Supplementary information for "Greenhouse gas emissions and mitigation in rice agriculture"

Supplementary text

The focus of this review is on empirical studies at the field scale, which have drastically increased over recent years. Our review frequently refers to previous meta-analyses that aimed to synthesize the results of individual studies. At the same time, we recognize that our database might miss out on some field experiments that are documented in reports and other forms of 'grey literature'. By the same token, we also recognize the wealth of literature on simulation models that could not be considered in this review due to size limitations.

NCF practices vary in terms of the severity, length and intensity of drying events. While the nomenclature is not fully consistent in the literature, these practices include mid-season drainage (7-10 days), intermittent irrigation (moist soil after the mid-season drainage), alternate wetting and drying (irrigation is interrupted until the soil drops to a certain moisture level), and aerobic rice (that is defined in the context of a water-limited irrigated lowland system without puddling)¹⁻³. A global meta-analysis showed that mid-season drainage reduced the CH₄ emissions by 52% but stimulated N₂O emission by 242%. Mid-season drainage did not affect the rice yield but reduced the yieldscaled GHG emissions by 48% (ref⁴). Another meta-analysis showed that intermittent irrigation reduced CH₄ emission from paddies by 62%, but stimulated N₂O emission by 278% in China⁵. Intermittent irrigation increased rice yield by 11% and reduced the area-scaled and yield-scaled GHG emissions by 54% and 59%, respectively. Another meta-analysis showed that mild alternate wetting and drying did not significantly reduce rice yields⁶, indicating that alternate wetting and drying can maintain rice yield with lower GHG emissions. Aerobic rice system saves water input and increases water productivity by reducing water use during land preparation and limiting seepage, percolation, and evaporation². In an aerobic rice system, the crop can be dry direct-seeded or transplanted and soils are kept aerobic throughout the growing season, and thus reduces labor requirement and CH₄ emission from rice field.

Adaptation strategies

To improve the resilience of rice cropping systems to climate change, a great deal of effort has been directed towards germplasm development and improvement of agronomic practices^{7,8}. Several approaches reduce the negative effects of climate change on rice yield. Rice variety breeding and selecting can increase resistance of plants to heat, drought, and submergence^{7–9}. For example, through introgressing the *Sub1* gene into popular rice cultivars, their tolerance to submergence has substantially been improved in many rice growing areas⁷. Adjustment in cropping systems may also reduce rice yield loss under climate warming. For instance, a meta-analysis showed that rice yield responses to climatic warming differ strongly between China's rice cropping systems¹⁰. Specifically, warming reduces the yield in middle rice and early rice (by further increasing high temperatures during the anthesis). These results suggest that switching from in cropping systems can reduce the rice yield loss under climate warming.

Optimizing nutrient management (e.g., manure amendment and mineral fertilizers supplementary addition) can also increase the resilience of rice cropping systems to climate change. For example, compared to inorganic fertilizer only, long-term manure amendment could reduce rice yield loss due to extreme temperatures by ~25% (ref ¹¹). These results were attributed to higher nutrient levels in the plots receiving manure. However, eCO₂ often increases losses of ammoniumnitrogen and reduces phosphorus availability in rice paddies, emphasizing the importance of input of additional fertilizers under future CO₂ scenarios, especially in low-income countries^{12,13}. Adjustments of planting time and water saving techniques can lessen the impact of heat stress and drought^{8,14}. Irrigation is as a buffer against drought and heat in rice paddies, thus, irrigation systems and techniques can increase some degree of resilience to climate change¹⁴. Finally, applying growth regulators also can reduce rice yield loss to climate change, especially in flowering stage⁸. For example, intensified pollination by artificially assisted pollen shedding combined with intensified fertilization by promoting pollen germination through chemical application can adverse effects of heat stress on the grain yield and quality in rice¹⁵.

Supplementary methods

We extracted *in-situ* observations of greenhouse gas emissions from published studies on field experiments. We searched for peer-reviewed papers published from January 2010 to July 2022 in Web of Science, using search terms "CH₄ OR methane" and "rice OR paddy" for article topic. To be included in our dataset, studies had to meet several criteria. In multi-rice systems (i.e., at least two rice growing seasons per year), CH₄ emission of all rice seasons should be measured and annual GHG emissions are the sum of each rice growing seasons. In total, we found 440 studies. We also extracted *in-situ* observations of seasonal N₂O emission and rice yield. We calculated the global warming potential (GWP) of the combined CH₄ and N₂O emissions, expressed in CO₂ equivalents (that is, $273 \times N_2O + 27 \times CH_4$)¹⁶, and yield-scaled GWP. The outliers of annual GHG emissions were identified by the descriptive statistics explore of the statistical package SPSS 22.0.

To assess the spatial distribution in observations of annual GHG emissions, we averaged the observations from the same site and found 274 experimental sites. To determine the relative importance of global GHG emission drivers, we collected the data of mean annual air temperature (°C), mean annual precipitation (mm), soil organic carbon (g kg⁻¹), pH, cropping system (single rice, rice-upland, multi-rice systems), planting type (direct-seeding or transplanting), nitrogen rate (kg ha⁻¹), water management (continuous flooding or non-continuous flooding), and organic matter (i.e., straw and manure) addition (yes or no) (**Supplementary data 2**). We used the "relaimpo" package in R to determine the relative importance of GHG emission drivers. In addition, we identified the seasonal CH₄ flux pattern based on CH₄ flux peaks.

	Mean	95% confidence interval	n
CH ₄ emissions (kg ha ⁻¹ yr ⁻¹)	283	256 to 310	269
N ₂ O emissions (kg ha ⁻¹ yr ⁻¹)	1.7	1.4 to 1.9	200
Area-scaled GHG emissions (kg CO ₂ e ha ⁻¹ yr ⁻¹)	7870	6976 to 8756	198
Yield-scaled GHG emissions (kg CO ₂ e kg ⁻¹)	0.9	0.8 to 1.1	185

Supplementary Table 1 | The annual CH₄ emissions, N₂O emissions, area-scaled GHG emissions and yield-scaled GHG emissions.

Supplementary Table 2 | The annual CH₄ emissions, N₂O emissions, area-scaled GHG emissions and yield-scaled GHG emissions under different latitude regions.

Latitude		CH4 (kg ha ⁻¹ yr ⁻¹)	N2O (kg ha ⁻¹ yr ⁻¹)	Area-scaled GHG emissions (kg CO _{2e} ha ⁻¹ yr ⁻¹)	Yield-scaled GHG emissions (kg CO _{2e} kg ⁻¹)
	Mean	614	1.29	18171	1.19
10°S-10°N	95% CI	444 to 784	0.75 to 1.83	11671 to 24671	0.76 to 1.62
	n	12	8	8	8
	Mean	296	1.95	7983	1.08
10°N-20°N	95% CI	196 to 396	1.11 to 2.79	4883 to 11083	0.74 to 1.42
	n	24	20	20	20
	Mean	263	1.63	7241	0.89
20°N-30°N	95% CI	235 to 291	1.31 to 1.95	6341 to 8141	0.78 to 1.00
	n	211	153	152	144
	Mean	272	1.63	8436	1.19
>40°N	95% CI	178 to 366	0.33 to 2.93	5636 to 11236	0.68 to 1.7
	n	22	19	18	13

Supplementary Table 3 | The numbers of observations of each CH₄ temporal pattern during rice growth season.

	#1	#2	#3	#4	Other	Total
China	168	93	41	18	3	323
India	6	9	18	8	1	42
Japan	11	5	24	1	0	41
Korea	14	8	13	4	1	40
USA	4	4	14	1	0	23
Vietnam	16	12	9	6	0	43
Philippines	4	9	9	9	0	31
Thailand	2	4	2	0	0	8
Indonesia	2	3	0	0	0	6
Bangladesh	5	5	1	1	0	12
Europe	0	4	6	0	0	10

Notes. #1, the temporal pattern with an early emission peak; #2, the temporal patterns with two emissions peaks; #3, the temporal pattern with a late emission peak; #4, bell-shaped temporal pattern.

Site	Facility	Change_CH4 (%)	Change_N ₂ O (%)	Reference
USA	GC	258.4	-	Allen et al. (2003) ¹⁷
India	OTC	28.0	23.2	Bhattacharyya et al. (2013) ¹⁸
Portugal	OTC	8.5	78.7	Pereira et al. (2013) ¹⁹
Portugal	OTC	97.5	0.9	Pereira et al. (2013) ¹⁹
Japan	FACE	53.2	-	Tokida et al. (2010) ²⁰
China	FACE	143.4	-	Wang C et al. (2018) ²¹
China	FACE	82.3	-	Wang C et al. (2018) ²¹
China	FACE	81.8	-	Wang C et al. (2018) ²¹
China	OTC	42.4	9.0	Wang B et al. (2018) ²²
China	OTC	43.2	29.5	Wang B et al. (2018) ²²
China	OTC	27.6	104.8	Wang B et al. (2018) ²²
China	OTC	54.7	5.4	Wang B et al. (2018) ²²
Korea	TGC	29.3	-	Yun et al. (2012) ²³
Philippines	OTC	44.6	-	Ziska et al. (1998) ²⁴

Supplementary Table 4 | Overview of the studies on interaction of eCO_2 and warming on CH_4 and N_2O emissions.

Notes. OTC, open-top chamber; FACE, free-air CO₂ enrichment system; GC, growth chambers; TGC, temperature gradient field chamber. "-" indicates not available.

Practices	CH4 (%)	N ₂ O (%)	Yield (%)	Area-scaled GHG emissions (%)	Yield-scaled GHG emissions (%)	Mechanisms of GHG emissions
Non-continuous flooding	↓↓	↑↑	↓	↓↓	↓↓	CH4: increase soil O2 concentration and Eh, inhibit CH4 production, and stimulate CH4 oxidation
vs. Continuous flooding	(n=192, 95%↓)	(n=138, 78%↑)	(n=174, 59%↓)	(n=143, 91%↓)	(n=135, 90%↓)	N2O: promote nitrification and subsequent denitrification
Manure addition vs. without manure	↑↑	↑	↑	↑↑	↑↑	CH ₄ : increase in C input as the substrates for methanogens
	(n=142, 83%↑)	(n=87, 74%↑)	(n=89, 83%↑)	(n=87, 86%↑)	(n=64, 72%↑)	N ₂ O : increase the availability of soil C and N for nitrification and denitrification
Straw addition vs. Straw removal	↑↑ (n=166, 88%↑)	→ (n=105, 50%↑)	↑ (n=104, 71%↑)	↑↑ (n=105, 85%↑)	↑↑ (n=62, 87 %↑)	CH4: provide more C substrates for CH4 production
Biochar application vs.	↓	↓	↑	↓	↓	 CH₄: reduce soil bulk density and increase pH, thereby improving methanotrophic abundance and CH₄ oxidation rates N₂O: reduce <i>nirK</i> abundance but increase <i>nosZ</i> abundance for greater N₂O reduction
Without biochar	(n=150, 70%↓)	(n=125, 63%↓)	(n=150, 80%↑)	(n=127, 74%↓)	(n=127, 81%↓)	
Mineral N input vs. Without	↑	↑↑	↑↑	↑	↓	 CH₄: promote plant growth and provide more C substrate for CH₄ production, and more NH₄⁺ input inhibit CH₄ monooxygenase N₂O: provide the substrate and decrease soil pH for nitrification and denitrification
mineral N	(n=294, 60%↑)	(n=242, 97%↑)	(n=294, 99%↑)	(n=246, 75%↑)	(n=246, 66%↓)	
No tillage vs. Conventional tillage	↓ (n=49, 88%↓)	→ (n=37, 51%↑)	→ (n=52, 29%↑)	↓ (n=39, 92%↓)	↓ (n=39, 87%↓)	CH4: reduce labile C availability, soil Eh, as well as abundances of methanogen
Lime application vs.	↓	↓	↑	↓	↓	 CH₄: stimulate organic matter decomposition under fallow conditions, reduce substrate availability for methanogens, increase rice root O₂ loss, and stimulate methanotrophs N₂O: increase the activity of N₂O reductase enzymes and shift soil microbial community towards bacterial dominance
without liming	(n=51, 94%↓)	(n=83, 66%↓)	(n=1187, 86%↑)	(n=31, 87%↓)	(n=22, 88%↓)	

Supplementary Table 5 | Overall effects of agricultural practice on GHG emissions and rice yields.

 $\downarrow\downarrow$, $\uparrow\uparrow$, \downarrow , \uparrow , and \rightarrow indicate the strong decrease, strong increase, moderate decrease, moderate increase, and no effect, respectively. The number of observations on the effects of non-continuous flooding practices are from dataset of Jiang et al. (2019)³. The numbers of observations on the effects of manure and straw addition are from dataset of Zhao et al. (2019)²⁵. The numbers of observations on the effects of biochar application, mineral N input and no tillage are from the dataset of Liao et al. (2021)²⁶. The numbers of observations on the effects of lime application are from the dataset of Wang et al. (2021)²⁷.

Supplementary Table 6 | The overall effects of climate change and agronomic practices on GHG emissions from rice paddies based on previous metaanalyses.

Factor	Specific items		CH ₄	N_2O	Yield	GWP	GHGI	Reference
			34%	10%	NA	16%	NA	Liu et al., 2018 ²⁸
	Overall			-22%	NA	NA	NA	Yu et al., 2022 ²⁹
				NA	25%	NA	NA	van Groenigen et al., 2013 ³⁰
Elevated CO ₂	Sturry in componetion	Non-straw	35%	NA	NA	NA	NA	Qian et al., 2020 ³¹
concentrations	Straw incorporation	With straw		NA	NA	NA	NA	Qian et al., 2020 ³¹
		Short-term (<5 years)	34%		24%	NA	NA	Yu et al., 2022 ³²
	Duration	Medium-term (5-10 years)	26%	30%	18%	NA	NA	Yu et al., 2022 ³²
		Long-term (≥10 years)	-18%	-43%	14%	NA	NA	Yu et al., 2022 ³²
				NA	-15%	NA	NA	van Groenigen et al., 2013 ³⁰
	Overall		23%	26%	NA	19%	NA	Liu et al., 2020 ³³
Warming			23%	NA	NA	NA	NA	Gao et al., 2022 ³⁴
	Rockground temperature	< 23 °C or >30 °C		NA	NA	NA	NA	Qian et al., 2022 ³⁵
	Background temperature	23–30 °C	26%	NA	NA	NA	NA	Qian et al., 2022 ³⁵
	New rice variety		-24%		15%	-28%		Zhao et al., 2019 ²⁵
	High harvest index	Continuously flooded systems	-11%	NA	24%	NA	NA	Jiang et al., 2019 ³⁶
Diag variaty solastion	cultivars	Intermittent irrigation systems		NA	18%	NA	NA	Jiang et al., 2019 ³⁶
Rice variety selection		$\leqslant~8~{ m g~kg^{-1}}$ organic C soils	10%	NA	22%	NA	NA	Jiang et al., 2017 ³⁷
	High biomass cultivars	8-12 g kg ⁻¹ organic C soils	5%	NA	19%	NA	NA	Jiang et al., 2017 ³⁷
		> 12 g kg ⁻¹ organic C soils	-21%	NA	20%	NA	NA	Jiang et al., 2017 ³⁷
Water management		Overall	-53%	105	-4%	-44%	-42%	Jiang et al., 2019 ³
	Non-continuous flooding	A single mid-season drain event	-33%	NA		-17%	-15%	Jiang et al., 2019 ³
		Multiple drying events (>3 times)	-75%	NA		-72%	-74%	Jiang et al., 2019 ³

Factor	Specific items		CH ₄	N ₂ O	Yield	GWP	GHGI	Reference
Organic matter management	Straw incorporation		92%	8%	5%	85%	87%	Zhao et al., 2019 ²⁵
	Manure addition			36%	11%	66%	37%	Zhao et al., 2019 ²⁵
	Biochar			-22%	9%	-14%	-20%	Liao et al., 2021 ²⁶
		Overall	11%	182%	44%	27%	-13%	Liao et al., 2021 ²⁶
		<100	24%	61%	32%	32%	NA	Liao et al., 2021 ²⁶
	N rate	100-180	14%	132%	44%	31%	NA	Liao et al., 2021 ²⁶
		180-260	4%	210%	47%	22%	NA	Liao et al., 2021 ²⁶
		>260	6%	336%	46%	22%	NA	Liao et al., 2021 ²⁶
M:		Overall	-15%	-28%	NA	NA	NA	Linquist et al., 2012 ³⁸
Mineral N management	Enhanced-efficiency N fertilizers		-26%	NA	NA	NA	NA	Yang et al., 2022 ³⁹
		Controlled-release N fertiliser	-14%		9%		NA	Liao et al., 2021 ²⁶
		Nitrification inhibitor	-22%	-48%	10%	-24%	NA	Liao et al., 2021 ²⁶
		Urease inhibitor	NA	-28%	7%	NA	NA	Xia et al., 2017 ⁴⁰
	Deep placement of N fertilizer			-30%	32%	-10%	NA	Bhuiyan et al., 2023 ⁴¹
	Ammonium sulfate replacing urea		-40%	24%	NA	NA	NA	Linquist et al., 2012 ³⁸
	No tillage		-23%			-23%	NA	Liao et al., 2021 ²⁶
	Direct-seeding (wet)		-44%	NA	1.4%	NA	NA	Chakraborty et al., 2017 ⁴²
Tillage and crop	Direct-seeding (dry)		-60%	34%	-0.7%	NA	NA	Chakraborty et al., 2017 ⁴²
establishment	Reduced tillage			NA	-7%	NA	NA	Chakraborty et al., 2017 ⁴²
	Reduced tillage + Direct-seeding (dry)		NA		-7%	NA	NA	Chakraborty et al., 2017 ⁴²
	No tillage + Direct-seeding (dry)		-63%		-7%	NA	NA	Chakraborty et al., 2017 ⁴²
Liming	Overall		-20%	-12%	12%	NA	NA	Wang et al., 2021 ²⁷

Notes, -- indicates nonsignificant effect of this practice; NA indicates not available.

Supplementary Fig. 1 | Relative importance of predictors of CH₄ (a), N₂O (b), area-scaled greenhouse gas emissions (c) and yield-scaled greenhouse gas emissions (d). MAT (mean annual air temperature, °C), MAP (mean annual precipitation, mm), SOC (soil organic carbon, g kg⁻¹), pH, cropping system (single rice, rice-upland, multi-rice systems), planting type (direct-seeding or transplanting), N application rate (kg ha⁻¹), water management (continuous flooding or non-continuous flooding), and organic amendments (i.e., straw and manure addition yes or no). Error bars indicate 95% confidence interval.

Supplementary Fig. 2 | CH₄ emissions and rice yield from rice paddies from 1980 to 2020. a, area-scaled and yield-scaled CH₄ emissions from global paddies from 1980 to 2020. b, global rice harvest area and rice yield from 1980 to 2020. The data were collected from Faostat⁴³. The total CH₄ emissions are computed following the Tier 1 methods of the Intergovernmental Panel.

Supplementary Fig. 3| CH₄ emissions of rice paddies for top 8 countries from 1980 to 2020. a, area-scaled CH₄ emissions from 1980 to 2020. b, yield-scaled CH₄ emissions from 1980 to 2020. The data were collected from Faostat⁴³.

Reference:

- 1. Bouman, B. A. M., Lampayan, R. M. & Tuong, T. P. *Water management in irrigated rice: coping with water scarcity*. (International Rice Research Institute, 2007).
- Nie, L. *et al.* Aerobic rice for water-saving agriculture. A review. *Agron. Sustain. Dev.* 32, 411–418 (2012).
- 3. Jiang, Y. *et al.* Water management to mitigate the global warming potential of rice systems: A global meta-analysis. *Field Crops Res.* **234**, 47–54 (2019).
- 4. Liu, X. *et al.* Effect of mid-season drainage on CH₄ and N₂O emission and grain yield in rice ecosystem: A meta-analysis. *Agric. Water Manag.* **213**, 1028–1035 (2019).
- 5. Feng, J. *et al.* Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. *Agric. Ecosyst. Environ.* **164**, 220–228 (2013).
- 6. Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. *Field Crops Res.* **203**, 173–180 (2017).
- Wassmann, R. *et al.* Chapter 3 Regional Vulnerability of Climate Change Impacts on Asian Rice Production and Scope for Adaptation. in *Advances in Agronomy* vol. 102 91–133 (Academic Press, 2009).
- 8. Khan, S. *et al.* Mechanisms and adaptation strategies to improve heat tolerance in rice. A Review. *Plants* **8**, 508 (2019).
- 9. Luo, L. *et al.* Water-saving and drought-resistance rice: from the concept to practice and theory. *Mol. Breed.* **39**, 145 (2019).
- 10. Chen, C. *et al.* Global warming and shifts in cropping systems together reduce China's rice production. *Glob. Food Secur.* **24**, 100359 (2020).
- 11. Zhu, X. *et al.* Manure amendment can reduce rice yield loss under extreme temperatures. *Commun. Earth Environ.* **3**, 147 (2022).
- 12. Xu, C. *et al.* Large losses of ammonium-nitrogen from a rice ecosystem under elevated CO₂. *Sci. Adv.* **6**, eabb7433 (2020).
- 13. Wang, Y. *et al.* Reduced phosphorus availability in paddy soils under atmospheric CO₂ enrichment. *Nat. Geosci.* **16**, 162–168 (2023).
- 14. Wassmann, R. *et al.* Chapter 2 Climate Change Affecting Rice Production: The Physiological and Agronomic Basis for Possible Adaptation Strategies. in *Advances in Agronomy* (ed. Sparks,

D. L.) vol. 101 59-122 (Academic Press, 2009).

- 15. Wu, C. *et al.* Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage. *Field Crops Res.* **252**, 107795 (2020).
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021). doi:10.1017/9781009157896.
- 17. Allen, L. H. *et al.* Methane Emissions of Rice Increased by Elevated Carbon Dioxide and Temperature. *J. Environ. Qual.* **32**, 1978–1991 (2003).
- Bhattacharyya, P. *et al.* Impact of elevated CO₂ and temperature on soil C and N dynamics in relation to CH₄ and N₂O emissions from tropical flooded rice (Oryza sativa L.). *Sci. Total Environ.* 461–462, 601–611 (2013).
- Pereira, J. *et al.* Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields. *Atmos. Environ.* 80, 464–471 (2013).
- Tokida, T. *et al.* Effects of free-air CO₂ enrichment (FACE) and soil warming on CH₄ emission from a rice paddy field: impact assessment and stoichiometric evaluation. *Biogeosciences* 7, 2639–2653 (2010).
- Wang, C. *et al.* An additive effect of elevated atmospheric CO₂ and rising temperature on methane emissions related to methanogenic community in rice paddies. *Agric. Ecosyst. Environ.* 257, 165–174 (2018).
- Wang, B. *et al.* Responses of yield, CH₄ and N₂O emissions to elevated atmospheric temperature and CO₂ concentration in a double rice cropping system. *Eur. J. Agron.* **96**, 60–69 (2018).
- 23. Yun, S.-I. *et al.* Further understanding CH₄ emissions from a flooded rice field exposed to experimental warming with elevated [CO₂]. *Agric. For. Meteorol.* **154–155**, 75–83 (2012).
- 24. Ziska, L. H. *et al.* Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice. *Glob. Change Biol.* **4**, 657–665 (1998).
- 25. Zhao, X. *et al.* Management-induced greenhouse gases emission mitigation in global rice production. *Sci. Total Environ.* **649**, 1299–1306 (2019).
- 26. Liao, P. *et al.* Identifying agronomic practices with higher yield and lower global warming potential in rice paddies: a global meta-analysis. *Agric. Ecosyst. Environ.* **322**, 107663 (2021).
- 27. Wang, Y. *et al.* Potential benefits of liming to acid soils on climate change mitigation and food security. *Glob. Change Biol.* **27**, 2807–2821 (2021).
- Liu, S. *et al.* Climatic role of terrestrial ecosystem under elevated CO₂: a bottom-up greenhouse gases budget. *Ecol. Lett.* 21, 1108–1118 (2018).
- 29. Yu, H. *et al.* Effects of elevated CO₂ concentration on CH₄ and N₂O emissions from paddy fields: A meta-analysis. *Sci. China Earth Sci.* **65**, 96–106 (2022).
- 30. van Groenigen, K. J., van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. *Nat. Clim. Change* **3**, 288–291 (2013).
- 31. Qian, H. *et al.* Lower-than-expected CH₄ emissions from rice paddies with rising CO₂ concentrations. *Glob. Change Biol.* **26**, 2368–2376 (2020).
- 32. Yu, H. *et al.* Elevated CO₂ does not necessarily enhance greenhouse gas emissions from rice paddies. *Sci. Total Environ.* **810**, 152363 (2022).
- 33. Liu, S. et al. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake

enhancement under warming. Glob. Change Biol. 26, 4601–4613 (2020).

- Gao, H., Tian, H., Zhang, Z. & Xia, X. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis. *Sci. Total Environ.* 820, 153288 (2022).
- 35. Qian, H. *et al.* Unexpected Parabolic Temperature Dependency of CH₄ Emissions from Rice Paddies. *Environ. Sci. Technol.* **56**, 4871–4881 (2022).
- 36. Jiang, Y. *et al.* Limited potential of harvest index improvement to reduce methane emissions from rice paddies. *Glob. Change Biol.* **25**, 686–698 (2019).
- 37. Jiang, Y. *et al.* Higher yields and lower methane emissions with new rice cultivars. *Glob. Change Biol.* **23**, 4728–4738 (2017).
- Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. *Field Crops Res.* 135, 10–21 (2012).
- 39. Yang, M. *et al.* Effects of enhanced-efficiency nitrogen fertilizers on CH₄ and CO₂ emissions in a global perspective. *Field Crops Res.* **288**, 108694 (2022).
- Xia, L. *et al.* Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. *Glob. Change Biol.* 23, 1917–1925 (2017).
- Bhuiyan, M. S. I., Rahman, A., Loladze, I., Das, S. & Kim, P. J. Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. *Sci. Total Environ.* 876, 162712 (2023).
- 42. Chakraborty, D. *et al.* A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. *Sci. Rep.* **7**, 9342 (2017).
- 43. FAO. Food and Agriculture Organization of the United Nations: FAOSTAT-Food and agriculture. https://www.fao.org/faostat/en/#home (2022).