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In this paper, a non-singular SIR model with the Mittag-Leffler law is proposed. The nonlinear
Beddington-DeAngelis infection rate and Holling type II treatment rate are used. The qualitative
properties of the SIR model are discussed in detail. The local and global stability of the model are
analyzed. Moreover, some conditions are developed to guarantee local and global asymptotic stability.
Finally, numerical simulations are provided to support the theoretical results and used to analyze the
impact of face masks, social distancing, quarantine, lockdown, immigration, treatment rate of the
disease, and limitation in treatment resources on COVID-19. The graphical results show that face
masks, social distancing, quarantine, lockdown, immigration, and effective treatment rates
significantly reduce the infected population over time. In contrast, limitation in the availability of
treatment raises the infected population.

1. Introduction

COVID-19 affects the human population worldwide and is caused by the SARS-COV-2 virus. The extent of
COVID-19is reduced in a few countries due to the development of vaccination, wearing of proper face masks,
frequently hand washing, maintaining social distancing, avoiding public and crowded places, advertisements,
adequate medical facilities, and following the guideline given by the World Health Organization (WHO) and
national governments. But still, significant new cases of COVID-19 are registered in many regions across the
world.

Mathematical models in epidemiology are great tools that can help us to understand the transmission
dynamics of COVID-19 Ahmad et al (2022), Allegretti et al (2021), Biswas et al (2020), Erturk and Kumar (2020),
Gao et al (2020), Kumar et al (2020), Naik et al (2020a, 2020b), Rajagopal et al (2020), Sene (2020), Kumar and
Erturk (2021), Naik et al (2021), Safare et al (2021), Sitthiwirattham et al (2021), Ozkose et al (2022), Ozkose and
Yavuz (2022), Karim et al (2022), Kurmi and Chouhan (2022), Pandey et al (2022), Guo and Li (2022), Haq et al
(2022), Liand Guo (2022a, 2022b), Pérez and Oluyori (2022), Swati (2022), Joshi et al (2023 ). It captures all the
scenarios in a very compact form and by proper analysis of these models show, for example, (I) how the disease
spreads worldwide, (II) how much population is affected, (III) how to constrain COVID-19. A simple model of
COVID-19is an SIR model with a bilinear incidence rate. It includes the basic three-compartment classes,
namely the susceptible (S), infected (I), and recovered (R) classes. The variety of approaches to treating COVID-
19 leads to a need for new compartment classes so as to understand, for example, the effects of quarantine
Mishra et al (2020), Memon et al (2021), Nabi et al (2021), lockdown Atangana (2020), Sun et al (2020), face
masks Srivastav et al (2021), social distancing Yasir and Liu (2021), vaccination Yavuz etal (2021) and
immigration Ma et al (2022). The use of compartment classes in epidemiological modeling provides great
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freedom to analyze infectious diseases from diverse angles. However, extending the classes, and so the
complexity of the model, makes the qualitative analysis more laborious, and computational costs are increased.

So far, there have been many attempts to study the effects of face masks, social distancing, quarantine,
lockdown, immigration, treatment rate of disease, and limitation in the treatment of COVID-19 by using
elaborate models with five to eight compartments classes. We proposed an SIR model with nonlinear infection
and treatment rates to overcome this increased complexity.

Infection and treatment rates play a vital role in reducing the dimension of the COVID-19 model, so it turns
to enable better analysis. The WHO declared COVID-19 as a global pandemic in march 2020 WHO (2020). In
this situation, it is unreasonable to choose a bilinear infection rate to formulate the COVID-19 model. Hence to
overcome this disadvantage we chose the nonlinear infection rate introduced by Beddington and DeAngelis
Beddington (1975), DeAngelis et al (1975). The Beddington-DeAngelis infection rate is defined as

ST

)= ———,
f& D 1+§S+61

f>0,§20, 520, ()]

where (3 1is the transmission rate of disease, & is a measure of inhibition for the susceptible population, and &, isa
measure of inhibition for the infected population.

The common population-wide effort to reduce transmission of COVID-19 is to impose a lockdown. One
prevention measure used by susceptible populations includes proper use of face masks and social distancing to
reduce disease transmission. Prevention measures taken by the infected population include quarantine and self-
isolation so as to reduce transmission or aid recovery from the disease. In our model, 3is used to capture the
impact oflockdown, &, is used to capture the impact of face masks and social distancing, and &, is used to
represent the impact of quarantining.

The selection of treatment rate is also very crucial in formulating a COVID-19 model. During the initial
phase of COVID-19, there were multiple crises in accessing hospitals, obtaining vaccines, securing oxygen
cylinders, and other medical resources. Over time, the situation improved slowly in terms of the availability of
hospitals, vaccines, and other medical facilities. To describe this situation, we chose the Holling type-II
treatment due to its ability to capture this scenario. Zhou and Fan introduced the Holling type-II treatment rate
and defined it as Zhou and Fan (2012)

gy = A

= 0,1>0, p=0, 2
) w2 20, p2= 2

where ¢ is the treatment rate of the disease, and p is the limitation in treatment availability.

To the best of our knowledge, SIR models with a Beddington-DeAngelis infection rate, a Holling type-1I
treatment rate with Mittag-Leffler law have not been used to examine the effects of face masks, social distancing,
quarantine, lockdown, immigration, treatment rate of disease, and limitation in treatment resources on
COVID-19.

The manuscript is organized as follows: in section 2, we provide a necessary definition of the non-local and
non-singular Atangana-Baleanu operator. In section 3, the SIR model with the Mittag-Leffler law is formulated.
The qualitative properties and local and global asymptotic stability of the model, under some conditions, are
discussed in section 4. In section 6, the numerical results are discussed. Finally, some conclusions are provided in
section 7.

2. Preliminaries

In this section, we provide a necessary definition of fractional calculus that is used in the development and
numerical simulation of the model Atangana and Baleanu (2016).

Definition 1. Let o € (0, 1]and f € H!(a, b), a < bbeany function. Then the Atangana-Baleanu Caputo
(ABC) derivative is defined as

ABC o _ Bl (="
v = 2O [ oo, [ a2 ©

where B(a) =1 — a + % is a normalization function satisfying B(0) = B(1) = 1.

Definition 2. Let a € (0, 1]and f € H!(a, b), a < bbeany function. Then the Atangana-Baleanu derivative
in the Riemann-Liouville sense is defined as

ABRya _ Bl» d ! (= x)"
o D f(t)——1 _adtfo f(x)Ea[ o~ ]dx. (4)
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Table 1. Description of biological parameters of the SIR model.

Parameter Description of parameter

N Susceptible populations

I Infected populations

R Recovered populations

A New recruitment rate of susceptible populations due
toimmigration

6 Disease transmission rate

& Rate of social distancing and wearing face masks

& Quarantine rate

" Natural death rate

n Infection death rate

y Natural recovery rate

Treatment rate

hS)

p Limitation rate in treatment capacity

Definition 3. The fractional integral in the Atangana-Baleanu sense is defined as

ABya 11—« O RLra
o I f() = B(a)f(t)+B G0 I H@), 5)

(@)

where X1 is the Riemann-Liouville fractional integral.

Definition 4. The Laplace transform of the ABC derivative of a function f(¢) of order o > 0 is defined as

YL ()} () — s*7f(0)
(1—a)s*+ « '

LD f(1)}(5) = B(a) (6)
3. Formulation of a mathematical model

Here, we consider an SIR model with Beddington-DeAngelis type infection rate and Holling type II treatment
rate. The basic SIR model is described by the following system of differential equations.

ds@) _ A BS)I1(1) s,
dt 14+ &§S@) + &1(t)
dl(t) BS)I(t) I (1)
= —pl(t) —nI(t) — AI(t) — ———,
dt 1+ &S@) + §I(0) uI) = mle) = A1) 1+ pI(t)
RO _ 1y — el

with the given initial conditions S(0) = Sy > 0, I(0) = I, > 0, and R(0) = R, > 0. The variables, parameters, and
biological interpretation are given in table 1.

The susceptible populations in compartment models use their memory to prevent infection. Due to this
reason, the fractional-order model achieved high attention in modeling a biological process. Hence we convert
the classical model (7) into the fractional-order one to enhance the accuracy of the model Podlubny (1998),
Magin (2004), Hanert et al (2011), Baleanu et al (2012), Joshi and Jha (2018, 2021a, 2021b, 2022). However, there
are many other definitions of the fractional derivative available to deal with the memory effect. The Caputo
derivative is well known and widely used in the literature for the development of a fractional order model. The
authors in Swati (2022) have studied the Caputo fractional order SIR model with BeddingtonDeAngelis
incidence and Holling type IT treatment rate. But the Caputo derivative consists of a singular power kernel that
leads to many complexities in the problem. To overcome this disadvantage, we consider the ABC fractional
derivative that consists of a non-singular Mittag-Leffler kernel Atangana and Baleanu (2016). Thus the classical
model (7) is transformed to the fractional-order in the ABC sense as

ABCHag ) — A — BS@)I(1) s,

o DfS(r) TS0 + £10) uS(t)

ABCDT () — BSHI() C () — L) — AL — IO ’

0 () 1650 + 510 pl (t) — nI(t) — ~I(¢) T @
@I (t)

SBCDAR(t) = NI (1) — pR(t) + )

1+ pl(t)’
where S(0) = S, I(0) = I, and R(0) = R,
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4. Model analysis

In the epidemiological model, we must ensure that the solution is non-negative and bounded for all time. Let
Q= {(S, I, R) € R}: S, I, R € R*} be therequired region.

Lemmal. Let f (t) € Cla, bland suppose (D f (t) € Cla, b]lwhere a € (0, 1. Then the generalized mean
value theorem states that

£ = f(a) + ﬁ ABCDa £ (s)(t — a)®, ©)

where0 < s < t.

Leta € (0, 1], f() € C[0,b]and D2 f (t) € C(0, b]. Itis clear from lemma 1 that if
ABEDYf(t) > 0, Yt € (0, b], then the function f(£) increases whilst if $5°DS f (t) < 0, Vt € (0, b], then the
function f(f) decreases.

Lemma 2. Podlubny (1998), Magin (2004), Baleanu etal (2012) Let yn > 0, v > 0,and p € C. Define
f () = t77'E, ,(£pt"), where E,, - () represents the two-parameter Mittag-Leffler function. The Laplace transform

of afunctionf (t)isdefinedas L{f (t)} = si;p

Theorem 3. Every solution of (8) remains in the region (2. Moreover, the solutions are positively invariant and
bounded.

Proof. First, we show that the solutions of model (8) are positively invariant in the region €2. We have
07D S(1)[s=0 = A > 0,
0" DI I (1)1=0 = 0,

el (¥)

ABCa
DYR(t) |geo = (t) + —— >
o DfR(t)|r=0 = I () T a0

(10)

Henceforall f > 0, and from lemma 1, we concluded that all the solutions of the model (8) are positively
invariant. Next, we prove the boundedness of the model (8) with the framework of equation (3).
By summing up all the equations of the model (8), we have
ACDEN(t) = A — uN(t) — 9l (D), (11)
where N(t) = S(t) + I(£) + R(¥). As I(t) > 0, we obtain
MCDAN (1) < A — uN (1), (12)

Consider the following initial value problem S‘BCDf‘N (t) = A — uN (t), with N(0) = Ny. Now applying
Laplace transforms to both sides we obtain

L(GP°DIN(t) + uN () = L(A). (13)

Using equation (6), we obtain

Al — a)s™ + «] + s 1IN

N(s) = ,
S(Ts* + pa) 7S¢ 4+ po

(14)
where =1+ u(1 — ).
Further, equation (14) can be simplified as

A{l sa—1 }+ A — ) so7! Ny s*7!

s Sa_|_ﬂ

T

N(s) = — + —— . (15)
1

Applying the inverse Laplace transform to (15) and using lemma 2 we obtain
N =24 {A“ — it AT}EQ(—ﬂw). (16)
I T T

Itis observed thatas t — + oo, and using the fact that 2D N (t) < A — uN(t), o € (0, 1], we have the
following inequality N (¢) < % Thus, the solutions of model (8) are positively invariant and bounded in the

region 2.
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Theorem 4. The SIR model (8) has at most two equilibria namely (I) a disease-free equilibrium (DFE) E°, and (1I)
an endemic equilibrium (EEP) E*.

Proof. In model (8), the susceptible and infected populations are independent of the recovered populations. Due
to this fact, it is convenient to drop the third equation of the model (8). Hence model (8) can be recast as follows

ABCDag(ry — A — BSI(t) S,
e Treso+ im0
ABCDOT (1) = ASMI® () — i) — () — PO 17
0 ) 11650 + 610 pI(8) = nl(t) — ~I(t) T () 17)
Thus, to find the E® and E* we solve the following equations
ABCDeS (1) =8¢ DMI(t) = 0. (18)
Now combining equations (17) and (18) we have the following algebraic system
_ BSI1(t) —uS() = o0,
1+ §S8(1) + &§1(0)
BS(HI(t) I (t)
—pl(@®) —nl(t) —~I(t) — ————— = 19
e+ i MO o -0 - 2T (19)

By solving system (19), we obtain E® = (S°, %) = (%, 0), and E* = (S*, I*). Further information about E*is

provided in theorem 9.

5. Basic reproduction number

Here, we obtain the basic reproduction number (Ry) for the proposed model (8). In disease dynamics, R,
captures the impact of model parameters on the spread of disease and so it plays a key role in developing any
strategies for disease control. To find R, using a next-generation matrix method Diekmann et al (2010), we
consider the following system

ABCDfx = F(x) — V(x), (20)
where x = [I, S] T
The Jacobian matrices of new infected terms, F(x), and other transfer terms, V(x), at E® = (%, O) are given
by

A ptpt+n+y 0
F)=|p+ A | V)= AB ul (21)
0 0 p+ Ag
Now,
1
e 0
AS ottt

FVi=1 o+ Ag

>

- AB L
A (R (7Y V3 ey, Y
AB 0
e+ AD@+prn+n | 22)
0 0

Therefore, Ry is the spectral radius of the matrix FV' and is defined by the following expression
AS
Ry = )
(n+ A+ p+n+7)

Next, we derive the local stability analysis of the model (8) to determine whether the disease persists or not.

(23)

Theorem 5. The disease-free equilibrium point E® = (S°, I%) = (%, 0) of the model (8) is locally asymptotically
stableif Ry < 1. Otherwise, it is unstable.
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Proof. The Jacobian matrix of the model (8) is obtained as follows

T e
_ , 24
4 (121 ]22) %)

where the components of J are given by

pl n BSIE,

Jhi=—pu— ,
T T T s ol G as+el?
_ 3S BSIE,
Jo=— + >
1 —|—§1S+§21 (1 —|—§15+§21)
b1 AL - OSIE,
1+ S+ 6T (14 6S+ 6D
S SI. I
b2 = b - L 2—(u+77+7)— L4 + wip > (25)
1+ 65+ 861 L+ 55+ 6D 1+ pI (1 + pI)
So the Jacobian matrix at E° is
—n _ AB
J(E%) = Lo . (26)
weag Pt ptnt)

From equation (26) we see that the Jacobian matrix at E° is an upper triangular matrix. Hence the eigenvalues of
J(E®) are

)\l = — M
Ap
N=———7-(p+p+n+t 27)
w+ Ag
The first eigenvalue is negative. To examine the nature of the second eigenvalue we rearrange it so that
Ap
N=—""7=-(e+p+tn+7
n+ Ag
AB
=(s0+u+n+v){ —1}
(e + A + 1+ 7)

=(@+p+n+NR — 1. (28)

Itis now easily verified that A, < 0if Ry < 1. Thus, the disease-free equilibrium of the model (8) is locally
asymptotically stable if Ry < 1, and it is otherwise unstable.

Theorem 6. If Ry > 1, then the model (8) possesses a unique endemic equilibrium point E* = (S*, I'*).

Proof. Let’s consider the equation (19) at E¥ = (S*, I'*) to explore the value of $* and I*.

BS*T*

- uS*=0,
1+ §8* + &IF
1+ &S* + &,I* 1+ pI*

To find the value of $* we rearranged the terms of the last equation of the system (29). Then the value of $* in
terms of I* is

g tnt+nd+ pI*) + @) (1 + &,1%)
B+ pI*) — §((w + 1+ NI + pI*) + )
Now from the first equation of system (29), we obtain the quadratic equation in $* as
PGS 4 (1 = AG + (&, + BINS* = A+ §1%) = 0. (1)

Substituting equation (30) in equation (31) gives the cubic equation in I* as

(30)

co+ al* + oI*? + ;I =0, (32)
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where

co=AB—-&p+p+n+7)—pue+p+n+y),
a=MApQ2B 2§ +n+7) —&§p) —plpp+n+7 + @+ p+n+0p+E))
(@ +pu+n+NB-&l@+pu+n+7)
a=Ap*(B =+ 4+ 7)) — ppQ&%G + 1+ + p(p + 1+ ) + &)
—Q2Bp(p +n+7) = 2p5( + 0+ V)7 = p§eu + 1+ 1) — wp(B — & + 1+ 7)),
= —(+n+Np*é+ 6= & +n+ 7). (33)

Now the constant term ¢, can be modified as

co=AB - & +p+n+)—pule+p+n+7y)
=AB —(p+ p+n+E+ AL
=(p+p+n+ N+ AHR — ). (34)

Itis easily seen that cp > 0 for Ry > 1.

According to the fundamental theorem of algebra, the cubic equation (32) possesses at most three real non-
negative roots. Here we focus on finding the endemic equilibrium. Using Descartes rule of signs Wang (2004),
the equation (32) possesses a unique non-negative I under the following conditions:

D >0,6>0,c<0;

D >0,6<0,c < 0;

(I < 0,6 <0, ¢ < 0. (35)
If any of the conditions in (35) are satisfied, then there exists a unique non-negative I*. Then, by using

equation (30) we obtain the value of S*. Hence the model (8) possesses a unique endemic equilibrium point
E*=(S",I"ifRy > 1.

Theorem 7. The endemic equilibrium point E* = (S*, I’*) of the model (8) is locally asymptotically stableif Ry > 1
and under the following conditions
BS*(1 + £5%)
(1 + §S* + &%)
X %
a1 pBS* (1 + §5%)
(14 &S + &7

@D

1

< b, (36)

where

® n Br (1 + &1%)
(14 pI*2 (1 + §S* 4 &%)

BI¥(1 + &%) o
l - DN O
’ (N * 1+ 58"+ le*)z)((u T (1 + pI*)? (37)

h=Qu+n+y+

Otherwise, it is unstable.

Proof. The Jacobian matrix of the model (8) is obtained as follows

i e
_ , 38
/ (]21 ]22) (%8)

where the components of ] are defined in equation (25).

So the Jacobian matrix at E* is

At gIY B+ 4SY
« (14 &S + &I (I+ &S + &1
J(EY) = BIF(L + £,1%) BSAHES) Ly @ (%9)
(14 &S+ &T%? A+ &S*+ &I po a1+ pI*)2
The characteristic equation of the Jacobian matrix at the endemic equilibrium point J(E*)
is det(J(E*) — A\I) = 0.
Thus, we have
N+ o+ a, =0, (40)
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ﬁl*(l + 521*) 55*(1 + 515*) 2]
=Qu+n++ - ,
G T+ 67 A+ 65 + 61 | (4 o7

B BI(1 4 &,1%) 0 _ pBSM1 £ £8Y)
az—(u+ )((u+n+7)+ ) (165 1 &

1+ 515* + 52[*)2 1+ PI*)Z

HJoshietal

(41)

Then the Routh-Hurwitz stability criteria Matignon (1996) confirm that the roots of equation (40) have negative

real parts provided thata; >0, i=1,2.

Thus, the endemic equilibrium point E* = (S*, I) of the model (8) is locally asymptotically stable if

equation (36) holds.

Lemma 8. Taneco-Herndndez and Vargas-De-Leén (2020) Let f (t) € R* be a differentiable and continuous

function. Then forany f* € Rt and a € (0, 1), we have

SXBCDta'[f(t) _ f* f*l ff(i):l < (1 ff(*))ABCDaf(t)

(42)

Theorem 9. The disease-free equilibrium point E® = (S°, 1°) = (— 0) of the model ( 8) is globally asymptotically

stableif Ry < land ¢ = 0. For p = 0, E® is globally asymptotically stableif R; <
Proof. Consider a candidate positive definite Lyapunov function L(S, I): 2 — R™ defined by
1 S (t))
Lit)=—|S@®) — S"— S°In +I(t
() 1+§1SO(() (1),

Applying the ABC derivative on both the side of equation (43), we have

ABCpya _ABC e 1 — §0 _ g0] S(t))
ABCDAL (1) Dy {—1+§150(8(t) S0 — 801 & +I(t)}

Then by using the linearity property and lemma 8 on equation (44), we have

! 1
ABCDOL(t) < 17(1 — S—)ABCDO‘S(t) + DO (1).

+ ¢80 S
From (8) we get
o¥DPL <;(1_5_°)A_ BSWI1(1) s
PO s el T S\ T T s i
BS)I(¢) QI (1)
— pI(t) — nI(t) — A — ————|.
+(1+fls<t>+521<t> pHe = o =2t 1+pz<t>)

Since S° = %, it follows that

ABCDAT (1) < 1 S0 _ BSI(t) —uS
0 DS T Tew (“ T eso+ a1 W
L S w0
1+&S°S 1+ &S@) + &I1(0)
BS()I(t) el (¥)
- I — 22|
+(1 G R T pm)
Then using Ry = i El)(¢Af u+n+v)’and simple rearrangements, lead us to
ABCDaL(t) < M(S(t) 7 SO)Z o (/1’ + n + 7)52 Iz(t) _ @I(t)
DTS00+ 68 1+ &S0 + &1 1+ pl (1)
§SMI)

+ p+n+ 7R + 0+ +
1—|—§15(t)—|—§21(t){(<p ptn+ YR — (u+n+7) §IS(t)}

(p+p+n+NIE
1+ &S + &1

Next, we discuss two cases based on (.

(Ry — 1).

(43)

(44)

(45)

(46)

(47)

(48)
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Casel: p =0
If o = 0, then equation (48) is reduced to
CpS® =8 (utnt+ng
SHA+£SY) 14+ &S0 + &1(n)
(b 1+ DIOW+ESO) w)
1+ 650 + &I

Thus §2“DPL(t) < 0if Ry < land §2“DPL(t) = 0if S(t) = SPand I(¢) = I° = 0.

0PDIL(t) < (1)

Casell: p = 0

If p = 0, then equation (48) is reduced to

ABCpa () < — pS@ =89 (wtn+nNg ) — @l (1)
e S+ 14650 + &I 1+ pl(t)
GSMIM (et pt+n+ IO R, — 1), (50)
1+ 680 + §1() 1+ 680 + 1)
where P = (¢ + pt+ 0+ NRo = (n+ 1+ N+ 5

Thus 25°DPL(t) < 0if P < 0. This meansthat (¢ 4+ p + 7 4+ v)R, + f;g(t) <w+n+7vy)
and Ry < 1.

. (@+p+n+NRo+ i . .
Further modification gives R} = 950 < 1. Also, it is clear that éBCDt”L(t) =0ifS(t) = §°

(w+n+7
andI(t) =I°= 0.

Theorem 10. The endemic equilibrium point E* = (S*, I*) of the model (8) is globally asymptotically stable if
Ry > 1and under the following condition:
B8 + &%)
(1 + &S5+ &%

< mymy, (51

where
pBreQ1 + 521*)

(4 A&+ &)U+ §8F + &1
MﬁfzS*

m = [+

m2 = . (52)
(1 + A+ E)A + &S + 619
Otherwise, it is unstable.
Proof. Consider a candidate positive definite Lyapunov function L(S, I): Q@ — R* defined by
L(t) = %(S(t) - 5% + (I(t) — I* — I'*In %) (53)
Applying the ABC derivative to both the side of equation (53), we have
ABCDAL (1) = #BCpe {%(S(t) — %2 + (I(t) — I* — [*In %)} (54)
Then by using the linearity property and lemma 8 on equation (54), we have
« « I* (e}
0 “DIL() < (S(1) — $9"DS(1) + (1 - T)QBCD, 1(t). (55)

Substituting the values of #2°DS () and 58D 1(¢) into equation (55), and simple rearrangement, gives the
following expression

0DIL(E) < —a(S(1) — $¥)2 + @ (S(t) — SHU) — I*) — as(I (1) — I*), (56)
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Table 2. Parameters and their numerical values Swati (2022).

Parameter A m B & & Ul bl ® P

Numerical value 5 0.05 0.003 0.003 0.002 0.05 0.003 0.03 0.002

Table 3. Random set of initial conditions.

Initial condi-

tion (IC) IC1 IC2 IC3 1C4 1C5 ICo6 1C7
So 20 30 11 15 60 70 80
In 3 8 27 35 40 30 20

where
BIeQ1 + &I
a=pu + )
I+ &S+ 6EDA+ &S+ &I
b (&, S*T* B 8S N Bl + &1%)
TTUHESFEDAFESF LT A+ ESHED (1 +ES+ 6D+ 655+ 619
o ¢, S* ©p

T AT ESEDU T ES 1651 (Lt pD(L + oD
(57)

Thus 25°DPL(t) < 0ifa; > 0and a,® < 4a;a,.
Itis clear that g; > 0 forall E* = (S*, I*). Also, the condition a,> < 44, a, is satisfied
- B STTR + 6, 17%)
1+ 45+ &HI%
Thus, the endemic equilibrium point E* = (S*, I'*) of the model (8) is globally asymptotically stable if
equation (51) holds.

< mymj.

6. Numerical results

In this section, we perform a numerical simulation of the model (8) to validate the analytical work. The
numerical values of the biological parameters used in the simulation are defined in table 2.

For the given set of values, we calculated the endemic equilibrium point of the model (8) as E* = (5%,

I") = (52.6,17.97). This value satisfies the result of theorem 10. Next, to show that E* is globally asymptotically
stable, we consider a random set of initial conditions as defined in table 3.

Figure 1 is simulated for seven random sets of initial conditions for the susceptible and infected population.
All solution trajectories corresponding to various different initial conditions approach the equilibrium
E* = (52.6,17.97) asymptotically, irrespective of the starting point. Thus from this numerical result, it is
observed that E* is globally asymptotically stable.

The initial conditions used in the numerical simulation are chosen as Sy = 94, I, = 6, and R, = 0 for
susceptible, infected, and recovered populations, respectively. Using the numerical scheme developed by M.
Toufik and A. Atangana Toufik and Atangana (2017), model (8) is simulated to observe the effects of face mask,
social distancing, quarantine, lockdown, immigration, treatment rate of disease, limitation in treatment
resources, and also different orders of ABC derivative. The order of the ABC derivative is chosen as &« = 0.8, 0.9,
Lin figures 2(a) to (c), respectively.

Figure 2 shows the transmission dynamics of the state variables with an arbitrarily chosen time interval of
300 days. It is observed from figure 2(a), that as time increases the susceptible population is decreased and as a
consequence, the infected population is increasing. Finally, the susceptible and infected populations move to
achieve a steady state equilibrium E*. A sharp fall and pick up is observed in the susceptible, infected, and
recovered population in the case of the ABC derivative with o = 1. As the fractional order decreases, the sharp
fall and pick up gradually vanish due to the non-local and non-singular effects of the ABC derivative and faster
attainment of the equilibrium steady state.

Figure 3 illustrates the effect of preventive measures taken by susceptible populations, such as the proper use
of face masks and social distancing, on the transmission dynamics of the infected population. It is observed from
figure 3(a)—(c), that if the use of face masks and social distancing is properly followed, so that the value of &; is

10
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IC3
35+

251

Infected Population (1)

10 20 30 40 50 60 70 80
Susceptible Population (S)

Figure 1. Global stability of endemic equilibrium point.

increased, then the infected population dramatically decreases, and moves towards an equilibrium state. The
profile suddenly attains a pick-up for the first 50 days and then decreases but the pick-up gradually vanishes due
to the ABC derivative as it includes the memory of infected populations.

Figure 4 illustrates the effect of preventive measures taken by the infected population, such as quarantine and
self-isolation, on the transmission dynamics of the infected population. It is observed from figures 4(a)—(c) that
if the quarantine and self-isolation for infective populations are properly followed, so that the value of &, is
increased, then the infected population dramatically decreases. The decrease in the infected population means a
corresponding increase in the susceptible or recovered populations.

The common population-wide effort to reduce transmission of COVID-19 is to impose a lockdown.
Figures 5(a)—(c) show the effect of lockdown on the infected population for ABC derivatives a = 0.8, 0.9, 1
respectively. It is observed from figures 5(a)—(c), that as the lockdown is imposed, then the disease transmission
rate is decreased, and ultimately the infected population is decreased. Also, from figure 5 it is observed that the
lockdown and memory effect plays a vital role in reducing the infected populations.

Sealing borders, closing entry into a country, or restricting air, sea, and other forms of travel, are common
measures used to reduce infection rates. Figure 6 shows the effect of travel (i.e. immigration) on the infected
population over time . It is observed from figures 6(a)—(c) that as immigration is restricted, there is a dramatic
reduction in the infected populations. As the value of A is increased, so there is a sudden rise in the infected
population due to the new arrival of an infected immigrant population.

Figure 7 shows the effect of treatment rates on the transmission dynamics of the infected population. Itis
observed from figures 7(a)—(c), that with an increase in treatment rates such as better access to hospital facilities,
vaccination, awareness, and cure, that is with an increasing value of , then there are dramatic falls in the
infected population number. Also, it is observed that in figure 7(c) the infected population rises suddenly and
attains a sharp pick as compared to figure 7(a). It can be interpreted that this situation arises from the ABC
derivative. Due to the ABC derivative or memory of the infected population, a gradual reduction in the initial
days and a sharp pick is observed.

Figure 8 shows the effect of a limitation in treatment availability on the infected population. It is observed
from figures 8(a)—(c), that with a limitation in a hospital facility, lack of a vaccine or lack of oxygen cylinder, and
soan increase in p, then the infected population increases.

7. Conclusion

In this paper, we developed an SIR model with the ABC derivative to investigate the effects of face masks, social
distancing, quarantine, lockdown, immigration, treatment rate of disease, and limitation in treatment resources.
A Beddington-DeAngelis infection rate and Holling type-II treatment rate were used to capture the impact of
model parameters on the infected population. The SIR model (8) with the ABC derivative has possessed two
equilibrium points, namely disease-free and endemic equilibrium points. The disease-free equilibrium point of
the model (8) is locally asymptotically stable if Ry < 1. The endemic equilibrium point of the model (8) is locally
asymptotically stable if Ry > 1 and under the conditions given in inequality (36). The disease-free equilibrium

11
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Figure 2. (a) Dynamical behavior for the susceptible population for different ABC derivative orders (b) Dynamical behavior for the
infected population for different ABC derivative orders (c) Dynamical behavior for the recovered population for different ABC
derivative orders.

point of the model (8) is globally asymptotically stable if Ry < 1 and ¢ = 0. When ¢ = 0, the model is globally
asymptotically stable if R; < 1. The endemic equilibrium point of the model (8) is globally asymptotically stable
if Ry > 1 and under the conditions of inequality (51). The global stability of the endemic equilibrium point has
been also shown by the numerical results. From the numerical results, it has been observed that face masks and
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Figure 3. Effect of face mask and social distance on infected population for (a) « = 0.8 (b) e = 0.9 (c) a = 1.

social distancing reduce the infected population. Also, quarantine, lockdown, restricted immigration, and
effective treatment rates significantly reduce the infected population over time, whereas limitation in the
availability of treatment raises the infected population. Furthermore, the numerical results suggest that COVID-
19 can be reduced or eliminated from the community by adhering to the guideline of WHO such as the proper
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Figure 4. Effect of quarantine on infected population for (a) « = 0.8 (b)) « = 0.9 (c) v = 1.

wearing of face masks, social distancing, quarantine, lockdown, and restricted immigration. The non-local and
non-singular properties of the ABC derivative have advantages compared with integer-order derivative models
in which we require more compartments to capture the disease complexity. The present model can be further
used to develop a control strategy or predict the number of the infected population in future pandemics.
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