Throughout the manuscript, we use “digit dis-
criminability” and “letter discriminability” when we refer to dis-
criminability among digits only and among letters only,
respectively.
participant's data into two halves (i.e., odd runs and even

runs), and computed the reliabilities of the response patterns

between the two halves. We then performed Fisher's z trans-

formation of the r values and computed the correlational

distance to construct a split-data RDM comprising within-

exemplar dissimilarity estimates along the diagonal and

between-exemplar dissimilarity estimates in the off-

diagonals. Finally, we computed a participant-specific exem-

plar discriminability index (EDI) using the formula

EDI ¼ Mbetween�exemplar dissimilarities e Mwithin�exemplar dissimilarities

(Nili et al., 2020). A higher EDI indicates greater exemplar

discriminability.We analyzed the EDI in an approach identical

to that for CDI.

Two participants who did not have an equal number of

even and odd runs for the digit and/or letter detection were

excluded from the EDI analyses (final N ¼ 31 for split-data

Digits-RDMs, and N ¼ 30 for split-data Letters-RDMs).

2.7.2.4. HEMISPHERIC ASYMMETRY OF REPRESENTATIONAL GEOMETRIES.
For each individual, we computed the similarity between the

Digits-RDMs of the left and right IT ROIs (one-half of each

symmetric matrix) using Spearman's correlation followed by

Fisher's z transformation (rz). To assess our prediction that, on

average, there was hemispheric asymmetry in the represen-

tational geometries, we compared the alternative hypothesis

that the mean similarity >0 to the null hypothesis that the

mean similarity �0 (one-sample t-test, right-tailed). Next, to

assess whether greater hemispheric asymmetry (i.e., lower

similarity) in the representational geometries of digits was

associated with higher calculation skills, we correlated the

participant-specific similarity scores with the residualized

Calculation Skills scores (Pearson's correlation, left-tailed).

2.7.2.5. REPRESENTATIONAL CONTENT. To probe the representa-

tional content of each IT ROI, we constructed four candidate

model RDMs that are characterized by similarity in phonology,

numerical magnitude, frequency, and visual form (Fig. 2d).

2.7.2.5.1. PHONOLOGICAL MODEL. We constructed an 18 � 18

phonological model RDM from an empirically derived

character-name confusion matrix that described the percep-

tual confusion of participants who were asked to identify a

digit or letter aurally presented in noise (Hull, 1973). We con-

verted the asymmetric similarity-based confusionmatrix that

comprises the frequencies of confusions between every

stimulus-response pair (e.g., responding ‘8’ to stimulus ‘6’, or

responding ‘A’ to stimulus ‘8’) into a dissimilarity matrix.

2.7.2.5.2. NUMERICAL MODELS. We constructed two 9 � 9 nu-

merical model RDMs based on ratio and frequency, identical

to those used by Lyons and Beilock (2018). The Ratio model is

based on the ratio between the quantities represented by a

pair of digits ni and nj as a measure of similarity, where

ratio ¼ min ðni ;njÞ
max ðni ;njÞ, and larger values indicate greater similarity.

The RDMwas derived using the inverse of the ratios such that

larger values indicate greater dissimilarity. The Frequency

model is based on the frequency of co-occurrence of any given

pair of digits as ameasure of similarity. According to Benford's
(1938) law, the probability of encountering a given digit in the

leftmost position of multi-digit numerals, P(n), is log10 (nþ1) e

log10 (n) (also see Dehaene &Mehler, 1992). We then computed

https://doi.org/10.1016/j.cortex.2023.08.018
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the probability of the joint frequency of each pair of digits

using P(ni) � P(nj), where larger values indicate greater simi-

larity (Lyons & Beilock, 2018). Likewise, the RDM was derived

using the inverse of the probability of the joint frequency such

that larger values indicate greater dissimilarity.

2.7.2.5.3. VISUAL FORM MODEL. We constructed an 18 � 18

Shape model RDM using a computational algorithm that is

based on the similarity in the “context” of sampled points on a

shape (i.e., how one point relates to all other points on a

shape) and the degree to which one shape has to be deformed

to map onto another shape (Belongie, Malik, & Puzicha, 2002).

An identical model was used in an RSA study by Yeo et al.

(2020; see Supplemental Materials for computational details).

2.7.2.5.4. SIMILARITY BETWEEN MODEL RDMS. Figures S1 e S4

are multidimensional scaling plots that illustrate the 2D

representational geometry of the digit and letter exemplars in

each model. The bivariate rank correlations of the models are

reported in Table S2. No pairs of models are highly similar

(rs < .16), although the Ratio and Frequency models have a

strong negative correlation (r ¼ �.65). Hence, greater support

for the Ratio model would likely indicate less support for the

Frequency model, and vice versa.

2.7.2.5.5. SIMILARITY BETWEEN NEURAL AND MODEL RDMS. The

degree to which the 9� 9 neural Digits-RDMs can be described

by eachmodel RDMwas examined using the RSA toolbox (Nili

et al., 2014). We correlated the neural and model RDMs (only

one-half of each symmetric matrix) using Spearman's rank

correlation followed by Fisher's z-transformation. For each

model, we tested whether the mean correlation coefficient

was statistically greater than zero (one-sample t-test, right-

tailed). To estimate the upper and lower bounds of the

maximum similarity that any model could achieve given the

degree of between-participant variability, a “noise ceiling”

was computed using the approach proposed by Nili et al.

(2014). We also tested (a) within each ROI, whether the mean

correlation coefficients between any pair of models were

statistically different, and (b) for each model, whether the

mean correlation coefficients between the left and right ROIs

were statistically different (paired-sample t-tests, two-tailed).

As the Phonological and Shape model RDMs are not

category-specific, we also examined whether the 18 � 18

neural Full-RDMs (i.e., thewhole alphanumeric set; see Fig. 2c)

were similar to the full versions of the Phonological and Shape

model RDMs (Fig. 2d).

We corrected for multiple comparisons separately for each

group of tests by controlling for false-discovery rate (FDR) at

q < .05 (Benjamini & Hochberg, 1995). All p-values reported in

the Results section are uncorrected for multiple comparisons,

and statistically significant ones were noted if they also sur-

vived an FDR-correction.

2.7.3. Handling of bivariate outliers
To assess the robustness of the correlation analyses to

bivariate outliers, we used the Minimum Covariance Deter-

minant approach to estimate the bivariate location and scat-

ter from 75 % of the data (i.e., assuming no more than 25 % of

outlying values), and a chi-square distribution (df ¼ 2) with

a ¼ .001 (99.9 % percentile) as an outlier criterion (Leys, Klein,

Dominicy, & Ley, 2018, 2019). As there is no theoretical basis
for deciding whether an outlier could rightfully belong to the

distribution of interest, we reported the affected correlation

coefficients with and without the outliers (i.e., “skipped cor-

relation”; Rousselet & Pernet, 2012; Wilcox, 2004).

2.7.4. Comparison of correlation coefficients
As the difference between a pair of statistically significant and

non-significant correlation coefficients may not be itself sta-

tistically significant (Gelman & Stern, 2006; Nieuwenhuis,

Forstmann, & Wagenmakers, 2011; Rousselet & Pernet, 2012),

whenever necessary, we used the full suite of tests (e.g.,

Fisher's Z) in R package ‘cocor’ (Diedenhofen&Musch, 2015) to

compare whether a pair of correlation coefficients differed

significantly.

2.7.5. Bayesian statistical inferences
For all t-tests and correlations, we supplement the frequentist

p-values with Bayes Factors to provide a more nuanced

inference regarding the strength of the conclusion that can be

inferred from the current data. More importantly, unlike p-

values that is conditional on the assumption that the null is

true (i.e., we can only reject, but not accept the null hypoth-

esis), Bayes Factors do not depend on such an assumption and

thus allow us to provide support for null findings.

Priors used for Bayesian t-tests and correlational analyses

include a Cauchy distribution with a scale of .707 and a

stretched beta prior width of 1, respectively. To facilitate

Bayesian inferences for each test, we report the Bayes factor in

favor of the hypothesis supported using the notation con-

ventions in JASP (JASP Team, 2020): BF10 and BF01 for two-tailed

tests, and BFþ0, BF-0, BF0þ and BF0- for one-tailed tests.

Whenever the evidence in support of one hypothesis relative

to another is less than 3 times, we inferred that the evidence is

inconclusive, and that the data are insensitive to the hy-

potheses tested (Dienes, 2016; Dienes & Mclatchie, 2018).
3. Results

3.1. Regional mean digit sensitivity

In Pollack and Price (2019), the left IT ROI was localized by its

high digit sensitivity (i.e., [Digit Present e Digit Absent]

contrast), whereas the right IT ROI was localized separately by

the relation between individual differences in digit sensitivity

and calculation skills. Here, we probed whether these hemi-

spheric differences would hold when we directly compare

them within participants. On average, there was no hemi-

spheric asymmetry in regional mean digit sensitivity (left:

M ± SD¼ .17 ± .22; right:M¼ .13± .46, difference:M¼ .05 ± .42),

t(31) ¼ .62, dz ¼ .11, p ¼ .541, BF01 ¼ 4.44 (Fig. 3a). However,

individuals with higher calculation skills had greater right

lateralization in their mean digit sensitivity, r(30) ¼ �.45,

p ¼ .009, BF10 ¼ 5.69 (Fig. 3b).

Although individual differences in the [Digit PresenteDigit

Absent] contrast in the left IT did not correlate significantly

with calculation skills in the original whole-brain correla-

tional analysis reported by Pollack and Price (2019), we tested

whether such a relation could be observed using an ROI
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Fig. 3 e Hemispheric asymmetries of regional mean response amplitudes and their relation to calculation skills for digit

detection. (a, b) digit sensitivity ([Digit Present e Digit Absent] contrast), and (c, d) condition-wise activity ([Digit Absent e

Fixation] and [Digit Present e Fixation]). Error bars and bands are 95 % confidence intervals. Dashed regression lines

excluded bivariate outliers enclosed in ⋄.
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approach. Digit sensitivity in the left IT was also positively

correlated with calculation skills, r(30) ¼ .42, p ¼ .008,

BFþ0 ¼ 6.77. However, the correlation coefficient for the left IT

did not differ significantly from that for the right IT

(r(30) ¼ .62), ps > .206.

In sum, there was, on average, no hemispheric asymmetry

in digit sensitivity, and no evidence that digit sensitivity in the

left and right IT differed qualitatively in their relation to

calculation skills. However, consistent with our prediction,

the within-individual difference in the digit sensitivity between

hemispheres was related to calculation skills.

As the [Digit Present e Digit Absent] contrast could be

driven by Digit Present and/or Digit Absent, we probed the

nature of involvement of the IT ROIs for each condition.

Contrary to the findings above, the condition-wise regional

mean response amplitudes were strongly right-lateralized for

both Digit Present (left: M ¼ .21 ± .45; right: M ¼ .88 ± .78,

difference: M ¼ �.67 ± .72) [t(31) ¼ �5.26, dz ¼ �.93, p < .001,

BF10 ¼ 2061] and Digit Absent (left: M ¼ .04 ± .44; right:

M ¼ .75 ± .64, difference: M ¼ �.72 ± .74) [t(31) ¼ �5.48,

dz¼�.97, p< .001, BF10¼ 3642] (Fig. 3c). Individuals with higher

calculation skills had greater response amplitudes for Digit

Present in the right IT, r(30) ¼ .48, p ¼ .003, BFþ0 ¼ 16.93. A

similar relation was inconclusive in the left IT, r(30) ¼ .25,

p ¼ .084, BF0þ ¼ 1.01. However, these correlation coefficients
did not differ significantly (ps > .182), suggesting no evidence

of a qualitative difference. There was evidence that calcula-

tion skills were not positively correlated with the response

amplitude for Digit Absent in the left IT [r(30) ¼ .05, p ¼ .393,

BF0þ ¼ 3.64], but whether a positive correlation between

calculation skills and response amplitude for Digit Absent in

the right IT was inconclusive [r(30) ¼ .14, p ¼ .224, BF0þ ¼ 2.24;

rskipped (28) ¼ .37, p ¼ .023, BFþ0 ¼ 2.98]. These correlation co-

efficients did not differ significantly between the left and right

IT (ps > .704; after exclusion of outliers: ps > .179). In sum,

there was only conclusive evidence of an association between

calculation skills and Digit Present responses in the right IT,

and a lack of association between calculation skills and Digit

Absent (i.e., letters only) responses in the left IT. The corre-

lation coefficients also differed significantly between Digit

Present andDigit Absent in both regions (left IT: ps < .026; right

IT: ps < .002; after bivariate outlier exclusion, ps < .020). In

sum, these findings suggest that the relations between

calculation skills and response amplitudeswere specific to the

detection of digits and not driven by the Digit Absent

condition.

Finally, there was weak to moderate evidence that in-

dividuals with higher calculation skills also had greater right

lateralization in their mean response amplitudes for Digit

Present [r(30) ¼ �.36, p ¼ .042, BF10 ¼ 1.58; rskipped (29) ¼ �.48,
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p ¼ .006, BF10 ¼ 8.03]. There was evidence of a lack of a similar

relation for Digit Absent [r(30) ¼ �.09, p ¼ .621, BF01 ¼ 4.05]

(Fig. 3d). These correlation coefficients were significantly

different regardless of outlier exclusion (ps < .011).

The above analyses were also conducted on letter sensi-

tivity using the letter detection runs (see Supplementary

Materials) to assess category-specificity. We found that the

right-lateralization of condition-wise response amplitudes

appeared to be related to the detection task in general,

regardless of whether one was looking for digits or letters. By

and large, we observed no conclusive or robust relations be-

tween response amplitudes during letter detection and

calculation skills.

Taken together, although there was no hemispheric

asymmetry in digit sensitivity, there was a strong right later-

alization of IT activity during digit or letter detection more

generally. Moreover, the relations between calculation skills

and right lateralization in digit sensitivity were largely specific

to the detection of digits.

3.1.1. Category discriminability (digits vs letters)

Category discriminability between digits and letters was

evident in both the left (M ¼ .21 ± .08) [t(30) ¼ 15.07, d ¼ 2.71,

p < .001, BFþ0 ¼ 7.74 � 1012] and right IT (M ¼ .31 ± .11)

[t(30) ¼ 15.55, d ¼ 2.79, p < .001, BFþ0 ¼ 1.73 � 1013] (Fig. 4).

Moreover, category discriminability was higher in the right IT

than in the left IT (difference: M ¼ �.10 ± .11), t(30) ¼ �4.97,

dz ¼ �.89, p < .001, BF10 ¼ 892.

There was inconclusive evidence that greater category

discriminability was associated with higher calculation

skills in the left IT [r(29) ¼ .24, p ¼ .102, BFþ0 ¼ 1.16] and the

right IT [r(29) ¼ .18, p ¼ .170, BF0þ ¼ 1.76; rskipped (28) ¼ .28,

p ¼ .069, BFþ0 ¼ 1.20] (Fig. 5). These correlation coefficients

did not differ significantly (ps > .782). There was also no

relation between the degree of lateralization of category
Fig. 4 e Category discriminability in the left and right IT

(N ¼ 31). Category discriminability was measured using

Mbetween�category dissimilarities e Mwithin�category dissimilarities from

the Full-RDM. Error bars are 95 % confidence intervals.
discriminability and calculation skills, r(29) ¼ �.01, p ¼ .938,

BF01 ¼ 4.47].

In summary, not only was category discriminability robust

in both ROIs, it was greater in the right IT than in the left IT.

Whether greater category discriminability was associated

with higher calculation skills was inconclusive. However, its

lateralization did not matter.

3.1.2. Digit (exemplar) discriminability

There was inconclusive evidence of digit discriminability in

the left IT (M ¼ .008 ± .06) [t(30) ¼ .73, d ¼ .13, p ¼ .234,

BF0þ ¼ 2.69], and moderate evidence of a lack of digit dis-

criminability in right IT (M ¼ .001 ± .06) [t(30) ¼ .12, d ¼ .02,

p ¼ .453, BF0þ ¼ 4.75] (Fig. 6). However, there was no hemi-

spheric asymmetry in digit discriminability (difference:

M ¼ .006 ± .08), t(30) ¼ .41, dz ¼ .07, p ¼ .682, BF01 ¼ 4.82.

Greater digit discriminability was, however, associated

with higher calculation skills in the left IT [r(29) ¼ .38, p ¼ .017,

BFþ0 ¼ 3.83], but evidence of a similar relation in the right IT

was inconclusive [r(29) ¼ .17, p ¼ .176, BF0þ ¼ 1.81] (Fig. 7).

These correlation coefficients did not differ significantly

(ps > .373). There was also no relation between the degree of

lateralization of digit discriminability and calculation skills [

r(29) ¼ .13, p ¼ .465, BF01 ¼ 3.47; rskipped (25) ¼ .07, p ¼ .744,

BF01¼ 3.98]. Crucially, the significant correlation between digit

discriminability in the left IT and calculation skills was not

observed for letter discriminability (see Supplementary

Materials; the correlation coefficients [Digit discriminability:

r(28) ¼ .38; Letter discriminability: r(28) ¼ �.21] were signifi-

cantly different, ps < .012).

In sum, although there was inconclusive evidence that the

left IT distinguished digit exemplars on average across par-

ticipants, there was evidence that the degree of distinction

was associated with higher calculations skills. The right IT, on

the other hand, did not distinguish digit exemplars, and had

weaker, inconclusive evidence of a relation between digit

discriminability and calculation skills.

3.1.3. Hemispheric asymmetry of representational
geometries

On average, there was a small, but significant positive corre-

lation between the representational geometries of digits (i.e.,

Digits-RDMs) in the left and right IT (mean rz ¼ .11 ± .20),

t(31) ¼ 3.14, d ¼ .56, p ¼ .002, BFþ0 ¼ 20.51. There was incon-

clusive evidence that lower between-hemisphere similarity

(i.e., greater asymmetry) in the representational geometries of

digits was associated with higher calculation skills,

r(30) ¼ �.17, p ¼ .172, BF0- ¼ 1.80. A similar pattern of results

was observed for the representational geometries of letters

(see Supplemental Materials).

3.2. Representational content

3.2.1. Digits
Although there was no evidence of digit discriminability in

both IT ROIs, there could be a discernible organization among

the exemplar representations regardless of how similar each

exemplar pair was. Hence, we explored whether the
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Fig. 5 e Relation between calculation skills and category discriminability (a) in left and right IT, and (b) its lateralization

(negative: left lateralization, positive: right lateralization) (N ¼ 31). Error bands are 95 % confidence intervals. Dashed

regression lines excluded bivariate outliers enclosed in ⋄.

Fig. 6 e Digit discriminability in the left and right IT

(N ¼ 31). Digit discriminability was measured using

Mbetween�exemplar dissimilarities e Mwithin�exemplar dissimilarities

across odd and even runs. Error bars are 95 % confidence

intervals.
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representational geometries could be described by hypothe-

sized models of phonological, numerical, and shape

similarity.

3.2.1.1. LEFT IT. The left IT Digits-RDMswere not similar to the

RDMs of the Phonological model (Mean rz ¼ �.01 ± .14)

[t(31)¼�.59, d¼�.10, p¼ .719, BF0þ ¼ 7.84], Ratiomodel (Mean

rz¼�.01 ± .22) [t(31)¼�.33, d¼�.06, p¼ .629, BF0þ ¼ 6.70], and

Shape model (Mean rz ¼ �.05 ± .18) [t(31) ¼ �1.38, d ¼ �.24,

p ¼ .910, BF0þ ¼ 11.55] (Fig. 8). There was, however, inconclu-

sive evidence that the left IT Digits-RDMs were similar to the
Frequency model RDM (Mean rz ¼ .09 ± .29), t(31) ¼ 1.69,

d ¼ .30, p ¼ .051, BFþ0 ¼ 1.27.

In terms of pairwise model comparisons, there was no

evidence of within-participant differences between any pair

of neural RDM-model RDM similarities, all ps > .052, BFs10 <
1.13 (Table S5).

3.2.1.2. RIGHT IT. The right IT Digits-RDMs were not similar to

the RDMs of the Phonological model (Mean rz ¼ �.03 ± .15)

[t(31) ¼ �1.09, d ¼ �.19, p ¼ .858, BF0þ ¼ 10.19], Frequency

model (Mean rz ¼ -.06 ± .20) [t(31) ¼ �1.63, d ¼ �.29, p ¼ .943,

BF0þ ¼ 12.74], and Shape model (Mean rz ¼ �.04 ± .14)

[t(31) ¼ �1.63, d ¼ �.29, p ¼ .943, BF0þ ¼ 12.76] (Fig. 8). There

was, however, inconclusive evidence that the right IT Digits-

RDMs were similar to the Ratio model RDM (Mean rz ¼
.05 ± .19), t(31) ¼ 1.42, d ¼ .25, p ¼ .084, BFþ0 ¼ 1.18.

In terms of pairwise model comparisons, there was some

evidence that the Digits-RDMs were more similar to the Ratio

model RDM than to the Shapemodel RDM [t(31)¼ 2.61, d¼ .46,

p ¼ .014, FDR-corrected p ¼ .084, BF10 ¼ 3.36], and no evidence

of within-participant differences between any other pair of

neural RDM-model RDM similarities [all ps > .076, BFs10 < .84]

(Table S6).

In sum, there was evidence that the models could not

adequately describe the representational geometries in

both ROIs. However, there was an inconclusive trend for

the fit of the Frequency model in the left IT and Ratio

model in the right IT. Replicating Yeo et al. (2020), we

found evidence of an absence of shape similarity in both

regions.

3.2.1.3. LEFT IT VS. RIGHT IT. Neural RDM-model RDM similar-

ities were not different between the left and right IT for the

Phonological model [difference: M ¼ .01 ± .16, t(31) ¼ .50,

dz ¼ .09, p ¼ .624, BF01 ¼ 4.73] and Shape model [difference:

M ¼ �.005 ± .22, t(31) ¼ �.13, dz ¼ �.02, p ¼ .900, BF01 ¼ 5.26]
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Fig. 7 e Relation between calculation skills and digit discriminability (a) in left and right IT, and (b) its lateralization

(negative: left lateralization, positive: right lateralization) (N ¼ 31). Error bands are 95 % confidence intervals.

Fig. 8 e Similarity between the model RDMs and Digits-RDMs of the left and right IT ROIs (N ¼ 32). Error bars are 95 %

confidence intervals. Grey bars indicate the estimated upper and lower bounds of the expected similarity achievable by the

unknown true model given the degree of between-participant variability.
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(Fig. 9). There was inconclusive evidence that the neural RDM-

model RDM similarities were different between the left and

right IT for the Ratio model [difference: M ¼ �.06 ± .30,

t(31) ¼ �1.15, dz ¼ �.20, p ¼ .259, BF01 ¼ 2.90], and for the

Frequency model [difference: M ¼ .14 ± .36, t(31) ¼ 2.27,

dz ¼ .40, p ¼ .030 (FDR-corrected p ¼ .120), BF10 ¼ 1.75]. In sum,

there was no hemispheric asymmetry in the degree to which

the Phonological and Shape models described the represen-

tational geometries, but inconclusive evidence of hemispheric

asymmetry for the Ratio and Frequency models.

3.2.2. Alphanumeric set
The Full-RDMs of the left and right IT were not similar to the

Phonological and Shape model RDMs, ps > .410, BFs0þ > 4.34

(see Supplementary Materials). Taken together, phonological

and shape information were not represented in either ROI
regardless of whether digits were considered alone or simul-

taneously with letters.
4. Discussion

The present study applied both univariate and multivariate

region-of-interest analyses to Pollack and Price's (2019) data to

probe the hemispheric asymmetry of various functional and

representational properties in the bilateral ITNAs during a

digit detection task. We also probed the relation between

those properties and calculation skills. Based on the findings

of Pollack and Price (2019), we asked: Does the left ITNA show

greater digit sensitivity than the right ITNA? Does the right

ITNA relate to calculation skills in a way that the left ITNA

does not? Here, we report that using univariate analyses (i.e.,
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Fig. 9 e Hemispheric asymmetry in similarity between the model RDMs and neural Digits-RDMs (re-plotted from Fig. 9)

(N ¼ 32). Error bars are 95 % confidence intervals.
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focusing on regional mean response amplitudes), the left and

right ITNAs did not differ in their digit sensitivity and the

relation between digit sensitivity and calculation skills.

However, multivariate analyses (i.e., focusing on multivoxel

response patterns) revealed that the right ITNA showed

greater category discriminability between digits and letters.

Greater right lateralization of digit sensitivity and greater digit

discriminability in the left ITNA were also related to higher

calculation skills. Our findings thus suggest that the bilateral

ITNAs are asymmetrically weighted in some functional re-

sponses and representations, at least during a digit detection

task. However, until we havemore convergent and conclusive

evidence from future studies, the field should err on the side of

caution and not readily generalize findings about one ITNA to

the other.

4.1. Right ITNA is more involved in category
discrimination than left ITNA

First, contrary to our prediction, we found that the right IT

region showed no less digit sensitivity than the left IT region

when we directly compared their sensitivities within in-

dividuals. This suggests that the successful localization of

digit sensitivity in the left IT (statistically significant), but not

in the right IT (statistically non-significant) reported in

Pollack and Price (2019) are not statistically different from

each other.

However, usingmultivoxel pattern analyses, we found that

both IT regions showed significant category discriminability

between the alphabet and numerals, and the degree of cate-

gory discriminability was greater in the right IT than in the left

IT. Interestingly, further probing of the univariate analyses for

each condition relative to the fixation baseline (e.g., Digit

Absent > Fixation) revealed that the right IT region was sub-

stantially more engaged during visual search regardless of

both the target category (i.e., digit or letter detection) and the

presence or absence of a target. Taken together, these findings

suggest that there may be an inherent task-related hemi-

spheric asymmetry, and that the right ITNA is no less
involved, if not more so, than the left ITNA in alphanumeric

category discrimination. This right lateralization of alpha-

numeric category discrimination in the ITNAs is consistent

with several studies (Yeo et al., 2017, 2020). Using similar

representational similarity analyses, Yeo et al. (2020) found

that a meta-analytic identified right ITNA discriminates digits

from letters and novel characters that were passively viewed,

but such evidence was absent in its left mirrored homolog.

However, it was unclear if a true hemispheric asymmetry

exists because a direct comparison between the left and right

ITNAs was not made in that study. Moreover, in a study by

Grotheer, Ambrus and colleagues (2016), an application of

transcranial magnetic stimulation to the right ITNA has been

found to disrupt both letter and digit detection when partici-

pants were asked to categorize between alphanumeric char-

acters and novel ones, suggesting a causal role of the right

ITNA in alphanumeric categorization. Nonetheless, because

Grotheer, Ambrus, and colleagues (2016) did not also stimulate

the left ITNA, it is unclear whether the left ITNA plays a

qualitatively similar, but weaker causal role in alphanumeric

categorization.

Although the current study does not focus on functional

localization, but on understanding the properties of the

functionally localized regions by Pollack and Price (2019), our

findings have implications on future localization studies. The

results of the present study suggest that multivoxel pattern

analyses do confer greater sensitivity than traditional uni-

variate analyses, and they might be a powerful tool as a

localization technique, especially for character categories that

differ only by arbitrary representational purposes rather than

inherent visual features. For instance, 5-7 year-old children

who do not have a putative “Fusiform Face Area” based on

univariate activation contrasts already show adult-like mul-

tivoxel pattern discrimination between faces and other cate-

gories in the most probable location of the “Fusiform Face

Area” (Cohen et al., 2019). Hence, future studies that are un-

successful in functionally localizing an ITNA using traditional

univariate analyses may consider using a multivoxel pattern

searchlight instead (e.g., see Carlos, Hirshorn, Durisko, Fiez, &
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Coutanche, 2019 for an example on localizing the “Visual

Word Form Area").

4.2. Visual search for digits may not require
representations of digit identity in ITNAs

Even though there was evidence of category discriminability

in both IT regions, we found no conclusive evidence of digit

discriminability. This suggests that category representations

can be computed without minimal digit identity representa-

tions (i.e., one does not need to identify and verbalize which

character it is in order to categorize it). Such a category

distinction could simply be due to the spatial segregation of

digit sensitivity (i.e., ITNAs) and letter sensitivity (i.e., “Visual

Word Form Area” and “Letter Form Area”) (Grotheer et al.,

2018; Grotheer, Herrmann, & Kovacs, 2016; Pollack & Price,

2019). The dissociation between category identification and

character identification is also consistent with existing

behavioral evidence (McCloskey & Schubert, 2014; Taylor,

1978). McCloskey and Schubert (2014) showed that patient

L.H.D., with alexia due to a left ventral lesion, was impaired in

the ability to identify individual digits and letters but was

perfectly accurate in classifying digits and letters in mixed

strings (e.g., ‘2VG5QS’). The authors concluded that “digit/

letter category representations and character identity repre-

sentations were computed separately but concurrently for all

elements in the display, with the category representations

providing the basis for present/absent judgements when the

target and distractors differed in category” (McCloskey &

Schubert, 2014, p. 458). Psychophysics evidence in neuro-

typical adults also suggest that identity and category are

extracted in parallel (Taylor, 1978).

It is important to note that our results demonstrate

inconclusive evidence of digit discriminability in the left ITNA,

but conclusive evidence of an absence of digit discriminability

in the right ITNA and of hemispheric asymmetry in digit dis-

criminability. It could be that visual search tasks that require

basic level categorization (i.e., a digit or a letter) and not sub-

ordinate level categorization (i.e., which specific digit or letter)

are not robust in eliciting digit identity representations.

Nonetheless, it is possible that digit discriminability in the

ITNAs would be robustly evident in tasks in which digit

identity is crucial. For instance,Wilkey, Conrad, Yeo, and Price

(2020) found above-chance decoding of the multivoxel

response patterns evoked by digits in the left mirrored ho-

molog of the meta-analytically identified right ITNA (Yeo

et al., 2017) across tasks involving single-digit identification

(Is it a 2?) and comparison to a reference magnitude (Is it

greater or less than ‘5’?).7 Moreover, we found that digit dis-

criminability in the left IT region was associated with calcu-

lation skills, which suggests that the discriminability of digit

representations in the ITNAs do have behavioral relevance.

The numerically weaker digit discriminability in the right IT in

the current study and the study by Wilkey et al. (2020) is
7 Above-chance decoding was found in the left ITNA (M ¼ 27.
8 %, chance level ¼ 25 %), but not in the right ITNA (M ¼ 26.6 %).
However, paired samples t-test revealed inconclusive evidence of
whether the decoding accuracies were significantly different be-
tween hemispheres, t(38) ¼ 1.50, p ¼ .143, BF01 ¼ 2.05.
compatible with the hypothesis that the magnitude repre-

sentations in the right intraparietal sulcus (to which the right

ITNA is connected to; Abboud et al., 2015; Baek et al., 2018;

Daitch et al., 2016; Nemmi, Schel, & Klingberg, 2018), are more

approximate, or less discrete, in nature compared to its left

counterpart (Chassy & Grodd, 2012; Kimura, 1966; Kosslyn et

al., 1989; Notebaert & Reynvoet, 2009; Piazza, Mechelli, Price,

& Butterworth, 2006, 2007). Moreover, some studies that

used transcranial magnetic stimulation (TMS) have also pro-

vided support for a critical causal role of the left hemisphere,

particularly the left parietal cortex, in the discrimination of

numerical symbols (Andres, Seron, & Olivier, 2005; for e re-

view, see Faye et al., 2019; G€obel, Walsh, & Rushworth, 2001;

Sandrini, Rossini, & Miniussi, 2004). For example, by applying

TMS to either the left or right posterior parietal cortex, or both,

Andres et al. (2005) found that although an approximate

coding of digit magnitudes can be supported by either the left

or right posterior cortex, the precise coding of digit magni-

tudes relies on the integrity of only the left posterior parietal

cortex. Taken together, we speculate that the ITNAs may

differ in how strongly they represent digit identity depending

on the task context: When a task does not require discrimi-

nation between digits (e.g., category detection), digit identity

is weakly represented in the ITNAs; when a task requires a

digit to be discriminated from another digit (e.g., digit identi-

fication or magnitude comparison), digit identity is more

strongly represented in the ITNAs, possibly by top-down

modulation. The extent to which the right ITNA discrimi-

nates digits may also be slightly weaker than that in the left

ITNA.

4.3. Calculation skills are associated with hemispheric
asymmetry of some functional and representational
properties

Using a region-of-interest analysis, we clarified that the mean

digit sensitivity in the left IT region was also positively

correlated with calculation skills, suggesting that the left IT

region was not qualitatively different from the right IT region

in its behavioral relevance, despite indications to that effect in

the results reported by Pollack and Price (2019). Importantly,

consistent with our prediction, we found that higher calcula-

tion skills were also associated with greater right lateraliza-

tion in the digit sensitivity. Although our findings may not be

consistentwith Amalric andDehaene's (2016) findings that the
left (but not the right) ITNA's response to numerals was

modulated by professional mathematical expertise, it is

possible that a right lateralization in digit sensitivity is more

robust within non-mathematicians, which can be observed in

their data (Fig. 8E).

We also found that greater digit discriminability in the left

IT region was associated with higher calculation skills. This

relation cannot be entirely explained by general symbol

decoding because we regressed out letter-word identification

skills from calculation skills. We also did not find a positive

association between calculation skills and letter discrimina-

bility in both ROIs. Taken together, there is some degree of

specificity between digit discriminability and calculation skills

that is worth replicating in future research with a larger

sample. Future work should also consider examining the

https://doi.org/10.1016/j.cortex.2023.08.018
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relation between digit discriminability in the ITNAs and a

behavioralmeasure of digit identification (e.g., under different

levels of visual demands such as introducing noise or short-

ening presentation durations). It would also be necessary to

control for general object recognition ability (that is indepen-

dent of intelligence) for which reliable individual differences

have been found that generalize across familiar and novel

object categories (Gauthier, 2018; Richler, Wilmer, & Gauthier,

2017, 2019).

Although evidence for a similar relation between digit

discriminability and calculation skills in the right IT region

was inconclusive, we found that its correlational strength did

not differ statistically from that in the left IT region, and that

greater hemispheric asymmetry in digit discriminability was

also not associated with higher calculation skills. Hence, it is

possible that digit discriminability in the right IT region is as

important for calculation skills as the left IT. Our findings are

in contrast with a recent study by Wilkey et al. (2020) that

found weak to moderate evidence of a null relation between

decoding accuracy of multivoxel pattern classification of digit

representations and calculation skills. One explanation is that

the difference in tasks may modulate the degree of inter-

individual variability in the discriminability of digit-specific

representations. The digit detection task used here did not

require discrimination between digits (i.e., whether the digit

was a 2 or 3 did not matter), whereas Wilkey et al. (2020) used

an identification task and a magnitude comparison task, for

which discrimination between digits was necessary. It is

possible that the digit detection task evoked spontaneous

digit-specific representations with substantial inter-

individual variability in the degree of discriminability. In

contrast, in identification and comparison tasks, such inter-

individual variability in the degree of discriminability may

be attenuated when the digit-specific representations were

amplified for further processing.

Finally, given the flexibility in the recruitment of either

hemispheric number identification system depending on task

contexts (Cohen & Dehaene, 1995, 1996, 2000), it is important

to note that these findings may be specific to visual search

tasks, and may not apply to other numerical tasks. Hence,

more research would be needed to replicate and extend the

current findings.

4.4. Inconclusive evidence of hemispheric asymmetry in
representational geometries of digits in both ITNAs

We explored whether there was a discernible organization in

representational geometry of digits in each IT region that

could be described by models that characterize phonological,

numerical, or shape similarity, and whether the organization

differed between hemispheres.

None of the models were adequate in describing the re-

gions’ representational geometries of digits. The null findings

of the neural-and-model comparisons could possibly be

explained by the lack of exemplar discriminability, which

could result in noisy representational geometries without any

meaningful rank order for the neural-and-model compari-

sons. As argued above, the lack of exemplar discriminability

could be an artifact of the visual search paradigm rather than

an intrinsic property of the ITNAs, or a lack of statistical power
at the trial level given the split-half approach in computing

the exemplar discriminability index. Given these caveats, we

refrain from making any inferences about what the ITNAs

represent. Nonetheless, there was conclusive evidence that

the representational geometry of digits could not be described

by visual form,which replicates the finding by Yeo et al. (2020).

Hence, the prevalent label “Number Form Area” should be

avoided since, to the best our knowledge, there is currently no

direct evidence that numeral-preferring IT regions are sensi-

tive to visual form per se (i.e., the actual physical shape of the

digit) (Yeo et al., 2020), nor that systematic differences in vi-

sual form between letters and digits even exist (Schubert,

2017).

The current study also provides some indication of a ratio-

based representational geometry that favored the right IT and

a frequency-based representational geometry that favored the

left IT. Although the evidence is inconclusive, the trends

observed are consistent with current ideas of the emergence

of brain networks underlying numerical cognition e a parietal

“approximate magnitude system” that is initially right-

lateralized in infants and preschoolers, but becomes more

bilateral with exposure to and development in symbolic nu-

merical and mathematical knowledge (Edwards, Wagner,

Simon, & Hyde, 2016; Emerson & Cantlon, 2015; Hyde, 2021;

Hyde, Boas, Blair, & Carey, 2010). The decrease in laterality is

thought to be partly due to the development of a left-

hemispheric number system to support the representation

of verbally anchored numerical symbols (Ansari, 2008;

Holloway, Price, & Ansari, 2010; Hyde, 2021). Importantly,

numerals are encountered in our environments with highly

predictable frequencies of co-occurrence (Dehaene & Mehler,

1992; Kojouharova & Krajcsi, 2019; Krajcsi, Lengyel, &

Kojouharova, 2016) and thus it is not surprising that the

representational geometry of digits may be shaped by the

frequency of co-occurrences.

In sum, the insensitivity of the current data to disambig-

uate the various models suggests that more research needs to

be conducted to examine hemispheric asymmetry or lack

thereof in the representational geometries of digits in the

ITNAs.

4.5. Limitations

First, it is possible the presence of other characters from the

non-target category could have led to noisy exemplar-level

representations. Although a single-character categorization

task would be ideal to minimize the influence of characters

from the non-target category, the present study was meant as

a case study to probe a very specific hemispheric asymmetry

reported by Pollack and Price (2019), so we were necessarily

constrained by their experimental design. Future studies

should consider designs with a single-stimulus presentation

as well as a task that requires explicit digit discrimination to

better understand the representational geometries of digits in

the ITNAs.

Second, the present study focused only on the ITNA rather

than also on the regions subserving the verbal and magnitude

codes. Lateralization has been shown to be a regional-level

phenomenon (i.e, lateralization may manifest in some re-

gions, but not others; Pinel & Dehaene, 2010), so a focal

https://doi.org/10.1016/j.cortex.2023.08.018
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analysis solely on the ITNAs is an appropriate first step for

understanding the shared and distinct roles of the bilateral

ITNAs. Besides, localization of regions underlying the verbal

and magnitude codes is non-trivial without additional local-

izer tasks to isolate their respective representations. Given the

hypothesized intra-hemispheric interaction between codes,

future studies should also examine if hemispheric asymme-

tries in representational properties exist in the parietal re-

gions subserving the magnitude code, and how they relate to

the asymmetries between the ITNAs. Future studies should

also consider a searchlight approach to localize neighboring

sub-regions in the inferior temporal, parietal and frontal

cortices that process different aspects of Arabic numerals. A

collective effort of using different methodologies and analyt-

ical techniques will help advance the theories of numerical

cognition.

Third, we used group-level ROIs because the right IT ROI

was localized using a correlational approach at the group

level. However, such group-level ROIs are less optimal and

sensitive than subject-specific ROIs because they do not ac-

count for anatomical variability between individuals (Nieto-

Casta~n�on & Fedorenko, 2012). This may partly explain the

difference in conclusions drawn here and from previous

studies that utilize subject-specific ROIs and found that the

bilateral ITNAs do not have distinct functional profiles

(Grotheer et al., 2018; Grotheer, Herrmann, & Kovacs, 2016).

Future research free of such methodological constraints

should consider using subject-specific ROIs instead and probe

the functional and representational properties across

different tasks that vary in their verbal and magnitude pro-

cessing demands.

Fourth, like many studies in cognitive neuroscience, the

sample only included right-handed individuals. As handed-

ness is closely tied to functional lateralization (e.g.,

Artemenko, Sitnikova, Soltanlou, Dresler, & Nuerk, 2020), the

current evidence of patterns of hemispheric asymmetry in

right-handers should not be overgeneralized to the entire

human population. Future studies should include left-handed

and mixed handed individuals (Willems, Der Haegen, Fisher,

& Francks, 2014).
5. Conclusions

To explore how the bilateral ITNAs may be functionally

dissimilar, we probed whether hemispheric asymmetry exist

in an array of functional and representational properties of

the ITNAs during a visual search task. In general, the ITNAs

appear differentially weighted between hemispheres in

some of their functional responses and representations that

warrant caution in generalizing the findings of the ITNA in

one hemisphere to the other. We found that the bilateral

ITNAs did not differ in their sensitivity to digits, and that

digit sensitivity in both ITNAs correlated positively with

calculation skills. The differences between these findings

and those originally reported by Pollack and Price (2019)

suggest that within-individual comparisons are a necessary

follow-up to infer hemispheric asymmetries. Nonetheless,

we did uncover strong hemispheric asymmetry (right later-

alization) in other properties, such as activity in
alphanumeric categorization in general, as well as category

discriminability. We also found certain properties that were

associated with calculation skills, such as right-

lateralization of digit sensitivity, and digit discriminability

in the left ITNA. Given the hypothesis of flexible, task-

dependent engagement of the bilateral ITNAs, our results

are likely specific to visual search. Other numerical tasks

may uncover hemispheric asymmetries in a similar or

different set of properties of the bilateral ITNAs as we have

found here. Hence, further investigation may be worthwhile

to probe the individual and joint contributions of both

hemispheres in processing numerals. Finally, to better un-

derstand the nature of hemispheric asymmetry of cognitive

functions in general, our study highlights the need to sup-

plement traditional univariate group-averaged analyses with

within-participant comparisons, multivoxel pattern ana-

lyses, and individual differences analyses.
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