1

PNAS

3

2

4 Main Manuscript for

5 Promoting C–F bond activation via proton donor for CF₄ 6 decomposition

7

Yingkang Chen^a, Wenqiang Qu^b, Tao Luo^a, Hang Zhang^a, Junwei Fu^a, Hongmei Li^a, Changxu
 Liu^c, Dengsong Zhang^b, and Min Liu^{a,*}

^a Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of
 Physics, and School of Metallurgy and Environment, Central South University, Changsha 410083,
 Hunan, P. R. China

- ^b International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of
 Sciences, Shanghai University, Shanghai 200444, P. R. China
- ^c Centre for Metamaterial Research & Innovation, Department of Engineering, University of
 Exeter, Exeter EX4 4QF, United Kingdom
- 17 *Min Liu
- 18 Email: minliu@csu.edu.cn

Author Contributions: Y. C., D. Z., M. L. designed research; Y. C., H. Z. performed research; Y.

- C., T. L., H. Z., J. F., M. L. contributed new reagents/analytic tools; Y. C., W. Q., T. L., J. F., H. L.,
 D. Z., M. L. analyzed data; and Y. C., W. Q., J. F., C. L., D. Z., M. L. wrote the paper.
- 22 **Competing Interest Statement:** The authors declare no competing interest.
- 23 **Classification:** Physical sciences; Chemistry.
- 24 Keywords: C–F bond activation | greenhouse effect | catalysis | proton donor | CF₄ hydrolysis

25

- 26 This PDF file includes:
- 27 Main Text
- 28 Figures 1 to 4
- 29
- 30 31

32 Abstract

Tetrafluoromethane (CF_4), the simplest perfluorocarbons (PFCs), is a permanently potent 33 34 greenhouse gas due to its powerful infrared radiation adsorption capacity. The highly symmetric 35 and robust C-F bond structure makes its activation a great challenge. Herein, we presented an 36 innovated approach that efficiently activates C-F bond utilizing protonated sulfate (-HSO₄) 37 modified Al_2O_3 @ZrO₂ (S-Al_2O_3@ZrO₂) catalyst, resulting in highly efficient CF₄ decomposition. By 38 combining in situ infrared spectroscopy tests and density function theory simulations, we 39 demonstrate that the introduced -HSO₄ proton donor has a stronger interaction on the C-F bond 40 than the hydroxyl (-OH) proton donor, which can effectively stretch the C-F bond for its 41 activation. Consequently, the obtained S-Al₂O₃@ZrO₂ catalyst achieved a stable 100% CF₄ 42 decomposition at a record low temperature of 580 °C with a turnover frequency (TOF) value of 43 ~8.3 times higher than the Al₂O₃@ZrO₂ catalyst without -HSO₄ modification, outperforming the 44 previously reported results. This work paves a new way for achieving efficient C-F bond 45 activation to decompose CF_4 at a low temperature.

46 Significance Statement

47 Tetrafluoromethane (CF_4), also known as carbon tetrafluoride, is a permanent potent greenhouse 48 gas. It finds extensive use in semiconductor manufacturing, and is the main by-product released 49 during the smelting of electrolytic aluminum and rare earth metals. Due to the lack of effective treatment means, the concentration of CF_4 in the atmosphere has been increasing yearly. While 50 51 thermal catalytic technology can decompose CF₄, but the high reaction temperature and low 52 activity restrict its practical applications. Here, we developed a novel and effective strategy for 53 CF_4 decomposition, achieving efficient decomposition at a record low reaction temperature. Our 54 findings hold significant promise in the context of global warming, offering practical and impactful 55 solutions to combat the detrimental effects of greenhouse gases.

- 56 57 Main Text
- 58

59 Introduction60

Global warming has emerged as one of the most pressing concerns in the 21st century (1-3). 61 Perfluorocarbons (PFCs) have alarmed widespread attention due to their potent greenhouse 62 63 effects (4-7). Notably, the Carbon Border Adjustment Mechanism (CBAM) issued by European 64 Union has listed PFCs among the greenhouse gases to be accounted for (8). Among them, 65 tetrafluoromethane (CF₄), being the simplest and maximum concentrated PFCs in the 66 atmosphere, possesses a remarkably high global warming potential (GWP) of 7,390 and 67 extraordinarily long atmospheric lifetime of 50,000 years (9-14). Considering the doubling of its 68 atmospheric concentration since the pre-industrial era (15), the development of a cost-effective 69 CF₄ decomposition method becomes crucially important and highly desirable for achieving a 70 sustainable future.

71 Among various CF_4 decomposition methods, the thermocatalytic hydrolysis process stands out 72 due to its improved decomposition rate, no toxic by-products and large-scale applications potential (16-21). While the highly symmetrical single carbon structure and C-F bond with strong 73 74 ionic character make CF_4 decomposition require a high temperature (22), the introduction of the 75 catalyst can significantly promote the C-F bond activation and decrease the decomposition 76 temperature. Takita et al. (16) first proposed that CF_4 could be hydrolyzed over Ce10%-AlPO₄ at 77 700 °C, well below its pyrolysis of 1200 °C (23). El-Bahy et al. (19) found that the introduction of 78 Ga promoted C–F bond activation by increasing Lewis (L) acid sites on y-Al₂O₃ surface, achieving 79 a 84% CF₄ decomposition at 630 °C. Takashi et al. (24) reported that the Zn modified γ -Al₂O₃ 80 catalyst with high density of strong L acid sites could completely hydrolyze CF₄ at 650 °C. Our 81 previous study (21) revealed the relationship between the L acid strength of γ -Al₂O₃ surface site 82 and its CF_4 decomposition ability. We found that the tri-coordination AI (AI_{III}) sites with the strong 83 L acidity were the main active site for CF₄ decomposition.

Bespite the aforementioned progress in reducing temperature, the CF_4 hydrolysis at beyond 600 °C still falls short of the desired efficiency for energy utilization. In addition to metal L acid sites (25, 26), Glusker et al. (27) discovered that the proton donor was also capable of interacting with C–F bond to activate it. For example, the hydroxyl (OH) groups could interact with C–F bond to promote fluorochemical decomposition (28-30). The interaction strength with C–F bond was affected by the type of the proton donor (27, 31-33). Thus, it could be predicted that the C–F bond of CF₄ could be further activated by modulating the proton donor on catalyst surface.

91 Herein, we achieve stable CF_4 decomposition with an efficiency of 100% operating at 580 °C, 92 under a significantly reduced temperature. Through density function theory (DFT) simulations, we 93 unveil that the introduced protonated sulfate (-HSO₄) strongly stretches the C-F bond of 94 adsorbed CF₄ and facilitates its activation, which is experimentally verified by in situ infrared 95 spectroscopy (in situ IR) tests. To capitalize on this insight, we design and fabricate a novel 96 catalyst, composed of sulfated Al₂O₃ dispersed on ZrO₂ nanosheet (S-Al₂O₃@ZrO₂). A 97 combination of X-ray photoelectron spectroscopy (XPS) and pyridine-infrared (py-IR) tests 98 confirm the introduction of -HSO₄ proton donors on the S-Al₂O₃@ZrO₂ surface, facilitating a 99 record low temperature for CF₄ decomposition. This work provides a new strategy for efficient 100 C-F bond activation and CF₄ decomposition at low temperature, opening new avenues for 101 sustainable catalysis with environmental benefits and promising energy efficiency.

102

103 Results and Discussion

104105 Synthesis and Characterization.

106 S-Al₂O₃@ZrO₂ was prepared by modifying Al₂O₃@ZrO₂ with sulfuric acid, and calcined at 650 °C 107 for 24 h to remove the excess sulfate species (SI Appendix, Fig. S1 and see Materials and Methods for details). X-ray diffraction (XRD) patterns of S-Al₂O₃@ZrO₂ showed only the 108 characteristic peaks of tetragonal-ZrO2 (PDF #79-1767), which was the same as that of 109 110 unmodified Al₂O₃@ZrO₂ (Fig. 1A), revealing that sulfuric acid modification did not change the crystal structure of the catalysts. Brunauer-Emmett-Teller (BET) measurements (SI Appendix, 111 112 Fig. S3 and Table S1) showed that the surface area slightly decreased from 61.3 m² g⁻¹ $(Al_2O_3@ZrO_2)$ to 49.8 m² g⁻¹ (S-Al2O₃@ZrO₂), further confirming no significant changes in its 113 114 structure properties after sulfuric acid modification.

115 To detect the morphologies of the synthesized catalysts, transmission electron microscopy (TEM) 116 was performed. The pristine ZrO₂ had a nanoparticle morphology with a size of ~25 nm (SI Appendix, Fig. S4a). Al₂O₃@ZrO₂ showed an identical nanoparticle morphology (SI Appendix, 117 Fig. S4c) as the pristine ZrO₂, and its high-resolution TEM (HRTEM) image revealed the 118 presence of Al₂O₃ (SI Appendix, Fig. S5d), indicating that Al₂O₃ was uniformly dispersed on ZrO₂ 119 120 surface. After sulfuric acid modification, the morphology of S-Al₂O₃@ZrO₂ had no obvious change (Fig. 1B) compared with that of Al₂O₃@ZrO₂. In contrast, S-Al₂O₃ showed a significant 121 122 agglomeration after sulfuric acid modification (SI Appendix, Fig. S4d), indicating that ZrO₂ 123 ensured the uniform dispersion of Al_2O_3 during sulfuric acid modification process. Energy 124 dispersive spectroscopy (EDS) mapping images of S-Al₂O₃@ZrO₂ (Fig. 1C) further proved the 125 uniform distributions of S and Al on ZrO₂ surface.

126 To investigate the surface chemical environments of the S, O, AI and Zr in S-AI₂O₃@ZrO₂, XPS 127 was carried out. The O 1s spectra (SI Appendix, Fig. S7) validated the presence of sulfate 128 species on S-Al₂O₃@ZrO₂ after sulfuric acid modification. The sulfate species were further 129 analyzed by S 2p spectra. The peaks at 169.0 eV and 170.3 eV of S-Al₂O₃@ZrO₂ could be 130 attributed to $-SO_4$ and $-HSO_4$ (Fig. 1D), respectively (34), indicating the partial sulfate protonation on the catalyst surface. Meanwhile, the binding sites of -HSO₄ on S-Al₂O₃@ZrO₂ 131 132 surface were investigated by AI 2p and Zr 3d spectra (Fig. 1E and 1F). The AI-O peaks (35) of S- $Al_2O_3@ZrO_2$ was shifted to higher energy region compared to that of $Al_2O_3@ZrO_2$, which could be 133 attributed to the electron attracting effect of sulfate group to the surface AI site. However, no 134 135 observable change could be found in Zr 3d region after sulfuric acid modification (Fig. 1F and SI 136 Appendix, Fig. S10) (36), revealing the sulfate group was not bonded with Zr site. The 137 coordination environment of the Zr sites in S-Al₂O₃@ZrO₂ was precisely characterized by synchrotron X-ray absorption spectroscopy (XAS) (*SI Appendix*, Fig. S11a) to further determine
the binding sites of –HSO₄. The fitting result of Zr k-edge extended X-ray absorption fine structure
(EXAFS) spectrum only found three scattering paths of Zr–O, Zr–Zr and Zr–Al (*SI Appendix*, Fig.
S11b and Table S3), demonstrating that the introduced –HSO₄ proton donor was mainly bonded
with Al site.

143 **Properties of –HSO₄ Proton Donor.**

144 To determine the properties of $-HSO_4$ proton donor, the surface acidity of $Al_2O_3@ZrO_2$ and S-145 Al_2O_3 @ZrO₂ was investigated. First, the acid content and strength of the catalysts were tested by 146 NH₃ temperature-programmed desorption (NH₃-TPD) (Fig. 2A and SI Appendix, Table S4). 147 Al₂O₃@ZrO₂ showed three NH₃ desorption peaks, in which two desorption peaks below 200 °C 148 were attributed to weak acid site, and one desorption peak between 200 °C and 300 °C was 149 assigned to medium acid site (37). The desorption peak intensity and desorption temperature of 150 S-Al₂O₃@ZrO₂ were obviously increased compared with those of Al₂O₃@ZrO₂, indicating a significant increase in acid content and strength via sulfuric acid modification. In particular, not 151 only the medium acid peak of S-Al₂O₃@ZrO₂ was shifted to 300 °C and 400 °C, but also the 152 medium acid amount increased from 3.63 µmol g⁻¹ (Al₂O₃@ZrO₂) to 12.11 µmol g⁻¹ (S-153 $Al_2O_3(@ZrO_2)$, demonstrating the S-Al_2O_3(@ZrO_2 surface possessed more and stronger acid sites 154 155 compared to that on Al₂O₃@ZrO₂. The increased strong acid sites were further analyzed by py-IR 156 tests at different desorption temperature (Fig. 2B-2D). The observed bands at 1444 cm⁻¹ and 1544 cm⁻¹ can be assigned to pyridine adsorbed at L acid sites and Brønsted (B) acid sites, 157 respectively (38). The results showed that Al₂O₃@ZrO₂ contained only L acid sites, and the B 158 159 acid sites were introduced after sulfuric acid modification, which could be attributed to -HSO₄ (39, 160 40). The strong L acid sites were detected on both $Al_2O_3@ZrO_2$ and S- $Al_2O_3@ZrO_2$ catalysts 161 upon desorption at 100 °C (Fig. 2C). Combined with the γ -Al₂O₃ (110) facet exposure observed in 162 HRTEM results (SI Appendix, Fig. S5d and S5e), it could be determined that the detected strong 163 L acid sites were Al_{III} sites with strong CF_4 adsorption. With the desorption temperature rising to 164 200 °C (Fig. 2D), the band corresponding to L acid sites on Al₂O₃@ZrO₂ and S-Al₂O₃@ZrO₂ 165 disappeared, and the band corresponding to B acid sites was observed only on S-Al₂O₃@ZrO₂, 166 indicating the B acid sites in S-Al₂O₃@ZrO₂ had strong acidity. This result confirmed that the 167 introduced –HSO₄ proton donor has a strong proton donating ability.

168 Influence of –HSO₄ Proton Donor on C–F Bond Activation.

To investigate the influence of $-HSO_4$ proton donor on C–F bond activation, the *in situ* IR spectra of S-Al₂O₃@ZrO₂ at 580 °C were tested under CF₄ atmosphere (Fig. 3*A*). The bands of CF₄ decomposition product HF (3741, 3785, 3832, 3877 and 3920 cm⁻¹) (41) were detected, indicating that the C–F bond could be directly activation on S-Al₂O₃@ZrO₂ surface. Meanwhile, the depletion of $-HSO_4$ (1026 cm⁻¹) (42) and the production of $-SO_4$ (998, 1072 and 1142 cm⁻¹) (36, 43) revealed that the C–F bond was activated by $-HSO_4$ and generated $-SO_4$ and HF.

175 To determine the C–F bond activation with –HSO₄ during CF₄ hydrolysis, the *in situ* IR spectra of 176 S-Al₂O₃@ZrO₂ at 580 °C were tested under CF₄ and H₂O atmosphere and only H₂O atmosphere, 177 respectively (Fig. 3B). When feed with CF_4 and H_2O simultaneously, the production of HF and 178 $-SO_4$ as well as the depletion of $-HSO_4$ were observed, which was similar to the case with CF_4 179 only, indicating -HSO₄ directly involved in C-F bond activation with or without H₂O. After 180 switching to H_2O only (Fig. 3B), it could be found that the $-SO_4$ bands gradually disappeared, 181 while the regeneration of -HSO₄ was observed. The results demonstrated that the stable C-F bond activation could be achieved with $-HSO_4$ during CF₄ hydrolysis, and $-HSO_4$ could be 182 183 regenerated by H₂O dissociation over S-Al₂O₃@ZrO₂.

184 The effect of proton donor on C–F bond activation was further investigated by DFT calculations. 185 On the basis of γ -Al₂O₃ (110) facet containing Al_{III} site (SI Appendix, Fig. S17), the CF₄ adsorption energy at Al_{III} site (E_{ads}) and C-F bond length were calculated on three different 186 models of γ -Al₂O₃, γ -Al₂O₃ with –OH (γ -Al₂O₃–OH) and γ -Al₂O₃ with –HSO₄ (γ -Al₂O₃–HSO₄), 187 188 respectively (Fig. 3C). The calculation results showed that the E_{ads} of γ -Al₂O₃-HSO₄ was -0.64 189 eV, which was much stronger than those of γ -Al₂O₃–OH (-0.51 eV) and γ -Al₂O₃ (-0.44 eV) (Fig. 190 3D), indicating that the CF_4 adsorption was significantly enhanced by introducing $-HSO_4$. The 191 CF_4 -temperature programed desorption (CF_4 -TPD) results of $Al_2O_3@ZrO_2$ and $S-Al_2O_3@ZrO_2$ 192 (Fig. 3E) also proved this result, as the CF_4 desorption temperature of S-Al₂O₃@ZrO₂ was 193 significantly increased after sulfuric acid modification. On the other hand, the C-F bond length on 194 γ -Al₂O₃-HSO₄ increased from 1.36 Å to 1.45 Å, which was larger than that on γ -Al₂O₃ (1.42 Å) 195 and y-Al₂O₃–OH (1.43 Å) (Fig. 3D). The enhanced adsorption and molecular deformation of CF₄ proved that -HSO₄ can promote the C-F bond activation. Based on these results, a synergistic 196 mechanism for C-F bond activation was proposed (Fig. 3F). The Al_{III} site stably securely CF₄ 197 198 molecule, while the adjacent -HSO4 proton donor generates the H…C-F interaction with the 199 adsorbed CF₄. The synergistic stretching effect of Al_{III}-HSO₄ pair sites on CF₄ promotes the C-F 200 bond activation.

201 CF₄ Hydrolysis Performance.

202 In order to determine the promotion of -HSO₄ for C-F bond activation, the CF₄ hydrolysis 203 performances were tested under 440 to 660 °C (Fig. 4A and SI Appendix, Fig. S20). The S-204 Al₂O₃@ZrO₂ catalyst with abundant –HSO₄ showed excellent CF₄ hydrolysis activity and could 205 stably achieve 100% CF₄ decomposition at the temperature (T_{100}) of 580 °C (Fig. 4B), which was 206 much lower than that of Al₂O₃@ZrO₂ (660 °C) and other previously reported catalysts (S/ 207 Appendix, Table S5), proving the great promotion of C-F bond activation by the introduction of 208 -HSO₄ proton donor. Similarly, the CF₄ hydrolysis test results on Al₂O₃ (640 $^{\circ}$ C) and S-Al₂O₃ (620 209 °C) also demonstrated this promoted effect. The S-Al₂O₃@ZrO₂ catalyst after stability test was then characterized (SI Appendix, Fig. S21-S24, and Table S7 and S8). It could be found that the 210 211 surface $-HSO_4$ proton donor content remained almost unchanged. The key effect of $-HSO_4$ in 212 promoting C–F bond activation was further demonstrated.

Combined with the above DFT simulations and previous report (21), Al_{III} site is the main active 213 214 site for CF₄ decomposition. The turnover frequency (TOF) values at 500 °C were calculated 215 according to the content of surface Al_{III} site determined by the results of surface acidity test (SI 216 Appendix, Table S4). The results demonstrated the significantly enhanced of the catalyst intrinsic activity after introducing -HSO4 proton donor, and the S-Al2O3@ZrO2 catalyst presented the 217 highest TOF of 3.91 × 10⁻³ s⁻¹, which was ~8.3 times as that of $Al_2O_3@ZrO_2$ (0.47 × 10⁻³ s⁻¹). 218 Further, the activation energies (E_a) of CF₄ over different catalysts (Fig. 4C) was evaluated by the 219 220 CF_4 hydrolysis reaction rates (Fig. 4D). The results showed that the E_a of both S-Al₂O₃ and S-221 Al₂O₃@ZrO₂ were significantly reduced compared with those before sulfuric acid modification, 222 demonstrating the activation of CF₄ molecules by -HSO₄. Especially, the S-Al₂O₃@ZrO₂ had the lowest E_a of 86.5 kJ mol⁻¹, corresponding to its efficient CF₄ decomposition. 223

224

225 Conclusion226

In summary, a strategy to active the C-F bond for effective CF₄ decomposition has been 227 228 proposed by enhancing the interaction between -HSO₄ proton donor and C-F bond. The S-229 Al_2O_3 @ZrO₂ catalyst with abundant –HSO₄ exhibited an excellent CF₄ hydrolysis activity, in which 230 CF₄ was completely decomposed at a record low temperature of 580 °C with a TOF value ~8.3 231 times that of the $Al_2O_3@ZrO_2$ catalyst with $-HSO_4$. It was demonstrated that the enhanced 232 interaction between the introduced -HSO₄ proton donor and the C-F bond was decisive to 233 enhance CF₄ hydrolysis activity, verified by in situ IR test and DFT simulation. -HSO₄ had a 234 stronger interaction with C-F bond than that of -OH could effectively activate the C-F bond, thus 235 promoting CF₄ decomposition. This proposed strategy paves a way for the development of 236 efficient C–F bond activation and CF₄ decomposition catalyst. As global warming continues to be 237 a pressing concern, our findings open new avenues for practical and impactful solutions to 238 combat the detrimental effects of greenhouse gases.

239

240

241 Materials and Methods

242243 Materials.

All chemicals were obtained commercially and used as received. Zirconium oxychloride octahydrate ($ZrOCl_2 \cdot 8H_2O$, 99%) and aluminum nitrate nonahydrate ($Al(NO_3)_3 \cdot 9H_2O$, 99%) were

- purchased from Aladdin. Aqueous ammonia ($NH_3 \cdot H_2O$) and sulfuric acid (H_2SO_4) were purchased
- 247 from Sinopharm.
- 248

249 Preparation of Al₂O₃@ZrO₂.

250 Al₂O₃@ZrO₂ was synthesized using the hydrothermal method. Firstly, 30 mM (9.7 g) ZrOCl₂·8H₂O 251 and 3.6 mM (1.4 g) Al(NO₃)₃·9H₂O were dissolved in 100 mL of deionized water by stirring at 252 room temperature, and NH₃·H₂O was added till pH~10. Then, the above solution was transferred 253 into a 150 mL Teflon-lined stainless-steel autoclave and kept at 150 °C for 24 h. After cooling to 254 room temperature, the precipitate was washed with deionized water and dried under 60 °C 255 overnight, and calcined in air at 600 °C (a heating rate of 3 °C min⁻¹) for 5 h. The pristine Al_2O_3 256 and ZrO₂ samples were obtained by the same method with only adding aluminum source and 257 zirconium source, respectively.

258

259 **Preparation of S-Al₂O₃@ZrO₂.**

260 2.0 g $Al_2O_3@ZrO_2$ and 2.0 g Al_2O_3 samples were added to 10 mL of 1 M H_2SO_4 and dried 261 overnight at 60 °C, and then calcined in air at 650 °C (a heating rate of 3 °C min⁻¹) for 24 h to 262 obtain S- $Al_2O_3@ZrO_2$ and S- Al_2O_3 , respectively.

263

264 Catalyst Characterization.

265 XRD patterns were obtained by using a STADIP automated transmission diffractometer, operated 266 at 36 kV and 20 mA by using CuKa1 radiation. The XRD patterns were scanned in the 2 Theta 267 range of 15-90°.

The TEM and EDS images were obtained by JEOL 3010 operated at 200 kV. The finely ground sample was dispersed in ethanol and then dropped onto a copper grid for TEM and EDX testing.

- 270 XPS was recorded on a Kratos Axis Ultra DLD X-ray photoelectron spectrometry, using a 271 standard Al Ka X-ray source and an analyzer pass energy of 40 eV. All binding energies were 272 referenced to the adventitious C 1s line at 284.6 eV.
- The BET surface area and pore size distribution of the catalysts were determined by N_2 adsorption-desorption analysis using AUTOSORB IQ. Prior to measurements, the samples were degassed at 300 °C for 6 h, at a heating rate of 10 °C min⁻¹.
- NH₃-TPD and CF₄-TPD were performed by using a PCA-1200 on a chemisorption analyzer 276 277 equipped with a thermal conductivity detector (TCD). The chemisorption analyzer was carried out 278 on the PCA-1200 from Beijing Builder electronic technology Co., Ltd. For each experiment, the 279 weighed sample (100 mg) was pretreated at 600 °C (10 °C min⁻¹) for 2 h under Ar (30 mL min⁻¹) and cooled to room temperature. Then the NH₃ gas (30 mL min⁻¹) or 20% CF₄/Ar gas (30 mL min⁻¹) 280 ¹) was introduced instead of Ar at this temperature for 1 h to ensure the saturation 281 adsorption. The sample was then purged with Ar for 1 h (30 mL min⁻¹) until the signal returned to 282 the baseline as monitored by a TCD. The desorption curve of NH₃ or CF₄ was acquired by 283 heating the sample from room temperature to 800 °C (10 °C min⁻¹) under Ar with the flow rate of 284 285 30 mL min^{-1} .
- Py-IR spectra of samples were analyzed by a Thermo IS-50 Fourier Transform infrared (FTIR)
 spectrometer. The sample was heated at 500 °C for 5 h, and cooled to room temperature. Then,
 vacuumized to 10⁻³ Torr, samples were exposed to pyridine vapour (3000 Pa) at 100 °C for 1 h,
 followed by reevacuation for 1 h, and lower the temperature to take out our samples. After this
 step, the sample was analyzed by FTIR.
- 291 In situ IR spectra of sample was also analyzed by a Thermo IS-50 FTIR spectrometer. Self-292 supported wafer was prepared from catalyst powder (ca. 10 mg). The wafer was loaded into an in-situ IR thermal catalytic cell with CaF₂ windows and pretreated under Ar flow at 600 °C for 2 h. 293 294 Then regulated to the target temperature to obtain a background spectrum which should be 295 deducted from the sample spectra. As for the transient reactions between (1) CF_4 and water vapor and (2) water vapor, after the background spectra at appointed temperatures under Ar flow 296 297 was obtained, the catalysts were exposed to (1) 1 mL min⁻¹ 20% CF₄/Ar + water vapor (50 mL Ar 298 passing through water bottle) or (2) water vapor (50 mL Ar passing through water bottle) at 580 299 °C and meanwhile the reaction process was recorded as a function of time. For the adsorption of

300 CF_4 studies, after the same pretreatment, the catalysts were exposed to a flow of 20% CF_4 /Ar at 301 100 °C for 2 h. The desorption process then went on under a flow of Ar, and the temperature was 302 gradually raised to 700 °C (a step of 50 °C) and recorded as a function of temperature.

303

304 Catalytic Activity Evaluation and Analytical Methods.

305 CF_4 hydrolysis was measured by using a continuous flow reaction system with a quartz fixed-bed 306 reactor (i.d. 20 mm) under atmospheric pressure in a temperature range from 440 to 660 °C. A 307 gas flow of 33.3 mL min⁻¹ (0.25% CF_4 in Ar) controlled by a mass flow controller, together with 0.2 308 mL h⁻¹ of water pumped by an injection pump, were passed over 2.0 g of catalyst. According to 309 the following equations, the CF_4 decomposition is calculated:

$$CF_4 \text{ decomposition (\%)} = \frac{[CF_4]_{in} - [CF_4]_{out}}{[CF_4]_{in}} \times 100\%$$

310 where $[CF_4]_{in}$ and $[CF_4]_{out}$ indicate the input and output relative gas concentrations, respectively.

311

312 Theoretical Calculation Studies.

313 All our investigations in this study were based on density functional theory, as implemented in the 314 Vienna ab initio simulation package (VASP) (44, 45). The exchange-correlation potential is 315 treated with the Perdew-Burke- Ernzerhof (PBE) formula by using the projected augmented wave 316 (PAW) method within the generalized gradient approximation (GGA) (46). The cut-off energy for all calculations was set to be 450 eV. All the positions of atoms are fully relaxed until the 317 Hellmann-Feynman forces on each atom are less than 0.01 eV Å⁻¹. Meanwhile, a k-points Г-318 centered mesh is generated for Brillouin zone samples. The DFT-D₃ method proposed by 319 320 Grimme was adopted to describe the van der Waals interactions, which has been shown to 321 accurately describe chemisorption and physisorption properties on layered material. In addition, A 322 vacuum region of about 15 Å was used to decouple the periodic replicas. 323

324 Data, Materials, and Software Availability.

All study data are included in the article and/or *SI Appendix*.

327 Acknowledgments

328

329 We thank the National Natural Science Foundation of China (Grant Nos. 22002189, 22376222, 330 52202125 and 22125604), Science and Technology Innovation Program of Hunan Province 331 (Grant No. 2023RC1012), Central South University Research Programme of Advanced 332 Interdisciplinary Studies (Grant No. 2023QYJC012), Central South University Innovation-Driven 333 Research Programme (Grant No. 2023CXQD042). We would like to acknowledge the help from 334 Beam Lines BL01C1 in the National Synchrotron Radiation Research Center (NSRRC, Hsinchu, 335 Taiwan) for various synchrotron-based measurements. We are grateful for technical support from 336 the High Performance Computing Center of Central South University.

337 338

339 References

- 340
- 1. P. P. Bera, J. S. Francisco, T. J. Lee, Design strategies to minimize the radiative efficiency of global warming molecules. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 9049-9054 (2010).
- B. Bolin, H. S. Kheshgi, On strategies for reducing greenhouse gas emissions. *Proc. Natl. Acad. Sci. U. S. A.* 98, 4850-4854 (2001).
- A. Nauels, J. Gütschow, M. Mengel, M. Meinshausen, P. U. Clark, C.-F. Schleussner, Attributing long-term sea-level rise to Paris Agreement emission pledges. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 23487-23492 (2019).
- C. A. McMillan, G. A. Keoleian, Not all primary aluminum is created equal: Life cycle greenhouse gas emissions from 1990 to 2005. *Environ. Sci. Technol.* 43, 1571-1577 (2009).
- 5. T. Saito, Y. Yokouchi, A. Stohl, S. Taguchi, H. Mukai, Large emissions of perfluorocarbons in

- East Asia deduced from continuous atmospheric measurements. *Environ. Sci. Technol.* 44, 4089-4095 (2010).
- B. Gschrey, W. Schwarz, C. Elsner, R. Engelhardt, High increase of global F-gas emissions until 2050. *GHG Measur. and Manag* 1, 85-92 (2011).
- S. Choi, S. H. Hong, H. S. Lee, T. Watanabe, A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. *Chem. Eng. J.* **185**, 193-200 (2012).
- Europäische Union, Regulation (EU) 2023/956 of the European Parliament and of the council
 of 10 May 2023 establishing a carbon border adjustment mechanism. *Official Journal of the European Union* 66, (2023).
- S. Yang, H. Zhang, Z. Zou, J. Li, X. Zhong, Reducing PFCs with local anode effect detection and independently controlled feeders in aluminum reduction cells. *JOM* 72, 229-238 (2020).
- B. A. Wofford, M. W. Jackson, C. Hartz, J. W. Bevan, Surface wave plasma abatement of CHF₃ and CF₄ containing semiconductor process emissions. *Environ. Sci. Technol.* 33, 1892-1897 (1999).
- 365 11. J. Harnisch, R. Borchers, P. Fabian, K. Kourtidis, Aluminium production as a source of
 366 atmospheric carbonyl sulfide (COS). *Environ. Sci. Pollut. Res.* 2, 161-162 (1995).
- 367 12. J. H. Hildebrand, R. H. Lamoreaux, Diffusivity of gases in liquids. *Proc. Natl. Acad. Sci. U. S.* 368 *A.* **71**, 3321-3324 (1974).
- 369 13. R. J. Cicerone, Atmospheric carbon tetrafluoride: A nearly inert gas. *Science* 206, 59-61 (1979).
- 14. D. R. Worton, W. T. Sturges, L. K. Gohar, K. P. Shine, P. Martinerie, D. E. Oram, S. P.
 Humphrey, P. Begley, L. Gunn, J.-M. Barnola, Atmospheric trends and radiative forcings of CF₄ and C₂F₆ inferred from firn air. *Environ. Sci. Technol.* **41**, 2184-2189 (2007).
- 15. L. Hockstad, L. Hanel, Inventory of US greenhouse gas emissions and sinks. *Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States)* (2018).
- Y. Takita, M. Ninomiya, H. Miyake, H. Wakamatsu, Y. Oshinaga, T. Ishihara, Catalytic
 decomposition of perfluorocarbons part II. Decomposition of CF₄ over AIPO₄-rare earth
 phosphate catalysts. *Phys. Chem. Chem. Phys.* **1**, 4501-4504 (1999).
- 17. X. Xu, J. Y. Jeon, M. H. Choi, H. Y. Kim, W. C. Choi, Y. Park, The modification and stability of
 γ-Al₂O₃ based catalysts for hydrolytic decomposition of CF₄. *J. Mol. Catal. A-Chem.* 266, 131 138 (2007).
- 383 18. J. Song, S. Chung, M. Kim, M. Seo, Y. Lee, K. Lee, J. Kim, The catalytic decomposition of
 384 CF₄ over Ce/Al₂O₃ modified by a cerium sulfate precursor. *J. Mol. Catal. A-Chem.* **370**, 50-55
 385 (2013).
- In Z. M. El-Bahy, R. Ohnishi, M. Ichikawa, Hydrolytic decomposition of CF₄ over alumina-based
 binary metal oxide catalysts: high catalytic activity of gallia-alumina catalyst. *Catal. Today* **90**,
 283-290 (2004).
- 389 20. Y. J. Jong, X. Xiu-Feng, H. C. Mi, Y. K. Hee, P. Yong-Ki, Hydrolytic decomposition of PFCs
 390 over AIPO₄-Al₂O₃ catalyst. *Chem. Commun.* 1244-1245 (2003).
- 21. H. Zhang, T. Luo, Y. Long, Y. Chen, J. Fu, H. Liu, J. Hu, Z. Lin, L. Cai, M. Liu, Identification of
- the active site during CF_4 hydrolytic decomposition over γ -Al₂O₃. *Environ. Sci.-Nano* **9**, 954-963 (2022).
- 22. A. Anus, M. Sheraz, S. Jeong, E. Kim, S. Kim, Catalytic thermal decomposition of tetrafluoromethane (CF₄): A review. *J. Anal. Appl. Pyrolysis* **156**, 105126 (2021).
- 396 23. H. Erguang, H. Zheng, W. Shukun, X. Liyong, B. Mengna, Thermal decomposition and 397 interaction mechanism of HFC-227ea/n-hexane as a zeotropic working fluid for organic 398 Rankine cycle. *Energy* 246, 123435 (2022).
- 24. T. Sasaki, S. Kanno, Role of acid sites on γ -Al₂O₃ based catalyst for CF₄ hydrolysis. *Kag. Kog. Ronbunshu* **37**, 175-180 (2011).
- 401 25. W. Jia, Q. Wu, X. Lang, C. Hu, G. Zhao, J. Li, Z. Zhu, Influence of Lewis acidity on catalytic 402 activity of the porous alumina for dehydrofluorination of 1,1,1,2-tetrafluoroethane to

- 403 trifluoroethylene. *Catal. Lett.* **145**, 654-661 (2015).
- 404 26. T. Stahl, H.-F. Klare, M. Oestreich, Main-group Lewis acids for C–F bond activation. ACS
 405 Catal. 3, 1578-1587 (2013).
- 406 27. M. Rust, W. C. Stallings, R. K. Preston, Intermolecular interactions of the C–F bond: The crystallographic environment of fluorinated carboxylic acids and related structures. *J. Am. Chem. Soc.* **105**, 3206-3214 (1983).
- 409 28. R. S. P. Von, A. J. Kos, The importance of negative (anionic) hyperconjugation. *Tetrahedron* 39, 1141-1150 (1983).
- 411 29. J. AK. Howard, V. J. Hoy, D. O'Hagan, G. T. Smith, How good is fluorine as a hydrogen bond
 412 acceptor? *Tetrahedron* 52, 12613-12622 (1996).
- 30. R. A. Cormanich, R. Rittner, M. P. Freitas, M. Bühl, The seeming lack of CF ··· HO
 intramolecular hydrogen bonds in linear aliphatic fluoroalcohols in solution. *Phys. Chem. Chem. Phys.* 16, 19212-19217 (2014).
- 416 31. P. A. Champagne, J. Desroches, J. F. Paquin, Organic fluorine as a hydrogen-bond acceptor:
 417 recent examples and applications. *Synthesis* 47, 306-322 (2015).
- 418 32. P. A. Champagne, Y. Benhassine, J. Desroches, J. F. Paquin, Friedel-crafts reaction of benzyl fluorides: Selective activation of C–F bonds as enabled by hydrogen bonding. *Angew. Chem.*420 *Int. Edit.* 53, 13835-13839 (2014).
- 33. B. Nepal, S. Scheiner, Anionic CH × X- hydrogen bonds: Origin of their strength, geometry, and other properties. *Chem. Eur. J.* 21, 1474-1481 (2015).
- 423 34. V. Pârvulescu, S. Coman, P. Grange, V. I. Pârvulescu, Preparation and characterization of
 424 sulfated zirconia catalysts obtained via various procedures. *Appl. Catal. A-Gen.* **176**, 27-43
 425 (1999).
- 426 35. A. Makarowicz, C. L. Bailey, N. Weiher, E. Kemnitz, S. L. M. Schroeder, S. Mukhopadhyay, A.
 427 Wander, B. G. Searle, N. M. Harrison, Electronic structure of lewis acid sites on high surface
 428 area aluminium fluorides: A combined XPS and ab initio investigation. *Phys. Chem. Chem.*429 *Phys.* 11, 5664-5673 (2009).
- 430 36. H. Wang, Y. Li, F. Yu, Q. Wang, B. Xing, D. Li, R. Li, A stable mesoporous super-acid
 431 nanocatalyst for eco-friendly synthesis of biodiesel. *Chem. Eng. J.* 364, 111-122 (2019).
- 432 37. Y. Chen, H. Zhang, H. Li, J. Hu, Y. Long, M. Liu, Alumina catalyst with high density of medium
 433 acid sites for N-arylpyrrolidines synthesis. *Appl. Catal. A-Gen.* 640, 118668 (2022).
- 434 38. H. Zhang, W. Yang, I. I. Roslan, S. Jaenicke, G. Chuah, A combo Zr-HY and Al-HY zeolite
 435 catalysts for the one-pot cascade transformation of biomass-derived furfural to γ436 valerolactone. *J. Catal.* **375**, 56-67 (2019).
- 437 39. J. M. Dominguez, J. L. Hernandez, G. Sandoval, Surface and catalytic properties of Al₂O₃–
 438 ZrO₂ solid solutions prepared by sol–gel methods. *Appl. Catal. A-Gen.* **197**, 119-130 (2000).
- 439
 40. A. I. Ahmed, S. A. El-Hakam, A. S. Khder, W. S. A. El-Yazeed, Nanostructure sulfated tin oxide as an efficient catalyst for the preparation of 7-hydroxy-4-methyl coumarin by Pechmann condensation reaction. *J. Mol. Catal. A-Chem.* **366**, 99-108 (2013).
- 41. M. Mosiadz, K. L. Juda, S. C. Hopkins, J. Soloducho, B. A. Glowacki, An in-depth *in situ* IR
 study of the thermal decomposition of barium trifluoroacetate hydrate. *Thermochim. Acta* 513, 33-37 (2011).
- 42. L. Xiao-Fei, W. Kui, H. Chao, L. Jin-Hua, A. Xing-Tao, P. Jie, W. Qi, W. Guo-Ming, Y. Guo-Yu, Sb₄O₃(TeO₃)₂(HSO₄)(OH): An antimony tellurite sulfate exhibiting large optical anisotropy activated by lone pair stereoactivity. *Inorg. Chem.* 62, 7123-7129 (2023).
- 43. N. Lazaroff, W. Sigal, A. Wasserman, Iron oxidation and precipitation of ferric hydroxysulfates by resting thiobacillus ferrooxidans cells. *Appl. Environ. Microbiol.* **43**, 924-938 (1982).
- 450 44. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **47**, 558 (1993).
- 45. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations 453 using a plane-wave basis set. *Phys. Rev. B* **54**, 11169 (1996).
- 46. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. *Phys. Rev. Lett.* 77, 3865 (1996).

Supporting Information for

Promoting C–F bond activation via proton donor for CF₄ decomposition

Yingkang Chen^a, Wenqiang Qu^b, Tao Luo^a, Hang Zhang^a, Junwei Fu^a, Hongmei Li^a, Changxu Liu^c, Dengsong Zhang^b, and Min Liu^{a,*}

^a Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, and School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, P. R. China

^b International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China

^c Centre for Metamaterial Research & Innovation, Department of Engineering, University of Exeter, Exeter EX4 4QF, United Kingdom

*Min Liu Email: <u>minliu@csu.edu.cn</u>

This PDF file includes:

Figures S1 to S26 Tables S1 to S9 SI References

Fig. S1. Schematic illustration of the synthesis process of S-Al₂O₃@ZrO₂ catalyst.

Fig. S2. XRD patterns of ZrO_2 , Al_2O_3 and $S-Al_2O_3$ catalysts.

Fig. S3. (a) N_2 adsorption-desorption curve and (b) pore diameter distribution of ZrO_2 , Al_2O_3 , $S-Al_2O_3$, Al_2O_3 , a

Fig. S4. TEM images of (a) ZrO₂, (b) Al₂O₃, (c) Al₂O₃@ZrO₂ and (d) S-Al₂O₃ catalysts.

Fig. S5. HRTEM images of (a) ZrO_2 , (b) Al_2O_3 , (c) $S-Al_2O_3$, (d) $Al_2O_3@ZrO_2$ and (e) $S-Al_2O_3@ZrO_2$ catalysts.

Fig. S6. EDS mapping images of $Al_2O_3@ZrO_2$ catalyst.

Fig. S7. XPS spectra of O 1s for ZrO_2 , Al_2O_3 , $S-Al_2O_3$, Al_2O_3 ,

Fig. S8. XPS spectra of (a) Al 2p and (b) S 2p for S-Al_2O_3 catalyst.

Fig. S9. XPS spectra of Al 2p for Al₂O₃.

Fig. S10. XPS spectra of Zr 3d for ZrO₂.

Fig. S11. The Zr k-edge (a) XAS spectrum and (b) XAFS fitting result of $S-Al_2O_3@ZrO_2$ catalyst.

Fig. S12. In situ IR spectra of Al₂O₃@ZrO₂ catalyst with H₂O at 580 °C.

Fig. S13. In situ IR spectra of S-Al₂O₃@ZrO₂ catalyst with H₂O at 580 °C.

Fig. S14. In situ IR spectra of $Al_2O_3@ZrO_2$ catalyst with CF₄ and H₂O at 580 °C.

Fig. S15. In situ IR spectra of Al_2O_3 catalyst with CF₄ and H₂O at 580 °C.

Fig. S16. In situ IR spectra of S-Al₂O₃ catalyst with CF₄ and H₂O at 580 °C.

Fig. S17. The side view and top view of calculation model of γ -Al₂O₃ (110) face.

Fig. S18. In situ IR spectra of the desorption process of pre-adsorbed CF_4 on $Al_2O_3@ZrO_2$ from 100 to 700 °C.

Fig. S19. In situ IR spectra of the desorption process of pre-adsorbed CF_4 on $S-Al_2O_3@ZrO_2$ from 100 to 700 °C.

Fig. S20. The catalytic performance of (a) Al_2O_3 , (b) $S-Al_2O_3$, (c) $Al_2O_3@ZrO_2$ and (d) $S-Al_2O_3@ZrO_2$ catalysts as a function of temperature. Reaction condition: 2500 ppm of CF₄ and 10% of H₂O balanced with Ar, total flow rate of 33.3 mL min⁻¹, and weight hourly space velocity (WHSV) of 1000 mL g⁻¹ h⁻¹.

Fig. S21. XRD patterns of S-Al₂O₃@ZrO₂ catalyst before and after CF₄ decomposition.

Fig. S22. (a) N_2 adsorption-desorption curve and (b) pore diameter distribution of S-Al₂O₃@ZrO₂-after catalyst.

Fig. S23. TEM image of S-Al₂O₃@ZrO₂-after catalyst.

Fig. S24. XPS spectra of (a) Al 2p, (b) Zr 3d and (c) S 2p for S-Al₂O₃@ZrO₂-after catalyst.

Fig. S25. NH₃-TPD profiles of the Al_2O_3 and $S-Al_2O_3$ catalysts.

Fig. S26. Py-IR spectra of the Al_2O_3 and $S-Al_2O_3$ at (a) 50 °C, (b) 100 °C and (c) 200 °C desorption temperature.

Sample	SA (m ² g ⁻¹)	PV (cm ³ g ⁻¹)	APR (nm)
ZrO ₂	18.6	0.13	24.1
Al ₂ O ₃	136.7	0.47	11.9
S-Al ₂ O ₃	40.5	0.09	8.5
$AI_2O_3@ZrO_2$	61.3	0.21	12.1
S-Al ₂ O ₃ @ZrO ₂	49.8	0.13	9.3

 $\textbf{Table S1.} \text{ BET results of } ZrO_2, \ Al_2O_3, \ S-Al_2O_3, \ Al_2O_3 @ZrO_2 \ and \ S-Al_2O_3 @ZrO_2 \ catalysts.$

	,	- ,	,			,
Sampla	A12n(9/)	$\mathbf{Z}_{\mathbf{r}} \rightarrow \mathbf{A} \left(0 \right)$	O(1 - (0/))	S 2p (%)		
Sample	Ai 2p (%)	ZI 30 (%)	0 15 (%)	- SO ₄	-HSO4	-HSU4/-SU4 Tallo
ZrO ₂	-	26.02	73.98	-	-	-
Al ₂ O ₃	40.99	-	59.01	-	-	-
S-Al ₂ O ₃	38.48	-	57.80	3.10	0.62	0.20
$AI_2O_3@ZrO_2$	19.24	20.08	60.68	-	-	-
$S-AI_2O_3@ZrO_2$	14.25	19.25	63.17	2.56	0.77	0.30

 $\textbf{Table S2.} \ \text{XPS results of } ZrO_2, \ Al_2O_3, \ S-Al_2O_3, \ Al_2O_3 @ZrO_2 \ and \ S-Al_2O_3 @ZrO_2 \ catalysts.$

 Table S3. Fitting Results of Zr K-edge EXAFS Data.

5	5					
Sample	R _{Zr-O}	N _{Zr-O}	R_{Zr-Zr}	N _{Zr-Zr}	R_{Zr-Al}	N _{Zr-Al}
S-Al ₂ O ₃ @ZrO ₂	2.12	4.83	3.33	6.75	3.74	2.08

Sampla	Ac	I/P rotio a		
Sample	Total	weak medium		
Al ₂ O ₃	18.76	7.05	11.71	-
S-Al ₂ O ₃	40.03	24.53	15.50	1.34
$AI_2O_3@ZrO_2$	7.86	4.23	3.63	-
$S-Al_2O_3@ZrO_2$	21.28	9.17	12.11	0.28

Table S4. Acidity data obtained from NH₃-TPD and py-IR measurements.

a Determined by the normalized peak areas at 1444 cm⁻¹ and 1544 cm⁻¹ of the py-IR spectra after desorption at 100 °C.

Catalyst	Temperature (°C)	Stable CF ₄ decomposition	Ref.
Ce10%-AIPO ₄	700	100%	(1)
Ga-Al	680	97%	(2)
$AIPO_4 - AI_2O_3$	750	100%	(3)
γ -Al ₂ O ₃	750	100%	(3)
Ga20-Al ₂ O ₃	630	84%	(4)
Ga20S10-Al ₂ O ₃	630	98%	(4)
ZnO/γ-Al ₂ O ₃	650	99.4%	(5)
5%Cu-MCM-41	850	70%	(6)
5%Fe-MCM-41	800	81%	(7)
16%Zr/Al ₂ O ₃	650	85%	(8)
$S-AI_2O_3@ZrO_2$	580	100%	This work

Table S5. Catalytic activity for CF₄ hydrolysis over previous studies.

		_			
Samples	SA (m² g⁻¹)	PV (cm³ g⁻¹)	APR (nm)	Al content (wt.%)	S content (wt.%)
S-Al ₂ O ₃ @ZrO ₂ -after	27.3	0.09	30.4	2.903	0.18

 Table S6. BET and ICP-OES results of S-Al₂O₃@ZrO₂ catalyst after CF₄ decomposition.

Sampla	Al 2p	Zr 3d	0 1s	S 2p	o (%)	-HSO4/
Sample	(%)	(%)	(%)	- SO ₄	-HSO4	-SO ₄ ratio
S-Al ₂ O ₃ @ZrO ₂ -after	14.25	19.25	63.17	2.56	0.77	0.30

 Table S7. XPS results of S-Al₂O₃@ZrO₂-after catalysts.

Sample	AI content (wt.%)	S content (wt.%)
Al ₂ O ₃	56.75	-
S-Al ₂ O ₃	55.53	4.56
$AI_2O_3@ZrO_2$	2.99	-
$S-Al_2O_3@ZrO_2$	2.87	4.36

 $\textbf{Table S8.} \ \text{ICP-OES results of Al}_2O_3, \ S-Al_2O_3, \ Al_2O_3@ZrO_2 \ \text{and} \ S-Al_2O_3@ZrO_2 \ \text{catalysts.}$

Table S9. Details of the TOF calculation for catalytic CF₄ decomposition.

	Sample	surface Al _Ⅲ ^a (µmol)	CF ₄ decomposition ^b (%)	TOF ^c (10 ⁻³ s ⁻¹)
	AI_2O_3	23.42	13.2	0.35
	S-Al ₂ O ₃	17.75	22.6	0.79
	$AI_2O_3@ZrO_2$	7.26	5.6	0.47
_	$S-Al_2O_3@ZrO_2$	5.29	33.4	3.91

a Determined by the NH₃-TPD and py-IR result.

Calculation equation: [surface AI_{μ}]=[medium acidity (µmol g⁻¹)] × [L/L+B]

 $b\,CF_4$ decomposition at 500 °C (2.0 g catalyst, 2500 ppm of CF_4 and 10% of H_2O balanced with

Ar, 33.3 mL min⁻¹).

c Turnover frequency of the CF₄ decomposition at 500 °C.

 $\label{eq:calculation} \begin{array}{l} Calculation \ equation: \ TOF = \frac{[CF_4 \ flow \ rate \ (\mu mol \ s^{-1})] \times [CF_4 \ decomposition]}{[surface \ AI_{_{\rm II}}]} \end{array}$

SI References

- 1. Y. Takita, C. Morita, M. Ninomiya, Catalytic decomposition of CF₄ over AIPO₄-based catalysts. *Chem. Lett.* **28**, 417-418 (1999).
- 2. Z M El-Bahy, R Ohnishi, M Ichikawa, Hydrolysis of CF₄ over alumina-based binary metal oxide catalysts. *Applied Catalysis B: Environmental* **40**, 81-91 (2003).
- 3. J Y Jeon, X F Xu, M H Choi, H Y Kim, Y K Park, Hydrolytic decomposition of PFCs over AIPO₄–Al₂O₃ catalyst. *Chemical Communications* 1244-5 (2003).
- 4. Z. M. El-Bahy, R. Ohnishi, M. Ichikawa, Hydrolytic decomposition of CF₄ over aluminabased binary metal oxide catalysts: high catalytic activity of gallia-alumina catalyst. *Catal. Today* **90**, 283-290 (2004).
- 5. T. Sasaki, S. Kanno, Role of acid sites on γ-Al₂O₃ based catalyst for CF₄ hydrolysis. *Kag. Kog. Ronbunshu* **37**, 175-180 (2011).
- 6. J. Han, A. Shiue, Y. Shiue, D. Huang, C. C. Chang, Catalytic decomposition of CF₄ over copper promoted mesoporous catalysts. *Sustain. Environ. Res.* **23**, 307-314 (2013).
- 7. C. Chen, A;. Shiue, D. Huang, C. C. Chang, Catalytic decomposition of CF₄ over iron promoted mesoporous catalysts. *J. Nanosci. Nanotechno.* **14**, 3202-3208 (2014).
- 8. X. Zheng, K;. Xiang, F. Shen, H. Liu, The Zr modified γ-Al₂O₃ catalysts for stable hydrolytic decomposition of CF₄ at low temperature. *Catalysts* **12**, 313 (2022).