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Abstract
The importance of understanding the nonlinear dynamics of
neural systems, and the relation to cognitive systems more
generally, has been recognised for a long time. Approaches
that analyse neural systems in terms of attractors of auton-
omous networks can be successful in explaining system be-
haviours in the input-free case. Nonetheless, a computational
system usually needs inputs from its environment to effec-
tively solve problems, and this necessitates a non-
autonomous framework where typically the effects of a
changing environment can be studied. In this review, we
highlight a variety of network attractors that can exist in
autonomous systems and can be used to aid interpretation of
the dynamics in the presence of inputs. Such network
attractors (that consist of heteroclinic or excitable connections
between invariant sets) lend themselves to modelling
discrete-state computations with continuous inputs, and can
sometimes be thought of as a hybrid model between classical
discrete computation and continuous-time dynamical sys-
tems. Bibliographic info here.
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Nonlinear dynamics of computation
Neurobiological systems with cognitive features, in
particular those that can successfully perform compu-
tational tasks, can often be usefully viewed through the
lens of nonlinear dynamical systems. For example
[28,24,29,2], consider a range of systems that are
www.sciencedirect.com
modelled by nonlinear dynamical systems. In fact, the
so-called ‘Dynamical Hypothesis’ [58] proposes that
the best way to analyse and understand cognitive sys-
tems is in dynamical systems terms. Beer and colleagues
[11,16] have produced a large body of work developing
and analysing cognitive models consisting of CTRNNs
(continuous time recurrent neural networks) using
dynamical systems techniques. There are also many

results on universal approximation of dynamical systems
by neural networks [26,59].

A key concept from nonlinear dynamics is that the set of
actually observed states (the attractor) is typically a
subset of the set of possible states (the phase space).
While the latter is high dimensional and typically simple
in geometry (e.g., if there are two variables of interest,
the phase space is simply an infinite plane, and if there
are more variables, the phase space is simply a higher
dimensional analogue of a plane), the former can be low

dimensional yet quite complex in geometry (e.g., in the
case of chaotic attractors).

The tools of nonlinear dynamics have been used for
many years to model a wide range of tasks in neural
computation. This includes the pioneering works of
Hopfield for storing patterns [30] and using simple
neural networks to solve complex optimisation prob-
lems such as the travelling salesman problem [31].
More recent work includes modelling associative
memory [55,13,33], pattern recognition [53,43], and

storage and recall with partial and degraded cues
[55]. Even quite simple neural systems with no input
can exhibit a wide range of attracting nonlinear dy-
namics and bifurcation behaviour d see for example
[12,34,50].

Generalising these ideas to understand the ‘dynome’
[38] of larger-scale neural systems is a challenge, not
only because of the high dimensionality of realistic
neural models but also because of the issues of input-
dependence of the system state. In this review, we

highlight some attempts to develop dynamical systems
paradigms that are able to explain the response of a
system to a changing but unknown input from the
environment. These use the idea of a ‘network’ in phase
space that allows one to model both the (discrete)
states of the system and the allowable transitions be-
tween them.
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A notion that has been explored in recent years is that of
heteroclinic network attractors [60], also called ‘winnerless
competition’ dynamics [52,47]. In contrast to ‘winner
takes all’ dynamics [49], the attractor is high dimen-
sional but highly structured and resembles a persistent
transient: trajectories spend long periods of time in
the vicinity of one equilibrium before making a rapid
transition to a different equilibrium in a different part

of phase space. This alternation of fast switches be-
tween long transients continues ad infinitium and does
not depend on there being a global slow/fast decom-
position of the dynamics e it is an emergent effect.
Closely related structures are attractors with chaotic
itinerancy [57], which consist of chaotic saddles with
connections between them. As the KupkaeSmale
Theorem implies that heteroclinic loops are, in some
sense, exceptional, such networks need to rely on spe-
cial structures (such as the governing equations being of
LotkaeVolterra form) or symmetries for

their robustness.

A more recent and closely related development that we
highlight in this review is the idea of network attractors
of excitable connections [4]. Networks of excitable con-
nections provide a useful paradigm for discussing
input-driven computations while avoiding the prob-
lems with robustness that heteroclinic networks pre-
sent. In these models, the presence of noise or inputs
above a given threshold can give rise to a transition
between states. The noise can be interpreted as a

combination of intrinsic noise within the system and
the effect of other parts of the neural system that are
not modelled in detail.
Excitable and heteroclinic network
attractors
A network attractor of an input-free dynamical system
consists of an attracting set X that can be decomposed
into a number of invariant sets Ai and orbits (or tra-
jectories) that connect these sets. These connections
may or may not involve a threshold, or minimum
perturbation which is required for trajectories to tra-
verse the connection [4]; Figure 1 illustrates two forms
of network attractor.1

A heteroclinic network consists of connecting orbits be-
tween invariant setsdfor those connecting orbits the

threshold is zerodwith the consequence that the Ai are
saddles rather than attractors (though note that for some
Milnor chaotic attractors with riddled basins can have
connections from themdsee for example [35]). The
existence and dynamics of heteroclinic networks in
1 More specifically we define a connection with amplitude d to exist between states Ai

and Aj, if a perturbation of size at most d > 0 from Ai gives a dynamical path to Aj for the

input-free dynamics. The connection from Ai and Aj is said to have threshold dij � 0 if

there is a connection for any amplitude d > dij. Heteroclinic connections have zero

threshold.
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coupled cell systems are discussed for example in
Refs. [8,23,60,14]; in particular a heteroclinic network
between equilibria may or may not attract a neigh-
bourhood of initial conditions, depending on the relative
size of the contraction and expansion of the dynamics.
Conditions for stability can become very complicated
even for quite small networks; see for example [44,52,
15,27,45].

As already mentioned, existence criteria for robust
heteroclinic networks [39,60] will typically only be
approximately present in realistic models. Excitable
networksdthose for which the thresholds for connections
are non-zerodare less restrictive, but inputs are
required to get any non-trivial dynamics beyond an
initial transient. If we go beyond the realm of deter-
ministic models to include stochastic inputs, noisy
network attractors originating from heteroclinic or excit-
able networks cannot be easily distinguished from each

other [5] and it becomes a modelling decision as to
which type of network attractor to use. The presence of
noise may lead to interesting behaviours such as memory
of previous visits, even in the low noise limit [3,10]. It is
these noisy network attractors that we argue are a
plausible model for neural computations.

Winnerless competition and neural
dynamics
Network attractors can be found in a variety of coupled
cell systems inspired by neuroscience. Heteroclinic
dynamics occur frequently in systems with oscillatory
dynamics [9] or in the form of winnerless competition
(WLC) dynamics for systems of LotkaeVolterra type

[50,1,48]. Such network dynamics are interesting in that
they can generate input-dependent sequences or even
(via amplification of small-scale stochasticity) random
sequence generation. The underlying attractor for WLC
networks is a sequence of metastable states with
heteroclinic orbits joining them. The reason for the
success of WLC dynamics in capturing reproducibility
under small noise conditions is precisely due to this
structure: trajectories stay near the underlying hetero-
clinic network for an arbitrarily large time.

These and related models have found application in a
range of neural dynamics. This includes switching be-
tween various aspects of brain function [46,51,47,52,
48,32], and as models of behavioural states of C. elegans
[41]. Further applications include models for intrinsic
temporal behaviour of brain perception as in binocular
rivalry [21].

Computing with network attractors
Computing with heteroclinic networks has gained trac-
tion in over the past years: from reproducible sequence
generation under small noise [50,52] to modelling the
interaction of different cognitive modalities [51]. Ap-
plications of this paradigm to understand computational
www.sciencedirect.com
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Figure 2

Realising a Turing machine using an excitable network attractor.
Schematic diagram showing a robust realisation of a Turing machine
using noisy transitions in a two-layer network with cells yi, pi that has an
excitable network attractor [6]. The detector eK ðtÞ classifies system state
according to a neighbourhood of an attractor. The input from tape is
assumed to have amplitude z and there is noise of amplitude hy,p within
the network. The computation requires no external clock and can be made
arbitrarily sensitive, i.e. in the absence of noise it is possible to have
successful computations for arbitrarily small z, but the rate of computation
will be very slow for small z. In the presence of noise, various types of
error can occur as discussed in Ref. [6] (Reproduced with permission from
Ref. [6]).

Figure 1

The dynamics of network attractors. a) Transitions between states for a Kirk-Silber heteroclinic network [36] in phase space. Each state xk is a saddle
equilibrium with an arrow indicating the direction of a heteroclinic (connecting) orbit. b) An excitable network with the same network topology as a) but
between attracting equilibria. Saddles and their stable manifolds are indicated in blue in b). The quantity d41 is the smallest perturbation required to have a
dynamical path from x4 to x1. A notable difference between these two is that transitions in b) require nontrivial input (or noise) above a threshold while a)
will show spontaneous transitions even in the absence of any input.
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properties of the dynamics of neural models include
‘heteroclinic computing’ as described by Neves and
others [54,42,56]. Heteroclinic networks can also be
used to design systems with particular properties for
application in robotics. Daltorio et al. use stable heter-
oclinic channels to generate rhythmic output of varying
periods in response to sensory inputs to drive a peri-
staltic crawling robot [20]. Lyttle et al. use a neuro-
mechanical model of the feeding apparatus of a marine
mollusc [40] which exhibits a highly sensitive ‘hetero-
clinic mode’. Egbert et al. use heteroclinic network as a
controller for a robot trained to perform a categorical

perception task [22]. An interesting phenomenon
observed in the latter work was that such controllers can
make discrete decisions about continually evolving en-
vironments. In all of these examples, the use of a
heteroclinic network as a controller allowed for simpler
interpretation, or design, of the controller, due to the
close relation of the dynamics with a finite-state ma-
chine. Even though there is a lack of structural stability
of attracting heteroclinic they can be useful in explain-
ing more general dynamics in terms of a perturbed
heteroclinic skeleton. The stable heteroclinic channels

of [47] show that for small perturbations and low noise,
trajectories can remain close to a perturbed hetero-
clinic network.

On the other hand, excitable networks are well-adapted
for understanding input-driven computations, espe-
cially finite state computations. Indeed, in the absence
of input, their dynamics is remarkably simple - pro-
gression to one of the attracting states. Excitable net-
works can be used to construct continuous time
systems that realise network architectures of any
www.sciencedirect.com
desired design and input level. More specifically, we
have shown that they can be used to construct Turing
machines [6] with arbitrary sensitivity to inputs. In
Figure 2, we show the scheme used in Ref. [6] for
robustly realising a Turing machine within the dynamics
of an excitable network. Moreover, as illustrated in
Current Opinion in Neurobiology 2024, 84:102818
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Figure 3

A typical path around a noisy excitable network. Panel a) shows an example of a ten-state finite state graph realised as an excitable attractor for a
CTRNN using the method in Ref. [7]. Panel b) shows a typical trajectory for this network realised as a ten-node system with coordinates yi(t) subjected to
i.i.d. Wiener noise. Panel c) shows the same information as b) but as a raster plot; yellow regions show where the ith cell is above the threshold
(Reproduced with permission from Ref. [7]).
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Figure 3, excitable networks with arbitrary topology and
thresholds can be realised using standard continuous
time and state-coupled neural rate models such as the
CTRNN (or equivalently, a Wilson-Cowan model [61])
through a suitable choice of connection matrix [7].

A common problem faced by models highlighted in

Ref. [1] is the trade-off between sensitivity (the ability
to produce responses for inputs that may be of low
Current Opinion in Neurobiology 2024, 84:102818
amplitude) and robustness (the need for the system to
function correctly in the presence of noise). Indeed, it is
easy to come up with models of cognitive processes that
have one but not the other. Excitable network attractors
have dynamics that make them robust to subthreshold
inputs/noise and sensitive to super-threshold signals.
This is because every connection in an excitable network

attractor has an associated excitability threshold: the
minimum perturbation required to make a switch via
www.sciencedirect.com
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that connection. Since the effect of noise is usually much
smaller than those of inputs from the environment, the
excitability threshold for a connection can be adaptively
chosen, for example by evolving weights within the
network, to be larger than the effect of noise and smaller
than the input amplitude. This does not discount the
possibility of noise-driven transition if the system runs
for a sufficiently long time [25]. In turn, the dynamics of

excitable networks are intermittent with trajectories
spending long periods of time close to one state before
the correct inputs induce a switch to another state. An
application of this is the computational modelling of
transitions betweenmultichannel Electroencephalogram
(EEG)microstates and their residence time. Microstates
are short periods with coherent spatial patterning that
have been implicated to be electrophysiological corre-
lates of functional states in resting-state networks. A
model involving a four-node noisy excitable network
attractor (see Figure 4) has been used to capture tran-

sition probabilities between measured microstates [19].
Adding non-observed states can give improved probabi-
listic models that also account for heavy-tailed distribu-
tions of residence times between microstates. Due to
Figure 4

Modelling transition between microstates in fMRI using excitable netwo
states identified in Ref. [37]. Panel b) shows an excitable network model fitted t
a p-cell or a y-cell. The p-cells keep track of the closest equilibrium while the y-c
a transition from p2 to p1. Panel c) shows a time series of the p-cells. Panel d)
transitions between different microstates. (Reproduced with permission from

www.sciencedirect.com
their scale-free nature, such timings have been shown to
be a crucial feature in modelling the temporal dynamics
of microstates [17,62].

Outlook
The network attractors discussed in this review that
can be analysed in detail have mostly simple tem-
poral (equilibrium) dynamics at the invariant sets
representing discrete states, as well as simple spatial
structure (e.g., a single active cell in Ref. [7]). In

practical applications to neural systems, the dy-
namics will be much more complex than this, both
in terms of time dynamics and in terms of spatial
patterning. There have been some attempts to
extract such dynamics from data about neural ac-
tivity (e.g., [32,19]) but general methods will be
hard to establish, partly because the individual
excitable states are likely to be spatiotemporal states
that are much more complex than in the simple
examples studied so far. There is clearly much more
to be done before we can understand the contexts

where network attractors will play a useful role in
understanding such data.
rks. Panel a) shows EEG data and extraction of four predominant micro-
o this microstate data [19]. This has 16 cells of two types; each cell is either
ells control transitions. For example, the y-cell y4 is activated when there is
shows the time series of the y-cells. These become non-zero only during
Ref. [19]).
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Although we have focused on natural neural dynamics in
this review, excitable networks can also be a useful
paradigm to understand malfunction of trained artificial
neural networks. For example [18] shows that for a high
dimensional Echo State Network trained for a particular
trained task, an effective excitable network attractor can
be reconstructed where errors in the response can be
interpreted in terms of errors to correctly navigate the

network in response to inputs.

In the longer term, a probabilistic understanding of
network attractors is likely to be very helpful to give a
quantitative picture of how they respond to inputs and
their potential utility in understanding a variety of
neural functions (e.g., the role of such dynamics in
short-term memory) [33].
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