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A B S T R A C T   

Artificial intelligence (AI) is often used to describe the automation of complex tasks that we would attribute 
intelligence to. Machine learning (ML) is commonly understood as a set of methods used to develop an AI. Both 
have seen a recent boom in usage, both in scientific and commercial fields. 

For the scientific community, ML can solve bottle necks created by complex, multi-dimensional data gener
ated, for example, by functional brain imaging or *omics approaches. ML can here identify patterns that could 
not have been found using traditional statistic approaches. However, ML comes with serious limitations that need 
to be kept in mind: their tendency to optimise solutions for the input data means it is of crucial importance to 
externally validate any findings before considering them more than a hypothesis. Their black-box nature implies 
that their decisions usually cannot be understood, which renders their use in medical decision making prob
lematic and can lead to ethical issues. 

Here, we present an introduction for the curious to the field of ML/AI. We explain the principles as commonly 
used methods as well as recent methodological advancements before we discuss risks and what we see as future 
directions of the field. Finally, we show practical examples of neuroscience to illustrate the use and limitations of 
ML.   

1. Introduction 

In multiple domains of healthcare and biology, we face problems for 
which there are no mono-causal solutions: either, because we do not 
know possible paths to solution, due to the numerous, multidimensional 
variables involved or because we can imagine a path to solution, but it 
turns out to be a puzzle so complex that we cannot solve it. An example 
for the former could be attempting to predict the development of tu
mours based on *omics-datasets: we have only very limited under
standing and hypotheses of which of these data holds potential as 
predictive cancer biomarkers, but we assume that there is a reasonable 
chance that some of them do. An example for the latter would be the 
folding of a potential protein based on its amino-acid sequence: we 

generally know the principles, however, taking all interactions into ac
count makes it computationally intractable to fully calculate the precise 
folding (Dill et al., 2008). Both examples have more things in common. 
For one, if we cannot find a perfect solution, we would still be excited 
about a very close estimate: for proteins, all we need to know is if it will 
modulate relevant pathways, and for the prediction of cancer, any 
improvement over current clinical algorithms of prediction would be 
valuable, even if they are not perfect. Second, even if we do not un
derstand how the result is reached, in both cases, we could still put the 
result to a meaningful use. And lastly, for both cases, we could draw on 
large datasets of annotated previous cases. 

Computationally, we have found that a group of algorithms widely 
known as machine learning (ML) can produce extraordinary results on 
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these kinds of problems, which are too complex to solve perfectly. This 
solution generally requires the use of enormous amounts of exemplary 
annotated data for which we can accept a good result, even if we cannot 
explain the solution path. To some degree, this can be thought to mimic 
human decisions: a “good” doctor will decide to take out a tumour they 
assume to be malignant based largely on experience (using clinical 
guidelines and algorithms as a handrail). One of the central promises of 
artificial intelligence in healthcare therefor is to replace the experience 
of one doctor with that of thousands of doctors. 

While leading to breakthroughs in some of these questions like 
protein folding prediction (Jumper et al., 2021), ML algorithms face 
multiple challenges, which need to be taken into serious account before 
applying and when judging the results. In this review, we aim to intro
duce frequently used techniques, explain basic concepts, show oppor
tunities and risks in the field, and provide some examples of 
neuroscientific research applications. We intend this review as a primer 
for the interested – we therefore will use simplifications that can be seen 
as oversimplifications at points. We do so to keep to a beginner’s level, 
but please keep in mind that many, most, or all of the concepts explained 
here are more nuanced and complex than portrayed here when drilling 
down into them. 

1.1. Terminology and prominent methods 

While clear definitions are missing for most of the terms in the field, 
the term artificial intelligence (AI) is often used to describe the automa
tion of complex tasks we would generally attribute intelligence to 
(Luger, 2004). Machine Learning (ML), then, is a loosely connected group 
of methods to achieve an AI approach. 

Here, we will talk exclusively about specific AI: an AI used to solve a 
specific problem, which it has been trained for. An unfortunate extrap
olation is often made from the advancement in specific AIs to the rise of a 
general AI (the AI you know from mo. vies and literature, an artificial 
intelligence being able to solve a wide range of problems and being able 
to find solutions to new problems on its own). It is possible, but currently 
not foreseeable that the advancements in specific AI will lead to the 
development of a general AI. Think of it in the same way that the dis
covery of a possible drug target in an animal model might or might not 
lead to safe and effective medication against dementia in humans. Of 
course, the discovery of the drug target increases the chance of future 
treatment, but it is only one of many steps in a long journey, each of 
which can fail, and none of which we can predict how long they will 
take. 

Further subdivisions can go along with intent of application (diag
nostic versus prediction), input needed (supervised versus unsupervised 
learning), or mathematical background of approaches used (linear 
versus non-linear, symmetric versus non-symmetric). The difference 
between diagnostic versus prediction is whether an AI scanning a picture 
of a mole can decide if this mole is cancerous, or whether it will become 
cancerous. There are specialised approaches for both, but for the pur
pose of this primer, it suffices to know that they exist, and the general 
principles and challenges remain the same. An exploratory approach 
aiming to define subtypes of moles could be unsupervised (without the 
need for prior grouping, the groups found might or might not overlap 
with being benign or malign), while an approach actively seeking to 
separate cancerous versus benign moles would be supervised: it would 
learn from a dataset of moles labelled as “cancerous” or “non- 
cancerous”. Alas, there is no similarly simple explanation for the 
mathematical theories involved, but we can see them as an increasingly 
complex modelling, with linear more simplistic than non-linear, and 
symmetric more simplistic than non-symmetric. Simplicity is ideal: if a 
simple model can explain your data, this is the ideal case, and more 
complex models should only be used if simple approaches fail. 

1.2. Curve fitting – The path to the optimal solution 

AI and ML approaches solve problems by optimizing complex forms 
of curve fitting. For example, data points for two groups (distinguished 
by shape and colour) are plotted in Fig. 1 according to hypothetical 
Features A and B, and the goal is to determine the relationship between 
these features and the grouping. In the simplest of cases, this will be a 
straight line. Realistically, more complex models will provide better fits 
for real data. The simple straight line will then be under-fitted: it will 
perform its task poorly, due to an overly simplistic model. 

On the other end, a more complex model will always be able to 
provide a better fit for the given data, to the point of perfection. This is 
due to the nature of the method: it will always optimise the fit based on 
the data provided. Every input dataset will, however, be flawed in some 
ways, and can never be a perfect representation of the real world – 
therefore, external validation (replication of findings in a data set 
separately from the original data, ideally independent in means of 
population and collection) of each finding is mandatory for findings 
based on ML. For instance, a ML-model that performs near perfectly on 
its training data set and badly on external (validation) data is over-fitted: 
it is optimised for specific data rather than the general case and hence 
useless for all practical purposes (Fig. 1B). 

This shows why for the development of an AI, at least two inde
pendent datasets are needed: a training dataset, on which the “learning” 
(or model optimisation) takes place, and a validation dataset, on which 
the derived AI is validated to show it is not over-fitted and generalises to 
unseen data. Choosing ideal training and validation datasets defines 
success and failure of any AI approach, and it cannot be overstated how 
carefully these need to be chosen. Ideally, validation and training 
datasets should be completely independent – for example, data collected 
at a different hospital by separate examiners, on another continent, and 
so on, to prove maximal generalizability of the AI. Often, this will not 
realistically be possible, at the very least, however, if only a single 
dataset is available, it must be split, and a proportion kept separately as 
validation dataset. In this case, the results will not be immediately 
generalisable: any AI is only ever validated for the data is has been tested 
on. 

1.3. Unsupervised learning 

Unsupervised learning uses a set of methods that do not depend on 
knowledge of outcome, for example, modern evolutionary trees are 
based on clustering of genetic resemblance. The outcome (the tree) was 
unknown to begin with and is a sole result of the principles of the al
gorithm. Unsupervised learning methods can generally be said to search 
for symmetry, order, or structure in data (see Fig. 2 for a visualisation of 
various methods (Pedregosa et al., 2011)). This can be exemplified by 
using two-dimensional data: if you can visually observe patterns (like in 
the rows 1,2,4,5 of Fig. 2), the right unsupervised learning will also find 
these patterns – only that we usually use high-dimensional, not two- 
dimensional data, which cannot be plotted easily. An advantage is 
that a symmetric form is less prone to overfitting and results can often 
more easily be transferred to external data. The shapes constructed by 
unsupervised ML algorithms are also easier to interpret, providing the 
opportunity to shape our understanding of biology. 

Some of the most-used methods include dimension-reduction ap
proaches like principal component analysis (Pearson, 1901); hierarchi
cal clustering, like Ward (Ward, 1963) or Neighbour-joining (Saitou and 
Nei, 1987); fast, heuristic methods ideally suited for very large datasets 
like k-means (MacQueen, 1967); and density-based approaches like 
DBSCAN (density-based spatial clustering of applications with noise) 
(Ester et al., 1996). As shown in Fig. 2, none of these are inherently 
better than others, how they perform will depend on the structure of 
your data. 

F. Badrulhisham et al.                                                                                                                                                                                                                         



Brain Behavior and Immunity 115 (2024) 470–479

472

1.4. Supervised learning 

Supervised learning depends on a training dataset with known out
comes or classification, for example, pictures of moles and the infor
mation if these are malignant or not. The advantage is that they are able 
to uncover non-linear, non-symmetrical relationships, however, the 
concept of fully optimising a function on a given training dataset makes 
them prone to over-fitting or adjusting to bias in the dataset (Spisak, 
2022), which is not always easily spotted. 

In its simplest (though by no means simple) form, a supervised ma
chine learning can be a multiple linear regression that can be replaced 
by regularised linear regression models that can control model 
complexity or non-linear regression models if warranted by the data. 

Complex, non-linear, non-symmetrical methods have been respon
sible for most of the recent fast advances in the field like facial detection 
and other complex image processing tasks, protein folding and form the 
basis of ChatGPT. Support Vector Machines (Cortes and Vapnik, 1995), 
k-nearest neighbours (Cover and Hart, 1967), and Hidden Markov 
Models (Rabiner and Juang, 1986) and Markov Chain Monte Carlo 
methods (Hamra et al., 2013) are some of the most commonly used 
examples. They are based on highly distinct mathematical models and 
assumptions, and their use differs, as they have been demonstrated to 
excel in different fields. Here, as a general example for supervised ma
chine learning, we will focus on neural networks (Hopfield, 1982), since 
they have gained most attention, which has been particularly the case 
through the development of Deep Learning (Hinton et al., 2006), a 
variant of neural networks. 

1.5. Neural networks and deep learning 

Neural networks are a method that has been developed mimicking 
biological process, similar to evolutionary algorithms. A neural network 
in its simplest form consists of an input layer (the features of your data), 
a hidden layer, and an output layer (the classification or prediction) 
(McCulloch and Pitts, 1943). The multiple nodes (perceptrons) of these 
layers are interconnected (see Fig. 3), and the number of hidden nodes 
will determine the complexity of the network (as well as its risk of over- 
fitting). A node is modelled after a synapse, based on input signals, it 
provides forward a signal, or not (inspired by a post-synaptic potential 
either reaching the activation threshold at the axon hillock or not). In 
our (by now slightly overused) example of pictures of benign and ma
lignant moles, the input layer would be those pictures, the output layer 
would be the label provided (“cancerous” or “non-cancerous”). The 
hidden layer is the “ghost in the machine”: the black box classifying, 
with no explanation how the classification was reached. 

Many recent advances in machine learning have been rooted in deep 
learning, using the principles of neural networks with multiple hidden 
layers, and hundreds, thousands, millions, and billions of nodes. Each 
layer can be interpreted as a level of abstraction, and the algorithms 
allow the network to choose and refine its own structure (LeCun et al., 
2015). Deep learning has overtaken many classic AI techniques, and is 
behind many of the most impressive recent successes, including general 
use like chatGPT and its successor, GPT-4 (OpenAI, 2023) and scientific 
tasks like protein folding (Jumper et al., 2021). However, deep learning 
is not a “magic bullet”, depending on dataset structure, classical ma
chine learning models (like tree-based models) can outperform them in 
many real scenarios (Grinsztajn et al., 2022). 

Supervised (deep) learning approaches are generally “black boxes”. 

Fig. 1. Curve-fitting models. These are artificial data for illustration only. The linear underfitting, both in the training data set (A) and in the validation data set (B) 
cannot capture the nonlinear shape of the data, while the over-fitting can perfectly separate the training data set from the validation data set, but this model leads to a 
reduced performance on another data set. Accepting the error of the balance fit leads to better generalizability overall and thus to a more robust model. 
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They do not follow clear and identifiable rules but greedily learn from 
examples. This is similar to how humans learn intuitively compared to 
how we learn at school: you are often more likely to know grammatic 

rules of a second language you learned at school than your native lan
guage. At the same time, you might well be better at grammar in your 
native language, as you do not base your decision on the (simplified) 
grammatical rules but on practical usage experience of the common case 
and the many exemptions. 

2. Risks 

With growing use, one of AI approaches inherent features – its black 
box approach – is becoming a growing concern. When used for explor
atory research, AI can find novel targets that are subsequently investi
gated. In this case, a black box is of little concern, as the meaningfulness 
of biological pathways and medical sciences will be described in sub
sequent experiments. However, AI is now used to assist human decision 
making (not only) in medicine, where it can be of high importance to 
know why and how a decision was formed. 

Both the optimisation to training data and the subsequent applica
tion of AI by a wide range of users can lead to unintended consequences. 
An AI trained to detect malignant skin lesions has been shown to have 
learned that the presence of rulers in pictures shows malignance, as they 
are used more often for scaling in pictures of malignant lesions, biasing 
the training data set (Narla et al., 2018). On the user end, dermatologists 
will often use markers to highlight the lesion on a picture, which can also 
increase the chance of the AI classifying the lesion as malignant (Winkler 
et al., 2019). An AI predicting complications of pneumonia wrongly 
suggested patients with asthma as low risk of pneumonia (while the 
opposite is the case) (Caruana et al., 2015). While these were easy-to- 
uncover teething problems, they illustrate the unforeseen conse
quences of invisible bias in data, and the fatal consequences blind trust 
in AI-assisted decision making can have. 

AIs are trained on large datasets, and results can therefore only be as 

Fig. 2. The ability of various cluster methods to separate non-linear datasets, simulated using scikit-learn (Pedregosa et al., 2011). These are artificial data for 
illustration only. The ability of the clustering method to separate your data will depend on the structure of your data, which, in multiple dimensions, cannot be 
plotted and therefore remains usually unknown. The lowest panel shows that, even for uniform data distribution, the algorithm will always present a “best” solution. 

Fig. 3. Simple example of a three-layer perceptron network. The input layer 
provides the knowledge we have, the output layer the result. The hidden layer 
is the “ghost in the machine”, the black box-part of the decision-making pro
cess. Modern deep learning AIs can use multiple hidden layers with almost 
endless nodes, GPT-4 uses billions of nodes, and trillions of parameters 
(OpenAI, 2023). 
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good as the input data (“garbage in, garbage out” rule of databases). This 
means that during data collection, careful consideration must be given 
to avoid errors in labelling or similar aspects that can lead to distorted 
results. As AI methods become more widely available, they will often be 
used on datasets that are fundamentally of a too-low quality. Results 
should be discarded, as only high-quality input data can lead to results 
that we can have enough trust in to warrant further use or research. 

Even the best and well-collated existing large datasets are biased. 
This is partly based in human history. For example, image processing AIs 
often learn on ImageNet, but this database is heavily biased towards 
data from the US and Western Europe, while China and India, 
comprising more than a third of the world’s population, only constituted 
just 3 % of ImageNet data in 2017 (Shankar et al., 2017). Since AIs aim 
to optimise their accuracy, ignoring minorities is a frequent feature (Zou 
and Schiebinger, 2018). 

In addition, by learning from human annotated data, the AI will learn 
our biases. In the beginning of this piece, we used the term “replace the 
experience of one doctor with that of thousands of doctors”. This will also 
include replacing the bias of one doctor with that of thousands of doc
tors. While we often believe any computer decision is impartial and 
unbiased, it has been shown multiple times that this is not the case: 
internet search algorithms propagate gender stereotypes (Vlasceanu and 
Amodio, 2022), and AI-based decision making in US hospitals has been 
shown to disadvantage Black patients, negating them necessary care and 
treatment a similar White patient would have received (Obermeyer 
et al., 2019). 

2.1. Explainable AI 

One approach to reduce the impact of the risks and limitations is 
opening up the black box by using explainable AI (XAI) methods (Vilone 
and Longo, 2021). In contrast to the black box of classic AI, they aim to 
create a white box, where decision making can be traced and understood 
(Castelvecchi, 2016). XAIs aim to be transparent, interpretable and 
explainable, features which would make them ideal for assisted decision 
making in healthcare (Rieg et al., 2020). However, with growing 
complexity of AIs, explainability becomes near impossible to achieve, 
which can be understood when considering how for example neural 
networks aim to mimic, rather than understand human decision making 
– they do so as we cannot sufficiently explain how we come to decisions 
and cannot easily put our experience into simple rules. By training AIs to 
do similar, we end up with similarly complex decision making processes, 
that inherently cannot be explained in simple ways (Bhatt et al., 2020). 

2.2. Reporting, transparency, reproducibility, and replicability 

As, unfortunately, in all areas of research, there are concerns about 
transparent reporting and “spin” practices in machine learning, under
lined by a recent systematic review (Andaur Navarro et al., 2023). There 
are no current gold standards on conduct and reporting of ML and AI 
medical research, partly of course, as they are just a method for multiple 
means. Generally, reporting guidelines on AI/ML will include elements 
like mentioning the use of ML, as well as describing the specific methods 
and purpose, methods to control for errors, and reporting of common 
model-metrics. 

Specific reporting guidelines can be found in the REWARD EQUA
TOR network for clinical trial protocols (SPIRIT-AI (Rivera et al., 2020)) 
and clinical trials (CONSORT-AI (Liu et al., 2020)). When developing 
tools used for assistance in decision making, DECIDE-AI should be fol
lowed (Vasey et al., 2022). 

A framework for reporting applicable to all medical AI research can 
be found in the MI-CLAIM checklist (Norgeot et al., 2020). Here, the 
authors also touch on the difficult topic of reproducibility. While, in 
some situations, ML/AI approaches can lead to findings that are easier to 
replicate as the effect sizes are higher (Spisak et al., 2023), making it 
more likely to achieve similar qualitative findings in a separate 

approach, that is not always the case (Marek et al., 2022). The black box 
nature and often commercial use of ML products can lead to reproduc
ibility far lower compared to using traditional statistics (and it is not 
high there to begin with), as step-by-step replication cannot necessarily 
be done. This is compounded by the wide range of available methods 
(Hoffmann et al., 2021), making it difficult for external groups to 
independently replicate findings. The hypothesis-free, pattern-searching 
approach of AI is, as mentioned above, prone to over-fitting, which can 
be abused to present findings that are likely random as real – similar to 
p-hacking or HARKing techniques in traditional statistics. However, 
black box findings that are unexplainable, unreproducible, and unre
plicable, can only be detrimental to the scientific progress, and oppose 
the principles of scientific research. We therefore note that conduct 
guidelines are needed, and ethical frameworks need to be developed 
which also take transparency of reporting data and code sharing and 
reproducibility into account. 

2.3. A note on anthropomorphisms and hype 

The field of AI/ML is, unfortunately, rich in anthropomorphising 
terms that install unrealistic expectations for readers and listeners. “We 
used a machine-learning approach to train a neural network with 
evolutionary improvement to achieve an artificial intelligence” is a 
sentence not unthinkable to read, or “brain-inspired deep neural net
works with attention mechanism that learned complex hidden repre
sentations to achieve an artificial intelligence system for diagnosis of 
cancer”. While there are historic reasons for each of these terms (often, 
they were developed by mimicking human or biological behaviours and 
strategies), they evoke science-fiction associations they do not warrant. 
This can go so far as to computer programmers (Metz, 2022) or jour
nalists (Roose, 2023) believing the chatbot they converse with is 
sentient (or close to it). When looking at a robotic production arm in an 
industrial setting, we do not automatically think of the Terminator, in the 
same way, we should not think of Blade Runner when reading about 
ChatGPT. The literature and film versions of robots and AIs are general: 
they have fully mastered to mimic humans and are able to make de
cisions and alter their behaviour almost freely. The robotic production 
arm and ChatGPT only mimic one very specific task, and, without 
explicit instructions, will not do that, either. 

3. Application in neuroscience 

3.1. Machine learning in preclinical neuroscience 

Identifying the neural elements that influence naturalistic behavioral 
motifs in freely moving animals stands as one of the paramount chal
lenges in contemporary neuroscience. To unravel these mechanisms, a 
variety of sophisticated ML/AI approaches are being formulated and 
utilized to discern behavioral patterns in rodents. (Fig. 4A). The detailed 
objective annotation of behavioural trajectories in real time without 
known influencing variables such as day and night phase or experi
menters are crucial characteristics of modern methods (Sorge et al., 
2014; Sadler et al., 2022). The capability to automatically extract be
haviors in rodents is a developmental leap that can fulfil this require
ment. In the age of machine and deep learning, it is possible to extract 
and quantify an almost infinite number of behavioural variables, to 
decompose behaviours into categories, subcategories and into minute 
behavioural sequences. However, the booming field of behavioural 
neuroethology still has limitations because the community has not yet 
consolidated, developed and applied methods, which translates to an 
insufficient transfer of models from lab to lab. This arises from inade
quately established benchmarking and the scarce availability of exten
sive, thoroughly annotated data sets. In addition, the extraction of 
numerous variables correlates with an increasing amount of data, which 
requires data organisation, transfer and storage options. This is associ
ated with a lack of platforms that enable the sharing of large data sets, 
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similar to sequencing databases in Omics (e.g., https://www.omicsdi. 
org and (Conesa and Beck, 2019)). In addition, most behavioural 
research labs have limited access to the latest tools for extracting and 
analysing behaviour, as their implementation requires advanced com
puter skills. 

The automated identification of behavioral motifs (stereotypical, 
sub-second) in most protocols unfolds through a graduated process and 
can be categorized into supervised and unsupervised approaches (as 
previously mentioned). In supervised approaches (e.g., JAABA (Kabra 
et al., 2013)), a user trains algorithms to recognise behavioural motives. 
In contrast, the unsupervised method (e.g., MoSeq (Wiltschko et al., 
2015)) separates individual vi. deo sequences into behavioural syllables 
without bias. The current development of applications that use indirect 
methods for behavioural extraction has emerged. Unsupervised or su
pervised ML approaches are also used in this indirect approach, the 
latter being the more common. In this method, virtual body landmarks 
of the animal (e.g., ears, paw, tail, etc, see Fig. 4B) are used to estimate 
body posture over time. Various open-source programmes can follow 
this approach. Examples of these tools include DeepLabCut (Mathis 
et al., 2018; Lauer et al., 2022), SLEAP (Pereira et al., 2022), DANNCE 
(Dunn et al., 2021) or Anipose (Karashchuk et al., 2021). 

Initiating the identification of behavioral patterns begins with vi. deo 
recording. In recent years, the enhancement in camera image quality, 
coupled with a substantial reduction in initial costs, has rendered this a 
feasible option for a wide-ranging community. This is especially true for 
the vi. deo sampling rate (frames per second), which is necessary to 
extract behavioural sequences that occur in the sub-second range (e.g., 
hind paw withdrawal response to a stimulus of different modality) and 
recording spectra (e.g., infrared). But also, the depth of field is a crucial 
characteristic, which, especially during observation in the home cage 
setting, is needed to track individual animals in three-dimensional space 
and to isolate complex behavioural patterns. Here, 3D approaches can 
also be helpful, using multiple cameras with different viewing angles to 
refine behaviour estimation in complex environments (e.g. laboratory 
cages) with multiple animals (Nath et al., 2019). Point estimation 
models allow not only individual observation but also behavioural 
extraction of multiple animals within the same vi. deo (same cage) 
sequence and the associated social interaction (Lauer et al., 2022; Per
eira et al., 2022). The construction of these markerless point estimation 
models employs neural networks with an encoder-decoder architecture 
to generate probability density diagrams. These diagrams are derived 
from features that the network is required to learn. Output diagram 
shows the probability of the existence of the learned feature. The 
resulting probability densities will be used for localisation, which is the 
basis for whole-body or whole-limb point skeletons for subsequent pose 
estimation and behaviour classification. In order to extract more 
nuanced behavioural signatures, such as grooming, straightening, 

rearing, social interaction from the point probabilities, advanced 
tracking algorithms are used in combination with other algorithms (e.g. 
UMAP (McInnes et al., 2018), random forest classifiers), or deep- 
learning models (e.g., recurrent convolutional neural networks). Tools 
used in this field to extract and quantify information on attitude and 
behaviour include SiMBA (Nilsson et al., 2020), B-SOiD (Hsu and Yttri, 
2021), MoSeq (Wiltschko et al., 2015) and uBAM (Brattoli et al., 2021), 
among others. The possibility of longitudinal 24/7 extraction of natu
ralistic behaviour, hypothesis-driven modulation of cage environment 
(e.g. day/night cycle, enrichment, selective socialisation of cage mates 
with different health status (Segelcke et al., 2023)) and integrating state- 
of-the-art optogenetic tools for the targeted modulation of neuronal 
structures makes such approaches even more valuable (Hao et al., 
2021). 

Some of these tools and analysis pipelines have already been vali
dated for the extraction of highly complex pain-related behaviour. Pain- 
related behaviours can be expressed in a variety of behavioural ways, 
but most assays have focused on experimental stimulation of the hind 
paw with noxious or non-noxious stimuli of different modalities (e.g., 
mechanical, thermal) and the resulting paw withdrawal response has 
established itself as the most common method for detecting pain-related 
behaviours (Deuis et al., 2017). Present ML approaches concentrate on 
enhancing the binary assessment of the withdrawal response by auto
mating the reflection and affective components, aiming to isolate sig
natures differentiating between noxious and non-noxious stimuli. In 
recent work, paw and body movement features can be automatically 
extracted from behavioural trajectories using e.g., PAWS (Pain Assess
ment at Withdrawal Speeds, based on SLEAP) to then identify infor
mation from paw kinematics (Abdus-Saboor et al., 2019; Jones et al., 
2020). Based on these data, a univariate pain score was developed using 
ordinal logistic regression for different harmless and noxious stimuli at 
the posterior paw and validated with basolateral amygdala activation 
(Jones et al., 2020). 

Taken together, ML/AI pipelines for automated behavioural analysis 
have proven to be extremely powerful in different research directions, 
with only a subset of current pain research in mice described here as an 
example. Increased implementation of these automated behavioural 
approaches (preferably using comparable systems) can, consequently, 
increase the efficiency and translational potential of preclinical in
vestigations and improve their reproducibility. For scientists working in 
neuro-behavioural research, there are unprecedented opportunities in 
implementing automated behavioural analysis tools. Increased tool 
implementation can consequently enhance the efficiency and trans
lational potential of preclinical investigations. However, a real 
improvement in the replicability and reproducibility of data from such 
innovative approaches can only be achieved in the long term based on 
comparable or uniform standards: a challenge that must be met in the 

Fig. 4. Applications of machine learning in animal behavioural analyses. (A) Using AI/ML approaches, rodent-specific behaviours can be identified, isolated, and 
characterised. (B) Due to the enormous amount of data collected, data storage and the manual annotation of data sets are challenges in this method. By manually 
annotating body parts of rodents, such as tails, paws, ears or even parts of the face, (C) estimate body posture models over time can be generated via an encoder- 
decoder network and in the next step, (D) behavioural components can be automatically detected and named. 
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future. 

3.2. Machine learning in neuro-gastroenterology 

Neuro-gastroenterology is the study of functional gut disorders such 
as irritable bowel syndrome (IBS) and functional dyspepsia, which are 
prevalent worldwide and can be challenging for clinicians to diagnose 
and treat and are critical for public health as they result in disability, 
impaired quality of life, and economic burden (Black and Ford, 2020). 

At its core is the understanding of the gut-brain axis, which describes 
the complex, bi-directional communication, and interaction between the 
central and enteric nervous system (Carabotti et al., 2015). Neuro- 
gastroenterology is a field with challenges that make it particularly 
suited to attempt machine learning approaches: for better understanding 
of the underlying mechanisms, using microbiomic and metabolomic 
datasets results in high-dimensional data, which needs to be integrated 
with multiple levels of patient-reported outcomes or imaging data 
(fMRI). Such complex, multi-layered data can be mined using ML (Kaur 
et al., 2021). 

There is increasing evidence that gut microbiota plays a key role in 
the regulation of the gut-brain axis. In addition to their local interactions 
with intestinal cells and the enteric nervous system, microbes in the gut 
have also been shown to modulate the central nervous system through 
neuroendocrine and metabolic pathways (Martin et al., 2018). It is 
becoming clear that the composition of the gut microbiome can there
fore influence a wide range of disorders – proximal somatoform 
gastrointestinal disorders such as functional dyspepsia and IBS, but also 
mental health disorders such as depression (Morais et al., 2021). Using 
ML, microbial signatures have been shown to potentially play a role in 
psychological distress in IBS (Peter et al., 2018), depression phenotype 
(Stevens et al., 2021), amnestic mild cognitive impairment (Liu et al., 
2021), autism-spectrum disorders (Wu et al., 2020), and others. A pilot 
clinical study demonstrated how using ML to personalise nutritional 
strategy based on individual gut microbiome features could lead the way 
towards a personalised treatment for IBS (Ghaffari et al., 2022). In this 
study, individual microbiome modulation through diet significantly 
improves IBS-related symptoms in patients with IBS-mixed over regular, 
non-individualised IBS diet (Karakan et al., 2022). While all these 
findings should be seen as serendipitous, exploratory findings for now, 
they might advance our understanding of the generation, and potential 
treatment, of these diseases in previously unexpected ways. 

AI-assisted decision-making might in the future add to clinical al
gorithms (Kordi et al., 2022), although current findings need to be 
independently validated and replicated. However, we are starting to 
learn crucial lessons along the way: for example, IBS-constipation and 
functional constipation have been treated as distinct conditions, thought 
to have distinct pathophysiology. Using an ML approach to compare the 
accuracy of diagnostic models for IBS-constipation and functional con
stipation based on ’uni-symptomatic’ versus ’syndromic’ models, Ruffle 
et al (Ruffle et al., 2021) have shown that syndromic models do not 
significantly improve diagnostic accuracy, which suggests that they are 
not separate conditions but a single syndrome within one clinical 
spectrum. 

Integration of structural and functional brain imaging into neuro- 
gastroenterology will lead to a deeper understanding of disease mech
anisms, and a better understanding of the microbiome-gut-brain axis 
(Mayer et al., 2019). Using a support vector machine ML approach, Mao 
et al (Mao et al., 2020) showed an altered resting-state functional con
nectivity and effective connectivity of the habenula for IBS patients 
compared to healthy controls, advancing our understanding of the brain 
regions involved in IBS. 

Taken together, neuro-gastroenterology is a field that can certainly 
profit from the application of ML approaches. However, current studies 
often suffer from low reporting quality, and the complex nature of data 
involved calls for the creation of larger, multi-site consortia to generate 
reliable, high-quality, multi-dimensional data of high external validity 

(Mayer et al., 2019). We look forward to the findings of prospectively 
designed and registered studies, which will provide the first confirma
tory results in the field (Berentsen et al., 2020). 

3.3. AI in the intersection of cognitive, computational, and clinical 
neurosciences 

AI and cognitive neuroscience live in a symbiotic relationship. While 
the former continuously draws inspiration from our knowledge of bio
logical neural systems to develop artificial neural networks, the latter 
harnesses the power of AI to expand our understanding of these bio
logical systems (Kriegeskorte and Douglas, 2018). Examples range from 
the use of computational models based on reinforcement learning al
gorithms or recurrent neural networks to model human adaptive 
behaviour and decision making (Gläscher et al., 2010; Ito et al., 2022), 
to deep neural networks that help us better understand and decode how 
brain activity represents images viewed (Seeliger et al., 2018), and 
words heard or spoken by (Anumanchipalli et al., 2019; Goldstein et al., 
2022) human participants. 

In addition to enhancing our understanding of micro- and macro
scale neurocomputational processes, AI/ML have the potential to open 
up new avenues for translational and clinical research. ML-based pre
dictive models, commonly referred to as “neural signatures” or “neu
romarkers”, integrate information from complex neural measures (fMRI, 
EEG, MEG, etc.) to decode and predict various clinical and behavioural 
traits or states. 

Several studies aim to construct neuromarkers that can directly di
agnose or characterise various clinical conditions (de Vos et al., 2018; 
Horien et al., 2022; Jiang et al., 2023). In such studies, however, it often 
becomes hard to disentangle what is being modelled because of the 
multidimensional and heterogeneous nature of clinical conditions and 
co-occurring health conditions (e.g., co-morbidities, medication use). 
Neuromarker research has thus turned towards the so-called “compo
nent process approach” (Woo et al., 2017), which aims to first develop 
neural signatures for basic “component processes”, i.e. basic traits or 
states that can be examined in standardised circumstances and even 
experimentally manipulated in some cases. The resulting neural signa
tures can serve as robust and explainable intermediate features for the 
modelling of multiple clinical conditions. One of the pioneering exam
ples is the Neurologic Pain Signature (NPS (Wager et al., 2013)), a 
machine learning model that derives an objective readout of ongoing 
pain experience from brain activity, as measured by fMRI. The NPS has 
been extensively validated by a series of studies and was found to display 
high reliability, broad external validity, and strong effect sizes in large 
independent samples (Zunhammer et al., 2018; Han et al., 2022). Task- 
elicited brain activity has also been found to be predictive for vicarious 
pain (Zhou et al., 2020), fear (Zhou et al., 2021), negative affect (Chang 
et al., 2015), craving (Garrison et al., 2023), reward (Speer et al., 2023) 
and many other states and traits. Multivariate ML models can also 
capitalise on brain activity measured in lack of any explicit stimulation 
(resting state), or even on brain morphology, to predict individual traits 
like pain sensitivity (Spisak et al., 2020; Kotikalapudi et al., 2023), 
learning (Kincses et al., 2023), cognition (Sripada et al., 2020), intel
lectual capacity (Tong et al., 2022), and others. 

While ML-based brain signatures can reach unprecedented effect 
sizes (Hedges g = 2.3 in case of the NPS), predictive modelling itself is 
not a magic bullet. The lack of external validation and bad methodo
logical practice lead, in many cases, to overly optimistic performance 
estimates and unrealistic expectations regarding the usefulness of such 
models (Sui et al., 2020; Varoquaux and Cheplygina, 2022). Just like 
traditional univariate analyses, such low-performing models still suffer 
from limited power, replicability, and predictive utility even with 
sample sizes in the thousands (Marek et al., 2022; Spisak et al., 2023). 
Another problem is that such brain-based models are susceptible to 
capture spurious or out-of-interest associations that can be detrimental 
to the model’s clinical validity and generalizability and lead to 
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sensitivity to artefacts – in practice, this can mean minority- 
disadvantaging or racially biased models (Spisak, 2022). 

In summary, AI holds immense potential not only for expanding our 
understanding of how the brain works but also for making this knowl
edge applicable in clinical contexts and to complement existing clinical 
approaches. However, to realise this potential, neuromarkers of the 
future must overcome significant challenges, such as ensuring broad 
generalizability across diverse contexts, promoting equity across sub
populations, and developing models with high neuroscientific validity 
and interpretability. 

4. Resources and further reading 

There are multiple starting points to experimenting with ML, for a 
user experienced in using Python, we highly recommend scikit-learn 
(Pedregosa et al., 2011). Its rich online resources and as well as its focus 
on essential methods make it a great place for beginners that still goes a 
long way. Fig. 2 has been created using sample data from scikit-learn. 
For a (pun intended) deeper dive, tensorflow (Ramsundar, 2018) and 
PyTorch (Ketkar, 2017) are open-source platforms for deep learning by 
Google and OpenAI. 

A developing quasi-standard in biological data science is R statistical 
computing (R Core Team, 2022). R is an incredibly rich open-source 
project, with endless resources for biomedical sciences. A dedicated 
online community has created packages (collections of functions) for 
almost every possible task. For machine learning specifically, this in
cludes for example caret (for regression models), e1071 (for k-nearest 
neighbours and support vector machines), neuralnet (for neural net
works), and keras (for deep learning). The advantage of using R is that is 
does not stop at ML: there are excellent tools for any aspect of 
biomedical data, many of them have been collated within the Bio
conductor project (Gentleman et al., 2004). Visualisation of any plot can 
be achieved using ggplot2, and shinyapps allow construction of web- 
based user interfaces. There are also commercial packages for ML, 
Matlab for example has a valuable ML toolbox and is used for both 
commercial and research applications. 

We have aimed to provide a short introduction to machine learning 
in general, and its application in neurosciences, but of course, this has 
remained somewhat superficial. Others have taken similar, but com
plimentary approaches. Connor (Connor, 2019) provides a more 
methods-focussed introduction, while others focus on practical aspects 
for application in, e.g., pain research (Lötsch et al., 2022). For deeper 
reads, there are many. For using R in biomedical research, the University 
of California, Riverside, has collated excellent learning materials 
(GEN242, 2022). Finally, Zou and Schiebinger (Zou and Schiebinger, 
2018) summarise bias inherent in human data and what it means for AI 
in a plastic way. 

5. Future directions and closing remarks 

ML and AI have multiple inherent risks and fallacies; however, their 
success is undeniable, and for better or worse, their use in biomedical 
sciences is unstoppable at this point. The recent advancements in deep 
learning, as exemplified in the changes between GPT-3 and GPT-4 have 
been at an unforeseen pace, and teething problems aside, AIs will soon 
outperform humans in countless tasks. 

We would argue that as most AIs remain a black box, with decision 
making that can be influenced by human bias or unexpected elements of 
training data, their best use is for hypothesis generation, exploratory, 
and discovery research. Their use in medical decision making depends 
on the context and, in many circumstances can be problematic, while 
ethical issues are not resolved, and explainable AI has not moved for
ward significantly. Since currently, AIs remain black boxes, these should 
at most be one of multiple indicators for human-centred decision 
making. 
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