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A quantum battery with quadratic driving
Charles Andrew Downing 1✉ & Muhammad Shoufie Ukhtary1,2

Quantum batteries are energy storage devices built using quantum mechanical objects, which

are developed with the aim of outperforming their classical counterparts. Proposing optimal

designs of quantum batteries which are able to exploit quantum advantages requires bal-

ancing the competing demands for fast charging, durable storage and effective work

extraction. Here we study theoretically a bipartite quantum battery model, composed of a

driven charger connected to an energy holder, within two paradigmatic cases of a driven-

dissipative open quantum system: linear driving and quadratic driving. The linear battery is

governed by a single exceptional point which splits the response of the battery into two

regimes, one of which induces a good amount of useful work. Quadratic driving leads to a

squeezed quantum battery, which generates plentiful useful work near to critical points

associated with dissipative phase transitions. Our theoretical results may be realized with

parametric cavities or nonlinear circuits, potentially leading to the manifestation of a quantum

battery exhibiting squeezing.
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The Laws of Thermodynamics allow for a complete
description of classical thermal machines, from classical
heat engines to refrigerators. However, the ongoing trend

for device miniaturisation inevitably led to quantum effects
becoming important. This realisation required the development
of theories of thermal energy conversion in the quantum
regime1,2. Shortly afterwards, an influential study of energy sto-
rage and transduction at the nanoscale pioneered the concept of a
quantum system storing and releasing energy on demand: a
quantum battery3,4.

An archetypal quantum battery model consists of two parts,
the battery holder and the battery charger. The holder is essen-
tially isolated from the external environment in order to prevent
energy loss, and hence it is modelled as a dissipationless sub-
system. In order to receive energy, the battery holder then needs
to be coupled to the battery charger. The charger subsystem is
supposed to feel the environment—allowing it to be driven—but
this comes at the cost of the charger suffering from dissipation.
After charging for some finite period of time, the battery holder is
disconnected from the battery charger so that energy storage, and
eventually energy extraction on demand, may occur5. This fun-
damental bipartite quantum battery model, along with its char-
ging, storage and discharging performances, has been considered
theoretically in various guises over the last few years of intensive
quantum battery research6–23.

Experimentally, superabsorption in a Dicke-style quantum
battery has already been reported24, as has a detailed investigation
of collective charging in a variety of spin-based systems25. The
realisation of a quantum battery based upon a superconducting
qutrit, including a characterisation of its charging and self-
discharging processes, has also been achieved in some recent and
rather ingenious experiments26. Meanwhile, the first steps in
gauging the performance of quantum emitters and light fields for
the purpose of energy transfer have been performed empirically27.
Complementary studies of the energetics of various quantum
objects, including qubits28,29 and nuclear spins30, demonstrate
the promise of this nascent quantum technological field.

In what follows, we consider theoretically the celebrated
bipartite quantum battery model, where the battery charger and
battery holder are modelled as two coupled quantum harmonic
oscillators, in two different circumstances. Firstly, we revisit the
linear (one-photon) driving setup as discussed by Farina and co-
workers5. This study lays the theoretical framework for the
Gaussian quantum batteries considered and acts as a comparator
for the second case of interest: a quadratic (two-photon) driving
arrangement31–35. The latter case of parametric driving sig-
nificantly alters the underlying physics of the quantum battery

due to the inducement of spectral collapse, quantum squeezing,
dynamic instabilities and dissipative phase transitions. Most
importantly, we reveal that the quadratic quantum battery allows
for abundant useful energy to be stored in it when the driving
amplitude is near certain critical values.

Results
Bipartite quantum battery model. The total Hamiltonian
operator Ĥ of the composite quantum battery system can be
decomposed into four parts,

Ĥ ¼ Ĥc þ Ĥh þ Ĥc�h þ Ĥd; ð1Þ
which accounts for the battery charger energy, the battery holder
energy, the charger-holder coupling and the coherent driving of
the charger, respectively. Taking ℏ= 1 throughout, these
Hamiltonian contributions are—each in turn—defined by

Ĥc ¼ ωb c
yc; ð2Þ

Ĥh ¼ ωb h
yh; ð3Þ

Ĥc�h ¼ g cyhþ hyc
� �

; ð4Þ

Ĥd ¼ Ωeiθe�iωdt cy þ h:c: : ð5Þ
The energy level spacings of the harmonic oscillators modelling
the battery charger and the battery holder are equal at ωb, the
coupling strength between them is g, and the laser driving the
charger has an amplitude Ω ≥ 0, phase θ and frequency ωd.
Excitations in the battery charger are created and destroyed by
the operators c† and c, respectively, while the ladder operators h†

and h track the transitions up and down the energy ladder of the
battery holder. Both flavours of the operator are subject to
bosonic commutation relations, [c, c†]= 1 and [h, h†]= 1.
Notably, the counter-rotating terms ∝ ch and ∝ c†h† not
appearing in the coupling Hamiltonian of Eq. (4) have been
dropped since they are small for typical couplings g satisfying
g≪ ωb. Therefore, we do not enter the so-called ultrastrong
coupling regime, as commonly defined without reference to
losses36–39 (see also Supplementary Notes 2 and 3, where we find
that this rotating-wave approximation is a good one for any
coupling g satisfying g≲ ωb/1000). A graphical representation of
this bipartite battery arrangement, as captured mathematically by
Eq. (1), is sketched in Fig. 1a. This cartoon includes the three key
parameters of the model: the driving amplitude Ω, the charger-
holder coupling g, and the loss rate of the charger γ.

Fig. 1 The linear quantum battery and its steady state. Panel a: a sketch of the bipartite quantum battery (both parts are modelled as quantum harmonic
oscillators, with the level spacing ωb), composed of a battery charger coupled to a battery holder with the coupling strength g (green bar). The charger is
driven coherently (cyan arrow) with an amplitude Ω, phase θ and frequency ωd, while it suffers a loss (yellow arrow) at the decay rate γ. Panel b: the
ergotropy E in the steady state (in units of ωb) as a function of Ω and Δ (both in units of γ) from Eq. (16). Here the coupling g= γ. Panel c: as for panel
b, but with g ¼ γ=ð2

ffiffiffi
2

p
Þ ’ 0:35γ. Panel d: the detuning Δ associated with the maximum of the steady state ergotropy E, as a function of the coupling g [cf.

Eq. (17)]. Panel e: a semi-logarithmic plot of the maximum of the steady state ergotropy E, in units of ωb and scaled by (γ/Ω)2, as a function of the coupling
g [cf. Eq. (18)].
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While the battery holder is approximated as a dissipationless
subsystem, we consider the battery charger subsystem to suffer
loss (as measured with the decay rate γ, where γ ≥ 0). Within an
open quantum systems approach40,41, we employ the
Gorini–Kossakowski–Sudarshan–Lindblad quantum master
equation for the density matrix ρ, in the standard form
∂tρ ¼ i½ρ; Ĥ� þ ðγ=2ÞLc ρ

� �
. Here the Lindbladian superoperator

Lc ρ
� � ¼ 2cρcy � cycρ� ρcyc acts on ρ, while the unitary

dynamics of the closed system are provided by the Hamiltonian
operator Ĥ of Eq. (1). In arriving at this master equation, we have
employed the Born approximation (due to the assumption of
weak interactions between the system and the environment), the
Markov approximation (due to the supposition that the memory
of the environment is much shorter than that of the system), and
the secular approximation (due to certain transition frequencies
leading to quickly-rotating terms which are neglectable)40.

In order to judge the energetic performance of the quantum
battery there are two crucial energies of interest, Eh and Eβ

h, which
are both associated with the battery holder5

Eh ¼ TrfĤhρhg; ð6Þ

Eβ
h ¼ TrfĤhρ

β
hg; ð7Þ

here the reduced density matrix ρh of the battery holder
subsystem h is defined by ρh ¼ Trcfρg, where the partial trace
over the battery charger subsystem c has been taken. The quantity
Eh in Eq. (6) measures the mean energy stored in the battery
holder due to the state ρh. However, not all of this energy Eh may
be useful (for example, the system may be in thermal
equilibrium). The state ρβh appearing in Eq. (7) is the so-called
passive state of the battery holder, which has the property that no
work can be extracted from it cyclically under unitary
evolution42–44. The passive state ρβh can be obtained by re-
ordering the eigenvalues of the Hamiltonian and density matrix
appropriately45. The energies of Eq. (6) and Eq. (7) may then be
simply combined into an influential measure—the so-called
ergotropy E—like so

E ¼ Eh � Eβ
h; ð8Þ

which measures the upper bound of the useful energy stored
within the battery holder45. The ergotropy E will be nonzero if the
state ρh is non-passive, which can arise due to population
inversion or thanks to certain coherences for example. Under-
standing the dynamical and steady state behaviours of the
ergotropy E for the bipartite quantum battery, with linear and
quadratic drivings respectively, is the principle goal of this
theoretical study.

For the purposes of the following calculations, it is convenient
to work with the rotated density matrix ρ ! ~ρ, found via the

transformation ~ρ ¼ eiωdt cycþhyhð Þρe�iωdt cycþhyhð Þ. This leads to the
quantum master equation for ~ρ, complete with the effective
Hamiltonian operator Ĥ, as follows [cf. Eqs. (2)–(5)]

∂t~ρ ¼ i ~ρ; Ĥ� �þ γ

2
Lc ~ρ
� �

; ð9Þ

Ĥ ¼Δ cycþ hyh
� �þ g cyhþ hyc

� �
þΩ eiθcy þ e�iθc

� �
;

ð10Þ

where we have introduced the driving-battery detuning frequency
Δ= ωb− ωd. The rotation of the reduced density matrix ρh ! ~ρh
is similarly governed by ~ρh ¼ eiωdth

yhρhe
�iωdth

yh, such that the
energies of interest [cf. Eq. (6) and Eq. (7)] can be equivalently
written as Eh ¼ TrfĤh~ρhg and Eβ

h ¼ TrfĤh~ρ
β
hg. Furthermore, the

properties of traces and partial traces allows for the aforemen-
tioned energetic quantities, given in terms of the reduced density
matrices ~ρh and ~ρβh, to be reconfigured in terms of the full (and
rotated) density matrix ~ρ like so: TrfĤh~ρhg ¼ TrfĤh~ρg and

TrfĤh~ρ
β
hg ¼ TrfĤh~ρ

βg. Given this identification, one can use the
trace property TrfO~ρg ¼ hOi, which is valid for any operator O,
to simplify both energies of interest Eh and Eβ

h. We consider the
initial state of the system (at t= 0) to be the product of the local
vacuum states of the battery charger and battery holder
respectively, ~ρ t ¼ 0ð Þ ¼ 0j i 0h jc � 0j i 0h jh, after which both battery
components start to interact as the charging process commences.

Pleasingly, one may exploit some neat properties of Gaussian
systems46–48 in order to fully determine the passive state energy
Eβ
h (see Supplementary Note 1 and elsewhere5 for more details).

We then finally arrive at compact expressions for both Eq. (6) and
Eq. (7) in terms of operator expectation values, as follows

Eh ¼ ωbhhyhi; ð11Þ

Eβ
h ¼ ωb

ffiffiffiffiDp
� 1
2

� �
: ð12Þ

Here we have introduced the dimensionless quantity D, which
collects the first and second moments of the battery holder, that is
objects like 〈h〉 and 〈h†h〉, in the form

D ¼ 1þ 2hhyhi � 2hhyihhi	 
2 � 4 hhhi � hhi2
�� ��2: ð13Þ

Now the ergotropy E of the battery holder can be readily
computed via Eq. (8), along with Eq. (11)–(13). In what follows,
we consider the dynamical and steady state ergotropies for the
composite quantum battery system, firstly with the one-photon
driving case of Eq. (5) and then for the arguably more interesting
quadratic case, featuring two-photon driving of the battery
charger.

Linear quantum battery. The situation with one-photon coher-
ent driving, as sketched in Fig. 1a and as governed by the
Hamiltonian operator Ĥ of Eq. (10), readily allows for analysis of
the first and second moments (as is carried out in Supplementary
Note 2, see also calculations in the literature5 for the more specific
case with Δ= 0). Since the system correlators factorise perfectly,
such that 〈h†h〉= 〈h†〉〈h〉 and 〈hh〉= 〈h〉〈h〉 for example, the key
quantity D as defined in Eq. (13) simply reduces to

D ¼ 1: ð14Þ

This correlator factorisation stems from the joint battery
charger–battery holder system evolving in a product state46–48.
(Notably, the neat Eq. (14) is not met when there is nonzero
incoherent driving, which leads to unuseful energy storage in that
particular case, as discussed previously5). Given the form of Eq.
(14), the battery holder state must be pure due to the properties of
Gaussian systems48. Hence all of the stored energy in the battery
holder is useful because the passive state energy must be [cf.
Eq. (12)]

Eβ
h ¼ 0: ð15Þ

Therefore the ergotropy-to-battery-holder energy ratio for the
linear quantum battery is, most pleasantly, a perfect one: E=Eh ¼
1 [cf. Eq. (8)].

In the steady state (t→∞), the ergotropy E, and identically the
energy Eh of the battery holder, are simply given by [see Eq. (11)
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and Supplementary Note 2]

lim
t!1

E ¼ lim
t!1

Eh ¼ ωb

gΩ
� �2

Δ2 � g2
� �2 þ γ

2Δ
� �2 : ð16Þ

Quite intuitively, maximising the steady state ergotropy E
requires the maximisation of the driving amplitude Ω and the
minimisation of the charger decay rate γ. There is a more
complicated competition between the charger-holder coupling
strength g and the driving-battery detuning Δ. Typical circum-
stances are plotted in Fig. 1b, c, for example, cases with the
couplings g= γ and g ¼ γ=ð2 ffiffiffi

2
p Þ ’ 0:35γ, respectively. In these

two panels, the darker the colour the larger the steady state
ergotropy E, showcasing how the ergotropic maximum depends
nontrivially on the detuning Δ. Denoting the specific value of the
detuning Δ corresponding to the ergotropy maximum in the
steady state as Δ0, one finds the relation

Δ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � γ

2
ffiffiffi
2

p
� �2

s
Θ g � γ

2
ffiffiffi
2

p
� �

; ð17Þ

where Θ(x) is the Heaviside step function. This formula suggests
that zero detuning is optimal for smaller couplings g ≤ γ=ð2 ffiffiffi

2
p Þ

below a critical value, while otherwise a nonzero detuning is
preferable—as is hinted at in Fig. 1b, c and as shown explicitly in
Fig. 1d. Inserting Eq. (17) into Eq. (16) yields the most desirable
steady state egrotopies E, depending upon the relative weightings
between g and γ, as follows

lim
t!1

maxfEg ¼
ωb

Ω
g

� 
2
; g ≤ γ

2
ffiffi
2

p ;

ωb
Ω
γ

� 
2 4gð Þ2
2gð Þ2� γ

2ð Þ2 ; g> γ

2
ffiffi
2

p ;

8><
>: ð18Þ

as is plotted explicitly in Fig. 1e. Most notably, for smaller
couplings g ≤ γ=ð2 ffiffiffi

2
p Þ there is a simple quadratic relation for the

largest steady state egrotropy, as was discussed in detail
previously5. For larger couplings g � γ=ð2 ffiffiffi

2
p Þ, the largest steady

state egrotopy becomes independent of the coupling g as it tends
towards lim

t!1
E ¼ ωbð2Ω=γÞ2, which features a natural competi-

tion between the drive amplitude Ω and the decay rate γ.
The time-dependent behaviour of this linear quantum battery

is mainly determined by the complex eigenvalues ϵ±, which arise
from the dynamical matrix describing the first moments of the

system (see Supplementary Note 2), like so

ϵ± ¼ Δ±G� i
γ

4
; ϕ± ¼

1
g

ϵ±�Δ

 !
; ð19Þ

where ϕ± are the associated eigenvectors. Here we have
introduced the renormalized coupling strength G and (for use
later on) a closely associated parameter known here as the
renormalized decay rate Γ, which are defined together via

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � γ

4

� 
2r
; Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

4

� 
2
� g2

r
: ð20Þ

The real and imaginary parts of the complex eigenvalues ϵ± are
plotted in Fig. 2a, b using Eq. (19). Most interestingly when the
coupling strength satisfies g= gEP (dashed and grey vertical lines
in both panels), where

gEP ¼ γ

4
; ð21Þ

the twin objects provided in Eq. (19) simultaneously coalesce,
such that Eq. (21) highlights the presence of an exceptional point
in the dynamical system. Exceptional points are known to be
highly consequential in systems which may be described as
non-Hermitian in some sense, and typically they mark the
borderland between regimes with very different physical
responses49–53.

The dynamical ergotropy E can be calculated using the
framework built in Supplementary Note 2, and the analysis is
most easily done for the case of zero drive-battery detuning
(Δ= 0). We start by noting that in the completely dissipationless
battery charger limit (that is, when γ→ 0), one finds the
oscillating ergotropy

lim
γ!0

E ¼ ωb
2Ω
g

� �2

sin4
gt
2

� 

; ð22Þ

which clearly reaches its maximum value of ωb(2Ω/g)2 at the time
t= π/g (and at all later times with the periodicity of 2π/g). Within
this lossless regime, we have also obtained the result equivalent to
Eq. (22) but with the counter-rotating terms in the coupling
Hamiltonian of Eq. (4) also included, which may be useful for
future considerations of ultrastrongly coupled systems (see
Supplementary Note 2). Otherwise, within the full driven-
dissipative theory, there are two regimes of interest (split by an
intermediate marginal case) due to the presence of the
exceptional point of Eq. (21). These cases may be described

Fig. 2 The linear quantum battery and its dynamics. Panel a: the real parts of the complex eigenvalues ϵ±, shifted by the drive-battery detuning Δ, as a
function of the charger-holder coupling strength g (both in units of the charger damping rate γ) using Eq. (19). Panel (b): as for panel (a), but for the
imaginary parts. Dashed grey lines: the exceptional point gEP [cf. Eq. (21)]. Panel c: the ergotropy E, scaled by (γ/Ω)2 and in units of ωb, as a function of
time t (in units of the inverse of γ). Thick coloured lines: the results for various values of the coupling g above the exceptional point (g≥ gEP). Thin grey
lines: intermediate couplings as guides for the eye. Panel d: as for panel (c), but for couplings g below the exceptional point (g≤ gEP), and plotted as a semi-
logarithmic plot. In panels (c) and (d), we consider the case of zero detuning (Δ= 0), as governed by Eqs. (23)–(25).
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analytically with the expressions

E ¼ ωb
Ω

g

� �2

1� cosh Γtð Þ þ γ

4Γ
sinh Γtð Þ

h i
e�

γ
4t

n o2
; g < gEP;

ð23Þ

E ¼ ωb
4Ω
γ

� �2

1� 1þ γt
4

h i
e�

γ
4t

n o2

; g ¼ gEP; ð24Þ

E ¼ ωb
Ω

g

� �2

1� cos Gtð Þ þ γ

4G
sin Gtð Þ

h i
e�

γ
4t

n o2
; g > gEP; ð25Þ

where the twin frequencies G and Γ are both defined in Eq. (20).
Remarkably, the physics of the exceptional point ensures
damped-hyperbolic, damped-algebraic and damped-
trigonometric ergotropic behaviours are all possible, depending
upon the relative strength of the charger-holder coupling g as
compared to the charger decay rate γ. Notably, we always
maintain the coupling regime g≪ ωb within our driven-
dissipative theory in order to avoid the discarded counter-
rotating terms in the original Hamiltonian becoming non-
negligible, as was discussed after Eq. (5). Nevertheless, in the
extreme limiting cases of very weak (g≪ γ) and very strong
(g≫ γ) couplings, as defined in comparison to the loss parameter
γ only, the ergotropy E follows the even simpler approximate
expressions

lim
g�γ

E ’ ωb
Ω

g

� �2

1� e�
γ
4�Γð Þtn o2

; ð26Þ

lim
g�γ

E ¼ ωb
Ω

g

� �2

1� cosðgtÞe�γt
4

n o2
: ð27Þ

With vanishing coupling g, the rough expression of Eq. (26)
demonstrates the exponential rise in time of the erogtropy E
towards its eventual steady state value [cf. Eq. (16)]

lim
t!1

E ¼ ωb
Ω

g

� �2

; ð28Þ

as delicately controlled by the time constant (γ/4−Γ)−1 and its
double within Eq. (26). The very strong coupling g result of
Eq. (27) describes periodic oscillations, optimally bounded by 0
and ωb(2Ω/g)2, which are gradually damped out towards the

common steady state ergotropy of Eq. (28), which is notably at a
value of one-quarter of its dynamical maximum.

The time-dependent ergotropy E, for various couplings g > gEP
above the exceptional point is shown in Fig. 2c using the exact
result of Eq. (25). This panel displays Rabi-style oscillations
(which are stronger with larger g) before an eventual decay into a
steady state with a rather moderate ergotropy E. The red line in
panel (c) represents the border case, as governed by Eq. (24),
where the coupling g= gEP exactly. For smaller couplings g < gEP
below the exceptional point, the dynamics are similarly plotted in
Fig. 2d using Eq. (23). Now Rabi-style oscillations are entirely
absent, and the system instead monotonically increases in time
towards a plateau at a much larger ergotropy E [cf. Eq. (28)],
albeit at the cost of much larger charging times. We have checked
that the general physics of the linear quantum battery, including
the interesting exceptional point physics, is maintained even after
the inclusion of loss from the battery holder (see Supplementary
Note 2).

Quadratic quantum battery. The perspectives for a highly
ergotropic quantum battery can arguably be improved by instead
considering parametric driving54–57. The quadratic nature of the
resultant Hamiltonian ensures that the ergotropy-to-battery
holder energy ratio can be readily calculated using the same
Gaussian theoretical framework as for the linear quantum battery
[cf. Eqs. (11)–(13)], while the two-photon driving should lead to
larger population inversions.

Let us replace the original driving Hamiltonian Ĥd of Eq. (5)
with a two-photon drive given by

Ĥd ¼
Ω

2
eiθe�2iωdtcycy þ e�iθe2iωdtcc
� �

; ð29Þ

which nicely fits into the full Hamiltonian operator Ĥ of Eq. (1).
This quadratic quantum battery model is sketched in Fig. 3a, where
the parametric drive is of amplitude Ω ≥ 0, phase θ and frequency
2ωd. The analysis leading to the quantum master equation of Eq. (9)
also holds for the quadratic driving case after the replacement of the
effective Hamiltonian operator Ĥ of Eq. (10) with

Ĥ ¼Δ cycþ hyh
� �þ g cyhþ hyc

� �
þ Ω

2
eiθcycy þΩ

2
e�iθcc:

ð30Þ

Fig. 3 The quadratic quantum battery and its dynamics. Panel a: a sketch of the bipartite quantum battery (both parts are modelled as harmonic
oscillators, with the level spacing ωb), composed of a battery charger coupled to a battery holder at the coupling strength g (green bar). The charger is
driven parametrically (two cyan arrows) with an amplitude Ω, phase θ and frequency 2ωd, while it suffers a loss (yellow arrow) at the decay rate γ. Panel b:
a semi-logarithmic plot of the ergotropy E (in units of ωb) as a function of time t (in units of the inverse of γ) [cf. Eq. (11) and Eq. (12) with Eq. (44)]. Inset:
as for panel b, but with the ergotropy E scaled by its maximum value and with the timescale considered extended. Panel c: a semi-logarithmic plot of the
power P ¼ E=t (in units of ωbγ) as a function of time t. In panels b and c, we consider the case where g= γ and Δ= γ/2, so that from Eq. (40), the first
critical driving amplitude Ωð1Þ

c ¼ ffiffiffi
5

p
=2γ ’ 1:118γ, while the second critical driving amplitude Ωð2Þ

c ¼
ffiffiffiffiffiffiffiffi
5=2

p
γ ’ 1:581γ [cf. Eq. (41)]. The plot legend in panel

(c) also applies to panel (b) and marks the various driving amplitudes Ω considered.
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The two-photon driving appearing within Eq. (30) implies the
presence of quantum squeezing58, in stark contrast to the
one-photon driving case described previously in Eqs. (2)–(5). The
quadratic Hamiltonian operator Ĥ provided in Eq. (30) may be
diagonalized exactly by bosonic Bogoliubov transformation59,60 into
the two-mode form

Ĥ ¼ ∑
τ¼±

ωτβ
y
τβτ ; ð31Þ

where the mode index τ= ± characterises the two Bogoliubov
eigenfrequencies ω±, as defined by the expression

ω± ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ g2 �Ω2

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 Ω2

4
� g2

� �
þ 4g2Δ2

svuut : ð32Þ

The twin Bogoliubov operators β± appearing in Eq. (31) satisfy the
standard bosonic commutation rule ½β± ; β

y
± � ¼ 1, and they are

composed of all four operators of the problem (c, h, c†, and h†) as
follows

β± ¼ 1ffiffiffi
2

p

cosh μ±
� �

cosh ν±
� �

eiθ sinh μ±
� �

eiθ sinh ν±
� �

0
BBBB@

1
CCCCA

T

�

c

h

cy

hy

0
BBB@

1
CCCA; ð33Þ

where the Bogoliubov coefficients in Eq. (33) may be found from
the hyperbolic tangent relations

tanh μ±

� � ¼ Ω Δþ ω±

� �
Δþ ω±

� �2 � g2
; ð34Þ

tanh ν ±

� � ¼ Ω Δ� ω±

� �
Δþ ω±

� �2 � g2
: ð35Þ

We also note that inverting the operators of Eq. (33) allows for the
nontrivial vacuum state populations of the battery charger and
battery holder to be calculated (see Supplementary Note 3), while

the squeezing promised by the counter-rotating driving terms is
considered later on. Most interestingly, the two Bogoliubov
eigenfrequencies ω± of Eq. (32) are not wholly real for all values
of the three Hamiltonian parameters Δ, Ω and g. This suggests a
spectral collapse61,62 within the purely Hamiltonian theory of Eq.
(30) in certain parameter regimes. The phase diagram implied by
the stability of the solely Hamiltonian operator Ĥ approach is
plotted in Fig. 4a, where the boundaries (grey lines) are defined by
the three equations [cf. when Eq. (32) become complex]

Ω ¼
���Δ� g2

Δ

���Θ Δ

g
� Ξ

� �
; ð36Þ

Ω ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

Δ

g

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

Δ

g

s !
Θ

1
2
� Δ

g

� �
; ð37Þ

Ω ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

Δ

g

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

Δ

g

s !
Θ

1
2
� Δ

g

� �
Θ

Δ

g
� Ξ

� �
; ð38Þ

where the dimensionless number Ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

p � 2
p

’ 0:486. The
diagram of Fig. 4a hints at a classification where the stable regions
(blue, real ω±) are associated with convergent-in-time dynamics,
while the unstable regions (white, complex ω±) should not be able
to support a steady state due to their divergent-in-time dynamics.
The introduction of dissipation into the system via the quantum
master equation of Eq. (9) upgrades the simple Hamiltonian
dynamics of Eq. (31) and necessarily updates the phase diagram of
Fig. 4a in a more physically meaningful manner (for example, the
imaginary parts of complex eigenfrequencies can then be
interpreted as being related to inverse lifetimes), as we now explore
with proper reference to the steady state of the full driven-
dissipative system.

Within an open quantum systems approach, the steady state
energy of the battery holder Eh [cf. Eq. (11)] may be found from
the first and second moments of the system (see Supplementary

Fig. 4 The quadratic quantum battery and its phase diagram. Panel a: the Hamiltonian phase diagram of the quantum battery, as a function of the drive-
battery detuning Δ and the two-photon driving amplitude Ω (both in units of the charger-holder coupling strength g). The stable (blue) region is associated
with wholly real Hamiltonian eigenfrequencies ω±, and the unstable (white) region corresponds to at least one complex eigenfrequency [cf. Eq. (32)]. Grey
lines: boundaries coming from Eq. (36)–(38). Panel b: the Liouvillian phase diagram of the quantum battery in the steady state (t→∞), as a function of Δ
and Ω (both in units of the charger damping rate γ). The white region corresponds to the situation where no steady state can be formed, while the coloured
region describes when a steady state is established. The borders are given by Eq. (40) and Eq. (41). Colour bar: the battery holder energy Eh in the steady
state (in units of the battery holder energy level spacing ωb) from Eq. (39). In this panel, we consider the case of g= γ, and we cap the energy at the
maximum value of Eh= 4ωb in the colour bar. Panel c: a logarithmic plot of the salient steady state energies as a function of Ω (in units of γ). The ergotropy
E (thick red line) [cf. Eq. (8)], the battery holder energy Eh (medium cyan line) [cf. Eq. (39)], and the battery holder energy in the passive state Eβh (thin
yellow line) [cf. Eq. (12) with Eq. (45)] are all shown. Dashed grey line: the critical driving amplitude Ωð1Þ

c . In this panel, we consider Δ= γ/2 and g= γ, so
that Ωð1Þ

c ¼ ffiffiffi
5

p
γ=2 ’ 1:118γ and Ωð2Þ

c ¼
ffiffiffiffiffiffiffiffi
5=2

p
γ ’ 1:581γ from Eq. (40) and Eq. (41), respectively.
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Note 3 for the full theory). This leads to the analytic expression

lim
t!1

Eh ¼ ωb
Ω2

2Δð Þ2 þ γ
2

� �2 �Ω2

Δ4 þ g4

2 � Δ2 g2

2 þ Ω2 � γ
2

� �2h i
Δ4 þ g4 � Δ2 2g2 þΩ2 � γ

2

� �2h i ;
ð39Þ

which may be compared to Eq. (16), the analogous result with
one-photon driving. Notably, the denominators of both the first
and second terms in the product of fractions comprising Eq. (39)
may each become zero at some point in parameter space,
suggesting two critical driving amplitudes of the system—which
we call Ωð1Þ

c and Ωð2Þ
c . These critical points are given by [cf. Eq.

(36)–(38) from the Hamiltonian theory]

Ωð1Þ
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2

� 
2
þ 2Δð Þ2

r
; ð40Þ

Ωð2Þ
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

2

� 
2
þ Δ2 1� g2

Δ2

� �2
s

; ð41Þ

and help to define the Liouvillian phase diagram of the quadratic
quantum battery in the steady state via the duo of equations
Ω ¼ Ωð1Þ

c Θð1= ffiffiffi
3

p � Δ=gÞ and Ω ¼ Ωð2Þ
c ΘðΔ=g � 1=

ffiffiffi
3

p Þ. The
steady-state battery holder energy Eh is plotted in Fig. 4b, where
the situation without a steady state is represented by the white
region. Clearly, approaching the critical line formed using Eq.
(40) and Eq. (41) leads to a transition in the steady state response
of the quantum battery—above this dynamical instability, the
energetics are unbounded since the mean battery populations are
themselves unbounded. This is because the energetic drive into
the battery more than compensates for the loss into the external
environment, leading to a dramatic rise of bosonic excitations up
the infinite energy ladders comprising the quadratic quantum
battery. The energy formula of Eq. (39) becomes much simpler in
the two limiting cases of small detuning (Δ→ 0) and small
battery charger-holder coupling (g→ 0), where

lim
t!1

Eh ¼
ωb

2
Ω2

γ
2

� �2 �Ω2
; Δ ! 0; ð42Þ

lim
t!1

Eh ¼ ωb
Ω2

2Δð Þ2 þ γ
2

� �2 � Ω2
; g ! 0: ð43Þ

The left-hand vertical axis of Fig. 4b is explained by Eq. (42),
complete with its finishing point at Ω= γ/2, above which no
steady state is formed. Meanwhile, Eq. (43) describes the weakly
coupled battery result (not shown in Fig. 4b, which takes g= γ as
an example case), which sees a reduction in the number of critical
points from two to one, located at Ωð1Þ

c only [cf. Eq. (40)]. The
phase diagram of Fig. 4b illustrates the critical nature of the
quadratic quantum battery, where significant energies can be
obtained near dynamical instabilities governed by critical points,
which may be starkly contrasted to the linear quantum battery,
which is instead dominated by exceptional point physics.

The quadratic nature of the Hamiltonian operator Ĥ given by
Eq. (30) ensures that the result of Eq. (12), quantifying the energy
of the battery holder in the passive state Eβ

h, also holds. In
particular, the initial conditions of the system imply that the first
moments of the system are all zero (see Supplementary Note 3 for
details). Therefore the key quantity D, as defined in Eq. (13),
reduces to the solely second moments form [cf. Eq. (15) for the
linear quantum battery]

D ¼ 1þ 2hhyhi� �2 � 4hhyhyihhhi: ð44Þ
Notably, since, in general, D≠1 the quadratic quantum battery is
associated with nonzero passive state energy (Eβ

h≠0), which acts to
reduce the ergotropy E following the definition of Eq. (8). In the
crucial steady-state regime (t→∞), the explicit form of Eq. (44)
is derivable exactly as (see Supplementary Note 3)

This analytic result ensures that the steady state ergotropy E has
been analytically obtained with the aid of the analytic expression
of the holder energy Eh [cf. Eq. (39)] alongside the exact passive
state holder energy Eβ

h [cf. Eq. (12) with Eq. (45)]. The full
expression for the steady state ergotropy E is particularly compact
in the limiting case of small detuning (Δ→ 0), where we find it
reduces to

lim
t!1

E ¼ ωb

2

γ
2

� �2
γ
2

� �2 �Ω2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ
2

� �2
γ
2

� �2 � Ω2

vuut
0
@

1
A; ð46Þ

which exhibits a single critical point at Ωð1Þ
c ¼ γ=2 [cf. Eq. (40)].

In the limit of small charger-holder coupling g, one finds that the
full expression reduces to the intuitive result of zero steady-state
ergotropy ( lim

t!1
E ¼ 0 for the case of g→ 0).

We consider the steady state energetics of the quadratic
quantum battery in Fig. 4c, as a function of the driving amplitude
Ω, for the example case where the detuning Δ= γ/2 and the
charger-holder coupling g= γ. The ergotropy E (thick red line)
[cf. Eq. (8)], the battery holder energy Eh (medium cyan line) [cf.
Eq. (39)], and the battery holder energy in the passive state Eβ

h
(thin yellow line) [cf. Eq. (12) with Eq. (45)] are all shown
explicitly in their steady-state forms. As the driving amplitude, Ω
approaches the critical point at Ωð1Þ

c ¼
ffiffiffiffiffiffiffiffi
5=2

p
γ ’ 1:118γ (dashed

grey line) [cf. Eq. (40)] all three energetic quantities increase
without bound, leading to an abundance of useful energy being
stored in the battery. This boundlessness occurs since a steady
state is no longer supportable within this driven-dissipative
theory when the drive into the battery overcompensates the loss
into the outside environment. In practice, such a seemingly
runaway solution may be prevented by either truncating the
infinite energy ladders associated with the harmonic oscillators
forming the quantum battery model, leading instead to saturation
at some large energy (as is discussed later on), or by introducing
anharmonicities. Importantly, there are no analogous critical
points in the linear quantum battery, and hence there is no such
optimal driving associated with a huge ergotropic response.

The time-dependent properties of the ergotropy E are
considered in Fig. 3b. There we again take the example quadratic
quantum battery with the charger-holder coupling g= γ and the

lim
t!1

D ¼
2Δð Þ2 þ γ

2

� �2h i2
Δ2 � g2
� �2 þ Δ2 γ

2

� �2h i
�Ω2 2Δð Þ2 þ γ

2

� �2h i
2Δ4 þ g4 � Δ2 2g2 þ γ

2

� �2� 
h i
� Δ2Ω4 7Δ2 � 4g2 þ γ

2

� �2h i
� Δ2Ω6

2Δð Þ2 þ γ
2

� �2 �Ω2
h i2

Δ4 � Δ2 2g2 þΩ2 � γ
2

� �2h i
þ g4

h i : ð45Þ
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detuning Δ= γ/2, so that from Eq. (40), the first critical driving
amplitude is Ωð1Þ

c ’ 1:118γ, while the second critical driving
amplitude from Eq. (41) is Ωð2Þ

c ’ 1:581γ. Increasingly strong
driving amplitudes Ω are considered up to Ωð1Þ

c [see the plot
legend in Fig. 3c for the cases considered], leading to dramatic
ergotropic improvements at larger timescales γt≫ 1, as fore-
shadowed by the steady state analysis provided in Fig. 4c. The
inset of Fig. 3(b) rescales the ergotropy E by its maximum value
over all times, showing the typical timescales required for the
battery to become fully charged (in an ergotropic sense). Notably,
full charging is achieved asymptotically (t→∞) except for when
the driving amplitude is furthest away (thin yellow line) from
Ωð1Þ

c , where a dynamical ergotropic value is higher than its steady
state value [a circumstance which commonly occurs for the linear
quantum battery, see Fig. 2c]. Finally, the equivalent charging
powers P ¼ E=t for the ergotropies considered in Fig. 3b are
shown in Fig. 3c. This panel c shows that the power P increases
with time from zero up to some maximum power, which is seen
to occur around the optimal time t≃ 2.6/γ for the cases
considered. Hence the maximum power does not correspond to
when the battery is fully charged [in the sense of the inset to
Fig. 3b]. A logarithmic timescale is used in Fig. 3c to confirm the
eventual loss of power when the steady state ergotropy is finally
reached at large timescales. Notably, we have made sure that the
general physics of the quadratic quantum battery, as described in
Fig. 3 and Fig. 4 in particular, is essentially unchanged after
including additional dissipation coming from the battery holder
itself (see Supplementary Note 3).

The steady-state properties of the quadratic quantum battery
are further considered in Fig. 5. In the figure, the charger-holder
coupling strength remains at g= γ, and the drive-battery

detuning remains at Δ= γ/2 so that the critical point Ωð1Þ
c ’

1:118γ (vertical, solid grey lines in all panels of Fig. 5). In
particular, we are interested in the results obtained by truncating
the two harmonic oscillators modelling the battery charger and
the battery holder to finite N-level systems, in order to better
understand where the energetic unboundedness suggested in
Fig. 4c arises from.

In Fig. 5a, we consider the battery holder energy Eh in the
steady state (in units of the battery energy level spacing ωb) as a
function of the two-photon driving amplitude Ω (in units of the
charger decay rate γ). The analytic (and N→∞ asymptotic) result
of Eq. (39) is represented by the thick salmon-pink line,
showcasing the aforementioned unboundedness as Ω ! Ωð1Þ

c .
Otherwise, the truncated oscillator results are denoted by thin
pink lines (the extreme cases for N= 3 and N= 20 levels are
distinguished with light pink and red lines, respectively). The data
in Fig. 5a confirms the increasing impact of the first critical
driving amplitude Ωð1Þ

c with an increasing number of levels N and
highlights the eventual plateauing of the battery holder energy Eh
due to the necessary saturation of the finite level systems making
up the truncated battery. These results support the main findings
presented in Fig. 4c for infinite-level quantum harmonic
oscillators and imply that the energetic unboundedness is a
result of always being able to occupy higher and higher levels of
an untruncated harmonic oscillator, as opposed to occurring due
to an unphysical runaway or some unreasonable approximation.

The behaviour of the purity P of the quadratic quantum
battery, a measure of the degree of mixedness of the quantum
state ρ via the formula P ¼ Trðρ2Þ, is likewise shown in Fig. 5b
for the steady state. The purity is bounded by P ¼ 1 for a pure
state and P ¼ 1=d (where d is the dimension of the relevant

Fig. 5 The quadratic quantum battery and its steady state. Panel a: a logarithmic plot of the battery holder energy Eh in the steady state (in units of the
holder energy level spacing ωb) as a function of the two-photon driving amplitude Ω (in units of the charger decay rate γ). Thick line: the analytic result of
Eq. (39). Thin lines: results obtained by truncating the harmonic oscillators modelling the battery to N-level systems. Panel b: the purity P, in the steady
state and as a function of Ω, for a battery comprised of N-level systems. Panel c: the Liouvillian gap Λ as a function of Ω. Panel d: the negativity N , in the
steady state and as a function of Ω. Panel (e): a logarithmic plot of the battery holder quadrature variances σ2X;h (thick cyan line) and σ2P;h (thick yellow line)
in the steady state and as a function of Ω. The product of the standard deviations σX,hσP,h (medium dashed green line) is also shown as a guide for the eye
at the Robertson–Schrödinger minimum uncertainty of 1/2 (horizontal, dashed grey line). In the figure, the charger-holder coupling strength g= γ and the
drive-battery detuning Δ= γ/2, so that from Eq. (40), the first critical driving amplitude Ωð1Þ

c ¼ ffiffiffi
5

p
γ=2 ’ 1:118γ (vertical, solid grey lines in all panels).
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Hilbert space) for a maximally mixed state. With vanishing
driving Ω, the system remains in its vacuum state and is hence
completely pure. However, for non-vanishing driving Ω the key
quantity D [cf. Eq. (13)] is non-unity, and the degree of
mixedness rapidly increases as the driving amplitude Ω is
increased towards the critical point Ωð1Þ

c , eventually leading to a
maximally mixed quantum state and significant loss of coher-
ences. This impure behaviour is in stark contrast to the
completely pure linear quantum battery, which remains in a
product state such that it exhibits the property D ¼ 1.

The underlying nature of the critical driving amplitude Ωð1Þ
c

can be revealed by considering the response of the Liouvillian gap
Λ. This important quantity is defined as the gap between zero and
the real part of the largest (nonzero) eigenvalue in the Liouvillian
superoperator spectrum63–65, and is displayed in Fig. 5c. The
closing of the Liouvillian gap (which is possible in the true
thermodynamic limit, where N→∞) at some critical value of a
system parameter is typically associated with a dissipative phase
transition66–68. In the case of the quadratic quantum battery, the
crucial parameter again seems to be the critical driving amplitude
Ωð1Þ

c (more evidence supporting this conjecture is provided in
Supplementary Note 3, which suggests an algebraic scaling of the
Liouvillian gap size with the system size N). No such closing of
the Liouvillian gap is possible for the one-photon driving case
considered previously for the linear quantum battery since, in
that case, there is always a well-defined steady state [cf. Eq. (16)
with Eq. (39)], and as such, no dynamical instability is present.

The fact that the key quantity D≠1 [cf. Eq. (13)] for the
quadratic quantum battery raises the possibility that quantum
entanglement is playing a role. To investigate this, we consider
the negativity N , a common entanglement measure defined using
the absolute sum of the negative eigenvalues of the partial
transpose of the density matrix ρ69,70. Zero negativity implies an
unentangled state, while increasingly nonzero negativity suggests
an increasingly entangled state. We plot the negativity N , again
in the steady state and as a function of the driving amplitude Ω, in
Fig. 5d. The plot shows that the state is completely unentangled
with vanishing driving Ω→ 0 since it is simply the trivial vacuum
state. However, with increasingly strong driving Ω the entangle-
ment of the state rises to a certain maximum before falling once
again towards zero (in the thermodynamic N→∞ limit) near the
critical point Ωð1Þ

c . This trend occurs since, for any truncated
oscillator case, the state at some large enough driving Ω is simply
that with the highest level filled. This type of entanglement
behaviour is entirely missing in the linear quantum battery, which
always remains in an unentangled product state.

Finally, the phenomena of quantum squeezing within the
quadratic quantum battery may be analysed through the two
battery holder quadrature variances σ2X;h and σ2P;h

58. These

dimensionless quantities, defined via the twin relations of σ2X;h ¼
hX̂2

hi � hX̂hi
2
(thick cyan line) and σ2P;h ¼ hP̂2

hi � hP̂hi
2
(thick

yellow line), are considered (in the steady state and as a function
of the driving amplitude Ω) in Fig. 5e. These variance definitions
rely on the generalised battery holder quadratures X̂h ¼
ðeiθ=2hy þ e�iθ=2hÞ= ffiffiffi

2
p

and P̂h ¼ iðeiθ=2hy � e�iθ=2hÞ= ffiffiffi
2

p
, which

obey the familiar commutation relation ½X̂h; P̂h� ¼ i. The product
of the standard deviations σX,hσP,h (medium dashed green line) is
also shown in Fig. 5e, as is a guide for the eye at the
Robertson–Schrödinger minimum uncertainty of 1/2 (horizontal,
dashed grey line). Most notably, the quasi-momentum variance
σ2P;h displays steady state squeezing for a range of driving
amplitudes Ω, up to a certain value Ω≃ 0.813γ (which is notably
below the critical point residing at Ωð1Þ

c ’ 1:118γ). Such

quadrature squeezing of the quadratic quantum battery directly
originates from the parametric field driving and thus is entirely
absent for the coherent field driving case of the linear quantum
battery. Squeezing may be interesting for modern applications in
quantum sensing and for quantum information processing, while
here, it is interesting to note that the quadrature variances display
asymptotes at Ωð1Þ

c , the onset of the dynamical instability
discussed earlier. Within wider quantum battery research,
squeezing has been recently studied in the context of a coherent
squeezing charging mechanism and an incoherent squeezed
thermal bath71, as well as battery charging with local squeezing72,
which points to its utility within quantum technological research.

Conclusion
In conclusion, we have studied theoretically the prototypical
bipartite form of a Gaussian quantum battery. We began by
revisiting the case of a linearly driven battery charger, where we
highlighted the crucial role of exceptional point physics in the
ergotropic response of the battery. We then considered the
arguably more interesting case of quadratic driving, where we
found critical points instead play a decisive role in the battery
energetics, including by influencing several unconventional fea-
tures such as the spectral collapse of the Hamiltonian, quantum
squeezing, dynamic instabilities and dissipative phase transitions.
Our proposed quadratic quantum battery exhibits various desir-
able features, including storing only relatively small amounts of
useless energy, allowing for the possibility of storing (theoretically
unbounded) amounts of ergotropy, and requiring reasonable
charging times to achieve significant energy storage. We hope
that our theoretical proposal for a quadratic quantum battery can
soon be realised with contemporary quantum platforms such as
photonic cavities73,74 and quantum circuits75,76, so that a
squeezed battery may become a viable candidate for an energy
storage device within the next generation of quantum technology.
On the theory side, it should also be interesting to consider the
scaling up of the quadratic quantum battery to include multiple
battery cells77,78 and cooperative effects79,80.

Data availability
All data is available in the manuscript and the Supplementary Information.
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