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Abstract
In Westminster Abbey, in a nave near to Newton’s monument, lies a memorial stone to Paul Dirac. The
inscription on the stone includes the relativistic wave equation for an electron: the Dirac equation. At the turn of
the 21st century, it was discovered that this eponymous equation was not simply the preserve of particle physics.
The isolation of graphene by Andre Geim and Konstantin Novoselov in Manchester led to the exploration of a
novel class of materials – Dirac materials - whose electrons behave like Dirac particles. While the mobility of
these quasi-relativistic electrons is attractive from the perspective of potential ultrafast devices, it also presents
a distinct challenge: how to confine Dirac particles so as to avoid making inherently leaky devices? Here we
discuss the unconventional quantum tunnelling of Dirac particles, we explain a strategy to create bound states
electrostatically, and we briefly review some pioneering experiments seeking to trap Dirac electrons.

Keywords
Berry phase, chirality, Dirac equation, graphene, Klein tunnelling, linear spectrum, low-dimensional materials,
Maxwell’s fish-eye lens, nanomaterials, quantum confinement, quantum scattering, quantum transport,
quasi-relativistic phenomena, zero bandgap semiconductors

Key points

• the Dirac equation has utility in condensed matter
physics, where it can describe the electrons in materi-
als such as graphene

• confinement in Dirac materials is notoriously difficult
due to the Klein paradox (which arises during quantum
tunnelling of quasi-relativistic particles)

• unexpectedly, bound states may form at the Dirac point
(that is, at the apex of the cone formed in the electron
energy-momentum relation of quasi-relativistic parti-
cles)

• recent experiments have measured the signatures of
confinement in electrostatically defined graphene quan-
tum dots

Introduction
Friday nights in the laboratory of Andre Geim and Konstantin
Novoselov at the University of Manchester were routinely set
aside for more playful work. One such speculative idea was
to rip layers of carbon from a lump of graphite using sticky
tape (Novoselov, 2011; Geim, 2011). Remarkably, they were
able to isolate a single atomic layer of graphite: graphene. Just
a few years later in 2010, they were jointly awarded the No-
bel Prize in physics for their discovery of (and groundbreak-
ing experiments with) graphene, whose atoms are arranged
in a purely two-dimensional honeycomb array resembling
chicken wire (Castro Neto et al., 2009; Abergel et al., 2010;
Peres et al., 2010; Das Sarma et al., 2011).

Of all of the many wonderful properties of the 2-D material
graphene, perhaps the most interesting stem from its link to
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particle physics (Katsnelson, 2012). Near to the Fermi level
the electron bandstructure in graphene is linear,

E± = ±vF|p|, (1)

suggesting its electrons and holes, of momentum p,
are massless particles which travel with some constant
speed vF (in some sense, an effective speed-of-light for
the material). Furthermore, the Hamiltonian describing
these charge carries formally maps onto a massless, two-
dimensional Dirac equation such that a treasure trove of
quasi-relativistic phenomena arise in a humble pencil trace
of graphite (Shen, 2012; Thaller, 2013). Some examples of
such phenomena include Klein tunnelling, atomic collapse,
and Lorentz boosts (Chen et al., 2007; Shytov et al., 2007;
Shytov et al., 2009).

Explicitly, the single electron Hamiltonian Ĥ describing
massless Dirac fermions in two-dimensions r = (x, y) reads

Ĥ = vFσ · p̂+ V (r), (2)

where vF is the Fermi velocity of the Dirac material, the two-
dimensional momentum operators are p̂ = (p̂x, p̂y), σ =
(σx, σy, σz) are Pauli’s spin matrices and V (r) is a scalar con-
finement potential. Importantly, the 2× 2 matrix Hamiltonian
Ĥ of Eq. (2) must act on a two-component spinor wavefunc-
tion Ψ, where

Ψ(r) =

(
ψA(r)
ψB(r)

)
, (3)

which in the case of graphene has arisen from the two
interlocking triangular sublattices A and B, together creating
the overall honeycomb lattice.

Klein tunnelling
The spinor wavefunction of graphene gives rise to the concept
of pseudospin (Beenakker, 2008), which is encapsulated by
the relationσ·p̂/|p| = ±1. This neat equations shows that the
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direction of the charge carrier motion is pinned: for electrons
σ · p̂/|p| = +1 and for holes σ · p̂/|p| = −1. As such,
it is difficult to backscatter massless Dirac particles, which
makes them highly desirable for electronic devices requiring
significant mobilities.

In nonrelativistic quantum mechanics, a particle impinging
upon a one-dimensional potential barrier can tunnel pass
through the obstacle despite classical physics suggest-
ing it would be reflected. Nevertheless, the transmission
probability decreases exponentially with increasing barrier
height. However, in relativistic quantum mechanics an
even more counter initiative phenomena can occur. When
a relativistic particle meets a large potential barrier it may
pass through perfectly, that is with a transmission probability
of one (Allain and Fuchs, 2011). This effect is known as
Klein tunnelling, and it can be understood as arising due to
the conservation of pseudospin (Katsnelson et al., 2006). An
electron moving to the right becomes a right-moving hole
under the high potential barrier and an electron again outside
of the barrier, always ensuring σ · p̂/|p| = 1 throughout the
propagation, such that the particle continues its rightwards
journey. Clearly, confining massless Dirac particles electro-
statically in one dimension presents a nontrivial task due to
this tunnelling phenomenon.

Confinement in two-dimensions
The Hamiltonian Ĥ of Eq. (2) acts upon a spinor wavefunc-
tion Ψ, which has two-components as shown in Eq. (3). When
considering radially symmetric problems, such that the scalar
potential V (r) = V (r), the wavefunction Ψ in radial coordi-
nates (r, θ) has the separable form

Ψ(r, θ) =
eimθ√

2π

(
χA(r)

ieiθχB(r)

)
, (4)

where the two radial functions χA(r) and χB(r) are to be
found, and the prefactor 1/

√
2π normalizes the angular part

of the wavefunction. The integer quantum number m =
0,±1,±2, ... arises from a consideration of the total angular
momentum quantum number jz , where

jz = m+ 1/2. (5)

Explicitly, the spinor wavefunction of Eq. (4) satisfies the
eigenvalue equation ĴzΨ = jzΨ, where the angular momen-
tum operator Ĵz reads

Ĵz = −i∂θ + σz/2. (6)

The wavefunction Ψ given by Eq. (4) can then be seen to sep-
arate the two spatial variables in the Schrödinger equation

ĤΨ(r, θ) = EΨ(r, θ), (7)

so that, after using the momentum component relations p̂x =
−i~∂x and p̂y = −i~∂y , as well as the Cartesian to polar
coordinate partial derivatives

∂x = cos θ∂r − sin θ
r ∂θ, ∂y = sin θ∂r + cos θ

r ∂θ, (8)

one arrives at a pair of coupled first-order differential equa-
tions for the two radial components χA(r) and χB(r),(

∂r + m+1
r

)
χB = [ε− U(r)]χA, (9a)(

−∂r + m
r

)
χA = [ε− U(r)]χB . (9b)

Here the scaled eigenvalue ε = E/~vF, and the scaled po-
tential function U(r) = V (r)/~vF, absorb the dependence on
the Fermi velocity vF.

A second-order differential equation for the upper compo-
nent of the radial wavefunction χA(r) only can be computed
by disentangling the system of two equations given by Eq. (9),
resulting in

χ′′A +
(

1
r + U ′

ε−U

)
χ′A

+
(

[ε− U ]
2 − m2

r2 − m
r

U ′

ε−U

)
χA = 0. (10)

Here the notation ′ and ′′ denotes taking one or two derivatives
of the function with respect to r. A corresponding equation
for the lower radial wavefunction component χB(r) may be
obtained upon making the replacements A → B and m →
−(m+ 1) in Eq. (10), as follows from Eq. (9).

Importantly, a consideration of any fast-decaying func-
tion U(r) allows one to neglect all terms involving both
U and U ′ in Eq. (10), such that the equation essentially
becomes Bessel’s differential equation. The two linearly
independent solutions, being Bessel functions of the first
and second kinds, are standard scattering solutions and
so one is lead to conclude bound states are seemingly not
possible, as was pointed out by Tudorovskiy and Chap-
lik (Tudorovskiy and Chaplik 2007). However, this argument
implicitly assumes the states considered have a nonzero
energy, such that ε 6= 0 always in Eq. (10). If one allows
for zero energy states (ε = 0) then Eq. (10) no longer maps
onto Bessel’s differential equation, opening up an opportunity
for bound states with electrostatic confining potentials to
plausibly emerge (Bardarson et al., 2009).

Maxwell’s fish-eye lens and bound states
Let us try to construct zero energy (ε = 0) solutions of
the massless Dirac equation, associated with the Hamiltonian
of Eq. (2). Inspired by the Lorentzian function exploited
by Maxwell for his fish-eye lens (Niven, 1890), we shall
choose the smooth confining potential (Downing et al., 2011;
Downing et al., 2017)

V (r) =
−V0

1 + r2/d2
, (11)

where the potential strength is V0, while dmeasures the spatial
extent of the potential. Remarkably, this bell-shaped function
allows for an exact solution of Eq. (7).

One may solve the coupled Eq. (9) by initially finding just
the upper radial wavefunction component χA(r). A short-
range analysis of Eq. (10) suggests that at r → 0 the solution
should be of the form

χA ∼ r|m|, (12)
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FIG. 1. Probability densities of bound states in a Lorentzian confining potential [cf. Eq. (22)]. Panels (a, b, c): the quantum number
n = 0, 1, 2 respectively. In the figure, the quantum number angular momentum m = 1.

where the alternative solution χA ∼ r−|m| is disgarded due to
its divergence at the origin, as is familiar from non-relativistic
central potential problems. A similar long-range analysis as
r →∞ suggests the proper solution should decay like

χA ∼
1

r2pm−|m|
. (13)

In the above equation, we have introduced the m-dependent
parameter pm, defined as

pm = 1
2 (1 + |m|+ |1 +m|) . (14)

For later convenience, if we switch to a new variable ξ, where

ξ = (r/d)2, (15)

an appropriate ansatz solution of Eq. (10), which accounts for
both the short-range and long-range behaviours as encapsu-
lated by Eq. (12) and Eq. (13) respectively, is

χA =
C

d

ξ
|m|
2

(1 + ξ)pm
w(ξ), (16)

where we have introduced the dimensionless number C as a
normalization constant for the radial part of the wavefunction,
which ensures that∫ ∞

0

(
|χA|2 + |χB |2

)
rdr = 1. (17)

In Eq. (16), w(ξ) is an unknown function which has no influ-
ence on the small or large asymptotics of the overall upper ra-
dial wavefunction component χA. Upon substituting Eq. (16)
into Eq. (10), we find the following second-order differential
equation determining the as yet unspecified function w(ξ)

ξ(1 + ξ)2w′′(ξ)

+ (1 + ξ) [1 + |m|+ (2 + |m| − 2pm)ξ]w′(ξ)

+
[
( V0d
2~vF )2 − p2m

]
w(ξ) = 0. (18)

The solution of Eq. (18) can be given in terms of the Gauss
hypergeometric function 2F1 (a, b; c; z), which has the power
series definition

2F1 (a, b; c; z) = 1+
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+. . . (19)

One finds the explicit form of the solution of Eq. (18) as

w(ξ) = 2F1

(
pm + V0d

2~vF , pm −
V0d
2~vF ; 1 + |m|; ξ

1+ξ

)
, (20)

while the precise structure of χB is now readily obtained from
Eq. (9b) since χA has been found.

It is implicit that the infinite power series inside Eq. (20)
must be terminated, so that χA satisfies the required con-
ditions on its limiting behavior, as determined at the outset
by Eq. (12) and Eq. (13). Given this termination, the radial
asymptotics of the radial component wavefunctions are

lim
r→∞

(
χA
χB

)
∝
(

1/r1+|1+m|

1/r1+|m|

)
, (21)

which suggests that the presence of algebraically decaying,
but marginally non-square-integrable, extended states with
quantum numbersm = {0,−1}, and otherwise genuine, fully
square-integrable bound states with m 6= {0,−1}. Some typ-
ical bound states are plotted in Fig. 1.

The quantization condition for zero energy (ε = 0 or equiv-
alently E = 0) bound states arises by assigning the second
argument in the hypergeometric function of Eq. (20) to be a
non-positive integer n, thus terminating the power series and
leading to the bound state conditions

V0d

~vF
= 2 (n+ pm) , E = 0, (22)

where n = 0, 1, 2..., and them-dependent parameter pm is de-
fined in Eq. (14). All of the modes of Eq. (22) appear at even
integer values of the dimensionless quantity V0d/~vF, which
are associated with increasingly large degeneracies. For ex-
ample, at the bound state condition V0d/~vF = 4 there is a
two-fold degeneracy, due to the states (n,m) = (0, 1) and
(0,−2), and there is a four-fold degeneracy when V0d/~vF =
6, due to the states (n,m) = (0, 2), (0,−3), (1, 1) and
(1,−2).

The features of this fish-eye lens model suggest some
general conclusions about bound states of massless Dirac
particles may be drawn. Firstly, bound states may only arise
at the apex of the energy-momentum cone (the so-called
Dirac point) so they are zero-energy bound states (E = 0).
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Secondly, they are only supported at critical values of the
dimensionless parameter arising from the potential strength
and shape (in this case, V0d/~vF). Thirdly, there is a
threshold value at which the first bound state appears (in our
example, V0d/~vF = 4). Finally, the angular momentum
quantum number m is required to be m ≥ 1 or m ≤ −2 for
the state to be normalizable. States with m = 0 and m = −1,
or equivalently from Eq. (6) with total angular momentum
number jz = |1/2|, are a marginal kind of extended state.

Experiments
The quest to observe bound states of massless Dirac particles
in graphene and related materials started soon after the iso-
lation of graphene by Geim and Novoselov in Manchester in
2004. Early work used methods like applying high magnetic
fields or chemical engineering (Goerbig et al., 2011), but such
techniques are arguably undesirable for future technological
applications. Therefore, electrostatic confinement remained
a holy grail in the early years of massless Dirac fermion re-
search.

A breakthrough was reported in 2015 by Yue Zhao and
co-workers, who were influenced by the so-called whisper-
ing gallery modes known from the closed acoustics of cathe-
drals (Zhao et al., 2015). The team used a scanning tunneling
probe to create a circular p-n junction, and exploited the tun-
ability of the charge carriers of graphene to engineer control-
lable whispering gallery mode resonators. They observed var-
ious degrees of confinement via resonances in the tunneling
spectrum, where particularly strong confinement was found
by carefully tuning the cavity radius using gate potentials.
Therefore, this pioneering work provided a clear perspective
for the creation of zero-energy bound states electrostatically.

Soon afterwards, Juwon Lee and colleagues observed
bound states in graphene quantum dots in a landmark paper
from 2016 (Lee et al., 2016). They fabricated circular quan-
tum dots by careful manipulations of defect charges in the
insulator substrate sitting below the monolayer of graphene.
The team was able to map spatially the electronic structure in-
side and outside the quantum dot, providing insight into the
quantum interference patterns associated with longer living
states.

In the same year, Christopher Gutierrez and co-workers
similarly used substrate engineering to create a circular
graphene quantum dot (Gutierrez et al., 2016). They revealed
long-lived states locally pinned within a larger monolayer
sheet of graphene. In particular, they observed essentially
bound states, at particular energies and of a certain angular
momentum, which were achieved by carefully tuning the ge-
ometry of the barrier.

Taken together, these three aforementioned experimental
works suggest that the creation and mastery of electrostatic
confinement with massless Dirac particles, with a view
towards future exploitation in nanoscopic devices, remains an
important area of condensed matter physics research.

Summary and future directions
We have discussed how Dirac materials, such as the Nobel
Prize winning wonder material graphene, allow one to explore

some aspects of quantum electrodynamics in condensed mat-
ter physics thanks to their shared reliance on various forms of
Dirac equation. One such example is Klein tunnelling, or the
perfect tunnelling of massless particles normally incident on
high potential barriers. This effect suggests that the creation
of electrostatic quantum dots in Dirac materials is a highly
nontrivial task.

We have considered theoretically a possible route to cre-
ate trapping of massless particles, by considering zero energy
states in electrostatic confining potentials. Via a beautiful,
exactly-solvable model, inspired by Maxwell’s fish-eye lens,
we have described some key properties of such novel bound
states arising at the Dirac point.

Finally, we have briefly reviewed some exciting experi-
mental work on graphene quantum dots. As it stands, the
complete mastery of the confinement of massless particles,
a key blockage preventing the development of ultrafast,
ultracompact electronics based on Dirac materials, remains
fertile ground for modern condensed matter physics studies.
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