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Abstract
In this paper, a non-singular SIRmodel with theMittag-Leffler law is proposed. The nonlinear
Beddington-DeAngelis infection rate andHolling type II treatment rate are used. The qualitative
properties of the SIRmodel are discussed in detail. The local and global stability of themodel are
analyzed.Moreover, some conditions are developed to guarantee local and global asymptotic stability.
Finally, numerical simulations are provided to support the theoretical results and used to analyze the
impact of facemasks, social distancing, quarantine, lockdown, immigration, treatment rate of the
disease, and limitation in treatment resources onCOVID-19. The graphical results show that face
masks, social distancing, quarantine, lockdown, immigration, and effective treatment rates
significantly reduce the infected population over time. In contrast, limitation in the availability of
treatment raises the infected population.

1. Introduction

COVID-19 affects the human populationworldwide and is caused by the SARS-COV-2 virus. The extent of
COVID-19 is reduced in a few countries due to the development of vaccination, wearing of proper facemasks,
frequently handwashing,maintaining social distancing, avoiding public and crowded places, advertisements,
adequatemedical facilities, and following the guideline given by theWorldHealthOrganization (WHO) and
national governments. But still, significant new cases of COVID-19 are registered inmany regions across the
world.

Mathematicalmodels in epidemiology are great tools that can help us to understand the transmission
dynamics of COVID-19Ahmad et al (2022), Allegretti et al (2021), Biswas et al (2020), Erturk andKumar (2020),
Gao et al (2020), Kumar et al (2020), Naik et al (2020a, 2020b), Rajagopal et al (2020), Sene (2020), Kumar and
Erturk (2021), Naik et al (2021), Safare et al (2021), Sitthiwirattham et al (2021), Özköse et al (2022), Özköse and
Yavuz (2022), Karim et al (2022), Kurmi andChouhan (2022), Pandey et al (2022), Guo and Li (2022), Haq et al
(2022), Li andGuo (2022a, 2022b), Pérez andOluyori (2022), Swati (2022), Joshi et al (2023). It captures all the
scenarios in a very compact form and by proper analysis of thesemodels show, for example, (I) how the disease
spreads worldwide, (II)howmuch population is affected, (III) how to constrainCOVID-19. A simplemodel of
COVID-19 is an SIRmodel with a bilinear incidence rate. It includes the basic three-compartment classes,
namely the susceptible (S), infected (I), and recovered (R) classes. The variety of approaches to treatingCOVID-
19 leads to a need for new compartment classes so as to understand, for example, the effects of quarantine
Mishra et al (2020),Memon et al (2021), Nabi et al (2021), lockdownAtangana (2020), Sun et al (2020), face
masks Srivastav et al (2021), social distancing Yasir and Liu (2021), vaccination Yavuz et al (2021) and
immigrationMa et al (2022). The use of compartment classes in epidemiologicalmodeling provides great
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freedom to analyze infectious diseases fromdiverse angles. However, extending the classes, and so the
complexity of themodel,makes the qualitative analysismore laborious, and computational costs are increased.

So far, there have beenmany attempts to study the effects of facemasks, social distancing, quarantine,
lockdown, immigration, treatment rate of disease, and limitation in the treatment of COVID-19 by using
elaboratemodels with five to eight compartments classes.We proposed an SIRmodel with nonlinear infection
and treatment rates to overcome this increased complexity.

Infection and treatment rates play a vital role in reducing the dimension of theCOVID-19model, so it turns
to enable better analysis. TheWHOdeclaredCOVID-19 as a global pandemic inmarch 2020WHO (2020). In
this situation, it is unreasonable to choose a bilinear infection rate to formulate theCOVID-19model. Hence to
overcome this disadvantagewe chose the nonlinear infection rate introduced by Beddington andDeAngelis
Beddington (1975), DeAngelis et al (1975). The Beddington-DeAngelis infection rate is defined as

b
x x

b x x=
+ +

>  f S I
SI

S I
,

1
, 0, 0, 0, 1

1 2
1 2( ) ( )

whereβ is the transmission rate of disease, ξ1 is ameasure of inhibition for the susceptible population, and ξ2 is a
measure of inhibition for the infected population.

The commonpopulation-wide effort to reduce transmission of COVID-19 is to impose a lockdown.One
preventionmeasure used by susceptible populations includes proper use of facemasks and social distancing to
reduce disease transmission. Preventionmeasures taken by the infected population include quarantine and self-
isolation so as to reduce transmission or aid recovery from the disease. In ourmodel,β is used to capture the
impact of lockdown, ξ1 is used to capture the impact of facemasks and social distancing, and ξ2 is used to
represent the impact of quarantining.

The selection of treatment rate is also very crucial in formulating aCOVID-19model. During the initial
phase of COVID-19, thereweremultiple crises in accessing hospitals, obtaining vaccines, securing oxygen
cylinders, and othermedical resources. Over time, the situation improved slowly in terms of the availability of
hospitals, vaccines, and othermedical facilities. To describe this situation, we chose theHolling type-II
treatment due to its ability to capture this scenario. Zhou and Fan introduced theHolling type-II treatment rate
and defined it as Zhou and Fan (2012)

j
r

j r=
+

  g I
I t

I t
I

1
, 0, 0, 0, 2( ) ( )

( )
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wherej is the treatment rate of the disease, and ρ is the limitation in treatment availability.
To the best of our knowledge, SIRmodels with a Beddington-DeAngelis infection rate, aHolling type-II

treatment rate withMittag-Leffler law have not been used to examine the effects of facemasks, social distancing,
quarantine, lockdown, immigration, treatment rate of disease, and limitation in treatment resources on
COVID-19.

Themanuscript is organized as follows: in section 2, we provide a necessary definition of the non-local and
non-singular Atangana-Baleanu operator. In section 3, the SIRmodel with theMittag-Leffler law is formulated.
The qualitative properties and local and global asymptotic stability of themodel, under some conditions, are
discussed in section 4. In section 6, the numerical results are discussed. Finally, some conclusions are provided in
section 7.

2. Preliminaries

In this section, we provide a necessary definition of fractional calculus that is used in the development and
numerical simulation of themodel Atangana andBaleanu (2016).

Definition 1. Let a Î 0, 1( ]and Î <f H a b a b, ,1( ) be any function. Then theAtangana-BaleanuCaputo
(ABC) derivative is defined as

ò
a
a

a
a

=
-

¢ -
-
-

a
a

a
⎡
⎣

⎤
⎦

D f t
B

f x E
t x

dx
1 1

, 3ABC
t

t

0
0

( ) ( ) ( ) ( ) ( )

where a a= - + a
G

B 1
a

( )
( )

is a normalization function satisfying = =B B0 1 1.( ) ( )

Definition 2. Let a Î 0, 1( ]and Î <f H a b a b, ,1( ) be any function. Then theAtangana-Baleanu derivative
in the Riemann-Liouville sense is defined as
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Definition 3.The fractional integral in the Atangana-Baleanu sense is defined as
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, 5AB
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where aIRL
t0 is the Riemann-Liouville fractional integral.

Definition 4.The Laplace transformof theABCderivative of a function f (t) of order a > 0 is defined as
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3. Formulation of amathematicalmodel

Here, we consider an SIRmodel with Beddington-DeAngelis type infection rate andHolling type II treatment
rate. The basic SIRmodel is described by the following systemof differential equations.
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with the given initial conditions S(0)= S0� 0, I(0)= I0� 0, andR(0)= R0� 0. The variables, parameters, and
biological interpretation are given in table 1.

The susceptible populations in compartmentmodels use theirmemory to prevent infection. Due to this
reason, the fractional-ordermodel achieved high attention inmodeling a biological process. Hencewe convert
the classicalmodel (7) into the fractional-order one to enhance the accuracy of themodel Podlubny (1998),
Magin (2004), Hanert et al (2011), Baleanu et al (2012), Joshi and Jha (2018, 2021a, 2021b, 2022). However, there
aremany other definitions of the fractional derivative available to deal with thememory effect. TheCaputo
derivative is well known andwidely used in the literature for the development of a fractional ordermodel. The
authors in Swati (2022) have studied theCaputo fractional order SIRmodel with BeddingtonDeAngelis
incidence andHolling type II treatment rate. But theCaputo derivative consists of a singular power kernel that
leads tomany complexities in the problem. To overcome this disadvantage, we consider the ABC fractional
derivative that consists of a non-singularMittag-Leffler kernel Atangana andBaleanu (2016). Thus the classical
model (7) is transformed to the fractional-order in theABC sense as
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where S(0)= S0, I(0)= I0, andR(0)= R0.

Table 1.Description of biological parameters of the SIRmodel.

Parameter Description of parameter

S Susceptible populations

I Infected populations

R Recovered populations

Λ New recruitment rate of susceptible populations due

to immigration

β Disease transmission rate

ξ1 Rate of social distancing andwearing facemasks

ξ2 Quarantine rate

μ Natural death rate

η Infection death rate

γ Natural recovery rate

j Treatment rate

ρ Limitation rate in treatment capacity
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4.Model analysis

In the epidemiologicalmodel, wemust ensure that the solution is non-negative and bounded for all time. Let
W = Î Î+

+S I R R S I R R, , : , ,3{( ) }be the required region.

Lemma1. Let Îf t C a b,( ) [ ]and suppose ÎaD f t C a b,ABC
t0 ( ) [ ]where a Î 0, 1( ]. Then the generalizedmean

value theorem states that

a
= +
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1
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t0( ) ( )
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( )( ) ( )

where  s t0 .

Letα ä (0, 1], f (t) ä C[0, b] and ÎaD f t C b0, .ABC
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t0 ( ) ( ], then the function f (t) increases whilst if " Îa D f t t b0, 0,ABC

t0 ( ) ( ], then the
function f (t) decreases.

Lemma2.Podlubny (1998),Magin (2004), Baleanu et al (2012) Let m g> >0, 0, and Îp C.Define
= g

m g
m-f t t E pt ,1

,( ) ( ) where m gE , (·) represents the two-parameterMittag-Leffler function. The Laplace transform

of a function f (t) is defined as


=
m g

m

-
L f t .s
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Theorem3.Every solution of (8) remains in the regionΩ.Moreover, the solutions are positively invariant and
bounded.

Proof. First, we show that the solutions ofmodel (8) are positively invariant in the regionΩ.We have
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Hence for all t 0, and from lemma 1,we concluded that all the solutions of themodel (8) are positively
invariant. Next, we prove the boundedness of themodel (8)with the framework of equation (3).

By summing up all the equations of themodel (8), we have

m h= L - -aD N t N t I t , 11ABC
t0 ( ) ( ) ( ) ( )

whereN(t)= S(t)+ I(t)+ R(t). As I(t)� 0, we obtain
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Consider the following initial value problem m= L -aD N t N t ,ABC
t0 ( ) ( ) withN(0)=N0. Now applying

Laplace transforms to both sides we obtain
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where τ= 1+ μ(1− α).
Further, equation (14) can be simplified as
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Applying the inverse Laplace transform to (15) and using lemma 2we obtain
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It is observed that as t→+∞ , and using the fact that m aL - Îa D N t N t , 0, 1ABC
t0 ( ) ( ) ( ], we have the

following inequality
m
LN t .( ) Thus, the solutions ofmodel (8) are positively invariant and bounded in the

regionΩ.
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Theorem4.The SIRmodel (8) has atmost two equilibria namely (I) a disease-free equilibrium (DFE) E0, and (II)
an endemic equilibrium (EEP) *E .

Proof. Inmodel (8), the susceptible and infected populations are independent of the recovered populations. Due
to this fact, it is convenient to drop the third equation of themodel (8). Hencemodel (8) can be recast as follows

b
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Thus, tofind the E0 and *E we solve the following equations
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Nowcombining equations (17) and (18)wehave the following algebraic system
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By solving system (19), we obtain = =
m
LE S I, , 0 ,0 0 0 ( )( ) and =* * *E S I, .( ) Further information about *E is

provided in theorem9.

5. Basic reproduction number

Here, we obtain the basic reproduction number (R0) for the proposedmodel (8). In disease dynamics,R0

captures the impact ofmodel parameters on the spread of disease and so it plays a key role in developing any
strategies for disease control. TofindR0 using a next-generationmatrixmethodDiekmann et al (2010), we
consider the following system

= -aD x F x V x , 20ABC
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where x= [I, S]T.
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Therefore,R0 is the spectral radius of thematrix FV−1 and is defined by the following expression
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Next, we derive the local stability analysis of themodel (8) to determinewhether the disease persists or not.

Theorem5.The disease-free equilibrium point = =
m
LE S I, , 00 0 0 ( )( ) of themodel (8) is locally asymptotically

stable if <R 10 . Otherwise, it is unstable.
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Proof.The Jacobianmatrix of themodel (8) is obtained as follows
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From equation (26)we see that the Jacobianmatrix at E0 is an upper triangularmatrix. Hence the eigenvalues of
J E0( ) are
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It is now easily verified that l < 02 if <R 1.0 Thus, the disease-free equilibriumof themodel (8) is locally
asymptotically stable if <R 10 , and it is otherwise unstable.

Theorem6. If >R 10 , then themodel (8) possesses a unique endemic equilibrium point =* * *E S I,( ).

Proof. Let’s consider the equation (19) at =* * *E S I,( ) to explore the value of *S and *I .
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Tofind the value of *S we rearranged the terms of the last equation of the system (29). Then the value of *S in
terms of *I is

m h g r j x
b r x m h g r j

=
+ + + + +

+ - + + + +
*

* *

* *
S

I I

I I

1 1

1 1
. 302

1

(( )( ) )( )
( ) (( )( ) )

( )

Now from the first equation of system (29), we obtain the quadratic equation in *S as

mx m x mx b x+ - L + + - L + =* * * *S I S I1 0. 311
2

1 2 2( ( ) ) ( ) ( )

Substituting equation (30) in equation (31) gives the cubic equation in *I as

+ + + =* * *c c I c I c I 0, 320 1 2
2

3
3 ( )
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where

b x j m h g m j m h g
r b x m h g x j m r m h g j m h g r x
j m h g b x j m h g
r b x m h g mr x m h g r m h g jx
br m h g rx m h g rx j m h g jr b x m h g
m h g r mx b x m h g

= L - + + + - + + +
= L - + + - - + + + + + + +

- + + + - + + +

= L - + + - + + + + + +

- + + - + + - + + - - + +

= - + + + - + +

c

c

c

c

,

2 2

,

2

2 2 ,

. 33

0 1

1 1 1 2

1

2
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1 2 2

1
2

1 1

3
2

2 1

( ( )) ( )
( ( ) ) ( ( ) ( )( ))

( )( ( ))
( ( )) ( ( ) ( ) )

( ( ) ( ) ( )) ( ( ))
( ) ( ( )) ( )

Now the constant term c0 can bemodified as

b x j m h g m j m h g
b j m h g m x
j m h g m x

= L - + + + - + + +
=L - + + + + L
= + + + + L -

c

R 1 . 34

0 1

1

1 0

( ( )) ( )
( )( )

( )( )( ) ( )

It is easily seen that >c 00 for >R 1.0

According to the fundamental theoremof algebra, the cubic equation (32)possesses atmost three real non-
negative roots. Herewe focus onfinding the endemic equilibrium.UsingDescartes rule of signsWang (2004),
the equation (32) possesses a unique non-negative I* under the following conditions:

> > <
> < <
< < <

I c c c
II c c c
III c c c

0, 0, 0;
0, 0, 0;
0, 0, 0. 35

1 2 3

1 2 3

1 2 3

( )
( )
( ) ( )

If any of the conditions in (35) are satisfied, then there exists a unique non-negative I*. Then, by using
equation (30)we obtain the value of S*. Hence themodel (8) possesses a unique endemic equilibriumpoint
E* = (S*, I*) ifR0> 1.

Theorem7.The endemic equilibrium point =* * *E S I,( ) of themodel (8) is locally asymptotically stable if >R 10

and under the following conditions

b x
x x

mb x
x x
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1
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+
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2
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1 2
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( )
( )

( )
( )

( )
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( )

Otherwise, it is unstable.

Proof.The Jacobianmatrix of themodel (8) is obtained as follows

= ⎛
⎝

⎞
⎠

J
J J
J J

, 3811 12

21 22
( )

where the components of J are defined in equation (25).

So the Jacobianmatrix atE* is

m

m h g
j
r

=
- - -

- + + -
+

b x
x x

b x
x x

b x
x x

b x
x x

+

+ +

+

+ +

+

+ +

+

+ +

*

*

* *
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* *
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⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

J E
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. 39
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2

2

1 2
2

1

1 2
2

( )
( )
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( )

( )
( )

( )
( )

( )
( )

( )
( )

The characteristic equation of the Jacobianmatrix at the endemic equilibriumpoint J(E*)
is l- =*J E Idet 0.( ( ) )

Thus, we have

l l+ + =a a 0, 402
1 2 ( )
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where
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x x
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r
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+
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( )
( )
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Then the Routh-Hurwitz stability criteriaMatignon (1996) confirm that the roots of equation (40) have negative
real parts provided that ai> 0, i= 1, 2.

Thus, the endemic equilibriumpointE* = (S*, I*) of themodel (8) is locally asymptotically stable if
equation (36) holds.

Lemma8.Taneco-Hernández andVargas-De-León (2020) Let Î +f t R( ) be a differentiable and continuous
function. Then for any Î +*f R and a Î 0, 1( ), we have

- - -a a* *
*

*
⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

D f t f f
f t

f

f

f t
D f tln 1 . 42ABC

t
ABC

t0 0( ) ( )
( )

( ) ( )

Theorem9.The disease-free equilibrium point = =
m
LE S I, , 00 0 0 ( )( ) of themodel (8) is globally asymptotically

stable if R 10 andj = 0. Forj ¹ 0, E0 is globally asymptotically stable if R 1.1

Proof.Consider a candidate positive definite Lyapunov function W  +L S I R, :( ) defined by

x
=

+
- - +⎛

⎝
⎞
⎠

L t
S

S t S S
S t

S
I t

1

1
ln . 43

1
0

0 0
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Applying the ABCderivative on both the side of equation (43), we have

x
=

+
- - +a a⎧

⎨⎩
⎛
⎝
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⎫
⎬⎭
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S
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0
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0
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Then by using the linearity property and lemma 8 on equation (44), we have

x+
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⎝
⎞
⎠
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S

S
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From (8)we get
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LS0 , it follows that
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Then using = b
m x j m h g

L
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, and simple rearrangements, lead us to
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Next, we discuss two cases based onj.
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Case I:j = 0
Ifj = 0, then equation (48) is reduced to
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Thus <aD L t 0ABC
t0 ( ) if R 10 and =aD L t 0ABC

t0 ( ) if =S t S0( ) and = =I t I 0.0( )

Case II:j ¹ 0

Ifj ¹ 0, then equation (48) is reduced to
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where j m h g m h g= + + + - + + + j
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Theorem10.The endemic equilibrium point =* * *E S I,( ) of themodel (8) is globally asymptotically stable if
>R 10 and under the following condition:
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Otherwise, it is unstable.

Proof.Consider a candidate positive definite Lyapunov function W  +L S I R, :( ) defined by

= - + - -* * *
*

⎛
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Applying the ABCderivative to both the side of equation (53), we have
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Then by using the linearity property and lemma 8 on equation (54), we have
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Substituting the values of aD S tABC
t0 ( ) and aD I tABC

t0 ( ) into equation (55), and simple rearrangement, gives the
following expression
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Thus, the endemic equilibriumpoint =* * *E S I,( ) of themodel (8) is globally asymptotically stable if

equation (51) holds.

6.Numerical results

In this section, we perform a numerical simulation of themodel (8) to validate the analytical work. The
numerical values of the biological parameters used in the simulation are defined in table 2.

For the given set of values, we calculated the endemic equilibriumpoint of themodel (8) asE* = (S*,
I*)= (52.6, 17.97). This value satisfies the result of theorem 10.Next, to show thatE* is globally asymptotically
stable, we consider a random set of initial conditions as defined in table 3.

Figure 1 is simulated for seven random sets of initial conditions for the susceptible and infected population.
All solution trajectories corresponding to various different initial conditions approach the equilibrium
E* = (52.6, 17.97) asymptotically, irrespective of the starting point. Thus from this numerical result, it is
observed that E* is globally asymptotically stable.

The initial conditions used in the numerical simulation are chosen as S0= 94, I0= 6, andR0= 0 for
susceptible, infected, and recovered populations, respectively. Using the numerical scheme developed byM.
Toufik andA. Atangana Toufik andAtangana (2017), model (8) is simulated to observe the effects of facemask,
social distancing, quarantine, lockdown, immigration, treatment rate of disease, limitation in treatment
resources, and also different orders of ABCderivative. The order of the ABCderivative is chosen asα= 0.8, 0.9,
1 infigures 2(a) to (c), respectively.

Figure 2 shows the transmission dynamics of the state variables with an arbitrarily chosen time interval of
300 days. It is observed from figure 2(a), that as time increases the susceptible population is decreased and as a
consequence, the infected population is increasing. Finally, the susceptible and infected populationsmove to
achieve a steady state equilibrium E*. A sharp fall and pick up is observed in the susceptible, infected, and
recovered population in the case of the ABCderivative withα= 1. As the fractional order decreases, the sharp
fall and pick up gradually vanish due to the non-local and non-singular effects of theABCderivative and faster
attainment of the equilibrium steady state.

Figure 3 illustrates the effect of preventivemeasures taken by susceptible populations, such as the proper use
of facemasks and social distancing, on the transmission dynamics of the infected population. It is observed from
figure 3(a)–(c), that if the use of facemasks and social distancing is properly followed, so that the value of ξ1 is

Table 2.Parameters and their numerical values Swati (2022).

Parameter Λ μ β ξ1 ξ2 η γ j ρ

Numerical value 5 0.05 0.003 0.003 0.002 0.05 0.003 0.03 0.002

Table 3.Random set of initial conditions.

Initial condi-

tion (IC) IC1 IC2 IC3 IC4 IC5 IC6 IC7

S0 20 30 11 15 60 70 80

I0 3 8 27 35 40 30 20
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increased, then the infected population dramatically decreases, andmoves towards an equilibrium state. The
profile suddenly attains a pick-up for the first 50 days and then decreases but the pick-up gradually vanishes due
to theABCderivative as it includes thememory of infected populations.

Figure 4 illustrates the effect of preventivemeasures taken by the infected population, such as quarantine and
self-isolation, on the transmission dynamics of the infected population. It is observed fromfigures 4(a)–(c) that
if the quarantine and self-isolation for infective populations are properly followed, so that the value of ξ2 is
increased, then the infected population dramatically decreases. The decrease in the infected populationmeans a
corresponding increase in the susceptible or recovered populations.

The commonpopulation-wide effort to reduce transmission of COVID-19 is to impose a lockdown.
Figures 5(a)–(c) show the effect of lockdown on the infected population for ABCderivativesα= 0.8, 0.9, 1
respectively. It is observed from figures 5(a)–(c), that as the lockdown is imposed, then the disease transmission
rate is decreased, and ultimately the infected population is decreased. Also, from figure 5 it is observed that the
lockdown andmemory effect plays a vital role in reducing the infected populations.

Sealing borders, closing entry into a country, or restricting air, sea, and other forms of travel, are common
measures used to reduce infection rates. Figure 6 shows the effect of travel (i.e. immigration) on the infected
population over time t. It is observed from figures 6(a)–(c) that as immigration is restricted, there is a dramatic
reduction in the infected populations. As the value ofΛ is increased, so there is a sudden rise in the infected
population due to the new arrival of an infected immigrant population.

Figure 7 shows the effect of treatment rates on the transmission dynamics of the infected population. It is
observed from figures 7(a)–(c), that with an increase in treatment rates such as better access to hospital facilities,
vaccination, awareness, and cure, that is with an increasing value ofj, then there are dramatic falls in the
infected population number. Also, it is observed that infigure 7(c) the infected population rises suddenly and
attains a sharp pick as compared tofigure 7(a). It can be interpreted that this situation arises from theABC
derivative. Due to the ABCderivative ormemory of the infected population, a gradual reduction in the initial
days and a sharp pick is observed.

Figure 8 shows the effect of a limitation in treatment availability on the infected population. It is observed
fromfigures 8(a)–(c), that with a limitation in a hospital facility, lack of a vaccine or lack of oxygen cylinder, and
so an increase in ρ, then the infected population increases.

7. Conclusion

In this paper, we developed an SIRmodel with theABCderivative to investigate the effects of facemasks, social
distancing, quarantine, lockdown, immigration, treatment rate of disease, and limitation in treatment resources.
A Beddington-DeAngelis infection rate andHolling type-II treatment rate were used to capture the impact of
model parameters on the infected population. The SIRmodel (8)with theABCderivative has possessed two
equilibriumpoints, namely disease-free and endemic equilibriumpoints. The disease-free equilibriumpoint of
themodel (8) is locally asymptotically stable ifR0< 1. The endemic equilibriumpoint of themodel (8) is locally
asymptotically stable ifR0> 1 and under the conditions given in inequality (36). The disease-free equilibrium

Figure 1.Global stability of endemic equilibriumpoint.
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point of themodel (8) is globally asymptotically stable ifR0� 1 andj= 0.Whenj≠ 0, themodel is globally
asymptotically stable ifR1� 1. The endemic equilibriumpoint of themodel (8) is globally asymptotically stable
ifR0> 1 and under the conditions of inequality (51). The global stability of the endemic equilibriumpoint has
been also shown by the numerical results. From the numerical results, it has been observed that facemasks and

Figure 2. (a)Dynamical behavior for the susceptible population for different ABCderivative orders (b)Dynamical behavior for the
infected population for different ABCderivative orders (c)Dynamical behavior for the recovered population for different ABC
derivative orders.
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social distancing reduce the infected population. Also, quarantine, lockdown, restricted immigration, and
effective treatment rates significantly reduce the infected population over time, whereas limitation in the
availability of treatment raises the infected population. Furthermore, the numerical results suggest that COVID-
19 can be reduced or eliminated from the community by adhering to the guideline ofWHOsuch as the proper

Figure 3.Effect of facemask and social distance on infected population for (a)α = 0.8 (b)α = 0.9 (c)α = 1.
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wearing of facemasks, social distancing, quarantine, lockdown, and restricted immigration. The non-local and
non-singular properties of the ABCderivative have advantages comparedwith integer-order derivativemodels
inwhichwe requiremore compartments to capture the disease complexity. The presentmodel can be further
used to develop a control strategy or predict the number of the infected population in future pandemics.

Figure 4.Effect of quarantine on infected population for (a)α = 0.8 (b)α = 0.9 (c)α = 1.

14

Phys. Scr. 98 (2023) 045216 H Joshi et al



Figure 5.Effect of lockdown on infected population for (a)α = 0.8 (b)α = 0.9 (c)α = 1.
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Figure 6.Effect of immigration on infected population for (a)α = 0.8 (b)α = 0.9 (c)α = 1.
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Figure 7.Effect of treatment rate of disease on infected population for (a)α = 0.8 (b)α = 0.9 (c)α = 1.
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Figure 8.Effect of limitation in treatment availability on infected population for (a)α = 0.8 (b)α = 0.9 (c)α = 1.
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