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Abstract

Lameness afflicts a large proportion of dairy herds, but could be considerably reduced
by  automated  monitoring  by  CCTV.   Key  to  this  is  reliable,  robust  detection  and
tracking  of  individual  cows  in  crowded  video  sequences.   We  introduce  a  novel
detection  and  tracking  method,  based  on  the  Viola-Jones  detector.   We  show  that
animals can be tracked and their overall gait patterns and speed automatically extracted
from video sequences.  Preliminary work on identification of individual animals through
principal component analysis and SIFT feature matching is also described.
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Introduction
Lameness in dairy cows is an issue widespread of concern for the dairy industry. At any
one time, it is widely estimated that up to a third of dairy cattle in the UK suffers some
degree of lameness. Identification and treatment of lameness at an early stage can help
prevent lameness from becoming more severe, with concomitant benefits to the animal
and cost savings to the farmer.

Current practice for measuring mobility scores and identifying cows at risk of lameness
relies on visual inspection of the individuals; an expert observes the cows as they walk
and assigns them a grade depending on their mobility. Although this method is currently
the norm, there are some drawbacks of concern:
• Lack of robustness – being subject to human perception, it is possible for two experts

to give different scores to the same individual.
• Expense of expertise – being dependent on the availability of an expert,  there are

constraints in the frequency at which each cow can be monitored.

These constraints, coupled with large herds cared for by only limited staff, mean that
daily monitoring is  infeasible. In this paper, we present an automatic video processing
system which can provide information on the mobility of dairy cows without requiring
human intervention. The principal obstacle to automatic monitoring of dairy cows is the
accurate identification and tracking of individual cows and we therefore focus on this
aspect,  showing  how  cows  can  be  accurately  located  and  tracked  in  video.   This
provides ready measurement of the speed of each cow, which has been shown to be
well-correlated with the cow’s mobility score (Bell et al., 2013).   It also gives access to
measures of the animal’s gait which may also be used for mobility assessment.  We
describe preliminary work on the identification of particular cows from video, with the
goal of obviating the need for additional systems such as RFID tags for linking scores to
particular  cows.   We draw attention  to  another  video-based  analysis  system which,
unlike ours, uses back posture to assess lameness (Poursaberi et al, 2011)



Methods
In  this  section  we  describe  the  main  elements  of  our  proposed  system.  To  enable
widespread use, we aim to use commodity hardware rather than specialised equipment. 

Setup
The hardware component of the system consists of video recording equipment used to
monitor the exit of the milking parlour.  Cows leaving the milking parlour in batches of
24 after milking, walk down an exit race approximately 10 m long before turning into a
large barn.  This is monitored by a standard home-security surveillance camera system
mounted overhead, providing a view, principally of the cow’s back (see for example
Figures 1 and 2).  This view minimises the possibility of occlusion.  Three additional
cameras, providing additional viewpoints were also installed but were not used in the
work reported here.  The video recording equipment was scheduled to record for two
hours in the morning and two hours in the afternoon. These are the times when milking
typically takes place, however there is no guarantee of any exact timing when the cows
start walking out. For this reason, the recording schedules span a generous time window
ensuring that the moment when the cows walk out will be captured. This also means
that  there are  long periods  where there is  no activity of  interest  in the videos.  The
captured video files  were stored on the recording equipment  hard drive.  Afterwards
video files were recovered and processed off line.

Detection and tracking cows
The first step towards developing the cow tracking system is to detect when a cow is
visible and when it leaves the scene. It is also important to detect where in the current
frame the cow is located.  When cows are absent, the recorded video comprises the
farmyard concrete floor and neighbouring buildings and it might therefore be expected
that  a  straightforward  way of  detecting  and  tracking  individual  cows  would  be  by
simple  background  subtraction,  which  is  often  effective  for  interior  and  man-made
scenes  (e.g.,  Sonka  et  al.,  2007).   However,  we  find  that  background  subtraction
methods are ineffective here due to the changing lighting conditions (particularly as
milking is  often around dawn) and the varying reflectance of  the farmyard floor  as
animal waste is deposited on it and the floor is washed. A further difficulty arises from
the  close  proximity  of  the  cows  as  they  leave  the  milking  parlour:  background
subtraction and optical flow methods tend to detect moving objects in the video, but fail
to separate individual cows. 

Rather than detecting entire cows, we therefore choose to locate and track the heads of
cows by constructing a specialised detector for cow heads.  By detecting cow heads in
individual video frames we avoid false positive detection of other moving objects such
as people and shadows.  In addition, the heads of cows are generally well separated so
that neighbouring cows are easily distinguished. 

The Viola-Jones object detection algorithm (Viola and Jones, 2004), commonly used for
detecting human faces,  was adapted to locate the heads of cows in individual video
frames. The Viola-Jones detector uses a set of simple image features and combines them
to determine whether a face (or head) has been detected. The features used are very
similar to the well-known Haar wavelet basis functions and are very simple in their
nature;  one  feature  could  detect,  for  example,  a  horizontal  edge  of  a  shape.  These



features can be very easily and quickly computed.   The Viola-Jones detector computes
a large number of these features, each one of which on its own is a weak classifier, able
to  detect  the  presence  of  a  cow  head  little  better  than  random.   The  many  weak
classifiers are combined during training to form a strong classifier using boosting to
select the most useful  (Freund and Schapire, 1997).    In order to achieve very high true
positive detections and a low false positive rate, classifiers are arranged in a cascade. At
the top level of the cascade a sub-window of the image is checked to discover whether
(on the basis of a few features) it may be rejected as containing a cow head; if not the
sub-window is processed by further stages of the cascade.  Early rejection of a sub-
window means that the detector is computationally very efficient and the whole image
may be scanned, one sub-window at a time, for the sought object. 

In  order  to  use  the  Viola-Jones  detection  algorithm to  suit  our  application,  it  was
necessary to construct a cascade which was trained for detecting cow heads. A training
set consisting of 1000 heads was manually selected from our video recordings, from
different  cows and  under  different  lighting  conditions.  Each training  image  was  60
pixels square as shown in Figure 1(a).   These samples where used to train the weak
classifiers forming the head detector cascade.  Note that during training each of the
training heads is used multiple times after application of various randomly chosen affine
transformations (rotation,  scaling,  shearing),  which confers  robustness to  changes  in
pose and precise detail of the head.  The training heads are used in conjunction with a
range of backgrounds,  not  just  from the farmyard which means that  cow heads are
effectively detected in a wide range of scenes.  

Having trained the head detector, it was applied to every frame of each video being
inspected.  Figure 1(b) shows an example of a detection.  For clarity, this image has
been cropped to the region surrounding the cow, but detection takes place across the
whole video frame without any additional preprocessing and several cow (heads) may
be detected in a single frame, see for example Figure 2. 

Track extraction
The head detector described above provides a very high detection rate; we estimate the
true positive rate to be in excess of 95% with a false positive rate of less than 1%.
However, it is still possible for the detector to occasionally miss a head or detect a head
where there is none. Therefore, simply joining detections from one frame to the next
would yield erroneous tracks. Detections on a series of frames were joined together and
smoothed using the Kalman filter (Kalman, 1960; Roweis & Ghahramani, 1999).

We regard the true location of the cow’s head as a hidden state, which is related to the
observed location of  the centres of the detection squares.  The Kalman filter  can be
thought of as a two-stage process in which the location of the hidden location in the next
frame is first predicted and then, on observing the next frame, corrected using the new
observation.   We model  the probability of making a  transition from one location to
another  as  a  simple  Gaussian  diffusive  process  and  the  observed  head  location  is
modelled as the true location plus Gaussian distributed observational noise.   Given the
location of a head in a frame at time t, the predictive step of the Kalman filter is used to
estimate the region where the head is  likely to  be located at  time  t+1.  If  a head is
located within the predicted region, then the true location is updated with the detection



(a) (b)
Figure 1: (a) Sample cow heads used for training and (b) detected cow head

at time  t+1 and the new location added to the track.   If no head is located at  t+1, a
predicted location is calculated at t+2, with an increased uncertainty, and so on. Notice
that  for  every  missed  frame,  the  uncertainty  increases  until  it  reaches  a  maximum
uncertainty in which case the track has been lost.  In this way detected locations are
joined together to form smooth tracks and the location of the cow’s head is interpolated
in frames where no detection was made.  The smoothness of the track and the prediction
window  in  which  detections  are  sought  depend  on  the  values  of  the  state  noise
uncertainty and the observational noise; however, the resulting tracks are insensitive to
their precise values.  The Kalman filter updates are all accomplished with linear algebra
and so are computationally fast.  Figure 2 shows a cow head detected as the cow leaves
the milking parlour at the lower left of the image, together with a cow that has been
tracked through the exit race.  The green squares mark the location of the detected head
and the radius of the circle is  proportional  to the uncertainty in  the Kalman filter’s
estimated true location of the head.  The uncertainty in the right-hand cow’s location is
due to it  having just  passed under  a wire which inhibited head detection for  a few
frames.  Figure 3 shows the tracks taken by several cows.

Once this process is completed, the individual head detections have been merged into
tracks which describe the movement of the cow's head over time. From these tracks it is
possible to calculate the time it takes a cow to cross the corridor where they have been
recorded.

Results and discussion

Analysing individual tracks
After the heads detected over a number of video frames have been merged into a single
track, it is possible to analyse different aspects of the track. For example it is possible to
analyse the path a cow has followed. In this way, the gait asymmetry can be measured. 
Previous studies (Chapinal et al., 2011) indicate that gait asymmetry is an indicator of
mobility scores. Figure 2 illustrates the extracted path which could be used for assessing
gait asymmetry.

Timing tracks
Other information that can be obtained from the tracks is the speed of the cow. Position
is known at every frame and the total time elapsed is also known, therefore calculating 



Figure 2: Detected and tracked cows.  Green squares show the location of detected
heads; green circles show the Kalman filter uncertainty in the true location and red lines

indicate the true path followed and can be used to measure gait asymmetry.

Figure 3: Detected and tracked cows showing the simultaneous detection and tracking
of several cows.  

speeds is straight forward. Notice that speeds may vary through time (i.e. the cows may
slow down or move faster); for this study we use the average speeds over whole tracks.

Bell  et  al  (2012) have established that  deterioration of  walking speed is  one of the
characteristic symptoms of lameness. The video processing system presented here can
exploit this fact and help in the early identification of lameness. Figure 4 shows a



Figure 4: Distribution of average track speeds. Arrows indicate the average speed of
three individuals (a), (b) and (c).

histogram of the speeds of approximately 190 dairy cows inspected by this system over
a number of weeks.

The relative speed of a cow with respect to the group on its own is not sufficient to
detect lameness; a cow may be consistently slower than the group due to old age or
simply due to its own preferred pace of walking. The arrows on Figure 4 indicate the
mean speed of a number of the observed individuals.  We therefore propose to detect
lameness by monitoring each individual cow’s speed over a number of days to look for
consistent changes in mean speed, excluding those caused by bunching of cows as they
leave the milking parlour. 

Identifying individuals
Key to monitoring an individual’s speed is identifying each individual.  While a number
of technological solutions to this, such as RFID tagging, are possible, here we report on
preliminary work on identify cows from CCTV which if reliable would be a cheaper,
more robust alternative. 

In  computer  vision,  the  problem  of  individual  identification  has  been  addressed
repeatedly.  Particularly promising  methods  are  eigenfaces  (Kirby & Sirovich,  1990;
Turk, 1991) and the use of SIFT features (Lowe, 2004). 

We extract an image representing each cow’s body by capturing the region immediately
behind the  cow’s  head when she is  walking in  an approximately straight  line (e.g.,
Figure 4).  Principal components analysis (PCA) is used to find the subspace of these
images which best approximates the full space.  The principal components (eigencows) 



Figure 5: Left column: unidentified images from testing set. Right column: identified
images from training set.

capture  the  main  variation  in  the  data  set  and  discarding  those  representing  small
variations helps remove noise.  Here 500 sample cow images were used to create a
subspace of 150 dimensions.   A cow is now identified by projecting her image onto the
150-dimensional  space  and finding the  nearest  neighbour  to  the  projections  of  cow
images in the training set, whose identities are known.  

Figure 5 shows example images from the training set (left-hand column) which were
identified as the closest matches to test images shown in the right-hand column.  All test
images were taken from videos recorded at different milking sessions to the training
images.  As the figure illustrates the use of principal components allows matching of
images in the presence of noise, focus and lighting.  

While  PCA provides  matching  of  global  image  information,  scale  invariant  feature
transform (SIFT;  Lowe,  1999,  2004),  features  characterise  the  local  structure  of  an
image such as elements of the patterns on a cow’s back).  SIFT features were extracted
for  keypoints in each cow image.  As Figure 6 illustrates, a large proportion of SIFT
features  correspond in  images  of  the  same cow,  whereas  the  proportion  is  low for
different cows.  Our initial work indicates that identification using SIFT features will be
more robust than global features such as PCA. 

Figure 6: Matching local SIFT features. Lines are drawn between points with matching
SIFT features for (top) different images of the same cow and (bottom) images of

different cows.



Conclusions & further work
The principal  contribution of  this  work is  the introduction  of  a  method for  reliably
detecting  and tracking cows in video.   This  permits  the  easy measurement  of  their
speeds  which  are  well  correlated  with  mobility  scores  and  opens  the  way  to
characterisation of their gait and body condition monitoring. 

We have also highlighted the need for individual identification and proposed methods
for machine identification in video them based on the patterns on their back.  Current
work  is  on  developing  PCA and  SIFT  identification  methods  to  allow  lameness
monitoring solely from video. 
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