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A B S T R A C T   

Emission Trading Schemes (ETSs) have become vital for meeting global emission reduction targets. They are 
gaining momentum, as witnessed by increasing market size and improving information mechanisms. Examining 
key emission markets — European Union, New Zealand, California, and Hubei (China) — from April 2014 to 
December 2021, a Time-Varying Parameter Vector Autoregressive (TVP-VAR) model is applied to discern the 
markets’ connectedness. In a novel approach to global carbon market research, this study uniquely combines the 
TVP-VAR with the connectedness approach, overcoming fixed parameters estimation and ensuring precise 
parameter estimates. The approach sheds light on patterns of total, directional, and net return/volatility spill
overs, striving to identify which markets act as transmitters and which are receivers. Linking market spillovers to 
market characteristics, events, and policies offers insights for investors and policymakers. The total connected
ness index of 10–12 % suggests a relatively low level of spillover, when compared to other market integration 
studies. The dynamic nature of return and volatility spillovers is evident, especially during the energy crisis and 
Covid-19 outbreak. The EU’s ETS consistently acts as a net transmitter, predominantly in return connectedness, 
while New Zealand’s ETS emerges as a major shock receiver in both return and volatility systems. Global climate 
negotiations and carbon market events have only a minor impact on the level of connectedness, in contrast to 
energy or financial crises and the Covid-19 outbreak. By highlighting the intricacies of carbon price volatility and 
market transmissions, the findings equip stakeholders with invaluable, actionable insights.   

1. Introduction 

The Paris Agreement’s objective is to keep global warming to 1.5◦

Celsius above pre-industrial levels [1]. However, the UNEP [2] finds that 
the world is heading for a temperature rise in excess of 3 ◦C by the end of 
this century. To reduce this gap, numerous major energy consumers and 
CO2 emitters committed to reaching carbon neutrality by the mid-21st 
century [3,4]. Many public and private sector organizations have 
committed to purchase electricity from renewable sources, adopt 
cleaner technologies, improve efficiency, and conserve water and other 
resources. However, they often need to supplement those efforts by 
purchasing carbon offsets or allowances [5]. 

In this regard, the Emissions Trading System (ETS) emerges as a 
quintessential policy instrument. An ETS incentivizes climate action by 
allowing entities to exchange emission allowances created by the 
reduction or removal of greenhouse gases (GHGs) from the atmosphere, 
such as through switching from fossil fuels to renewable energy or by 

increasing or conserving carbon stocks in ecosystems via afforestation 
[5,6]. The ETS is gaining momentum with its increasing market size and 
constantly improving information transmission mechanisms [6]. In 
2022, there were 25 regional ETSs in operation, 9 under development, 
and 12 under consideration [6]. While existing literature has made at
tempts to explore spillover effects of price volatilities across carbon 
markets, the focus has been predominantly on the relationship between 
the European Union’s market and Clean Development Mechanism 
markets, as well as the interactions among China’s regional pilot mar
kets [7–9]. Such studies paid limited attention to the connectedness of 
cross-border carbon markets. Hence, it is worth exploring whether there 
are spillover effects, which make the prices of international carbon 
markets co-move. 

This study investigates the markets’ connectedness, focusing on 
prominent ETSs, namely those of the European Union (EU ETS), Cali
fornia (CA-CaT), Hubei-China (HB-ETS), and New Zealand (NZ-ETS). 
The EU ETS, CA CaT, and China ETSs are the world’s three largest such 
systems [6,10–12]. NZ ETS is unique in that it once permitted 
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unrestricted use of Kyoto credits, exposing it to global carbon price 
fluctuations while the other ETSs predominantly relate to localized 
emissions. These four markets are used to analyse global carbon market 
integration. This research examines the carbon price interactions and its 
dynamic drivers among different cross-border ETS markets regarding 
returns and volatility spillovers. It relies on a time-varying parameter 
(TVP)-VAR methodology. This study specifically examines patterns of 
the total, directional, and net return/volatility spillover effects among 
the four ETSs. The novelty of this research is underscored by its 
analytical framework that probes the interconnectedness of cross-border 
carbon markets. The study aims to investigate if international carbon 
markets are integrated and, if so, if and which (informational) spillover 
effects exist. The hypothesis posits the existence of spillover effects, 
potentially inducing synchronized fluctuations in the international 
carbon markets. The identification of market dynamics, specifically the 
determinants of these co-movements, is pivotal. If such effects exist, it is 
relevant to establish which market is driving the others. 

To the best of our knowledge, this is the first study to utilize the TVP- 
VAR model combined with the connectedness approach in the context of 
global carbon market research. This innovative method not only facili
tates a deeper exploration of the dynamics of total spillovers but also 
provides an acute understanding of the intricacies of cross-market 
connectedness. This approach helps identify aggregated and direc
tional return and volatility connectedness, which differentiate which 
ETS markets are net transmitters, and which are net receivers. 

Building on this foundation, our study contributes richly to both the 
academic and practical dimensions of the emission trading. Recognizing 
and appreciating the pivotal role of return and volatility spillover effect 
in market integration [13,14], this research offers an assessment of 
market linkages, enhancing our understanding of their efficiency. The 
study also delves into understanding the return and volatility spillovers 
between the markets, providing investors with valuable insights to 
manage risk more effectively and make informed asset allocation de
cisions. This examination of dynamic volatility interconnections within 
carbon markets links volatility trends to specific market characteristics, 
events, and policies. Notably, the expansive timeframe provides a 
unique vantage point to evaluate the impact of events like the Covid-19 
pandemic. Furthermore, the study provides critical information for in
vestors who are interested in periods with significant carbon price 
volatility and prices’ transmission effect across different carbon mar
kets. This is of great interest to different stakeholders and provides 
practical implications. 

The remainder of the study is organized as follows: Section 2 reviews 
the background of the chosen ETS markets. Section 3 illustrates the 
state-of-the-art literature review. Section 4 presents the methodology to 
estimate the return and volatility spillover effects among different 
regional ETSs. Section 5 describes the data and sample period. Section 6 
reports and discusses the empirical results. Section 7 is a robustness 

analysis. Section 8 concludes and provides policy implications. 

2. Background 

An ETS addresses the heterogeneity in marginal abatement costs of 
individual firms and plants, and provides the possibility of connecting 
national schemes [15,16]. A long-term goal for developing an ETS is to 
initiate an integrated market with comparable pricing across jurisdic
tions [17]. Potential benefits for market integration are likely to be 
substantial, including the support of international cooperation on 
climate change and the ability to better absorb price shocks [15,17–19]. 

The world’s first cap-and-trade systems were introduced in the 
United States to curb air emissions [20,21]. The EU built its own ETS, EU 
ETS, in 2005 [22]. The EU ETS has become the world’s first international 
ETS, covering 31 countries and 11,500 installations, and is considered as 
the prototype system for other ETSs [20]. California’s cap-and-trade 
system has been operational since 2013 and has gradually expanded 
to regulate about 85 % of the state’s total emissions. It expresses interest 
in linking its cap-and-trade system with those in other sub-national and 
national jurisdictions [23]. New Zealand’s ETS, launched in 2008, has a 
distinctive profile due to an economy dominated by the agriculture 
sector, responsible for almost 50 % of New Zealand’s GHG emissions. 
The NZ ETS used to be bilaterally linked to other international ETSs, 
meaning that the Kyoto units could be used for compliance in NZ ETS. 
However, after several changes of domestic market regulation, the New 
Zealand government introduced bans on various international carbon 
credits to strengthen the credibility of the NZ ETS. These changes began 
in January 2012, and subsequently the government withdrew the NZ 
ETS from the second commitment period of the Kyoto protocol in 
December 2013 [24]. As a young startup, the Chinese ETS developed at a 
fast pace. With nine regional ETS pilots running parallel to a national 
ETS, the Chinese system is surpassing the EU ETS in market size. The 
Chinese ETS covers 4500 MtCO2e, while the EU ETS covers 1597 
MtCO2e [6]. The pilot ETSs either allow cross-market linkage or the use 
of external offset credit for compliance, hence induced potential risk 
transmission [25]. It is worth mentioning that pilot ETSs in China, such 
as Shanghai ETS (started from 2013.11.26), Shenzhen ETS (started from 
2013.06.18), and Beijing ETS (started from 2013.12.28) have longer 
trading history. In 2013, when they started trading, breakpoints and 
missing data were observed due to the illiquidity and low trading vol
ume, which impacted data quality. Additionally, the Shanghai, Shenz
hen, and Beijing systems are city-wide ETSs; we argue that Hubei ETS, as 
a provincial ETS, is more comparable to the other markets in our study. 

ETS markets have gradually developed into a significant component 
of the global financial system and provide it with investable carbon 
assets [26,27]. With the carbon assets becoming prominent as an 
alternative asset class in investment portfolios, the ETS market has 
engaged a broad range of participants, including not only 

Nomenclature 

Abbreviations 
ADF Augmented Dickey–Fuller test 
CA CaT California’s Cap and Trade 
CCA California Carbon Allowances 
CER(s) Certified Emission Reductions 
ETS Emission Trading Scheme 
EUA European Union Allowance 
EU ETS European Union Emission Trading Scheme 
FEVD Forecast error variance decompositions 
GARCH Generalized autoregressive conditional heteroskedasticity 
GFEVD Generalized forecast error variance decompositions 
GHG Greenhouse gases 

GIRF Generalized impulse response functions 
HB ETS Hubei (China) Emission Trading Scheme 
HBEA Hubei emission allowances 
NZ ETS New Zealand Emission Trading Scheme 
RGGI Regional Greenhouse Gas Initiative 
TCI Total connectedness index 
TVP-VAR Time-Varying Parameters Vector Autoregressive model 

Symbols 
% Percentage 

Units 
MtCO2e Metric tons of carbon dioxide equivalent 
KtCO2e Kilotonnes of carbon dioxide equivalent  
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emissions-intensive energy corporations but also investors. Enterprises 
in specific markets may have to bear a cost caused by non-local shocks, 
namely, spillover effects [28]. These effects, often prompted by arbi
trage opportunities, can lead to price fluctuations. Such fluctuations, 
once initiated, are prone to reverberate across other markets [29]. 
Despite these observable dynamics, a comprehensive elucidation of the 
intricate interplays among these systems, especially on an international 
scale, remains conspicuously absent in the existing literature. The rela
tionship between emerging and mature carbon markets is crucial for 
global environmental market integration and liberalization [28]. 

3. Review of the carbon market literature 

The introduction of carbon markets has resulted in the emergence of 
a new class of investors who want to have financial exposure to GHGs 
[30,31]. There is rising interest in the risk management of carbon assets, 
which can be utilized for a variety of investment objectives, including 
portfolio diversification, arbitrage, hedging, and speculation [30,32, 
33]. Liu et al. [31] study the mean and volatility spillovers by non-linear 
methods of Granger causality, showing there is a bidirectional spillover 
effect between European Union Allowance (EUA) spot and future prices 
for Phase II and III of the EU ETS. Arouri et al. [30] suggest that shocks to 
EUA spot markets have a greater influence on both spot and future 
market returns than shocks to the futures market. With respect to the 
empirical investigation of spillover effects among ETSs, previous studies 
have examined the price, return, and volatility dynamics among 
different markets — for example, carbon price dynamics between 
identical instruments trading on different exchanges [34,35], carbon 
spot and future prices on the same exchange [30,31], and EUA and 
Certified Emission Reductions (CERs) price integration [8,36–39]. In 
addition, much of the research up to now has studied the relationship 
between ETSs and other macroeconomic variables or energy markets 
[40–42]. 

The literature pays limited attention to the connectedness across 
major ETS systems around the world. In a pioneering study, Mizrach 
[43] finds that prices across exchanges in Europe are cointegrated, and 
the U.S. carbon market is Granger causing the EU market. However, this 
study predominantly focuses on the relationship between the earlier U.S. 
Regional Greenhouse Gas Initiative (RGGI) market and the EU ETS, 
employing static cointegration and causality tests. With the rapid evo
lution of carbon markets over the past decade – marked by changes in 
market mechanisms, improved liquidity, an expanded range of covered 
sectors, and the initiation of markets in developing economies – our 
research builds upon Mizrach’s foundation. We not only extend the 
sample to include markets from China and New Zealand but also 
incorporate the U.S. California market, thereby significantly enriching 
the dataset. We have improved the static methodology to a time-varying 
estimation approach. In a related vein, Wang et al. [44] investigate the 
time-varying correlation and long-run price cointegration between the 
EUA price and Beijing ETS pilot in China from 2013 to 2020. Zeng et al. 
[8] analyse the dynamic volatility spillover effect between the EUA and 
CER from 2008 to 2017. They find the EUA market has a more signifi
cant volatility spillover effect on the CER market. Zhao et al. [7] 
examine the interaction among China’s pilot ETSs. 

Most of these studies mentioned so far primarily adopt static time- 
series econometrics (cointegration tests, Granger causality, vector 
autoregressive models, error correction models, and/or multivariate 
GARCH models) to examine spillover effects among carbon markets [24, 
37,43], and [45]. However, standard vector autoregressive type models 
work under the assumption of fixed parameter, while the GARCH 
models impose parameter restrictions that can be violated by the 

estimated coefficients, making it challenging to interpret whether 
shocks to conditional variance are persistent [46]. 

Yet, past studies have struggled to analyse spillover effects, espe
cially regarding their direction and time-dependent characteristics. 
Addressing this, Diebold and Yilmaz [47,48] establish a connectedness 
framework for analysing both idiosyncratic and extrinsic effects based 
on the estimation of the forecast error variance decompositions (FEVD) 
from a VAR model. Serving as a valuable tool in determining system 
connectedness, it essentially offers an indirect measure of the system 
risk, capturing the directionality of spillover effects. This approach has 
been subsequently applied across various sectors, such as electricity 
markets [14,49,50], crude oil markets [29], gas market volatility [51], 
and energy company stock returns and volatility [52–54]. 

Building upon this foundation, Antonakakis et al. [55] enhanced the 
Diebold and Yilmaz connectedness by proposing a non-parametric 
TVP-VAR estimation based on the connectedness framework. This 
method allows the variance-covariance matrix to vary via a Kalman 
filter estimation with forgetting factor. Kalman filter approaches are fast 
because state space models encapsulate the Markov property and reduce 
to a set of recursions [55–57]. This innovative approach effectively ex
amines systematic spillover dynamics. As such, the current research 
employs the TVP-VAR connectedness to analyse spillovers in various 
domains including cross-border or cross-region commodity markets 
[58], stock markets [59], cryptocurrency markets [60], and energy 
markets [61–63]. 

In line with the methodology of Antonakakis et al. [55], this study 
utilizes TVP-VAR connectedness to estimate the total, the directional, 
and the time-varying characteristics of spillovers among major carbon 
markets. Recent trends, including the effects of energy efficiency im
provements, the evolution of carbon market mechanisms, and the 
increasing recognition of the scarcity of natural resources, lead to 
changing relationships among key variables. Taking stock of these dy
namics, this research posits that the TVP-VAR base connectedness, as 
suggested by Antonakakis et al. [55], aligns more aptly with our 
designated subjects of study. Therefore, the main purpose of our study is 
to empirically examine the interdependency among global carbon 
markets. By leveraging the TVP-VAR model, this study successfully 
circumvents the constraints typical of the standard VAR-based 
connectedness, yielding more precise parameter estimates. This 
TVP-VAR-based connectedness approach has the following advantages: 
(i) it is insensitive to outliers due to the underlying Kalman filter, (ii) 
there is no need to arbitrarily choose the rolling-window size, (iii) no 
loss of observations, and (iv) it can be used for low frequency datasets 
[55,56]. However, the drawback of TVP-VAR is that it cannot accom
modate the fat-tail feature of returns documented in financial markets 
[64,65]. Another limitation of our study is that we did not utilize the 
asymmetric TVP-VAR connectedness model proposed by Adekoya et al. 
[66]. The asymmetric TVP-VAR connectedness applied by Adekoya et al. 
[66] can identify three types of spillovers: normal, positive, and nega
tive, offering a nuanced understanding of spillover dynamics, which 
might have provided additional insights in our research context. 

While our paper is related to Refs. [7,8,45–47], it differs in several 
aspects. First, this study focuses on the time-varying measure of spillovers 
along the lines of [47], which is robust to outliers and does not require an 
arbitrary choice of the rolling window size. Second, while [8,45] pre
dominantly focus on the relationship between two ETSs, this study con
siders various cross-border ETSs in the spillover indices. As such, this 
study analyses the net shocks transmitter or receiver within the system of 
the four various assets and extends our limited understanding of the na
ture and extent of the transmission of return and volatility shocks in light 
of the catastrophic event of the COVID-19 outbreak. 
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This study elaborates on the TVP-VAR connectedness empirical 
literature, as the aim is to provide a more flexible framework to analyse 
the time-variation in carbon markets. The next section details the 
research design. 

4. Methodology 

4.1. Overview 

The TVP-VARs are state space models for which statistical methods 
based on the Kalman filter are available. To describe the dynamics of 
volatility spillovers, the baseline TVP-VAR model is as follows: 

yt = Zt− 1At + ϵt, ϵt|Ωt− 1∼ N(0,Σt), (1)  

vec(At)= vec(At− 1) + ξt, ξt|Ωt− 1∼ N(0,Ξt), (2)  

where Zt− 1 =

⎛

⎜
⎜
⎝

yt− 1

yt− 2

⋮

yt− p

⎞

⎟
⎟
⎠, and At =

⎛

⎜
⎝

A1t

A2t

⋮

Apt

⎞

⎟
⎠.. 

In the models, p is the lag order, t is the sample length of the model, 
and t = p+1, p+2,…,T. Ωt− 1 represents all information available until 
T = t − 1. yt is an N×1 vector containing observations on N time series 
variables. Zt− 1 represents N × p matrix. At are N × Np dimensional coef
ficient matrices while Ait are N × N matrices. ϵt and Σt are N×1 and N× N 
matrix, respectively. In Equation (2), vec(At) is the vectorisation of At 

which is an N × Np dimensional vector. The ξt is an N2p×1 dimensional 
vector. Moreover, Ξt are N2p × N2p time-varying variance-covariance 
matrices; ϵt and ξs are independent of one another for all s and t. Equation 
(2), which models the evolution of At , can be interpreted as a hierarchical 
prior for At. In our empirical model, we employed a first-order VAR model 
with a lag of 1, as informed by the Schwarz Information Criterion (SIC). 
However, we recognize that the choice of lags is crucial and can poten
tially affect the results, particularly in terms of model fit, parameter sta
bility, and impulse response functions (IRFs). An inappropriate lag length 
might lead to issues of spurious regression, capturing noise rather than 
dynamics, or underfitting, overlooking important dynamics in the data. 
To address potential concerns regarding lag selection, we also explored 
other common information criteria for robustness checks. Specifically, 
while the main text adhered to the SIC-recommended lag of 1, the 
robustness analysis uses lags 1, 2, and 3, with the latter being selected by 
the Akaike Information Criterion (AIC) (see Fig. 10). 

4.2. Estimation of TVP-VAR using forgetting factors 

To estimate the TVP-VAR model, this study uses the Primiceri [67] 
and Del Negro and Primiceri [68] prior, following Antonakakis et al. 
[55]. The mean and the variance of A0 are chosen to be the OLS point 
estimates (ÂOLS) and its variance ΣA

OLS in a time invariant VAR. Thus, the 
ÂOLS, ΣA

OLS, andΣOLS are equal to the VAR estimation results of the initial 
subsample (first year): A0 ∼ N(ÂOLS, ΣA

OLS), and Σ0 = ΣOLS. Let ys =

(y1,…ys)
′ denote observations through time s. In this context filtering 

refers to inference on At through combining of the information con
tained in a single observation y from Equation (1) with prior information 
on At expressed through a prior distribution p(At). This study considers 
the benchmark values (for example, for quarterly data, λ= 0.99 implies 
observations five years ago receive approximately 80 % as much weight 
as last period’s observation [56]) for forgetting factor, λ= 0.99, and 
decay factor, κ = 0.96, and keeping them constant at fixed values. Koop 
and Korobilis [56] found that the value added by time-varying decay 
factors with respect to the forecasting performance was questionable 
and increased the computation burden of the Kalman filter algorithm, 
thus this study follows Antonakakis et al. [55] to keep the decay factors 

constant at fixed values. 

4.3. TVP-VAR-based dynamic connectedness approach 

The time-varying coefficients and error covariances are used to es
timate the generalized connectedness procedure of Diebold and Yilmaz’s 
spillover index. This procedure is based on generalized impulse response 
functions (GIRF) and generalized forecast error variance decompositions 
(GFEVD) first developed by Koop et al. [64] and Pesaran and Shin [65]. 
The important step to calculate the GIRF and GFEVD is to transform the 
VAR to its moving average representation: 

yt =
∑∞

j=0
Υj,tϵt− j, (3)  

where Υ0,t = I, and Υi,t = A1,tΥi− 1,t + A2,tΥi− 2,t + …+ Ap,tΥi− p,t. 
Where Υt = [Υ1,t ,Υ2,t ,Υ3,t ,…,Υp,t ]

′ and At = [A1,t ,A2,t ,A3,t ,…,Ap,t ]
′
.

Both the Ai,t and Υi,t are N × N dimensional matrices. The GIRFs 
represent the responses of all variables j, following a shock in variable i. 
Let Θij,t(J) denote the J-step-ahead forecast error variances de
compositions at time t. Each of the elements in the matrix can be ob
tained by the following formula: 

Θj,t (J)=
ΥJ,tΣtej

̅̅̅̅̅̅̅
Σjj,t

√
ςj,t
̅̅̅̅̅̅̅
Σjj,t

√ = Σjj,t
− 1

2ΥJ,tΣtej, ςj,t =
̅̅̅̅̅̅̅
Σjj,t

√
, (4)  

where ej is an N×1 selection vector with unity in the jth position, and 
zero otherwise. Σjj,t is the standard deviation of the error term of the ith 
equation, also the jth diagonal element in Σu,t (same as Σt). The GFEVD 
represents the pairwise directional connectedness from j to i and illus
trates the influence variable j has on variable i in terms of its forecast 
error variance share. Normalizing each element of the generalized 
variance decomposition matrix by the row sums as follows: 

φ̃ij,t(J)=
ΣJ− 1

t=1 Θij,t
2

ΣN
j=1ΣJ− 1

t=1 Θij,t
2 , (5)  

with ΣN
j=1φ̃ij,t(J)= 1 and ΣN

i,j=1φ̃ij,t(J) = N. The denominator represents 
the cumulative effect of all the shocks, while the numerator illustrates 
the cumulative effect of a shock in variable i. Using the GFEVD, this 
study constructs the total connectedness index (TCI) by Equation (6): 

Ct(J)=
ΣN

i,j=1,i∕=jφ̃ij,t(J)
N

×100, (6) 

This connectedness approach shows how a shock in one variable 
spills over to other variables. When variable i transmits its shock to all 
other variables j, this is called total directional connectedness to others 
(Ci→j,t(J)) and it is defined as: 

Ci→j,t(J)=
ΣN

j=1,i∕=jφ̃ji,t(J)
ΣN

j=1φ̃ji,t(J)
×100. (7) 

The directional connectedness variable i received from variables j, 
total directional connectedness from others (Ci←j,t(J)), can be defined as 
Equation (8): 

Ci←j,t(J)=
ΣN

j=1,i∕=jφ̃ij,t(J)
ΣN

i=1φ̃ij,t(J)
×100. (8) 

This research subtracts total directional connectedness to others 
from total directional connectedness from others to obtain the net total 
directional connectedness (Cij,t): 

Cij,t =Ci→j,t(J) − Ci←j,t(J). (9) 

The sign of the net total directional connectedness illustrates 
whether variable i is driving the network (Ci,t> 0) or is driven by the 
network (Ci,t< 0). 
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5. Data 

To study the regional carbon markets’ co-movement and integration, 
this analysis uses carbon prices from four emission markets — CA CaT, 
EU ETS, HB ETS, and NZ ETS. This analysis concludes that Thomson 
Reuters, Wind Database, and Bloomberg provide the carbon prices for 
the four ETSs with the longest time periods. Daily spot prices for NZ ETS 
and EU ETS are sourced through Bloomberg and Reuters. Prices of Hubei 
emission allowance (HBEA) are found from Wind Database. Daily prices 
of CA CaT that traded on the ICE Future Exchange US are collected from 
California Carbon Info (https://www.californiacarbon.info/). The sam
ple period covers the period April 30, 2014 through December 1, 2021. 
All prices used in this study are quoted in Euro. Table 1 summarizes the 
main features of four ETSs. It shows that EU ETS and CA CaT are the 
largest markets in scale, and HB ETS is smallest and has the lowest 
carbon price. 

This study uses the spot price of the European emission allowances 
(EUAs) since EUA contracts are the major carbon product traded under 
EU ETS ([39,44,69]). NZ ETS trades in emission allowances known as 
New Zealand Units (NZUs), which can be held and sold by secondary 
market traders and auctions. The California Carbon Allowances (CCA) 
product represents a carbon emission equivalent in CA CaT, which is 
traded on the ICE Futures Exchange, US. Furthermore, this study 
chooses the spot price of HBEA as a representative of regional carbon 
price in China instead of other pilot ETSs, for these reasons: i) HB ETS 
regulates emission trading for a province whose economy is heavily 
based on secondary industries and coal; ii) Hubei’s overall energy 
structure reflects China’s as a whole country, hence it is deemed 
representative for the entire economy; iii) along with corporate and 
institutional investors, HB ETS attracted a substantial number of indi
vidual investors to the trading, with individual investors’ daily trading 
volume accounting for over 30 % of total turnover; and iv) HB ETS is the 
largest pilot ETS in China in terms of trading volume, continuity, social 
capital invested, and incorporated firm participation. 

Weekly returns are calculated as the change in log price, from Friday- 
to-Friday. The continuously compounded returns of four sets are 
computed as ri,j,t = (lnPi,j − lnPi,j− 1), for market i, in week t. This study 
uses the realized (historical) volatility as proxy of volatility. This 
research obtains daily closing prices for the four markets; high fre
quency/intraday data are not available for CA CaT and HB ETS. By using 
the weekly highest, lowest, open, and close prices, this research calcu
lates the realized/historical volatility. To be consistent with the fre
quency of the historical volatility, this study uses weekly returns. Three 
measures have been applied to estimate weekly volatility of the carbon 

price. Garman and Klass [70] and Parkinson [71] volatility measures are 
used as alternative proxies of volatility in the robustness analysis. 
Descriptive statistics of three volatilities are shown in Table 5. The main 
measure is the standard deviation of weekly return over the five-day 
interval during each week: 

S̃Dt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1

(
rij,t − rt

)2

M− 1

√

, (10)  

where S̃Dt measures the market volatility on week t, ri,j,t is the jth daily 
return in week t, for market i; and M is the number of trading days (in 
most cases M = 5). The corresponding estimate of the annualized weekly 
volatility in percentage is ŜDt = 100

̅̅̅̅̅̅
52

√
S̃Dt. According to the calcula

tions, the sample size is 397 observations for each series. The results in 
Section 5 are generated with the measure in Equation (10). The 
empirical results based on the Garman and Klass [70] and Parkinson 
[71] volatility can be found in Figs. 8 and 9 in Section 7 “Robustness”. 
Figs. 1 and 2 plot the weekly return and realized weekly volatility for the 
four markets during the sample period. These figures show that all ETSs 
except HB ETS have high volatility after March 2020 (when Covid-19 
hit). HB ETS had a lockdown from February 10 to March 20, 2020. 
Therefore, the movement of HB ETS during this period is not informa
tive. Both the return and volatility in the NZ ETS in 2014 and 2015 are 
high after the withdrawal from the Kyoto Protocol. The descriptive 
statistics of the return and volatility series are in Table 2. Here, panel A 
shows that the means of all returns are positive, implying rising prices 
(see Fig. 1). 

While the mean return on the HB ETS is positive but close to zero, the 
price of the HBEA remained rather stable, with the most significant t- 
statistics from the stationarity (ADF) test. Several facts emerge in the 
analysis of volatility (Panel B): 1) The EU ETS has the highest mean, min, 
and max return volatility of the four series; sharply rising prices and the 
EU’s rapidly shifting carbon reduction policies might be identified as 
contributors to this high level of volatility. 2) The HB ETS has the second 
highest volatility. As a newly built pilot market which started trading in 
2014, HB ETS has a flawed market structure, due to the lack of legis
lation through the provincial legislature in place. Thus high volatility is 
expected in such an emerging market [73]. 3) CA CaT volatilities 
increased simultaneously from mid-2021 to the end of the sample 
period, indicating a shift in the pattern of spillover effect from or to CA 
CaT in the post-Covid-19 period. 

6. Results 

This section reports the results of empirical analysis by the method 
presented in Section 4. The results are generated with the first measure 
(i.e., S̃Dt , from Equation (10)). The empirical results measured by the 
other two volatilities can be found in Section 7 “Robustness” (or are 
available upon request to the authors). Section 6.1 presents the total 
connectedness index (TCI), which measures the influence of one market 
on all others on average (see Equation (6)). Sections 6.2 and 6.3 show 
the total directional connectedness, which reflects the spillover rela
tionship between one market and all other markets, including total 
directional connectedness to others (Ci→j,t(J) in Equation (7)) and total 
directional connectedness from others (Ci←j,t(J) in Equation (8)), and net 
total directional connectedness from others (Cij,t in Equation (9)). 

6.1. Dynamic total connectedness index 

In the following empirical model, this analysis uses first-order VARs 
(p = 1) (selected by Schwarz information criterion), with 10-step-ahead 
forecasts (H = 10). A different choice of forecasting horizon, H from 2 to 
9, is assessed in the robustness analysis (see Fig. 11). Following most of 
the literature [74], this study uses a 10-step-ahead horizon in the main 
text. This research defines that if this TCI rises, so does network member 

Table 1 
Market architecture – differences among four ETSs.   

EU ETS NZ ETS CA CaT HB ETS 

Start 2005 2008 2012 2014 
Cap 1579 

MtCO2e 

34.5 MtCO2e 307.5 MtCO2e 166 
MtCO2e 

Market 
threshold 

25 ktCO2e low 25 ktCO2e 10 MtCO2e 

Average price 54.76 Euro 30.91 Euro 20.65 Euro 4.92 Euro 
Total revenue 31 billion 

Euro 
1.9 billion 
Euro 

16.78 billion 
Euro 

42 million 
Euro 

Covered 
emissions 

39 % 49 % 85 % 45 % 

Entities 9628 2475 500 373 
GHGs covered CO2,N2O,

PFCs 

CO2,CH4,

N2O,SF6,

HFCs,PFCs 

CO2,CH4,N2O,

SF6,

HFCs,PFCs,NF3, 
other GHG 

CO2 

Source: Own elaboration based on information and data from Emission Trading 
Worldwide: Status Report, by International Carbon Action Partnership, 2022. 
Note: The market threshold of NZ ETS is not clear; the report by International 
Carbon Action Partnership presents it as “low.” 
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dependency, and therefore market risk. Alternatively, if TCI decreases 
the dependence between the members decreases and hence market risk. 
Table 3 presents the averaged connectedness measures for the markets. 
The main diagonal of Table 3 shows own-variance shares of shocks, 
while the off-diagonal elements reflect the interaction across global 
ETSs. The number in the bottom right corner represents TCI of the sys
tem. For example, the EU ETS in the return connectedness analysis (see 
Table 3 Panel A) has received a total of 11.01 % shocks from three other 
markets: 2.88 % from NZ ETS, 4.98 % from CA CaT, and 3.15 % from HB 
ETS, respectively. EU ETS spilled in total 13.16 % to the three markets: 
3.46 % to NZ ETS, 5.16 % to CA CaT, and 4.54 % to HB ETS. The average 

return (volatility) TCI is 10.42 % (12.10 %). A total spillover of no more 
than 10.42 % (12.10 %) indicates that internal cross-contribution due to 
individual shocks is not a major driver of future performance across four 
ETSs. Both dynamics of each of the carbon markets are mainly explained 
by themselves and not due to spillovers from other markets, which in
dicates that the global carbon prices are largely (albeit not completely) 
dependent on themselves. In other words, the degree of systemic risk 
among emission allowance markets is not high. 

Our results of carbon market return and volatility TCI are lower than 
those of the other commodity market TCIs, because this study concen
trates on carbon markets as such where others connect carbon with 

Fig. 1. Weekly return from four ETSs. 
Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Reported are the weekly log-return series, range from April 30, 2014 to 
December 1, 2021. 

Fig. 2. Weekly realized (annualized) volatility from four ETSs. 
Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Reported are the weekly volatility series, range from April 30, 2014 to 
December 1, 2021. 
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other assets. For example, Ji et al. [75] conclude a 39.47 % (30.52) 
return (volatility) TCI between carbon and energy markets. Tan et al. 
[41] find 42.26 % (34.82) total return (volatility) TCI. Studies regarding 
other commodity markets’ connectedness conclude 24.58 % return 

connectedness across beverage, fertilizers, food, metals, precious metals, 
raw materials, and oil market [76], and 53.71 % among four crude oil 
markets globally [29]. In the agricultural market connectedness, Umar 
et al. [58] report 18.5 % (27.6 %) return (volatility) TCI of the dominant 
agricultural markets. 

Source: This spillover table is generated based on 10-step-ahead 
generalized VAR forecast error variance decomposition. The ijth entry 
estimates the fraction of 10-step-ahead error variance in forecasting 
market i due to exogenous shocks to market j (the spillover from market j 
to market i: dJ

ij). 
As the objective of this study is to investigate the behaviour of return 

and volatility spillovers over time, this study moves beyond the aggre
gated spillovers for the full sample. This research demonstrates the TCI’s 
dynamic evolution over time, which is particularly relevant for exam
ining the TCI’s response to major changes in carbon market regulation, 
economic and energy events, occurrence of extreme weather conditions, 
and disasters like the Covid-19 pandemic. The dynamic total return and 
total volatility connectedness are plotted in Figs. 3 and 4 respectively. 
They show that the overall degree of return (volatility) total average 
connectedness/effects of spillover ranges from 3 % (2 %) to 35.74 % 
(35.69 %) across the sample period. The literature suggests that the 
driving factors of the supply and demand in an ETS are: (i) economic 

Table 2 
Descriptive statistics for the carbon price return and volatility.  

Panel A: Return  

Mean Min Max St.dev. Skew. Kurt. ADF 

EU ETS 0.007 − 0.312 0.243 0.060 − 0.312 5.996 − 14.37*** 
NZ ETS 0.008 − 0.112 0.232 0.036 1.944 12.041 − 10.27*** 
CA CaT 0.003 − 0.326 0.202 0.028 − 3.064 59.992 − 12.74*** 
HB ETS 0.001 − 0.437 0.342 0.063 − 0.764 17.080 − 18.74*** 

Panel B: Volatility  

Mean Min Max St.dev. Skew. Kurt. ADF 

EU ETS 16.734 1.368 78.881 10.081 1.782 8.622 − 4.07*** 
NZ ETS 7.167 0.690 75.503 7.474 4.350 29.793 − 5.74*** 
CA CaT 4.842 0.819 57.247 5.266 5.718 46.145 − 4.09*** 
HB ETS 15.604 0.002 56.364 12.531 1.098 3.557 − 5.45*** 

Source: Own elaboration based on data from Bloomberg, Reuters, and Wind Database. Note: Sample including carbon prices series from EU ETS, NZ ETS, CA CaT, and 
HB ETS from April 30, 2014, to December 1, 2021. The hypothesis of the Augmented Dicky Fuller (ADF) test is H0: non-stationary against H1: stationary. The lag length 
is determined by BIC criterion. *** denotes significance at 1 % level [72]. 

Table 3 
Average connectedness matrix of the system.   

EU ETS NZ ETS CA CaT HB ETS From Others 

Panel A: Return connectedness (%) 
EU ETS 88.99 2.88 4.98 3.15 11.01 
NZ ETS 3.46 92.03 2.72 1.79 7.97 
CA CaT 5.16 2.63 87.59 4.62 12.41 
HB ETS 4.54 1.53 4.22 89.70 10.30 
To others 13.16 7.04 11.93 9.57 41.70 
Net total 2.14 − 0.93 − 0.48 − 0.73 TCI = 10.42  

EU ETS NZ ETS CA CaT HB ETS From Others 

Panel B: Volatility connectedness (%) 
EU ETS 89.40 2.95 5.71 1.94 10.60 
NZ ETS 3.72 86.03 7.36 2.89 13.97 
CA CaT 5.36 5.75 84.69 4.21 15.31 
HB ETS 2.38 2.51 3.60 91.50 8.50 
To others 11.46 11.21 16.67 9.04 48.38 
Net total 0.86 − 2.76 1.36 0.54 TCI = 12.10  

Fig. 3. Dynamic total return connectedness 
Note: Fig. 3 plots the dynamics of spillover index (measured by TCI). X axis shows our sample period, 2014–2021. Y axis shows the TCI in the network (numbers in y 
axis are in percentages). Shaded areas with numbers refer to Table 4. 
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growth and government constraints; (ii) international climate change 
agreements; (iii) regulatory change and arbitrageurs; and (iv) market 
fundamentals, such as energy prices and weather [45,77,78]. Therefore, 
this study focuses on events related to (i) global politics, (ii) carbon 
market linkage/delinked changes, (iii) temperature and weather, and 
(iv) public health crises — e.g., Covid-19. Periods with a high degree of 
connectivity corresponding to the events in Table 4 connect to the event 
number and are shaded in Figs. 3 and 4. 

Fig. 3 shows that the dynamic connectedness of return network 
changes considerably over time, especially from 2015 to mid-2016 and 
following the Covid-19 outbreak, which suggests that the spillovers 
across carbon markets are time-dependent. The first peak occurred in 
March 2015 (return spillovers jumped instantly, rising from 9.07 % to 
21.88 %), when the Chinese government shut down the last coal-fired 
power facilities in inner Beijing as part of a national trend to close 
over 2000 coal-fired power facilities by 2015 (Event 2). Coal power 
plants were the most important participants in Hubei carbon markets. 
Changes in TCI indicate that phasing them out impacts China’s carbon 
markets, which in turn affects international carbon markets, given 
China’s dominant role in global carbon emissions. The second peak is 
associated with Event 17, the global stock market selloff in the second 
half of 2015. Notably, the stock market crashes initially began in China, 
resulting in abnormal fluctuations in the world’s economies. The return 
TCI went up to the second peak and remained at around 19 %. The third 
peak of return TCI occurs along with Event 12, when the Global Land- 
Ocean Temperature Index surged from January to February 2016 
(NASA recorded that the average global surface temperature in February 
2016 was 1.35C warmer than the average for the month between 1951 
and 1980). Fourth, and highest, connectedness is associated with the 
Covid-19 outburst and sparking fears of the lockdown policies all over 
the world (Event 20). During March 2020, the return spillovers jumped 
from 7.09 % to 35.74 %, and global carbon market spillovers reached 
their highest so far. 

Notably, three moderate intensifications in the return connectedness 
start from December 2016, July 2017, and August 2018 respectively, 
coinciding with several extreme weather events (Events 13, 14, and 15). 
Elevated concerns about global warming and decarbonisation led the 
TCI to respond. Two other carbon markets events (Events 9 and 11) 
caused small spikes in the index. In June 2019, the HB ETS experienced a 
huge price spike, causing volatility in its return series (see Fig. 1, Panel 
D). A reasonable explanation is that the compliance period of China’s 
pilot ETS is in June, and the price of the Hubei carbon market surged due 

Fig. 4. Dynamic total volatility connectedness 
Note: Fig. 4 plots the dynamics of spillover index (measured by TCI). X axis shows our sample period, 2014–2021. Y axis shows the TCI in the network (numbers in y 
axis are in percentages). Shaded areas with numbers refer to Table 4. 

Table 4 
Chronology of events for high connectedness.  

Year No. Event Date Category 

2014 1 G7 Energy Ministers Summit, 
Rome 

2014.05.05 global 
politics 

2015 2 China coal power plant closure 2015.03.01–31 global 
politics 

2015 3 COP21- Paris agreement 2015.11.30–12.12 global 
politics 

2016 4 High-level UN debate on 
achieving the SDGs + Paris 
Agreement open for signature 

2016.04.21–22 global 
politics 

2018 5 COP24 2018.12.2–14 global 
politics 

2019 6 COP25 2019-12.2-13 global 
politics 

2015 7 Korea built ETS 2015.01.01–02.01 carbon 
market 

2015 8 New Zealand delinked 2015.06.01–07.01 carbon 
market 

2019 9 Hubei carbon price spike 2019.05.20–06.03 carbon 
market 

2020 10 Swiss ETS linked to EU ETS 2020.01.01–02.01 carbon 
market 

2021 11 China national ETS operation 2021.07.21–08.21 carbon 
market 

2016 12 Big jump occurred in Global 
Land-Ocean Temperature Index 

2016.02.01–28 weather 

2016 13 Worst air pollution episode in 
China, schools and factories 
ordered shut, 200 flights 
cancelled 

2016.12.01–30 weather 

2017 14 Yangtze River flooding; 
Hurricanes Harvey, Irma, and 
Maria 

2017.06.30–10.01 weather 

2018 15 Multiple deadly heat waves hit 
East Asia + Monsoon flood in 
India where Kerala state 
reported 500 deaths 

2018.07.20–08.30 weather 

2014 16 Oil price crisis 2014.06–2015.01 energy 
2015 17 Stock market selloff (initially 

began in China) 
2015.06.12–08.26 finance 

2018 18 2018 cryptocurrency crash- 
Bitcoin ultimately fell by 
approximately 65 % 

2018.01–02 finance 

2019 19 Covid hit China 2019.12.31 covid-19 
2021 20 Covid-19 pandemic started 2021.03–2022.12 covid-19  
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to unusual activity of participant enterprises trading for compliance 
before the end of the compliance year. This unusual movement led to 
spikes in both return and volatility TCIs. Moreover, China launched its 
national ETS in July 2021, taking 34 power entities away from Hubei 
ETS at its opening, which caused a loss in allowances demand, and a 
decrease in the trading volume of emission allowances in Hubei ETS. 
The results were not surprising in a sense that the national ETS has a 
higher priority since launched, and its existence will inevitably reduce 
the size and liquidity of pilot ETSs and weaken their influence. Carbon 
market regulation changes might alter investment decisions, resulting in 
market return changes. For instance, the decreased market threshold 
incentivizes investors to participate in carbon trading. 

Fig. 4 shows the volatility TCI. There is a slight upward move in 
volatility total connectedness from the September 2014 to January 2015 
period, reflecting the effects of continued crude oil price crises 
(2014–2016). We observe that the first peak (TCI = 17.31 %) of the 
carbon market volatility connectedness index occurred at the troughs 
($44.08 a barrel in January 2015) of the crude oil price (Event 16). The 
dependence between the markets increases with the decreasing petro
leum prices, from September 2014 to January 2015, which in turn re
sults in lower market risk in the carbon market volatility network. 
Akyildirim et al. [79]’s analysis of global energy market connectedness 
index also shows an increase from October 2014 to January 2015, which 
suggests that the carbon and energy market connectedness indices share 
the same features during global oil price crises. During 2016 and 2020, 
the volatility spillover index moves up and down. The fluctuation of 
carbon market volatility in the spillover index can be the joint conse
quences of extreme weather events/awareness of global warming 
(Events 12–15), cryptocurrency crash (Event 18), and uncertainty 
brought about by Covid-19 in China (Event 19). Noticeably, an instant 
upward move from 9.66 % to 17.15 % is witnessed following COP 25 
(Event 6). However, in December 2019 when Switzerland quit the EU 
ETS and Covid-19 first hit China, the index falls again (European Com
mission, 2019). In March 2020, an extraordinary shift occurred when 

the Covid-19 virus began spreading globally: volatility TCI rose from 
14.55 % to 35.69 %. Following the Covid-19 outbreak (Event 20), the 
total risk in the ETS markets, as measured by the TCI level, reached 
historic highs owing to the quick and furious reaction to growing un
certainty at both the individual and national level. The unprecedented 
increase in the TCI as a result of the Covid outbreak is supported by other 
studies in energy markets [79–81]. 

These findings suggest that global negotiations and other political 
issues (e.g., Events 1, 3, 4, and 5) and carbon market events (Events 
7–11) have only a minor impact on the level of connectedness. Their 
impacts are far less than that of the energy or financial crises and Covid- 
19 outbreak. In particular, the return spillover index (TCI) is less 
influenced by the global crude oil crises during mid-2014 and early 
2015, but more so by financial market crashes and extreme weather 
events (e.g., Events 12–15). The volatility spillovers seem mostly 
impacted by the crude oil crisis and cryptocurrency crash (Events 16, 
18). Both return and volatility spillovers are heavily impacted by the 
Covid-19 outburst, which resulted in increasing market risk across the 
carbon market network. 

6.2. Connectedness for ‘from’ and ‘to’ 

This section investigates dynamic spillovers and their directions for 
each of the ETSs. Recall that the diagonal of Table 3 represents the 
shocks from each of the markets themselves, while the upper and lower 
parts of the off diagonal show the spillovers across the markets. The 
highest value of the (aggregated) return spillovers from others are for CA 
CaT (Σj∕=3dJ

3j = 12.41 %), and the lowest value of the (aggregated) return 
spillovers from others are for NZ ETS (Σj∕=2dJ

2j = 7.97 %). In terms of the 
(aggregated) return spillovers to others, EU ETS and NZ ETS remain the 
highest (Σi∕=1dJ

i1 = 13.16 %) and the lowest (Σi∕=2dJ
i2 = 7.04 %). The 

volatility connectedness measures (see Table 3, Panel B) reveals that NZ 
ETS received 13.96 % (aggregated) volatility spillover from the other 
three markets. The highest value of spillovers to other markets are for 
CA CaT (16.67 %), while HB ETS has taken an aggregated average value 
of 9.04 % spillover. All the numbers shown in Table 3 are average 
aggregated measures. 

As this study is interested in the conduct of return and volatility 
spillovers over time, this study also plots the directional evolution 
through time. Figs. 5 and 6 respectively show the directional return and 
the volatility spillovers from and to four ETSs over time. The plots in 
Fig. 5, except for HB ETS, reveal marked increases of spillovers from 
other markets right after the Covid-19 outbreak, for both the return and 
volatility networks. Although the average level of connectedness “From 
Others” remains at 7–13% for the markets, the spillovers “From Others” 
peaked at almost 50 % for EU ETS and CA CaT in March 2020. The 
general pattern of HB ETS regarding return and volatility appears to be 
unaffected by the Covid-19 outbreak. This is due to the strict lockdown, 
which shielded the Chinese market temporarily from further shocks. 
Considering that the Covid-19 policies in China were unique in terms of 
the strict lockdown, the carbon market movement could not be impacted 
by the other markets in other countries. Furthermore, there is a slight 
upward trend in return (volatility) systems of NZ ETS since mid-2017 
(mid-2016), showing that delinking NZ ETS to global markets 
increased the market risks in NZ ETS. 

In terms of the directional spillovers from each of the four to all 
markets, the EU ETS has the largest (aggregated) share of spillovers 
(13.16 %) to all others in the return system while CA CaT has the largest 
(16.67 %) to the others in the volatility system. Since March 2020, the 
return (volatility) spillovers from EU ETS and CA CaT to all others 
reached the unprecedented points 55.30 % (50.86 %) and 54.04 % 
(69.69 %), respectively. There has been a steady decline of return 
spillovers from HB ETS to the others, from approximately 10 % to nearly 
2 %, since mid-2019. 

Table 5 
Descriptive statistics for three volatility measures – three measures of historical 
volatility.  

Panel A: Standard Deviation of Weekly Returns 

Statistic EU ETS NZ ETS CA CaT HB ETS 

N 398 398 398 398 
Min 1.4 0.7 0.8 0.002 
Mean 16.7 7.2 4.8 15.6 
Max 78.9 75.5 57.2 56.4 
St.Dev. 10.1 7.5 5.3 12.5 
Skewness 1.78 4.35 5.72 1.09 
Kurtosis 8.62 29.79 46.14 3.56 

Panel B: Parkinson (1980) 

Min 2.8 0.67 0.65 1.14 
Mean 23.53 10.73 6.86 21.03 
Max 125.39 100.66 127.29 166.78 
St.Dev. 15.83 11.42 9.11 20.42 
Skewness 1.98 3.64 7.70 2.88 
Kurtosis 9.75 20.73 86.83 16.08 

Panel C: Garman and Klass (1980) 

Min 26.04 15.95 28.59 15.64 
Mean 43.70 34.02 33.28 34.81 
Max 153.67 120.33 154.66 197.93 
St.Dev. 14.86 9.66 7.97 21.04 
Skewness 2.53 4.21 10.57 3.56 
Kurtosis 14.42 29.29 145.33 21.62 

Source: Based on data from Bloomberg, Reuters, and Wind Database. Note: 
sample including carbon price volatility series from EU ETS, NZ-ETS, CA-CaT, 
and HB-ETS from April 25, 2014, to December 1, 2021. The corresponding es
timate of the annualized weekly volatility in percentage is SD̂t=10052SD̃t. 
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6.3. Net total connectedness 

Here this analysis reports the results for the four markets’ net total 
directional connectedness. This is defined in Equation (9) and calculated 
by subtracting total directional connectedness to others (Ci←j,t(J)) from 
total directional connectedness from others (Ci→j,t(J)). Given that a net 
positive (negative) value in the last row of Table 3 means that the market 

(from one of the four columns) is a net transmitter (receiver) of the shocks, 
hence, leading (being led by) the network. Therefore, the results shown in 
the rows Net Total in panels A and B of Table 3 point at the difference 
between the transmitting and the receiving shocks of each market 
considering the entire network. Table 3 suggests that EU ETS is the largest 
transmitter (2.14 %) while NZ ETS is the largest receiver (− 0.93 %) in the 
return connectedness systems. Notably, the EU ETS is the only return 

Fig. 5. Dynamic directional return and volatility spillovers FROM four markets 
Note: Panels A1 to A4 in grey relate to the return connectedness system; Panels B1 to B4 in black relate to the volatility connectedness system. X axis gives the sample 
period, 2014–2021. Y axis shows the connectedness level in the network (numbers in y axis are percentages). The return series contains 397 observations (each) 
starting from May 2, 2014 to December 1, 2022 while the volatility series contains 398 observations (each) starting from April 25, 2014 to December 1, 2022. The 
predictive horizon for the underlying variance decomposition is H = 10, both are first-ordered VAR (p = 1). 
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spillovers transmitter, confirmed by the positive value shown at the bot
tom of Table 3 Panel A. In terms of the volatility connectedness system, CA 
CaT is the largest transmitter (1.35 %), followed by EU ETS (0.86 %), while 
NZ ETS is again the largest receiver (− 2.76 %). NZ ETS has the least and 
only negative value in the last row – Net Total, which means all other three 
markets are identified as volatility transmitters, while NZ ETS receives 
more spillovers from the system than it transmits. 

Fig. 7 displays the evolution of net return and volatility spillover of 
the four ETSs. Positive values indicate periods when a specific carbon 
market acts as a net-transmitter, whilst negative values indicate the 
period when one of the markets receives, on net terms, from all others. 
An inspection of Fig. 7 leads to the following observations: First is that 
EU ETS has a persistent net-transmitting role in the return connected
ness system. The phenomena could be explained by the maturity of the 

Fig. 6. Dynamic directional return and volatility spillovers TO four markets 
Note: Panels A1 to A4 in grey relate to the return connectedness system; Panels B1 to B4 in black relate to the volatility connectedness system. X axis shows the 
sample period, 2014–2021. Y axis shows the connectedness level in the network (numbers in y axis are percentages). The return series contains 397 observations 
(each) starting from May 2, 2014 to December 1, 2022 while the volatility series contains 398 observations (each) starting from April 25, 2014 to December 1, 2022. 
The predictive horizon for the underlying variance decomposition is H = 10, both are first-ordered VAR (p = 1). 
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market performance and the market size (in terms of total participants, 
price, and revenues) of the EU ETS. Second, in terms of volatility net 
total spillovers, what stands out in Fig. 7 is the spike of 39.5 % on 
December 13, 2019 of the Net Total spillovers of NZ ETS. Albeit NZ ETS 
is a net receiver in the aggregated level, in December 2019 it was leading 

the network in the short-term. This discovery matches the volatility 
jumps (from 1.72 to 47.81 %) in New Zealand ETS’s volatility series 
(Fig. 2), where the market volatility was substantially impacted by 
Covid-19 when it first hit the world. Third, it shows that after the Covid- 
19 outbreak, the CA CaT became a net transmitter while the NZ ETS and 

Fig. 7. Net return and volatility spillovers — four markets 
Note: Panels A1 to A4 in grey relate to the return connectedness system; Panels B1 to B4 in black relate to the volatility connectedness system. The return series 
contains 397 observations (each) starting from May 2, 2014 to December 1, 2022 while the volatility series contains 398 observations (each) starting from April 25, 
2014 to December 1, 2022. The predictive horizon for the underlying variance decomposition is H = 10, both are first-ordered VAR (p = 1). X axis shows the sample 
period, 2014–2021. Y axis shows the connectedness level in the network (numbers in y axis are percentages). 
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HB ETS remained in their roles as shocks receiver in the carbon trading 
system. 

7. Robustness 

This analysis uses the realized (historical) volatility as proxy of 
volatility. This analysis employs daily closing prices for the four mar
kets; high frequency/intraday data are not available for CA CaT and HB 
ETS. By using the weekly highest, lowest, open, and close prices, this 
research calculates the realized/historical volatility. To be consistent 
with the frequency of the historical volatility data, this study uses 
weekly returns. Three measures have been applied to estimate weekly 

volatility of carbon price. The first measure is the standard deviation of 
weekly return over the five-day interval during each week (Equation 
(10) in Section 5). 

The second measure is the weekly volatility that considers five prices 
in a week. Following [71,82], this study uses weekly high and low prices 
obtained from daily data, from Monday open to the Friday close, to 
estimate Parkinson-type weekly variance: 

σ̃2
it= 0.361

[
ln (Pmax

it

)
− ln (Pmin

it )]
2
, (11)  

where Pmax
it is the Monday-Friday highest price, Pmin

it is the Monday- 
Friday lowest price, σ̃2

it is an estimator of weekly variance at market i. 

Fig. 8. Plots of three volatility measures – St. Dev., Parkinson, and Garman and Klass. 
Source: Based on data from Bloomberg, Reuters, and Wind Database. Note: sample including carbon price volatility series from EU ETS, NZ-ETS, CA-CaT, and HB-ETS 
from April 25, 2014, to December 1, 2021. The corresponding estimate of the annualized weekly volatility in percentage is SD̂t=10052SD̃t. 

Fig. 9. Robustness check – total connectedness index from three volatility measures.  

C. Lyu and B. Scholtens                                                                                                                                                                                                                       



Renewable and Sustainable Energy Reviews 191 (2024) 114102

14

This study calculated the annualized weekly volatility as σ̂ it =

100
̅̅̅̅̅̅̅̅̅̅̅

52σ̃2
it

√

. The third measure, following [70,83], we use weekly high, 
low, opening and closing prices obtained from collected daily price data 
to estimate Garman and Klass-type weekly variance: 

ω̃2
it= 0.511(Ht − Lt)

2
− 0.019[(Ct − Ot)(Ht +Lt − 2Ot)

− 2(Ht − Ot)(Lt − Ot)]− 0.383(Ct − Ot)
2
,

(12)  

where H is the Monday-Friday highest price, L is the Monday-Friday 
lowest price, O is the Monday open and C is the Friday close price. All 
prices are transformed to natural logarithms. This study calculates the 

annualized weekly volatility as ω̂it = 100
̅̅̅̅̅̅̅̅̅̅̅̅

52ω̃2
it

√

. The descriptive sta
tistics for the volatilities are reported in Table 5. 

8. Conclusion 

Emission Trading Schemes (ETSs) incentivize climate action by 
allowing entities to exchange emission allowances created by the 
reduction or removal of greenhouse gases (GHGs) from the atmosphere. 

As such, ETSs bring together companies, investors, and policy makers to 
ensure a clean (er) transition to meet net-zero emissions targets. Un
derstanding the interactions between such carbon markets for emission 
allowances promotes their efficient and effective operation. This study 
investigates the connectedness among four Emission Trading Schemes: 
California’s Cap-and-Trade (CA CaT), China’s Hubei ETS (HB ETS), the 
EU ETS, and New Zealand’s ETS (NZ ETS), from 2014 to 2021. This 
sample period covers a wide range of events, for example, stock market 
crashes, international climate negotiations, political events, carbon 
market regulation, and the Covid-19 outburst. 

Most studies in the field of carbon markets focus on the relationship 
between the carbon market and other energy and/or financial markets 
[40,41,75], and [81]. Other studies concentrate on local/domestic car
bon markets [24,32], and [45]. These studies did not account for return 
and/or volatility spillovers across the carbon markets. The 
four-dimensional time varying parameter VAR model in this study ad
dresses the shortcomings of relying on constant parameters and static 
analysis that are inherent with the conventional approaches employed. 
Given the effects of increasing energy efficiency and clean technology 
adoption, improving emission market efficiency, and the organic growth 
of linkages between ETS systems, the spillover effects among the four 

Fig. 10. Sensitivity of the Total Connectedness Index to VAR lag structure 
Note: The indices were calculated based on the volatilities generated with the first measure (i.e., S̃Dt , from Equation (10)). In the main text we used lag 1 as selected 
by Schwarz information criterion. Here in the robustness check we tried lag 1, lag 2, and lag 3 in the model (lag 3 was chosen by Akaike information criterion). 

Fig. 11. Sensitivity of the Total Connectedness Index to Forecast Horizon 
Note: The indices were calculated based on the volatilities generated with the first measure (i.e., S̃Dt , from Equation (10)). This study used VAR (1) for these es
timations. 2 to 10-week Horizons are chosen and plotted. 
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markets might be affected. This study employs a TVP-VAR methodology 
to measure the connectedness along the four markets. 

The key findings are as follows. This research finds that the dynamic 
connectedness of return and volatility networks varies considerably over 
time. In particular, events like the energy crisis and Covid-19 outbreak 
accentuate the time-dependent nature of spillovers across carbon mar
kets. This research establishes that the total connectedness index stands 
at around 10–12 %, suggesting a relatively low level of spillover, when 
compared to other market integration studies. It indicates that the global 
carbon prices are largely (albeit not completely) dependent on them
selves. The changes in global climate politics and carbon market reforms 
appear to have only minor impact on their connectedness, whereas the 
occurrence of energy and financial crises have a substantial effect (both 
regarding return and volatility). The EU ETS consistently acts as a net 
transmitter in return connectedness, while the CA CaT emerges as a 
primary transmitter for volatility connectedness. NZ ETS is the dominant 
receiver of shocks, indicating vulnerability during market unrests. HB 
ETS exhibited unique resilience during the Covid-19 pandemic, prob
ably due to China’s strict border control and lockdown measures (with 
the border closed, the movement at HB ETS could hardly be impacted by 
other ETSs). 

From a practical perspective, CA CaT and EU ETS share several 
features regarding their resilience: They are both structured upon three 
compliance phases; their sector coverage is similar, and their market 
threshold (25 ktCO2e) is substantially higher than that of the other two, 
which means their participants are larger in scale, hence, less vulnerable 
to public crisis. 

The results lead to important policy implications. Firstly, investors 
and portfolio managers may diversify their portfolio risks by investing in 
carbon market pairings that are unlikely to transfer shocks to one 
another during anomalous events. Investors should attach special 
attention to New Zealand and EU’s ETSs when formulating portfolio 
strategies since they have been in the role of net receiver and trans
mitters, respectively, in the system; net receivers are vulnerable under 
market unrest. Secondly, efficient coordination and monitoring mech
anisms among cross-country carbon markets shall be put in place during 
periods with higher uncertainty, namely energy crises and extreme 
weather events, to help policymakers design timely interventions to 
alleviate the contagion risk in carbon market networks. Thirdly, albeit 
Hubei ETS has the smallest market size compared to the other three in 
our study, extreme prices spike in Hubei ETS, and the launch of China’s 
national ETS could increase the market risk transmission in carbon 
market networks. Hence, a smooth transmission from China’s pilot ETSs 
to national pilots is needed in a sense that the carbon market regulation 
change might alter investment decisions, resulting in market return 
changes. 

This paper offers valuable insights and recommendations for other 
global ETSs by studying these four markets. In fact, even as our samples 
focus on these four markets, they cover a diverse range of participants, 
trading phases, project types, and market sizes. The empirical results can 
be applied to other developed and developing ETSs. For developing 
ETSs, examples include the other eight pilot ETSs in China, South Korea 
ETS, Indonesia ETS, and Vietnam ETS. For more developed ETSs: 
Switzerland ETS and the UK ETS. However, using weekly data, as 
opposed to daily data, might lead to a lag in capturing market dynamics. 
This is because finer details or daily fluctuations within the week could 
be missed, which can pose challenges for accurate forecasting and 
informed decision-making. From a policy-making perspective, this 
choice of data granularity might inadvertently overlook critical short- 
term events or shifts, potentially affecting decisions related to climate 
change objectives. 

As for future work, this study envisions several directions for 
extension. There is a definite need for constructing high frequency data 
to analyse the connectedness on a daily frequency. Another direction for 
future research would be to incorporate the asymmetric TVP-VAR 
connectedness model in carbon market research. This asymmetric 

model has the capacity to discern three distinct types of spillovers: 
normal, positive, and negative. Utilizing this model could offer a more 
nuanced comprehension of spillover dynamics, potentially unveiling 
additional insights pertinent to the study of ETSs. Furthermore, it is 
interesting to include more carbon markets in the panel, for example, 
the South Korea ETS, which is another nationwide ETS in Asia; Regional 
Greenhouse Gas Initiative (RGGI) in North America; and UK ETS that, 
with Brexit, quit the EU ETS. 
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