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A revised morphing algorithm for
creating future weather for building
performance evaluation
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Abstract
Climate change is one of the greatest challenges the building industry faces. Engineers and architects require
representative future weather data if they would like to see how their buildings and designs will fare under a
changing climate. The most common method used to create future weather involves manipulating obser-
vations commonly known as morphing, but the most used algorithms can create implausible weather
conditions due to their unbounded nature. Here, bounded morphing algorithms will be described and their
effectiveness proved mathematically. The improved bounded method applies two additional conditions on
the morphed distribution to the maximum and minimum values, in addition to the mean values. The benefits
over the standard approach will also be illustrated considering the changes in the distribution of temperature
and solar irradiation due to climate change. The improved algorithms outperform the standard morphing
procedures in terms of preserving the underlying climate signal while not creating unrealistic or implausible
weather conditions. This method should give engineers confidence that the generated future weather series
are more robust and representative of potential future weather. Practical application: The use of future
weather to inform building design is now commonplace within the industry. Reliable weather files are crucial
to support and deliver strategies for decarbonisation and adaptation to climate change in the built envi-
ronment and the wider industry. This article provides support for the use of revised morphing algorithms
which result in improved future weather time series which can be used in building simulation. For example,
when applied to the temperature, it can be used to produce more accurate representations of future
temperature profiles due to climate change, and for building performance assessment, such as energy
consumption and overheating. It plays an important role in producing reliable and realistic weather data for
future-proof building design.
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Introduction

Hourly weather data files or weather years are an
important resource for building simulation studies.
These weather files mostly take the form of typical
weather years of a particular location and are created
from historic observations.1,2 There are several ap-
proaches that have been adopted for the generation of
typical weather files such as the Test Reference Year
(TRY),3 Typical Mereological Year (TMY)4 or In-
ternationalWeather for Energy Calculation (IWEC).5

The process for creating the files is similar with
weather variables in a given month ranked to de-
termine the most average, from which the most
average months are assembled to create a composite
average year. Such weather years can form the
industry-standard and their use can be a requirement
by building regulations and other codes and stan-
dards. For example, in the UK, the Chartered In-
stitution of Building Services Engineers (CIBSE)
provides a set of TRY weather years which since
2006 have been made available for 14 site
locations.1,3 Additionally, in some countries warm
weather data sequences are used for the purpose of
overheating risk analysis and cooling system sizing,
for example in the UK, the CIBSE Design Summer
Years.3,6

In all these cases, the weather years are based on
historical observed data. Climate change presents the
likelihood that the historic climate we have experi-
enced in the past is unlikely to be representative of
the weather conditions that will be experienced in the
future over the next few decades.7 In recent years, the
world has experienced unprecedented extreme
events. The European heat wave of 2019 has been
found to be 10 times more likely due to climate
change.8 This single event broke several records at
single locations and for example exceeding the
highest temperature recorded in France by 2°C and
caused excess mortality in the thousands.9,10

Such heat events though are expected to become
more common.7 The warming will largely be driven
by anthropogenic emissions, a warmer atmosphere
with modifications due to aspects such as the position
of the Jet streams. Whilst these local effects are
uncertain, studies have demonstrated that Europe is
warming faster than the rest of the northern mid-
latitudes over the past 42 years due to more persistent
double jets over Europe.9 Across the world it is
expected that warmer temperatures will be com-
pounded with more frequent heatwaves and
drought.10 It has long been suggested that using
historic observations for building design could be
inappropriate considering the potential impact of
climate change,11,12 and the speed and unprece-
dented nature of recently observed extreme weather
events further puts their use into question.

In recognition of the need to take account of future
climate changes in building design, CIBSE intro-
duced in 2009 a set of TRY and DSY weather years
reflective of possible future climates based on the UK
government’s UKCIP02 climate change scenarios
for the United Kingdom. These weather years were
called the CIBSE Future Weather Years. The
methodology used to produce the CIBSE Future
Weather Years is described in CIBSE TM48.13 The
methodology was based on a method to apply the
climate change projections to the existing weather
file which was called ‘morphing’.14 The morphing
method consists of adjusting an observed weather
year using a set of mathematical operations that result
in a new weather year that has new average monthly
climate conditions consistent with the climate change
projections but retains the hour-to-hour variability of
the observed weather timeseries. The morphing
method is one of several ‘downscaling’ methods
through which the coarse spatial and temporal scale
information from climate models can be incorporated
to produce the site-specific hourly weather data re-
quired for building simulation.15
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While the use of future weather data within
building simulation is now very much commonplace
within research and industry, nearly all studies use
Belcher et al.’s morphing method. Even a recent open
access tool uses the morphing methodology exactly
as described by Belcher et al.16 However, there are
clear compromises in the use of this method. For
example, as discussed by Belcher et al., not all
characteristics of the predicted change in temperature
could be preserved within the transformed data. In
recognition of the limitations of the Belcher et al.
algorithms, a revised set of algorithms were devel-
oped by researchers at Arup for the CIBSE
TM49 project, which developed new Design Sum-
mer Years for London.17 These algorithms were also
used in the production of the 2016-issue CIBSE
weather years18 and have been used in the Arup
proprietary tool WeatherShiftTM.19 While Dickinson
and Brannon briefly introduced the concept of a
bounded transformation,19 to date there has been no
published proof that such algorithms are suitable or
how they improve on the original morphology
methodology.

In this work we will first go through the original
morphing procedure in detail to demonstrate its
limitations with respect to the adjustment of tem-
perature data. We will then describe the revised
morphing algorithms which we term a Weighted
Stretch and a Bounded Temperature Weighted
Stretch. Most of the impacts on the transformed
weather series are self-evident from the mathematical
formulation of the approach taken, but in the results,
we will show the key differences between the revised
and the Belcher et al. morphing algorithms on the
transformed weather files including the impacts on
the outputs from building simulation.

Original morphing algorithms

The creation of a future weather file using a
morphing method starts with a timeseries of ob-
servations of a weather variable, x. For our pur-
poses here the timeseries will be at an hourly
resolution and will be for the period of 1 month
duration. We consider a single month since this is
the finest resolution at which the climate change
anomaly or ‘change factor’ are provided. A change

factor is a projected change in the monthly average
value of a variable relative to the baseline period. A
morphing operation is a mathematical algorithm
that adjusts the timeseries, x, to produce a new time
series, x

0
, which has similar hour–to-hour vari-

ability but different average properties. The change
in the average properties is specified by the change
factor. The original morphing algorithms consid-
ered the application of three types of transforma-
tion: a ‘simple shift’, a ‘simple stretch’ and a ‘shift
and stretch’.

A simple shift can be defined by,

x0 ¼ xþ Δxm, (1)

where Δxm is the absolute change in the monthly
mean value. With this transformation every value is
shifted by the expected change in the mean. The new
monthly mean is then also shifted by the change
factor and the variance remains unchanged.

A simple stretch is defined as,

x0 ¼ αmx, (2)

where αm is the fractional change in the monthly
mean. This method changes the monthly mean by the
same transformation and the variance is changed by a
factor of αm2.

A shift and stretch is defined as a combination of a
simple shift and a simple stretch and is defined by

x0 ¼ xþ Δxm þ αmðx� ~xÞ, (3)

where ~x is the monthly mean of original time series.
The new monthly mean is shifted by Δxm and the
variance is changed by a factor of αm2.

The use of a particular algorithm depends on the
weather variable and the change factors that are
available. Using the example of UKCP18’s proba-
bilistic projections (table 1) the algorithms could be
applied.

Cloud cover is measured in Oktas, but the change
factor is a percentage change. The first step is to
convert the percentage change to an absolute value
whereby equation (1) could be applied.

Solar radiation has a clear diurnal cycle, and any
change must preserve this distribution. The change
factor though is given as an absolute change. The
absolute change can be converted to a fractional
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change by normalising the change to the observed
baseline ie αm, rsds ¼

�
1þ Δrsds

~xrsds

�
, where by equation

(2) can then be used.
The sea level pressure can be calculated by taking the

observed atmospheric pressure and applying the equation
(1) using the absolute change specified in the projections.

Specific humidity is not observed but can be
calculated from temperature, air pressure and relative
humidity which are all measured. The specific hu-
midity is given as a percentage change so the change
factor can be derived from αm, huss¼ 1þ Δhuss

100 whereby
equation (1) can be applied. If, as in UKCP18, the
change in relative humidity is not an output then the
new relative humidity can be derived from the new
specific humidity time series.

Dry bulb temperature (dbt) has three change
factors associated. Namely the change in the mean,
daily maximum and daily minimum of which all
three are used to derive the morphed time series. The
scaling factor is given by:

αm, dbt ¼ ðΔxtasmax � ΔxtasminÞ=ð~xdbt,max � ~xdbt,minÞ,
(4)

where ~xdbt,max and ~xdbt,min are the average daily
maximum and average daily minimum dry bulb
temperature of the original time series respectively.
The morphed temperature is then given by applying
equation (3).

The application of the morphing algorithms is
relatively straight forward in each case. However,
there are some clear limitations with this method.

1. Morphing the dry bulb temperature preserves
the change in the mean temperature and the
change in average diurnal temperature range

given by the three change factors but not the
projected daily average maximum tempera-
ture and daily average minimum temperature
independently. It can be verified that:

~x0dbt ¼ ~xdbt þ Δxtas, (5)

and

~x0dbt,max � ~x0dbt,min ¼ ~xdbt,max � ~xdbt,min

þðΔxm, tasmax � Δxm, tasminÞ: (6)

But ~x
0
dbt,max ≠~xdbt,max þ Δxm, tasmax and ~x

0
dbt,min ≠

~xdbt,min þ Δxm, tasmin
Hence only one of the change factors is conserved

in the new time series.

2. For variables such as cloud cover there is a
physical limit which the transformed time series
can not go beyond. In this case no lower than a
clear sky (0 Oktas) and no higher than full sky
cover (8 Oktas). The case of a negative (posi-
tive) change factor means a reduction (an in-
crease) in all cloud cover measurements but any
observation of 0 (8) Oktas would remain un-
changed. Hence the morphed time series would
not preserve the climate change anomaly.

Given the shortcomings of the morphing method
there was a need to propose a new methodology
which maintains the underlying climate projections.

Bounded weighted stretch
morphing algorithms

In this section the details of the revised algorithms
that were used for CIBSE TM49 are described

Table 1. UKCP18 probabilistic change factors and units.

Surface variable change factor (UKCP18 short name) Unit

Cloud cover (cc) %
Total downward short-wave flux (rsds) Wm�2

Sea level pressure (psl) hPa
Specific humidity (huss) %
Maximum temperature (tasmax) °C
Minimum temperature (tasmin) °C
Mean temperature (tas) °C
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(Hacker, 2014, pers. comm.) as well as the required
mathematical proofs.

The problems identified in the previous section
can be characterised as the need to preserve the
physical and natural limits of some weather variables
or there is a need to preserve additional features of the
distribution of the transformed time series such as the
change in the average daily maximum temperature.
This imposes an upper and lower bound to the
transformation which means the morphing procedure
must preserve these conditions. For a normalised
input bounded between 0 and 1:

1. If x¼ 0, then x
0¼ 0

2. If x¼ 1, then x
0¼ 1

3. ~x
0 ¼ ~xþ Δx

where ~x is the monthly average value of the
variable.

A transfer function (g) which can be applied is
symmetric and takes the form:

g ¼ xmð1� xÞn, (7)

where m and n are coefficients. The simplest version
of the transfer function is symmetric and m ¼ n¼ 1.
The transformed time series can then be defined as

x0 ¼ xþ S~xg

~g
(8)

where S is the scaling factor. For cloud cover, the
value of S would simply be the change factor
anomaly. In the case of UKCP18 for short wave

radiation this would be of the form meanðxSDSÞþΔSDS
meanðxSDSÞ �1

and x would be the global horizontal radiation nor-
malised between 0 and 1. Considering the limits of
the inputs x. When ¼ 0, g¼ 0, and therefore x

0¼ 0.
When ¼ 1, g¼ 0, and therefore x

0¼ 1. Thus, the
physical limits of the weather variable would be
conserved. The output must be converted back to the
absolute value. In the case of cloud cover this would
mean multiplying the output from equation (8) by 8.
The overall transformation is a weighted stretch al-
gorithm that imposes an upper and lower bound on
the resulting morphed variable. This will be called a
‘bounded weighted stretch’ (BWS). The application

of the bounded weighted stretch algorithm will
maintain the physical bounds of the weather variable.
For example, in the case of cloud cover and solar
radiation, it will retain clear skys and completely
cloudy days whilst morphing the partially
cloudy days.

For temperature, the scaling factor would need
to include information about the change in the
average daily maximum temperature, and the
change in the average minimum temperature as
well as the change in mean temperature. The input
daily temperature time series (T) should be nor-
malised between 0 and 1. This can be achieved by
applying:

x ¼ T � minðTÞ
maxðTÞ � minðTÞ (9)

where minðTÞ is the daily minimum temperature and
maxðTÞ is the daily maximum temperature. The
transformed monthly mean, minimum and maximum
temperatures must be preserved so must respectively
be defined by

~T
0
mean ¼ ~T þ ΔTtas, (10)

~T
0
min ¼ ~Tmin þ ΔTtasmin, (11)

~T
0
max ¼ ~Tmax þ ΔTmax: (12)

To get the transformed temperature series, the
output from equation (8) must be combined with
equations (10) and (11) to maintain the physical
change in the daily maximum and minimum
temperatures:

T 0 ¼ ~T
0
min þ x0

�
~T
0
max � ~T

0
min

�
(13)

Again, by observation, when the input is equal to the
daily minimum temperature, the value of x¼ 0, thus

T
0 ¼ ~T

0

dbt,min. When the input is equal to the daily
maximum temperature, the value of x¼ 1, and thus

T
0 ¼ ~T

0

dbt,max. Thus, preserving two of the temper-
ature change factors. The value of S can be evaluated
by taking the sum over all possible values of
equations (8) and (9):
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X
n

xi
0 ¼ ð1þ SÞ

X
n

ðTi � minðTÞÞ
ðmaxðTÞ � minðTÞÞ (14)

Likewise, taking the sum of equation (13) over all
possible values gives the equation:

X
n

Ti
0 ¼ n~T

0
min þ

X
n

xi
0
�
~T
0
max � ~T

0
min

�
(15)

Since
P

nTi
0 ¼ n~T

0
,
P

nTi ¼ n~T and substituting
in equation (14) into equation (15), the value of S
must be given by:

S ¼
~�T 0

mean
� ~T

0
min

�
�
~T
0
max � ~T

0
min

� ðmaxðTÞ � minðTÞÞ
ðmeanðTÞ � minðTÞÞ�1

(16)

It can be shown that taking the average value of
equation (13) and substituting in the values for S from
equation (15), and

P
nxi

0
from equation (14), that the

third condition as described by equation (12) is also
conserved. Therefore, in this formulation the change in
the mean temperature, daily maximum temperature and
daily minimum temperature are all conserved. This
version will be called the ‘Bounded Temperature
Weighted Stretch’ (BTWS) and will be applied on a
day-to-day basis. On a given day, it is possible that the
process would create an unphysical change in the
morphed temperature. For example, a small or negative
change in the mean temperature with a large positive
change in the mean daily minimum temperature. In
these cases, there are two possibilities. It is possible to
preserve the change in the mean temperature applying
equation (1) or to preserve the change in diurnal cycle
applying equation (13) with x

0
equal to x. Climate

change is most often described in terms of changes in
the mean temperature so that is the aspect that will be
preserved in these cases. Likewise, there is also a
possibility for certain values of S such that the trans-
formed value of Tcan be out of the range 0� 1.Where
S < 0, smaller values of x can be transformed to be less
than 0 and where S > 0, larger values of x can be
transformed to be greater than 1. If m in equation (7) is
small, the change is largest for lower values of x and if n
is small, the change is largest for higher values of x.

Reducing the values of n and m can weight the change
towards higher and lower values of x. The largest value
ofm or n will be used which ensure all points are in the
range 0� 1. If this fails to find a solution, only a shift in
the mean temperature will be applied.

Application of morphing algorithms
to real weather data

The purpose of using a morphing algorithm is to
generate future weather data which is representative
of the projections of climate change. In this work the
exact nature of the climate change projections is not
that important since here it is only necessary to prove
the effectiveness of the bounded weighted stretch
algorithm compared to the original method. The
baseline for UKCP18’s probabilistic projections are
from 1961–1990, 1981–2000 and 1981–2010. A
climate norm is usually considered as a 30-year
period therefore the baseline of the projections
will be from the period 1981–2010. All climate
change projections from the RCP8.5 scenario for the
period 2071–2100 (or 2080 s) so the widest range of
climate change projections (or change factors) are
used in the analysis. At each period, 3000 samples, or
probabilistic projections are available, and all
3000 will be tested here. The projections are shown
in Figure 1 for February and Figure 2 for August. The
change factors for mean temperature (ΔTÞ are or-
dered from smallest to largest in (a), with the co-
incident change in maximum temperature (ΔTmax) in
(b). The change in minimum temperature is very
similar to that shown in (b) so not shown. (c) shows
the projected change in short wave radiation sorted
from smallest to largest. The change in the average
temperature in February is between �1.8 and 8.2°C
whereas the change in maximum temperature is
between �2.0 and 9.5°C. Short wave radiation is
expected to change between �13.3 and 8.2 Wm�2.
The range of the climate change anomalies is much
wider in August. The change in average temperature
in August is expected to be between�2.0 and 13.4°C
and the change in maximum temperature is
between �2.2 and 16.3°C. Short wave radiation is
expected to change between �41 and 90 Wm�2.
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Weather observations from London Heathrow
(Latitude 51.479N, Longitude�0.449 E,WMO station
ID:03772) will be considered as this will contain a range
of very hot and cold weather over the time series whilst

the observations from Heathrow at this location are
mostly complete for example only 0.12% of the tem-
perature data is missing.20 Missing data will be inter-
polated using standard methods.1 Building performance

Figure 1. UKCP18 change factors for the 2080 s in February.

Figure 2. UKCP18 change factors for the 2080 s in August.
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analysis is usually evaluated using a representative year.
For heating energy, a TRYwould be used so a TRYwill
be created using the same 1981–2010 baseline and
methods used to create the current UK industry standard
TRYs1 to which the morphing algorithms will then be
applied. Like most locations around the world, solar
radiation is not recorded at this weather station. While
measurements from satellites are available from 2004,
this would only give 7 years of data. For consistency
solar radiation will be recreated using the Meteoro-
logical Radiation Model.21

The morphing algorithms will be applied fol-
lowing the original procedures and the bounded
weighted stretch algorithms as appropriate. Here we
are interested in the key differences between the
morphing algorithms beyond the application of the
change factors since the suitability has already been
shown. From the deductions in section 4 the change
factors will be realized in the morphed weather series
using the bounded weighted stretch algorithm. This
is also mostly true for the original algorithms. For
example, when using Belcher’s method to morph the
temperature, the mean of the future weather series
will be equal to the mean of the original series plus
the change factor. However, i.e. not true for the
change in daily maximum and daily minimum
temperatures. Also, the impact on the absolute
maximum and minimum temperature is not certain
given it is also a function of the change in mean
temperature. The comparisons will take the form:

1. The difference between the expected change
factor and the achieved change factor for the
maximum daily and minimum daily temper-
ature using the combined simple stretch and
shift for all 3000 UKCP18 samples.

2. The difference between the monthly absolute
maximum and minimum temperatures using
the bounded temperature weighted stretch and
the combined simple stretch and shift for all
3000 UKCP18 samples.

3. The change in the global radiation using the
bounded weighted stretch and the simple
stretch algorithms.

The external temperature is the key weather
variable for considering how much heating and

cooling energy may be required to maintain thermal
comfort within a building. The heating and cooling
degree days are a simple measure of how hot or cold
a year and are highly correlated to the expected
heating and cooling loads. The degree days are
computed from counting the hours where a threshold
has been exceeded and then dividing by 24 to convert
it to hours. Heating degree days will be calculated
with a threshold of 10°C and 18.3°C and the cooling
degree days with a threshold of 23.3°C and 26.7°C
corresponding with those as presented in ASHRAE
handbook fundamentals.22 Solar radiation is often a
key factor in determining cooling loads hence it is
also included in the comparison.

In all cases only individual months and weather
variables will be considered as it is beyond the scope
of this paper to consider the impact of the selection of
climate change scenarios and joint probabilities of
coincident weather variables.

Finally, the impact of the two algorithms across all
weather variables will be demonstrated through
building simulation using all 3000 samples from
UKCP18 using EnergyPlus. The building considered
here is a large two-story house constantly used by
four people with a total conditioned area of 164 m2

sat mostly above a 130 m2 unconditioned garage. It is
orientated north-south with a rectangular form. The
house is intended to represent a high-performance
building with a current heating requirement of
15 kWhm�2 with a thermostat of 20°C The house is
simplified with all rooms combined into a single
zone. The U-values of the wall, roof and floor of the
conditioned zones are equal to 0.12 Wm�2K�1,
0.21 Wm�2K�1, 0.20 Wm�2K�1 respectively. There
are 54 m2 of windows, 50% are orientated to the
South and 40% north, with a U-value of
1.35 Wm�2K�1. The infiltration is set at 0.1 ACH.
For simplicity the space is maintained at a constant
20°C all year round using an ideal loads system with
the differences in heating and cooling energy (as a
proxy for thermal discomfort) explaining the dif-
ferences in the different morphing approaches.

Results and discussion

Figure 3 shows the actual change factor from ap-
plying the Belcher et al. algorithm in comparison to
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the expected change factor as obtained from
UKCP18. There is no clear trend with the change
factors scattered around the expected change factor
(marked by the solid line). Only 10% are within
0.2°C of the expected value. The average difference
is around 1.1°C for February and 1.7°C for August.
Figure 4 shows the same comparison using the
BTWS algorithm. 50% of all points sit on the ex-
pected line and in total 70% of the values are within
0.2°C. The average difference is around 0.4°C for
February and 0.3°C for August. Small deviations
from the expected values are where the application of
the change factors on a small number of day results in
an unphysical relationship where the morphed
minimum (maximum) temperature is larger (smaller)
than the morphed mean temperature. In these cases,
only the change in the mean on that day is applied
which in turn affects the overall distribution that
month. Larger differences are where the change

factors mostly result in unphysical changes across the
month.

Figure 5 shows the heating degree days in
February and the cooling degree days in August
against the difference in the projected change in
daily maximum and minimum temperatures for
all 3000 climate projections from the chosen
climate scenario. If the two morphing algorithms
give a similar temperature distribution, then the
outcome will be a small cluster around 0. Where
the change in maximum temperature is greater
than the expected change in minimum tempera-
ture, the Belcher algorithm gives more heating
degree days and more cooling degree days. The
exception is for a base temperature of 18.3°C
where both algorithms give a similar number of
heating degree days where the change in mini-
mum temperature is larger than the change in
maximum temperature.

Figure 3. A comparison of the expected change factor (UKCP18 projection) against the actual change factor using the
Belcher algorithm for average daily maximum and average daily minimum temperature for February and August. The
straight lines are what would be expected with a perfect fit.
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Across all samples, the average difference be-
tween the two algorithms for heating degree days is
1.2°Days with a base temperature of 10°C and
0.2°Days with a base temperature of 18.3°C. For
cooling degree days, the average difference is
2.1°Days with a base temperature of 23.3°C and
1.3°Days for a base temperature of 26.6°C. The
standard deviation is much larger at around 7°Days
for all except for heating degree days with a base
temperature of 18.3°C where the standard deviation
of the difference is 0.8°Days showing the variability
and dependence on the applied change factors.

The differences found in Figure 5 are simply a
result of the application of the two transforma-
tions. For example, Figure 6(a) shows the
morphed February temperature considering
ΔTtas¼ 2:15 °C, ΔTtasmin = 2:9 °C and ΔTtasmax =
1:44 °C and 6(b) the August morphed temperature
considering ΔTtas¼ 3 °C, ΔTtasmin = 4 °C and
ΔTtasmax = 9 °C using both the Belcher and BTWS

algorithms. In Figure 6(a) the Belcher algorithm
slightly under predicts the change in temperate
(ΔTtasmin¼ 1:43 °C and ΔTtasmax¼ 2:89 °C) but it is
clear to see that the Belcher algorithm produces
less extreme temperatures (lower maximum and
higher minimum temperatures). As a result, the
Belcher algorithm will give fewer heating degree
days when the base line is low (e.g. 10 °C). In the
case of a base temperature above 14:5 °C, the
difference will be 0; the mean temperature of both
series is the same and all temperatures are then less
than the baseline temperature, so the number of
heating degree days becomes independent of the
morphing algorithm.

In Figure 6(b) the Belcher algorithm under
predicts the change in minimum and maximum
temperatures by a larger margin (ΔTtasmin¼ 0:65 °C
and ΔTtasmax¼ 5:65 °C). The peak temperatures are
very similar (36 °C for the BTWS algorithm
compared to 35:2 °C for the Belcher Algorithm, but

Figure 4. A comparison of the expected change factor (UKCP18 projection) against the actual change factor from using
the BTWS algorithm for average daily maximum and average daily minimum temperature for February and August. The
straight lines are what would be expected with a perfect fit.
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the minimum temperature is much higher for the
BTWS algorithm (14:4 °C for the BTWS algorithm
compared to 8:8 °C for the Belcher Algorithm).
Since the BTWS algorithm maintains the change in
mean, daily minimum and maximum temperatures,
the temperatures above the mean are slightly lower
than the Belcher algorithm and as such the cooling
degree hours are lower for the BTWS algorithm for
all base line temperatures up to around 27°C. The
highest temperatures are highest for the BTWS
algorithm to preserve the change in daily maxi-
mum temperatures.

The biggest difference between the two algo-
rithms is the ability to preserve the change in the
daily average minimum temperatures and daily av-
erage maximum temperature but as found in
Figure 3, that is rarely the case for the Belcher
algorithm.

As expected, morphing the solar radiation results
in an identical change in the amount of solar radiation
for both algorithms. i.e. if the change factor suggests
a five Wm�2 then both algorithms result in an in-
crease of fiveWm�2. Because the change in the mean
is also preserved, the total solar radiation is also
identical. Figure 7 shows the maximum monthly
solar radiation using both morphing algorithms. The
peak in the solar radiation for the BWS algorithm is
identical to the original weather file while for the
Belcher, simply reflects the distribution of the change
factors. Most change factors suggest the solar radi-
ation will increase in the summer months, but the
picture is more mixed in the winter. In extreme cases,
the maximum global horizontal radiation is greater
than 90% of extra-terrestrial solar radiation for that
hour (June and July). This implies that the appli-
cation of the Belcher algorithm alone is not

Figure 5. Comparison of (a) heating degree days at 10°C in February and (b) heating degree days at 18.3°C (c) cooling
degree days at 23.3°C in August and (d) cooling degree days at 26.6°C in August against the difference between the
projected change in maximum and minimum temperature in the same month using either the BTWS algorithm and
Belcher algorithms.
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appropriate and further post processing would be
required to ensure the output is physically consistent
with what is possible.

Figure 8 shows a comparison of the Belcher and
BWS algorithms applied to August with a change
factor of�40% (8a) and +90% (8b) which represents
the full range of change found in the
UKCP18 projections for themonth of August. TheWS
algorithmmaintains the peak from the original weather
file in both cases whereas the Belcher algorithm
morphs all values by the same percentage. Where the
change factor is positive (8b) less sunny days are in
effect made sunnier. If the change factor is negative,
less sunny days are made less sunny, but the peak
remains – the day with the greatest sunshine will still
have a large solar radiation value. The largest increases
and decreases are found around the mean which is a
direct result of the transfer function used as expected.
This wouldmean that on cloudless days in the summer,
maximum solar radiation would be expected regard-
less of the change factor. Simply the weather data
within the file should be physically consistent. In the
case of a negative change factor this would not be the

Figure 6. Example morphed temperatures using the Belcher and BTWS algorithms in (a) February with ΔTtas¼ 2:2 °C,
ΔTtasmin = 1:4 °C and ΔTtasmax = 2:9 °C (b) August where ΔTtas¼ 3 °C, ΔTtasmin = 9 °C and ΔTtasmax = 4 °C.

Figure 7. Maximum monthly global horizontal radiation
using the Belcher and BWS algorithms.
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case for the Belcher algorithm and in the case a positive
change factor, the peak would be much larger than
expected and larger than is physically possible.

The changes in cooling degree days and solar
radiation suggest that there would be an impact on
building design and potential adaptations to deal with
the impacts of climate change, but the combined
impact of these variables has not been tested. Here all
3000 samples are used with both algorithms to
compare the differences in heating and cooling en-
ergy. In the next two figures, all results will be
displayed as the result using the weighted stretch
algorithms subtracted from the result of using the
Belcher algorithm. A positive value therefore sug-
gests the Belcher algorithm predicts a larger total.
Figure 9 shows the difference between the simulated
total heating energy (9a) and the simulated total
cooling energy (9b) using the Belcher and various

weighted stretch algorithms. The mean difference in
total heating energy is �112 kWh while the mean
difference in cooling energy is 1310 kWh. The
Blecher algorithm predicts heating energy will
change between 95% reduction to 26% increase
whereas the weighted stretch algorithms predict
between 95% reduction and 32% increase across all
samples. For cooling the Belcher algorithm predicts
between 8% reduction to a 275% increase compared
to between an 8% reduction and 253% increase for
the weighted stretch algorithm. In the case of heating,
there can be larger differences where increased
temperature differences and reduced solar gains for
example can combine to increase the temperature
difference and thus heating energy requirement. But
this can go both ways, with significant differences
between the algorithms at the extremes. For cooling,
the weighted stretch algorithm consistently predicts a

Figure 8. A comparison of the distribution of theWS and Belcher algorithms applied to global horizontal radiation with a
change factor of (a) �40% and (b) +90%. All zeros have been excluded.
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Figure 9. A comparison of the distribution of (a) the yearly total heating energy (b) the yearly total cooling energy from
using the Belcher and WS algorithms on a complete weather file using building performance simulation. The data is
presented as the result fromWS algorithms subtracted from the Belcher algorithm for all climate change anomalies from
UKCP18. A positive number means the energy derived from the Belcher algorithm results in a larger energy requirement.

Figure 10. A comparison of the distribution of (a) the peak heating energy in the winter months and (b) the peak cooling
energy in the summer months from using the Belcher and WS algorithms on a complete weather file using building
performance simulation. The data is presented as the result fromWS algorithms subtracted from the Belcher algorithm
for all climate change anomalies fromUKCP18. A positive number means the energy derived from the Belcher algorithm is
results in a larger peak load.
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reduced cooling demand suggesting that the Belcher
algorithm predicts higher solar gains and/or higher
temperatures leading to higher indoor temperatures.

Finally Figure 10 shows the difference in the peak
hourly heating energy (10a) for December, January and
February and peak cooling energy (10b) for June, July
and August. This shows the impact of different weather
patterns in each month combined with the application
of different climate change anomalies. The same pat-
terns from Figure 9 are repeated here with peak cooling
energy typically higher with a mean of 0.5 kWh larger
and the maximum difference up to 2.7 kWh. The peak
heating energy can be as large as 1.2 kWh, but the
average is around 0.

This suggests that while changes in the total
energy clearly depend on the month and the climate
change anomalies applied, the choice of algorithm
would impact the ability to meet a benchmark energy
performance such as meeting the Passivhaus re-
quirement for total space conditioning as well as
impacting on plant sizing.

Conclusions

In this work a set of revised morphing algorithms
have been described and these have been shown to
improve upon the shortcomings of the algorithms
proposed by Belcher et al. Namely, (1) the ability to
preserve changes in the mean, daily average maxi-
mum and daily average minimum temperatures and
(2) the ability to preserve physical limits in the
transformed weather series. These revised algorithms
are (1) A weighted stretch which can be applied to
any weather variable where only one change factor is
known and (2) A bounded temperature weighted
stretch which is applied to the dry bulb temperature
where three change factors are typically available to
describe the changes due to climate change. The
revised algorithms have been shown to outperform
the original methods in terms of maintaining the
temperature change factors in the morphed weather
data. When the original morphing method is applied
to solar radiation this could create a peak value that
was unrealistic in terms of consistency with the
underlying weather – much less than expected or
much greater than expected on a cloudless sky –

which is impossible with the revised method.

While the revised method leads to changes in the
resultant weather variables, it is also found that using the
revised morphing algorithms results in changes in the
indoor environment when used to create a future weather
file combined with building performance simulation and
thus different design decision would be made. The
simulations carried out here suggests that the new
weighted stretch algorithms would result in reduced
heating energy on average for the same climate change
prediction/climate change anomalies as well as reduced
cooling energy including the reduction in peak loads. This
means that the revised algorithms would mean a direct
impact on building design around provision of building
services and the ability to maintain thermal comfort.

The selection of transfer function is pragmatic in
ensuring that the transformed weather data was
symmetric about the mean value. But it is not clear
from this work whether this is the most appropriate
choice. When morphing the temperature, the algo-
rithm is adapted to become asymmetric for circum-
stances where the transformation results in values that
go outside the physical bounds (where x < 0 or x> 1).
But it is not known whether such an asymmetric
transformation would be more appropriate in general.
Furthermore, the transformation ensures that the
maximum temperature on each day increases by the
same amount. But the hottest temperatures are not
going to increase in line with projected change in the
daily average maximum temperature. The same would
be true of the minimum temperatures. Although this is
not going to be an issue when considering the impact
on climate change on an average weather file such as a
TMYor TRY which consist of average temperatures.
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