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S1 Appendix

S1.1 Component distributions

As described in Box 1, for JC continuous predictors, we use mixtures of multivariate Gaussian distributions

with JC dimensions, with cluster specific parameters for component k (k = 1, . . . ,K) given by (µk,Σk),

where µk is a JC-vector of means and Σk is a (JC × JC) covariance matrix. We use a latent variable Zi to

denote the cluster membership for individual i, and hence the conditional component density given Zi is:
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. (S.1)

For JD categorical predictors, we use mixtures of categorical probability mass functions, where the number

of categories for a covariate j (j = 1, . . . , JD) is Kj and the component-specific parameters are the proba-

bilities of belonging to each category, given by ϕk = (ϕk1,ϕk2, ...,ϕkJD
) with ϕkj = (ϕkj1, ϕkj2, . . . , ϕkjKj

)

and
∑Kj

l=1 ϕkjl = 1. Hence
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) =

J∏
j=1

ϕ
Xij

Zij
. (S.2)

S1.2 Prior distributions

We use a stick-breaking [1, 2] construction for the prior probabilities of the mixture components pk. Concep-

tually, this involves repeatedly breaking off and discarding a random fraction of a stick with an initial length
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of 1. The fraction discarded is sampled from a Beta distribution with shape parameter α (where α influences

the prior weights on the number of components).

pk = Vk

∏
l<k

(1− Vl)

p1 = V1

Vk ∼ Beta(1, α)

In order to improve convergence and mixing of the MCMC algorithm, all continuous variables are stan-

dardised. The regression parameters (β) are fitted with weakly informative shrinkage priors, which acts as

a regularisation technique and can reduce posterior uncertainty alongside stabilising computations [3]. The

prior distributions for regression parameters and σ are:

β ∼ Normal(0, 2.5)

σ ∼ Exponential(1)

The clustering and components of the DPMM follows a hierarchical structure, with the following prior

distributions:

Zi ∼ Categorical(k, π)

π ∼ Beta(1, α)

α ∼ Gamma(shape = 2, rate = 1)

µk ∼ Multivariate Normal(µ0,Σ0)

Σ−1
k ∼ Wishart(R, ρ)

R ∼ Wishart(R0, ρ0)

ρ ∼ Exponential(0.1)

We set µ0 to be a vector of means of continuous variables and we set Σ0 to be the covariance matrix

corresponding to a diagonal matrix where the diagonal entries are equal to the magnitude of the range of

each continuous covariate. For R, we set the degrees of freedom to the number of continuous variables in the

model, ρ0 = 6. Although we achieve a good fit with α ∼ Gamma(shape = 2, rate = 1), this may not hold for

other applied cases, and other ways of defining this hyperparameter could be considered. See Liverani et al.,

2015 for a justification of these choices [4].
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S1.3 Predictive distributions

The Bayesian hierarchical model has posterior distribution:

f(ψ,Θ | X,Y) ∝ f(Y | X,ψ)f(X | Θ)f(ψ,Θ). (S.3)

If there are no missing predictor variables, then the DPMM provides no additional information about

the treatment selection model parameters, and could be integrated out of (S.3). The purpose of including

the DPMM is two-fold: a) to allow incomplete predictor data to be included when the model is fitted; and

b) to allow predictions to be made for individuals with missing predictor information. Hence, if we have a

combination of missing (Xm) and non-missing (Xo) predictors, then the target posterior distribution is:

f(ψ,Θ,Xm | Xo,Y) ∝ f(Y | Xo,Xm,ψ)f(Xo,Xm | Θ)f(ψ,Θ), (S.4)

and as such we can obtain full posterior predictive distributions for all of the missing variables Xm in

addition to the model parameters. We can then integrate over the missing variables to get the marginal

posterior distribution for the parameters-of-interest:

f(ψ,Θ | Xo,Y) =

∫
Xm

f(ψ,Θ,Xm | X,Y)dXm. (S.5)

This (multi-dimensional) integral can be done numerically using the posterior samples generated from

the MCMC. Thus the Bayesian model naturally propagates the uncertainties from the missing information

through to the posterior distributions for the parameters.

Similarly, since the DPMM provides a flexible joint probability model for the predictor variables, we can

leverage this to produce posterior predictive distributions for a new individual with observed predictors Xo
∗

say. In this case

f(Y∗,X
m
∗ | Xo

∗,X
o,Y) =

∫
Θ

∫
ψ

f (Y∗ | Xm
∗ ,Xo

∗,ψ) f (Xm
∗ | Xo

∗,Θ) f (ψ,Θ | Xo,Y) dψdΘ, (S.6)

gives the joint posterior predictive distribution for Y∗ and Xm
∗ , where f (Xm

∗ | Xo
∗,Θ) is the conditional

distribution for Xm
∗ given Xo

∗, which can be derived directly from the DPMM (see Section S1.4 for details).

Again, these distributions can be estimated via Monte Carlo simulation, using the posterior samples generated

from the MCMC, and then simulating from the conditional DPMM and the treatment selection model for

each set of samples. Estimates of the marginal posterior predictive distributions for f(Y∗ | Xo
∗,X

o,Y,ψ) and

f(Xm
∗ | Xo

∗,X
o,Y,Θ) can be readily generated in a similar way.

In the case where a new individual has complete covariate information, then the posterior predictive
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distribution for Y∗ reduces to

f(Y∗ | X∗,X
o,Y) =

∫
ψ

f (Y∗ | X∗,ψ) f (ψ | Xo,Y) dψ, (S.7)

and the DPMM parameters analytically integrate out. Following Dennis et al. [5], the plots presented in

this paper ignore the residual variation and generate posterior distributions for expected responses. See Box

2 for more information. Full details are given in Section S1.4 and example code for fitting the model, and

generating posterior predictive samples is given as additional supplementary material.

S1.4 Conditional predictive sampling

Posterior predictive distributions for patients with missing information can be generated empirically using

posterior samples generated from the MCMC, as long as we can sample from a conditional DPMM and

the treatment selection model (both described in Section S1.3). Suppose X∗ is a J-dimensional vector of

covariates for a new individual. We partition X∗ into two disjoint subsets Xm
∗ and Xo

∗, where Xm
∗ are the

missing covariates ofM dimensions andXo
∗ are the observed covariates of J−M dimensions. We will estimate

the joint posterior predictive distribution for the response Y∗ and Xm
∗ given the observations Xo

∗:

f (Y∗,X
m
∗ | Xo

∗,X1:N ,Y1:N ) =

∫
ψ

∫
Θ

f (Y∗ | Xm
∗ ,Xo

∗,ψ) f (Xm
∗ | Xo

∗,Θ) f (ψ,Θ | Y1:N ,Xo
1:N ) dΘdψ,

(S.8)

where f (ψ,Θ | Y1:N ,Xo
1:N ) is the marginal posterior distribution given the observed data Y1:N and

Xo
1:N . The probability density for individual i, given Zi is:

f(Xi | Zi,ΘZi
) = fZi

(Xi | ΘZi
) = f(XC

i | µZi
,ΣZi

)f(XD
i | ϕZi

) (S.9)

We can estimate (S.8) through Monte Carlo sampling, by first drawing L random samples, (ψl,Θl)

(l = 1, . . . , L), from the posterior distribution (obtained through the original MCMC runs), and then for

each of these we sample from f (Xm
∗l | Xo

∗,Θl) and then f (Y∗l | Xm
∗l ,X

o
∗,ψl) as detailed below.

For a given set of parameters Θ, we need to generate random samples from:

f (Xm
∗ | Xo

∗,Θ) =

K∑
z=1

f (Xm
∗ | Z = z,Xo

∗,Θ)P (Z = z | Xo
∗,Θ) . (S.10)

We can sample from (S.10) by first drawing a component Z from:

P (Z = z | Xo
∗,Θ) ∝ f (Xo

∗ | Z = z,Θ) f (Z = z | Θ) from Bayes’ Theorem

∝ fz
(
XCo

∗ | µz,Σz

)
fz

(
XDo

∗ | ϕz

)
f (Z = z | π, α) from (S.9),
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where XCo
∗ and XDo

∗ are the observed continuous and categorical variables respectively. Then, given Z = z,

we have

f (Xm
∗ | Z = z,Xo

∗,Θ) = f
(
XCm

∗ | Z = z,Xo
∗,Θ

)
f
(
XDm
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)
= fz

(
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)
fz

(
XDm
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∗ ,ϕz

)
from (S.9). (S.11)

We can sample from (S.11) by taking independent random samples for
(
XCm

∗ | XCo
∗ ,µz,Σz

)
and

(
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∗ ,ϕz

)
,

where (
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assuming that µC
z and ΣC

z are partitioned such that

µC
z =

µm
z

µo
z

 and ΣC
z =

Σmm
z Σmo

z

Σom
z Σoo

z

 .

Finally, we sample (
XDm

∗j | ϕz

)
∼ Multinomial (ϕkj)

independently for j = 1, . . . ,M missing covariates (since XDm
∗j are conditionally independent of XDo

∗j given

cluster Z = z).

Once we have L random samples for Xm
∗l , we can then sample (with a slight abuse of notation) from the

treatment selection model such that Y∗l ∼ f (Y | Xm
∗l ,X

o
∗,ψl).

S1.5 Convergence diagnostics

The Bayesian model was run for 50 000 iterations in two separate chains. Inspection of α values (Figure S2C)

as well as σ and regression parameters (Figure S3) revealed that the first twenty thousand iterations should

be discarded as burn-in. The trace plots for the regression parameters demonstrate the remaining iterations

after the burn-in suggest convergence of the model (Figure S3). During the model fit, not all components

had patients assigned to them. After removing burn-in and ranking components by occupancy (Figure S2B),

only 18 components were utilised with components below the 14th rank having less than 30 patients (0.2%)

assigned to them (Figure S2A). The Gelman-Rubin R̂ values for α, σ and regression parameters vary between

5



1 and 1.005.

S1.6 The Bayesian treatment selection model is consistent with the original

penalised maximum likelihood regression model

The posterior distributions for the regression parameters in the model fitted to incomplete data stay consistent

with the equivalent model fitted to complete data in both Bayesian and maximum likelihood approaches

(Figure S5). The posterior credible intervals for the Bayesian model fitted to the complete data are slightly

narrower on the whole than the frequentist confidence intervals, due to the weak shrinkage priors used. We

can see that the inclusion of the incomplete data results in a reduction of the posterior intervals, due to an

increase in the number of data points available to inform the model fit.

Internal validation of the model shows the final model explained 29% of the variation of HbA1c outcome,

with a good calibration (slope = 1.0015 [1 = perfect]) (Figure S6A). Validation of the model in the hold-

out dataset shows that the model explained 29% of the variation of the HbA1c outcome, alongside a good

calibration (slope = 1.02) (Figure S6B). In the development dataset, 13368 patients are predicted to benefit

better from SGLT2i therapy, and 2758 patients are predicted to benefit better from DPP4i therapy. In

cases where SGLT2i is predicted as the optimal therapy, 176 patients are predicted a benefit >10 mmol/mol

on average and 6355 patients are predicted to benefit between 5–10 mmol/mol on average. Whereas when

DPP4i is predicted as the optimal therapy, 316 patients are predicted a benefit >5 mmol/mol (Figure S7A)

on average. In the validation dataset, 8929 patients are predicted to benefit from SGLT2i therapy, and 1822

patients are predicted to benefit from DPP4i therapy. In cases where SGLT2i is predicted as the optimal

therapy, 123 patients are predicted a benefit > 10 mmol/mol on average and 4198 patients are predicted

to benefit between 5–10 mmol/mol on average. Compared with when DPP4i is predicted as the optimal

therapy, 209 patients are predicted a benefit >5 mmol/mol (Figure S7B) on average.
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S2 Supplementary Tables

Model Parameters Mean Lower CI Higher CI
Intercept 0.69 0.57 0.80
HbA1c 0.58 0.53 0.63
eGFR 0.02 -0.02 0.06
ALT -0.02 -0.06 0.02
BMI 0.04 -0.004 0.09
Age -0.06 -0.11 -0.01
HbA1c Month -0.04 -0.05 -0.03
Drug Taken -0.61 -0.50 -0.39
Number of Past Drugs [1] 0.28 0.24 0.32
Number of Past Drugs [2] 0.51 0.45 0.56
Number of Past Drugs [3] 0.64 0.57 0.71
Number of Current Drugs [1] -0.40 -0.46 -0.33
Number of Current Drugs [2] -0.55 -0.63 -0.48
Number of Current Drugs [3] -0.66 -0.76 -0.56
Spline(HbA1c) -0.11 -0.18 -0.03
Spline(eGFR) -0.0002 -0.04 0.04
Spline(ALT) 0.02 -0.03 0.07
Spline(BMI) -0.02 -0.08 0.04
Spline(Age) -0.05 -0.10 0.01
Spline(HbA1c Month) 0.02 0.01 0.03
Drug Taken * HbA1c -0.26 -0.35 -0.17
Drug Taken * eGFR -0.12 -0.20 -0.04
Drug Taken * ALT -0.09 -0.16 -0.02
Drug Taken * BMI -0.12 -0.20 -0.04
Drug Taken * Age 0.04 -0.04 0.12
Drug Taken * Spline(HbA1c) 0.26 0.13 0.39
Drug Taken * Spline(eGFR) 0.04 -0.03 0.12
Drug Taken * Spline(ALT) 0.02 -0.05 0.10
Drug Taken * Spline(BMI) 0.12 0.02 0.22
Drug Taken * Spline(Age) 0.05 -0.05 0.15

Supplementary Table S1: Model parameter Bayesian posterior samples fitted for the incomplete datasets.
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S3 Supplementary Figures

Supplementary Figure S1: A Directed Acyclic Graph (DAG) of the Bayesian treatment selection model
(yi, ωi, σ,β,β0,xi) augmented with a Dirichlet Process Mixture Model (DPMM). The DPMM component k
assigned for each patient Zi, is defined by π and α1. The DPMM is given by a mixture of Gaussian and
discrete variables. For Gaussian mixtures, the component specific parameters are µk and Σk, with other
parameters as priors (µ0,Σ0,R,ρ,R0,ρ0). For discrete mixtures, the component specific parameters is ϕkJ

with a flat Dirichlet prior for KJ variable categories.
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at each iteration after convergence. B: Trace plots of the Dirichlet process mixture model (DPMM) alpha
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removed).
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9



D
P
P
4

S
G

L
T
2

2
3

4
5

0
1

2
3

D
P
P
4

S
G

L
T
2

2
3

4
5

0
1

2
3

D
P
P
4

S
G

L
T
2

2
3

4
5

0
1

2
3

D
P
P
4

S
G

L
T
2

2
3

4
5

0
1

2
3

D
P
P
4

S
G

L
T
2

2
3

4
5

0
1

2
3

D
P
P
4

S
G

L
T
2

2
3

4
5

0
1

2
3

2
3

4
5

0
1

2
3

0
1

2
3

HbA1c eGFR ALT BMI Age HbA1c_Month DrugTaken NPastDrug NCurrentDrug
H
b
A
1
c

e
G

F
R

A
L
T

B
M

I
A
g
e

H
b
A
1
c
_
M

o
n
th

D
ru

g
T
a
k
e
n

N
P
a
s
tD

ru
g

N
C
u
rre

n
tD

ru
g

60 80 100 120 50 75100125150 2 4 6 30 50 70 40 60 80 4 8 12 DPP4SGLT2 2 3 4 5 0 1 2 3

0.00

0.01

0.02

0.03

60

80

100

3

4

20

30

40

40

50

60

70

80

90

4

8

12

75

100

75

100

75
100

75
100

75
100

75
100

60
80

100
120

60
80

100
120

60
80

100
120

60
80

100
120

DPMM Original

Supplementary Figure S4: Generalised pairs plot of predictor variables for the development dataset against
an equal number of posterior predictive samples from the Dirichlet process mixture model (DPMM).

10



DrugTaken * Spline(Age)

DrugTaken * Spline(BMI)

DrugTaken * Spline(ALT)

DrugTaken * Spline(eGFR)

DrugTaken * Spline(HbA1c)

DrugTaken * Age

DrugTaken * BMI

DrugTaken * ALT

DrugTaken * eGFR

DrugTaken * HbA1c

Spline(HbA1c_Month)

Spline(Age)

Spline(BMI)

Spline(ALT)

Spline(eGFR)

Spline(HbA1c)

NCurrentDrug [3]

NCurrentDrug [2]

NCurrentDrug [1]

NPastDrug [3]

NPastDrug [2]

NPastDrug [1]

DrugTaken

HbA1c_Month

Age

BMI

ALT

eGFR

HbA1c

Intercept

-0.5 0.0 0.5

Coefficient

Frequentist Bayesian Complete Bayesian Incomplete

Supplementary Figure S5: Caterpillar plot comparing Bayesian posterior samples fitted for the complete and
incomplete datasets against the frequentist coefficient estimates. For each set of Bayesian posterior samples,
the plot shows the 2.5%, 5%, 50%, 95% and 97.5% quantiles. For the frequentist estimates, the plot displays
the 95% confidence interval.

11



-2.5

0.0

2.5

5.0

60 80 100

Average Predicted HbA1c (mmol/mol)

S
ta

n
d
a
rd

is
e
d
 R

e
si

d
u
a
ls

A

-2.5

0.0

2.5

5.0

60 80 100

Average Predicted HbA1c (mmol/mol)

S
ta

n
d
a
rd

is
e
d
 R

e
si

d
u
a
ls

B

Supplementary Figure S6: Standardised residuals of predicted outcome (at 6 months) for development (A)
and validation (B) datasets, utilising posterior predictions from the fitted Bayesian treatment selection model.

0

500

1000

1500

-15 -10 -5 0 5 10

HbA1c difference (mmol/mol)

N
u

m
b

e
r 

o
f 

p
e

o
p

le

Favours DPP4i

Favours SGLT2i

A

0

300

600

900

1200

-15 -10 -5 0 5 10

HbA1c difference (mmol/mol)

N
u

m
b

e
r 

o
f 

p
e

o
p

le

Favours DPP4i

Favours SGLT2i

B

Supplementary Figure S7: Comparison of individualised treatment effects for SGLT2i and DPP4i treatments
in the development (A) and validation (B) datasets. A negative value corresponds to a predicted glucose-
lowering treatment benefit on SGLT2i and a positive value corresponds to a predicted glucose-lowering
treatment benefit on DPP4i.

12



References

[1] Stefano Favaro and Stephen G. Walker. A generalized constructive definition for the Dirichlet process.

Statistics & Probability Letters, 78(16), 2010.

[2] Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4(2):639–650, 1994.

[3] Chelsea Muth, Zita Oravecz, and Jonah Gabry. User-friendly Bayesian regression modeling: a tutorial

with rstanarm and shinystan. The Quantitative Methods for Psychology, 14(2):99–119, 2018.

[4] Silvia Liverani, David I. Hastie, Lamiae Azizi, Michail Papathomas, and Sylvia Richardson. PReMiuM:

An R package for profile regression mixture models using Dirichlet processes. Journal of Statistical

Software, 64(7):1–30, 2015.

[5] John M. Dennis, Katherine G. Young, Andrew P. McGovern, Bilal A. Mateen, Sebastian J. Vollmer,

Michael D. Simpson, William E. Henley, Rury R. Holman, Naveed Sattar, Ewan R. Pearson, Andrew T.

Hattersley, Angus G. Jones, Beverley M. Shields, and on behalf of the MASTERMIND consortium.

Development of a treatment selection algorithm for SGLT2 and DPP-4 inhibitor therapies in people with

type 2 diabetes: a retrospective cohort study. The Lancet Digital Health, 4(12):e873–e883, 2022.

S4 MASTERMIND consortium

Prof Andrew Hattersley1, Prof Ewan Pearson2, Dr Angus Jones1, Dr Beverley Shields1, Dr John Dennis1,

Dr Lauren Rodgers1, Prof William Henley1, Prof Timothy McDonald1, Prof Michael Weedon1, Prof Nicky

Britten1, Catherine Angwin1, Dr Naveed Sattar3, Dr Robert Lindsay3, Prof Christopher Jennison4, Prof

Mark Walker5, Prof Kennedy Cruickshank6, Dr Salim Janmohamed7, Prof Christopher Hyde1, Prof Rury

Holman8, Prof Andrew Farmer8, Prof Alastair Gray8, Prof Stephen Gough8, Dr Olorunsola Agbaje8, Dr

Trevelyan McKinley1, Dr Sebastian Vollmer9, Dr Bilal Mateen7, Prof William Hamilton1

1University of Exeter, Exeter, England

2University of Dundee, Dundee, Scotland

3University of Glasgow, Glasgow, Scotland

4University of Bath, Bath, England

5University of Newcastle, Newcastle upon Tyne, England

6Kings College London, London, England

7University College London, London, England

13



8University of Oxford, Oxford, England

9University of Kaiserslautern, Kaiserslautern, Germany

14


	Appendix
	Component distributions
	Prior distributions
	Predictive distributions
	Conditional predictive sampling
	Convergence diagnostics
	The Bayesian treatment selection model is consistent with the original penalised maximum likelihood regression model

	Supplementary Tables
	Supplementary Figures
	MASTERMIND consortium

