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Abstract  1 

Neuroimaging studies consistently show advanced brain age in schizophrenia, suggesting that 2 

brain structure is often ‘older’ than expected at a given chronological age. Whether advanced brain 3 

age is linked to genetic liability for schizophrenia remains unclear. In this pre-registered secondary 4 

data analysis, we utilised a recall-by-genotype approach applied to a population-based subsample 5 

from the Avon Longitudinal Study of Parents and Children to assess brain age differences between 6 

young adults aged 21-24 years with relatively high (n=96) and low (n=93) polygenic risk for 7 

schizophrenia (SCZ-PRS). A global index of brain age (or brain-predicted age) was estimated using 8 

a publicly available machine learning model previously trained on a combination of region-wise 9 

gray-matter measures, including cortical thickness, surface area and subcortical volumes derived 10 

from T1-weighted magnetic resonance imaging (MRI) scans. We found no difference in mean brain-11 

PAD (the difference between brain-predicted age and chronological age) between the high- and 12 

low- SCZ-PRS groups, controlling for the effects of sex and age at time of scanning (b = - 0.21; 13 

95% CI -2.00, 1.58; p = 0.82; Cohen’s d = - 0.03; partial R2 = 0.00029). These findings do not 14 

support an association between SCZ-PRS and brain-PAD based on global age-related structural 15 

brain patterns, suggesting that brain age may not be a vulnerability marker of common genetic risk 16 

for SCZ. Future studies with larger samples and multimodal brain age measures could further 17 

investigate global or localised effects of SCZ-PRS.  18 

 19 

 20 
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1. Introduction  1 

 2 

Schizophrenia (SCZ) is a highly heritable (h2 ~ 80%) psychiatric disorder associated with substantial 3 

functional impairment, high prevalence of age-related diseases (including cardiometabolic disease 4 

and dementia), and an average decrease in life expectancy of approximately 15 years (Correll et 5 

al. 2017; Hjorthøj et al. 2017; Mitchell et al. 2013; Stroup et al. 2021; Sullivan, Kendler, and Neale 6 

2003; Weye et al. 2020). The increased risk of age-related comorbidities and shortened lifespan in 7 

SCZ may partly be explained by “accelerated” ageing of the body and brain (Dieset, Andreassen, 8 

and Haukvik 2016; Kirkpatrick et al. 2008; Kirkpatrick and Kennedy 2018). In keeping with this 9 

hypothesis, neuroimaging studies provide robust evidence for advanced biological age of the brain 10 

in people with SCZ (Blake et al. 2023; Constantinides et al. 2022; Kaufmann et al. 2019). However, 11 

whether apparent advanced brain ageing is linked to genetic liability for schizophrenia in young 12 

people remains unclear. Symptoms of SCZ typically start in late adolescence or early adulthood 13 

and structural brain alterations in patients persist - or even increase - with age (van Erp et al., 2016; 14 

2018; Cropley et al., 2019). Despite this apparent neurodegenerative profile, several studies have 15 

instead suggested a neurodevelopmental origin of SCZ and a role of early-life risk factors for 16 

disease aetiology (Owen and O’ Donovan, 2017; Murray et al, 2017). Similarly, ageing is often 17 

considered in the context of old age and degeneration, when it is equally possible that ageing lies 18 

on a continuum with developmental processes that start at birth (Cohen et al., 2020; Kinzina et al., 19 

2019). In this case, and considering the large genetic component of SCZ, it is plausible that a link 20 

between genetic liability for schizophrenia and advanced brain ageing could emerge earlier in 21 

development in at-risk populations and before disease onset.” 22 

 23 

 24 
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Using structural magnetic resonance imaging (sMRI), it is possible to estimate the underlying 1 

biological age of the brain via supervised machine learning (Cole and Franke 2017; Franke et al., 2 

2010). Brain age (or brain-predicted age) can differ from actual chronological age, and the 3 

discrepancy between the two is captured by the brain-predicted age difference (brain-PAD; also 4 

known as brain age gap). While the interpretation of brain-PAD is complex (Vidal-Pineiro et al., 5 

2021), a brain-PAD greater than zero indicates a brain that appears ‘older’ than the person’s 6 

chronological age, and thus may be interpreted as ‘advanced’ brain ageing, whereas a brain-PAD 7 

lower than zero reflects a brain ‘younger’ than expected at a given chronological age (i.e., “delayed” 8 

brain ageing) (Franke and Gaser 2019). Higher brain-PAD scores have been associated with a 9 

range of health-related factors and outcomes, including smoking, higher alcohol intake, blood 10 

pressure, obesity (or higher BMI), diabetes, dementia, major depression, and mortality (Ning et al., 11 

2021; Bøstrand et al., 2022; Kolbeinsson et al., 2020; Kaufmann et al., 2019; Han et al., 2022; Cole 12 

et al., 2018). Hence, brain-PAD may be a marker of overall brain health (Baecker et al., 2021). 13 

 14 

We recently showed a greater brain-PAD in SCZ relative to controls in a multi-cohort study (mean 15 

difference in brain-PAD of 3.55 years after adjusting for age, sex, and scanning site) 16 

(Constantinides et al., 2022), in line with previous work (Demro et al., 2022; Kaufmann et al.,2019; 17 

Koutsouleris et al, 2014; Nenadić et al., 2017). A greater brain-PAD was also observed in 18 

adolescents and young adults with SCZ (Truelove-Hill et al., 2020) or at high risk for psychosis 19 

(Chung et al., 2018; Koutsouleris et al., 2014), and in first-episode patients (Hajek et al., 2019). 20 

Importantly, cross-sectional studies did not find evidence for an association between illness 21 

duration and brain-PAD among people with SCZ or closely related disorders (Constantinides et al., 22 

2022, Demro et al., 2022; Koutsouleris et al., 2014), and longitudinal data indicate that this gap 23 

widens predominantly during the first few years after illness onset before stabilising (Demro et al., 24 
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2022; Schnack et al., 2016). Taken together, research to date suggests that advanced brain age in 1 

schizophrenia may partly reflect deviations from typical neuromaturation trajectories.   2 

 3 

Single nucleotide polymorphism-based heritability (hSNP
2) estimates for schizophrenia indicate that 4 

approximately a quarter of the liability to the disorder is explained by common variants, each 5 

conferring a small increase in risk. Genome-wide association studies (GWAS) have identified 6 

hundreds of such variants to date, with the latest study implicating 287 genetic loci in SCZ (PGC 7 

wave 3; Trubetskoy et al., 2022). The cumulative effect of these variants can be summarised into 8 

a polygenic risk score that estimates an individual's genetic liability to schizophrenia (SCZ-PRS) as 9 

conferred by common frequency alleles (Choi, Mak, and O’Reilly, 2020).  Variation in SCZ-PRS in 10 

the general population has been associated with phenotypes of brain morphometry previously 11 

implicated in schizophrenia, including global and regional reductions in cortical thickness and 12 

subcortical structures, possibly reflecting vulnerability to the disorder (Neilson et al., 2019; Stauffer 13 

et al., 2021; Jammei et al., 2023) 14 

 15 

Studies of the genetic architecture of brain age suggest that brain-PAD is moderately heritable (h2 16 

≥ 0.5; hSNP
2 = 0.24) (Cole et al., 2017; Kaufmann et al., 2019), with implicated genes overlapping 17 

with those previously linked to SCZ (Kaufmann et al., 2019). Moreover, a recent study found an 18 

association between SCZ-PRS and brain-PAD in a clinical sample of individuals with SCZ and 19 

controls aged 16-67 years (Teeuw et al., 2021). However, this association was no longer significant 20 

after adjusting for disease status, possibly reflecting downstream effects of the disorder or 21 

confounding factors. In the current study, we aimed to examine whether brain-PAD is associated 22 

with polygenic liability for SCZ, as assessed in a population-based sample of young adults aged 23 

21-24 years. The study utilised a recall-by-genotype (RbG) design, which increases variance in 24 

SCZ-PRS by sampling participants from the tails of the genotypic distribution (i.e., with either 25 
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extremely high- or low- SCZ-PRS), while minimising problems with reverse causation that often 1 

exist in clinical samples (Corbin et al., 2018; Lancaster et al., 2019). In our prospectively registered 2 

Open Science Framework secondary data analysis (https://osf.io/hrka4), we hypothesised a greater 3 

brain-PAD score in the high SCZ-PRS group relative to the low SCZ-PRS group. Evidence for an 4 

association between SCZ-PRS and brain-PAD in young individuals recruited from the general 5 

(largely unaffected) population could reflect a contribution of common genetic risk for SCZ to brain-6 

PAD, rather than brain-PAD being shaped by the potential effects of disorder pathophysiology or 7 

medication. In addition, we conducted exploratory analyses of associations between brain-PAD 8 

and other risk factors or co-occurring phenotypes relevant to schizophrenia (e.g., birth weight, BMI, 9 

depressive/emotional symptoms) and whether SCZ-PRS might moderate those associations. 10 

 11 

2. Methods 12 

 13 

2.1 Study population and SCZ-PRS stratification 14 

 15 
We used data from the Avon longitudinal Study of Parents and Children (ALSPAC) SCZ-RbG sub-16 

study (high SCZ-PRS vs. low SCZ-PRS), which was previously established to investigate the 17 

effects of genetic variants contributing to SCZ on brain developmental and behavioural outcomes 18 

(Lancaster et al, 2019; Sharp et al, 2020). This recall-by-genotype (RbG) neuroimaging study is 19 

nested within ALSPAC, a population-based cohort established to identify factors influencing child 20 

health and developmental outcomes. Briefly, the broader ALSPAC study originally invited pregnant 21 

women residing in Avon (South-West England) with expected delivery dates between 1st April 1991 22 

and 31st December 1992. The initial number of pregnancies enrolled was 14,541, resulting in 23 

13,988 children who were alive at 1 year of age. The phases of enrolment and study 24 

representativeness are described in more detail in the cohort profile paper and its updates (Boyd 25 

et al., 2013; Fraser et al., 2013; Northstone et al., 2019).  26 

 27 

https://osf.io/hrka4
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Following genotyping of most participants within ALSPAC and subsequent quality control of raw 1 

genome-wide data, a sub-sample of 8,365 children underwent SCZ-PRS estimation following a 2 

normal distribution (Lancaster et al., 2019). Construction of the SCZ-PRS followed the methods 3 

described by the International Schizophrenia Consortium (2009), using summary data from the 4 

largest discovery SCZ-GWAS of the Psychiatric Genomics Consortium (PGC-SCZ wave-2; 5 

Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014) available at the time 6 

of participant recruitment. A polygenic score was individually calculated using the “score” command 7 

in PLINK (version 1.07; Purcell et al., 2017). SCZ-PRS was created by summing the number of risk 8 

alleles present for each single nucleotide polymorphism (SNP; i.e., 0, 1, or 2) weighted by the 9 

logarithm of each SNP’s odds ratio for SCZ from the PGC GWAS summary statistics. This was 10 

based upon a PRS generated from SNPs with a GWAS training set P ≤ 0.05 threshold, as it 11 

captured the maximum SCZ liability in the primary PRS analysis of the PGC-SCZ GWAS 12 

(Schizophrenia Working Group of the Psychiatric Genomics Consortium 2014). To recruit a target 13 

of 100 sex-matched participants from each tail of the SCZ-PRS distribution of the genotyped 14 

population (N=8365) for a multi-modal imaging sub-study, the ALSPAC team sent out 1,241 15 

invitations in total (470 to the ‘low’ and 771 to the ‘high’ SCZ-PRS group). Individuals were excluded 16 

if they were receiving any psychotropic medication. A total of 197 individuals from either tail of the 17 

SCZ-PRS distribution (99 with low SCZ-PRS and 98 with high SCZ-PRS) were originally enrolled 18 

in the imaging sub-study (see Fig. 1 in Lancaster et al., 2019). Due to a lower response rate among 19 

high SCZ-PRS individuals, the recruited low- and high- SCZ-PRS groups were mostly within the 20 

lowest 5th and highest 10th percentiles of the genotyped ALSPAC sample, respectively. On 21 

average, there was approximately a 3 standard deviations difference in SCZ-PRS between the two 22 

groups (mean Z-score = -1.71 [range: -0.51 - (-3.27)] for low SCZ-PRS; mean Z-score = + 1.42 23 

[range: 0.52 - 3.40] for high SCZ-PRS), making them highly distinct from each other. Further details 24 

about the SCZ-RbG sample (including genotyping and quality control) can be found in the sample 25 

description (Lancaster et al., 2019; Sharp et al., 2020) and in subsequent publications (Dimitriades 26 
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et al., 2021; 2023; Lancaster et al., 2021). For the current analysis we excluded a small number of 1 

participants from the original RbG sample, mostly due to failed quality control of image processing 2 

(see next subsection for details), leaving a total of 93 participants with low SCZ-PRS and 96 with 3 

high-SCZ-PRS (N=189). All participants were aged between 21-24 years at the time of scanning. 4 

 5 

The ALSPAC website contains details of all the data that is available through a fully searchable data 6 

dictionary and variable search tool (https://www.bristol.ac.uk/alspac/researchers/our-data/). Study 7 

data gathered from participants at age 22 and onwards was collected and managed using REDCap 8 

electronic data capture tools hosted at the University of Bristol (Harris et al., 2009). REDCap 9 

(Research Electronic Data Capture) is a secure, web-based software platform designed to support 10 

data capture for research studies. Ethical approval for the study was obtained from the ALSPAC 11 

Law and Ethics Committee and the Local Research Ethics Committees (listed at 12 

http://www.bristol.ac.uk/alspac/researchers/research-ethics/). Informed consent for the use of data 13 

collected via questionnaires and clinics was obtained from participants following the 14 

recommendation of the ALSPAC Ethics and Law Committee at the time. Consent for biological 15 

samples has been collected in accordance with the Human Tissue Act (2004).  16 

 17 

2.2. Structural image acquisition and processing  18 

 19 
Structural MRI scans were acquired for each participant using a 3T GT HDx system at Cardiff 20 

University Brain Research Imaging Centre (CUBRIC), Cardiff, UK. High-resolution 3-dimensional 21 

T1-weighted images were acquired using a 3-dimensional fast spoiled gradient echo sequence 22 

(FSPGR) with contiguous sagittal slices of 1mm thickness (TR=7.9s, TE=3.0 ms, TI= 450ms, flip 23 

angle 20o, FOV = 256mm X 256mm X 176mm to yield 1mm isotropic voxel resolution images) 24 

(Lancaster et al., 2019). In the current study, we relied on the image-derived phenotypes extracted 25 

centrally by the researchers involved in the ALSPAC neuroimaging resource initiative, which are 26 

https://www.bristol.ac.uk/alspac/researchers/our-data/
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available via the variable search tool (http://variables.alspac.bris.ac.uk/; Sharp et al., 2020). Briefly, 1 

T1-weighted images were processed using FreeSurfer (version 6.0.0) to extract cortical and 2 

subcortical measures from multiple regions of interest (ROIs) based on the Desikan-Killiany atlas 3 

and Aseg atlas (Fischl 2012). Reconstructed images and their cortical and subcortical 4 

parcellations/segmentations underwent quality control following standardised protocols developed 5 

by the ENIGMA consortium (http://enigma.ini.usc.edu/protocols/imaging-protocols/). Each T1-6 

weighted MRI scan was segmented and parcellated bilaterally into volumes for 7 subcortical gray-7 

matter regions (left and right nucleus accumbens, amygdala, caudate, hippocampus, pallidum, 8 

putamen, and thalamus) and 2 lateral ventricles, 34 regional cortical thickness (2 x 34) and cortical 9 

surface area (2 x 34) measures, and total intracranial volume (ICV; Nmeasures = 153). Out of 197 RbG 10 

participants, two had missing values in SCZ-PRS status (n=1) or all Freesurfer measures (n=1; 11 

possibly due to failed image reconstruction) and thus were excluded from the current analyses. Six 12 

participants were further excluded due to failed quality control for cortical parcellation and/or 13 

subcortical segmentation. Further details on image processing and quality control can be found in 14 

the relevant data note by Sharp et al., 2020.  15 

 16 

2.4. Brain age prediction 17 

 18 
To predict brain age in the current sample we primarily used the publicly available ENIGMA brain 19 

age model (Han et al. 2020; https://www.photon-ai.com/enigma_brainage), which has been 20 

independently validated in previous brain age studies covering almost the entire adult lifespan 21 

(Clausen et al., 2022; Constantinides et al., 2022; Han et al., 2022, Abram et al., 2023). The model 22 

was trained separately in 952 male and 1,236 female healthy controls aged 18–75 years from the 23 

ENIGMA-MDD consortium, using ridge regression. FreeSurfer measures from the left and right 24 

hemispheres were combined by calculating the mean ((left + right)/2)) of volumes for subcortical 25 

regions (n=7), lateral ventricles (n=1), and thickness (n=34) and surface area (n=34) for cortical 26 

regions, and ICV, resulting in a total of 77 input features for brain age prediction (Han et al., 2020). 27 

http://variables.alspac.bris.ac.uk/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
https://www.photon-ai.com/enigma_brainage
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In addition to our pre-registered plan to use the ENIGMA model, and to assess the robustness of 1 

our primary results, we also applied an age group-specific brain age model developed by the 2 

CentileBrain team (https://centilebrain.org; manuscript in preparation), which was trained for the 3 

age range 20 to 30 years (see supplementary material A2 for more details). The parameters of the 4 

pre-trained sex-specific brain age model(s) were applied individually to each participant within the 5 

current sample. Importantly, the current sample was not included in the training sets for any of the 6 

two models. To assess model generalisation performance in the current sample, we calculated the 7 

(1) mean absolute error (MAE) between predicted brain age and chronological age, the (2) Pearson 8 

correlation coefficients between predicted brain age and chronological age (r), and (3) the 9 

proportion of chronological age variance explained by the model predictions (R2). These metrics 10 

were calculated and reported with respect to sex and SCZ-PRS group. Global (i.e., whole-brain) 11 

brain-PAD was then calculated for each participant by subtracting chronological age from brain age 12 

(i.e., brain-based predicted age minus chronological age). 13 

 14 

2.4. Brain age bias adjustment 15 

 16 
There is a well-described age-related bias inherent to the ‘brain age’ prediction framework, where 17 

brain age is overestimated in younger individuals and underestimated in older individuals, relative 18 

to the age distribution of the training data, and most accurately estimated for individuals with an 19 

age closer to the average age of the training data (de Lange et al., 2022; Le et al., 2018; Liang, 20 

Zhang, and Niu 2019; Smith et al., 2019). Several bias-adjustment procedures have been 21 

developed to account for this chronological age dependency (for an overview, see de Lange and 22 

Cole 2020). Unless otherwise specified, here we added chronological age as a covariate in 23 

subsequent statistical analyses to account for linear relationships between brain-PAD and 24 

chronological age (Le et al., 2018). In addition, individual brain-PAD estimates were residualised 25 

for age, where appropriate, for data visualisation only.  26 
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 1 

2.5. Non-imaging variables 2 

 3 
As part of the ALSPAC study, a wide range of questionnaire and clinical assessment data have 4 

been collected periodically from parents and their offspring since September 1990. Phenotypes of 5 

interest were selected for descriptive purposes and/or exploratory analyses based on relevance to 6 

SCZ or psychotic disorders more broadly, including birth weight (Abel et al., 2010), childhood IQ 7 

(Schulz et al., 2014), body mass index (Annamalai et al., 2017), alcohol or cannabis abuse 8 

(Archibald et al., 2019; Gage et al., 2016), depressive or anxiety/emotional symptoms (Braga et al., 9 

2013; Upthegrove et al., 2017), and psychotic-like experiences (Healy et al., 2019). Selection of 10 

these risk-factors or co-occurring phenotypes was also based on data availability with respect to 11 

the majority of the SCZ-RbG sample and proximity to the time of the imaging sub-study (where 12 

applicable). Birth weight was identified through a variety of sources including obstetric data and 13 

birth notifications. Childhood IQ was assessed at ~8 years of age using a short form of the Wechsler 14 

Intelligence Scale for Children (WISC-III; Wechsler, Golombok, and Rust, 1992). Emotional problems 15 

were assessed at age ~17 using the emotional symptoms scale of the child-reported Strength and 16 

Difficulties Questionnaire (SDQ; Goodman, 1997). Risk for problematic alcohol use was assessed 17 

at age ~18 using the Alcohol Use Disorder Identification Test (AUDIT total score; Saunder et al, 18 

1993). Problematic cannabis use was assessed at age ~ 20 was assessed using the Cannabis 19 

Abuse Screening Test (CAST; Legleye et al., 2009). A CAST score of 1 or more was used as a 20 

measure of some level of risk for problematic or abusive use. Depressive symptoms were assessed 21 

at age ~22 using the short Mood and Feeling Questionnaire (sMFQ; Angold et al., 1995).  22 

Ascertainment of generalised anxiety disorder at age ~24 was based on the Clinical Interview 23 

Schedule-Revised (CIS-R) (Lewis et a.l, 1992). The semi-structured Psychosis-Like Symptoms 24 

Interview (PLIKS) was used to assess psychotic experiences (hallucinations, delusions, or 25 

experiences of thought interference) at age ~24 (Sullivan et al., 2020). Individuals were deemed to 26 
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have had a psychotic experience if rated as having ever had one or more suspected or definite 1 

psychotic experiences between the ages of 12 and 24 years. Individuals were further classified as 2 

ever having had a psychotic disorder if they met the following criteria: (1) definite psychotic 3 

experiences not attributable to sleep or fever; (2) they had recurred regularly (at least once per 4 

month) over a 6-month period and 3) were either very distressing or having a very negative impact 5 

on their social/occupational life or led them to seek help from a professional source. Given the 6 

possibility of measurement error or attrition bias (Sullivan et al., 2020), data from assessment at 7 

age ~ 24 was supplemented with available information from a previous PLIKS assessment at age 8 

~18 (Zammit et al, 2018). Body mass index (BMI) was assessed during a clinic visit at the age of 9 

~24 years by dividing a person’s weight in kilograms (kg) by height in metres squared(m2). Of note, 10 

no part of the above-described ALSPAC/RbG study design, data collection, or imaging processing 11 

procedures was pre-registered prior to the current analyses being conducted. 12 

 13 

2.6. Statistical analyses 14 

 15 

As described in our pre-registered analysis plan (https://osf.io/hrka4), we used multivariable linear 16 

regression with brain-PAD as the continuous outcome variable and SCZ-PRS (i.e., high vs. low) as 17 

the binary predictor of interest (reference group: low SCZ-PRS). In addition to chronological age, 18 

sex was added as a covariate in the model to account for independent effects of sex on brain-PAD 19 

(Brouwer et al., 2021; Sanford et al., 2022; Wagen et al., 2022). We used a two-tailed null 20 

hypothesis test to evaluate the association between SCZ-PRS and brain-PAD. A prior simulation-21 

based power analysis accounting for the enriched variance in SCZ-PRS within the original RbG 22 

sample indicates that the current analysis has approximately 80% power to detect a relatively small 23 

effect size of SCZ-PRS (R2 > 0.015 at alpha=0.05; see supplementary material in Lancaster et al., 24 

2019 for more details). Of note, age and sex were not included in this priori power analysis as the 25 

two SCZ-PRS groups were matched sex and had a similar mean age in the original RbG sample. 26 

 27 

https://osf.io/hrka4
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As polygenic risk score analyses are generally susceptible to confounding by population genetic 1 

structure (Choi, Mak, and O’Reilly, 2020), a model additionally adjusting for genetic principal 2 

components (PCs) in a subset of the sample was run as a sensitivity analysis (see supplementary 3 

material A1 for details). In addition, we inspected the data for the presence of any brain-PAD outliers 4 

(here defined as +/- 3SD away from the mean of each SCZ-PRS group), and subsequently 5 

excluded one identified outlier in a sensitivity analysis. Exploratory analyses were performed using 6 

multivariable linear regressions with brain-PAD as the outcome variable and each non-imaging 7 

phenotype (e.g., depressive symptoms) and its interaction with SCZ-PRS as the main predictors of 8 

interest, adjusting for the main effects of SCZ-PRS, age and sex. All analyses were performed in 9 

R and the code used can be accessed on OSF (https://osf.io/hrka4).  10 

 11 

3. Results 12 

 13 
3.1. Sample characteristics 14 
 15 

The current sample consisted of 93 individuals with low SCZ-PRS and 96 individuals with high SCZ 16 

PRS (N=189). Table 1 provides a summary of demographic and other characteristics for each SCZ-17 

PRS group. While the high-SCZ PRS group was slightly older than the low-SCZ PRS group (22.88 18 

[SD=0.82] versus 22.53 [SD=0.71] years at time of scanning; p=0.001), levels (or frequency) of 19 

depressive symptom severity, generalised anxiety disorder, and psychotic experiences around the 20 

age of 22-24 years were similar across groups (see Table 1).  21 

https://osf.io/hrka4
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 1 

Table 1. Sample characteristics   

 
Characteristic 

 
N a 

 
Low SCZ-PRS, N=93b 

 
High SCZ-PRS, N=96b 

 
p-value c 

Age at time of scanning (years) 189 (93/96) 22.53 ± 0.71 (21.25-24.25) 22.88 ± 0.82 (21.08-24.50) 0.001 

Sex: female  189 (93/96) 50 (53.76%) 51 (53.13%) 0.93 

Handness: right-handed 185 (93/92) 81 (87.10) 81 (86.96) 0.47 

Ethnicity: white 189 (93/96)  93 (100.00) 96 (100.00) - 

Education: studied at university level d 145 (73/72) 55 (75.34%) 60 (83.33%) 0.24 

Birth weight (grams) 180 (88/92) 3411 ± 508.91 (1407-4710) 3403 ± 518.48 (1960-4820) 0.72 

BMI (kg/m2) at age ~ 24y 161 (80/81) 24.21 ± 4.34 (18.66-43.87) 24.35 ± 4.14 (15.69-38.01) 0.56 

Childhood IQ at age ~ 8y 175 (91/84) 111.2 ± 14.78 (77.00-140.00) 112.2 ± 14.87 (70.0-138.00) 0.45 

SDQ-Emotional symptoms score at age ~ 17y 158 (82/76) 0.00 [0.00-2.00; 0.00-10.00] 1.00 [0.00-2.25; 0.00-6.00] 0.10 

Depressive symptoms (sMFQ) score at age ~ 22y  146 (72/74) 5.00 [2.00-9.00; 0.00-21:00] 4.00 [2.00-7.00; 0.00-22:00] 0.79 

Generalised anxiety disorder at age ~ 24y: yes  158 (78/80) 7 (8.97) < 5  0.54 

Psychotic experiences by age ~ 24y: yes 159 (78/81) - - - 

Suspected/definite (ever)  - 11 (14.10) 15 (18.52) - 

Disorder (ever) - < 5  < 5  0.87 

AUDIT total score at age ~ 18y 147 (72/75) 7.11 ± 5.11 (0.00-21.00) 6.55 ± 4.14 (0.00-18.00) 0.70 

CAST score ≥ 1 at age ~ 20y: yes 148 (75/73) < 5  < 5  0.44 

a N indicates non-missing observations in the total sample (and in low / high SCZ-PRS group). 
b Satistics presented: mean ± standard deviation (minimum-maximum); n (%). Median [interquartile range; minimum-maximum] is provided if the distribution of a 
continuous variable was highly skewed. 
c Statistical tests performed: wilcoxon rank-sum test; chi-square test/Fisher’s exact test. Bold p-values indicate significance at α=0.05. 
d Past or current university attendance for degree or other higher education qualification was assessed at age 26 years. 
BMI: Body Mass Index: SDQ: Strength and Difficulties Questionnaire; sMFQ: short Mood and Feeling Questionnaire; AUDIT: Alcohol Use Disorder Identification Test; 
CAST: Cannabis Abuse Screening Test. 

2 
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 1 
3.2. Brain age prediction performance  2 

Regardless of SCZ-PRS status, the ENIGMA model moderately predicted chronological age with 3 

MAE of 5.25 (SD = 4.05) in males and 6.33 (SD = 4.62) in females in the current sample. Correlation 4 

between chronological age and brain-predicted age was r = 0.12 and r=0.06 in males and females, 5 

respectively (see Supplementary Table B1 for more details on model performance). Of note, the 6 

age range of the current sample was very restricted (21.08-24.50 years), which generally leads to 7 

less covariance between predicted age and true age regardless of prediction accuracy (de Lange 8 

et al., 2022). Despite the narrow range of chronological age in the current sample, there was 9 

substantial variation in brain-predicted age (mean = 26.76, SD = 6.09, range = 7.46-43.00 years; 10 

see Supplementary Figure B1). Brain-predicted age was systematically overestimated by the 11 

ENIGMA model across the current sample, with no observed linear dependence of brain-PAD on 12 

age (SFig. B2). Nonetheless, age was added as a covariate in subsequent statistical analyses to 13 

account for shared variance between predictors. The generalisation performance of the 14 

CentileBrain model in the current sample is summarised in supplementary material A2, and we 15 

return to the issue of moderate performance of the ENIGMA model in the discussion section of this 16 

article.   17 

 18 

3.3. Brain age in high- versus low- SCZ-PRS  19 
 20 

The mean ENIGMA-derived brain-PAD was +4.21 (SD = 5.68) years in the low SCZ-PRS group 21 

and +3.90 (SD = 6.46) years in the high SCZ-PRS group. There was no difference in mean brain-22 

PAD between the two SCZ-PRS groups after adjusting for age and sex (see Fig. 1, and STable B2 23 

for full model parameters). Further adjustment for genetic PCs and/or exclusion of outliers did not 24 

meaningfully alter this result (see supplementary material A1 and A3). Repeating these analyses 25 

with brain-PAD estimates derived from the CentileBrain brain-age model led to highly comparable 26 
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results (b = 0.02; 95% CI -0.18, 0.22; p = 0.854; Cohen’s d = 0.03; partial R 2 = 0.00021; see 1 

supplementary material A2 for more details).    2 

 3 

 4 

Figure 1.  Difference in brain-PAD between low- and high- SCZ-PRS. ENIGMA-derived brain-PAD among 5 
participants with low SCZ-PRS (left) and high SCZ-PRS (right). Brain-PAD estimates are residualized for age 6 
and sex. Group-level analyses did not show a difference in mean brain-PAD between high- and low- SCZ-7 
PRS (b = - 0.21; 95% CI -2.00, 1.58; p = 0.82; Cohen’s d = - 0.03; partial R2 = 0.00029). 8 
 9 

 10 

3.4. Brain age and phenotypes of interest with respect to SCZ-PRS 11 

 12 
We explored associations between different phenotypes of interest and brain-PAD, and particularly 13 

whether those associations were moderated by SCZ-PRS status. Emotional symptoms at age ~17 14 

was associated with ENIGMA-derived brain-PAD (b = 0.80; 95% CI 0.14, 1.47; p = 0.018), however 15 

no evidence for moderation by SCZ-PRS was found (b = 0.25; 95% CI -0.80,1.31; p = 0.64). No 16 

significant associations were found between brain-PAD and depressive symptoms, psychotic-like 17 

experiences, childhood IQ, birth weight, BMI, or level of risk for problematic alcohol use, and/or any 18 

interactions thereof with SCZ-PRS (STable B3). Results were largely consistent when analyses were 19 

repeated with CentileBrain-derived brain-PAD (supplementary material A2). 20 
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4. Discussion  1 

 2 

We investigated the association between a putative biomarker of brain ageing and polygenic liability 3 

for schizophrenia using an RbG approach, comparing individuals at the tails of the SCZ-PRS 4 

distribution within a population-based cohort. Contrary to our hypothesis, we did not find evidence 5 

for a difference in structural MRI-based brain-PAD between the low- and high- SCZ-PRS groups. 6 

To our knowledge, this is the first study to investigate the relationship between SCZ-PRS and brain 7 

age in a young population-based sample.  8 

 9 

The null results of the current study are congruent with previous studies using a range of 10 

techniques. Teeuw et al. (2021) found a weak nominal correlation (r = 0.10; p = 0.048) between 11 

SCZ-PRS and brain-PAD in a clinical sample of people with SCZ and controls (age range: 17-67 12 

years; N=394). However, the observed association was no longer significant after accounting for 13 

diagnostic status, possibly reflecting downstream illness effects of SCZ on brain age. Demro et al. 14 

(2022) performed an analysis of brain age and genetic liability for psychosis as proxied by first-15 

degree biological relatives of individuals with SCZ and associated psychotic disorders (aged 18-16 

69; N=103 relatives). The authors did not find a greater brain-PAD in relatives (affected or 17 

unaffected) compared to unrelated controls, suggesting that brain age may not be an index of 18 

familial risk for psychotic psychopathology. Similarly, we found no evidence for a link between SCZ-19 

PRS and brain age in a young population-based sample, suggesting that this link - if present - might 20 

develop later in life after disease onset. While our findings could cast doubt on the 21 

neurodevelopmental origins of SCZ, it is equally possible that the brain-PAD paradigm and this 22 

current sample (given the narrow age range) are less well suited to address this question.  23 

 24 

Our results also converge with the lack of genetic correlations between brain-PAD and SCZ that 25 

has been reported as part of the largest genome-wide association study of brain age to date 26 
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(N>28,000) (Leonardsen et al., 2023). Moreover, follow-up Mendelian randomization analyses did 1 

not find evidence for a causal relationship between brain-PAD and SCZ, in either direction 2 

(Leonardsen et al., 2023). Taken together, while our results and those of previous studies do not 3 

rule out a causal relationship between brain-PAD and SCZ, they may suggest that previously 4 

reported case-control differences in brain age are more likely to partly reflect the effect of 5 

environmental risk or confounding factors. For example, smoking, obesity and cannabis use have 6 

previously been associated with both SCZ (Myles et al., 2012; Vancampfort et al., 2015; Marconi 7 

et al, 2016) and brain age (Ning et al., 2020; Kolbeinsson et al., 2020; Meier et al., 2022). 8 

Alternatively, previously observed case-control differences in brain-PAD may partly reflect 9 

downstream illness effects (e.g., cognitive deficits or somatic comorbidities) and future studies 10 

utilising clinically-ascertained samples could also examine whether such effects might be 11 

moderated by SCZ-PRS. 12 

 13 

A key strength of the current study is the use of an RbG approach. SCZ-PRS typically accounts for 14 

only up to ~7% of the variance in SCZ liability (Trubetskoy et al., 2022), but because there is 15 

considerably increased SCZ risk between the high- and low- SCZ-PRS groups, the current study 16 

offered considerably more power than a randomly sampled population-based study of similar size 17 

(Lancaster et al., 2019). However, while our null finding may rule out a shared variance between 18 

SCZ-PRS and brain-PAD at the level R2 > 0.015 (i.e., our estimated minimum detectable effect 19 

size), the current study was not powered to detect smaller effect sizes, such as those previously 20 

detected in a large-scale studies of SCZ-PRS and other MRI-derived cortical phenotypes (R2: 0.001 21 

– 0.008) (Neilson et al. 2019; Stauffer et al, 2021). Further work in larger samples utilising summary 22 

data from the most powerful SCZ-GWAS available is therefore warranted (Choi, Mak, and O’Reilly, 23 

2020). In addition, it is possible that the relatively lower response rate among high SCZ-PRS 24 

individuals at participant recruitment might have influenced our results through participation bias 25 

(Martin et al., 2016).  26 
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 1 

The current study utilised a subsample of young adults from longitudinal birth cohort, and thus all 2 

participants were aged between 21-24 years.  This narrow age range might have helped eliminate 3 

the effects of potential confounders that could have been present in a younger or older sample, 4 

such as puberty during childhood/adolescence or chronic age-related diseases (or associated risk 5 

factors) that arise around middle adulthood or later (Holm et al., 2022; Kolbeinsson et al, 2020). 6 

Nonetheless, an effect of SCZ-PRS on brain age could vary across the life course and thus the 7 

generalizability of our null results may be limited to early adulthood. Future studies may either use 8 

a wider age range or focus on different stages of the life course.  9 

 10 

The observed positive association between emotional symptoms (SDQ) at age ~17 years and 11 

brain-PAD (at age ~22) is intriguing but preliminary at this stage, as it comes from an exploratory 12 

analysis. Given that adolescence represents a sensitive and dynamic period of development, a 13 

preliminary interpretation is that emotional difficulties during this period may be linked to advanced 14 

brain maturation in early adulthood (and regardless of SCZ-PRS). This is in contrast with a recent 15 

study in youth (age range: 5-17 years) reporting an association between worsening 16 

anxiety/depression symptoms (as measured by CBCL) and lower brain-PAD (i.e., delayed brain 17 

maturation) (Cohen et al., 2022). In addition, we found no association between depressive 18 

symptoms (sMFQ) and brain-PAD. While this discrepancy in findings might be explained by 19 

differences in sample or methodological characteristics (e.g., lack of, or partial equivalence 20 

between depression/anxiety measures), it highlights the need for further work in larger and carefully 21 

selected longitudinal samples. Another limitation of our exploratory analyses is the discrepancy in 22 

timing of brain scanning and that of ascertaining modifiable variables (e.g., BMI, alcohol use), that 23 

might have precluded detecting associations with brain-PAD. 24 

 25 
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Further limitations of the current study relate to the estimation of brain age. First, although model 1 

performance is not directly comparable between different studies (de Lange et al., 2022; Cole et 2 

al., 2019), the mean absolute error achieved by the ENIGMA model in the current study (MAE > 5 3 

years) is considerably higher than that reported by previous studies in youth using other brain age 4 

models (overall age range: 5-22 years; MAE range from testing samples: 0.7-2 years) (Drobinin et 5 

al., 2022; Modabbernia et al., 2022; Holm et al., 2022; Truelove-Hill et al., 2020). While this 6 

discrepancy can partly be attributed to the relatively wider age range of its training set (18-75 years), 7 

the moderate fit of the ENIGMA model could reflect more noise and may be less sensitive to subtle 8 

individual brain age differences expected within the narrow age range of the current population-9 

based sample of emerging adults (21-24 years). To address this, we have performed a sensitivity 10 

analysis using a second model (i.e., CentileBrain) trained with a restricted age range of 20-30 years 11 

that more closely resembles that of the current sample (whilst preserving a similar set of features 12 

and use of sex-specific model variants). Although the mean absolute error of the CentileBrain model 13 

in the current sample was considerably lower (MAE ~ 0.8 years; see supplementary material A2 for 14 

a more detailed discussion on this) and more consistent to that of previous studies in youth, results 15 

of subsequent analyses aligned closely across the two brain age models. Nonetheless, while a 16 

lower mean absolute error is intuitively appealing in the context of predictive modelling, it remains 17 

unclear whether higher age-prediction accuracy translates to improved capacity for detecting 18 

individual differences in downstream analyses of brain age (Bashyam et al., 2020; 2021; Hahn et 19 

al., 2021; Jirsaraire et al., 2023). This is a topic of ongoing discussion in the field and warrants 20 

further systematic examination. Second, while T1-weighted MRI data is considered highly reliable 21 

for brain age estimation and allows us to place our results in context with previous work, brain 22 

ageing (or maturation) is a heterogeneous process and different factors would likely affect different 23 

aspects of brain structure and function (Smith et al., 2020). Future studies could employ brain age 24 

measures based on other or multiple MRI modalities that may capture different aspects of naturally 25 

occurring variation and may be more sensitive to factors impacting brain health (Cole 2020; Rokicki 26 

https://pubmed.ncbi.nlm.nih.gov/37123443/


Constantinides et al (2023) – SCZ-PRS and BrainAge 

20 

 

et al., 2021). Lastly, as most brain age studies to date, the current study was focused on a single 1 

“global” measure of brain age, which could overlook any localised (or region-specific) effects on 2 

brain age (Popescu et al. 2021; Sanford et al. 2022).  3 

 4 

In summary, the current study did not find evidence for an association between SCZ-PRS and 5 

advanced global structural brain age in young adults, suggesting that greater brain-PAD is not a 6 

vulnerability marker of common genetic risk for schizophrenia. Future studies with larger samples 7 

and/or more comprehensive brain age measures could help identify any global or localised effects 8 

of polygenic risk for SCZ on brain age. 9 

 10 
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