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Abstract
Human observers are known to frequently act like Bayes-optimal decision-makers. Growing evidence indicates that the 
deployment of the visual system may similarly be driven by probabilistic mental models of the environment. We tested 
whether eye movements during a dynamic interception task were indeed optimised according to Bayesian inference prin-
ciples. Forty-one participants intercepted oncoming balls in a virtual reality racquetball task across five counterbalanced 
conditions in which the relative probability of the ball’s onset location was manipulated. Analysis of pre-onset gaze positions 
indicated that eye position tracked the true distribution of onset location, suggesting that the gaze system spontaneously 
adhered to environmental statistics. Eye movements did not, however, seek to minimise the distance between the target and 
foveal vision according to an optimal probabilistic model of the world and instead often reflected a ‘best guess’ about onset 
location. Trial-to-trial changes in gaze position were, however, found to be better explained by Bayesian learning models 
(hierarchical Gaussian filter) than associative learning models. Additionally, parameters relating to the precision of beliefs 
and prediction errors extracted from the participant-wise models were related to both task-evoked pupil dilations and vari-
ability in gaze positions, providing further evidence that probabilistic context was reflected in spontaneous gaze dynamics.

Keywords  Predictive processing · Eye tracking · Gaze · Bayesian · Interception · Computational

This paper considers the optimality principles that underlie 
dynamic visuomotor control. Strategic shifts of the eyes—
via fixations, saccades, and smooth pursuit—are important 
for acquiring information to guide goal-directed actions (de 
Brouwer et al., 2021; Zhao & Warren, 2015). This deploy-
ment of the visual system is partly driven by mental models 
of the environment and expectations about the location of 
salient information (Henderson, 2017; Itti & Koch, 2001). 
Much of our current understanding of oculomotor control 
has, however, come from highly constrained tasks requiring 
simplified motor responses; hence, it is unclear how behav-
ioural outcomes are optimised during more dynamic and nat-
uralistic visuomotor skills, or in the context of more richly 
structured visual environments (Lappi, 2016). Consequently, 

some key theoretical questions remain in these contexts. For 
instance, do eye movements reflect our ‘best guess’ about 
the likely state of the world, or do they instead minimise 
errors in a probabilistic way? How does prior knowledge 
influence gaze control? And what determines when (and 
by how much) we adapt our visual strategy over succes-
sive iterations of an event? The present work aimed to begin 
answering these questions, by directly evaluating some of 
the key computational and neuroscientific models of vision 
that have emerged in recent years (Adams et al., 2012, 2015; 
Parr et al., 2021).

A body of work has shown that, for many learning and 
decision-making processes, humans update their beliefs 
about the world in a statistically optimal way (e.g. Beck 
et al., 2008; Glaze et al., 2015; Knill & Pouget, 2004; Nas-
sar et al., 2010). Here, ‘statistically optimal’ indicates that 
all available information is weighted by its reliability—i.e. 
approximating Bayesian inference (Knill & Pouget, 2004). 
This work has shown that human decision-makers repre-
sent uncertain future events much like probability distri-
butions, which describe both the central tendency and the 
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uncertainty (distribution width) of outcomes and dynami-
cally adjust their responses according to both (Körding & 
Wolpert, 2006). In addition to constantly refining predictions 
about the world so as to minimise prediction error, Bayes-
ian agents can use actions to further reduce uncertainty in 
their environment; an idea known as active inference (Fris-
ton et al., 2016; Parr & Friston, 2019). Rooted in the free 
energy principle (Friston, 2010; Friston et al., 2006), active 
inference postulates that humans encode an internal ‘gen-
erative’ model of the world, which simulates expected sen-
sory data and infers the likely causes of sensations (Friston 
et al., 2006; Jiang & Rao, 2022). The same generative model 
drives motor plans (or policies) that minimise future pre-
diction errors (also known as expected free energy; Parr & 
Friston, 2019). For eye movements, this may entail directing 
gaze towards parts of the environment that are potentially the 
most surprising or unpredictable, to minimise surprisal in 
the long run (Itti & Baldi, 2009). Consequently, Friston et al. 
(2012) conceptualise fixations and saccades as hypotheses 
about the state of the world (see also Najemnik & Geisler, 
2005; Parr et al., 2021). Expected free energy represents not 
only the minimisation of prediction error (i.e. information 
gain), but also selection of actions that maximise the prob-
ability of outcomes consistent with prior preferences. As 
such, free energy minimization reflects a trade-off between 
information gain (epistemic value) and the attainment of 
preferred outcomes (pragmatic value).

Given the potential explanatory value of active inference 
as a unified theory of perception and action (Friston, 2010), 
we sought to test whether eye movements reflect probabil-
istic predictions about the world during a dynamic visually-
guided motor task. There is considerable evidence that eye 
gaze is, indeed, deployed in a predictive fashion (Hayhoe 
et al., 2012; Henderson, 2017; Land & McLeod, 2000). For 
instance, eye movements anticipate the future trajectory of 
a bouncing ball in a way that is consistent with hierarchi-
cal predictive models (Arthur & Harris, 2021; Diaz et al., 
2013; Hayhoe et al., 2012; Mann et al., 2019). However, 
these consistencies do not necessarily mean that visuomotor 
behaviours are being driven by complex and sophisticated 
state estimations. Instead, they could reflect a more direct 
functional coupling between information and movement, 
where eye movements facilitate prospective control, and 
are not linked to probabilistic models of the environment 
(Katsumata & Russell, 2012; Peper et al., 1994). To distin-
guish between these theoretical positions, it is pertinent to 
examine the role of contextual uncertainty. Indeed, contrary 
to these ‘direct perception’ hypotheses, a close correspond-
ence between gaze behaviours and estimated uncertainties 
would provide evidence in favour of accounts emphasising 
probabilistic generative models, as they would indicate that 
an agent is estimating the reliability and/or stability of their 
surrounding world.

A recent study by Bakst & McGuire (2021) has provided 
a clear demonstration that dynamic predictive inference is 
manifested in spontaneous gaze dynamics. In this study, par-
ticipants were asked to report whether numbers displayed 
over a range of horizontal locations on a screen were odd 
or even. Short presentation intervals imposed an implicit 
need to predict onset location. Stimulus locations were 
drawn from distributions with shifting central tendencies, 
as well as differing degrees of uncertainty (widths). Partici-
pants showed adaptive learning as predictive eye movements 
(i.e. location before stimulus onset) were adjusted towards 
the underlying generative mean. Additionally, pre-stimulus 
gaze variability was correlated with theoretical levels of 
uncertainty. These findings are strongly suggestive that eye 
movements minimise prediction error according to proba-
bilistic generative models, although the highly controlled 
task conditions could limit generalisability to more natural-
istic sensory environments. Therefore, the first aim of this 
study was to test whether eye movements index probabilistic 
predictions about the world in a similar way during a more 
dynamic and naturalistic manual interception task.

Since the stimuli used by Bakst & McGuire (2021) were 
drawn from moving Gaussian distributions, it is also hard 
to determine whether eye movements were really minimis-
ing prediction error probabilistically, or if instead they were 
a ‘best guess’ about the next onset location. This question 
about the sensorimotor system has previously been exam-
ined in the context of object lifting. Cashaback et al. (2017) 
described how predictive grip forces (which are scaled to 
the expected weight of to-be-lifted objects) could (i) fol-
low a strategy that minimizes prediction error (aka ‘minimal 
squared error’ (MSE)) or (ii) could be a best guess at the 
most likely weight (aka ‘maximum a posteriori’ (MAP)). 
MSE seeks to minimize the squared difference between the 
observed data and the model’s predictions. So, when lifting 
an object of unknown mass, this would equate to averag-
ing the grip forces for all possible masses in the known set 
(weighted by the most probable) and using fingertip forces 
that would be the ‘least wrong’ on average (but are not nec-
essarily ‘correct’ for any single object). By contrast, MAP, 
finds the most probable values of the hidden variables, which 
equates to selecting fingertip forces that are ‘correct’ for 
the most likely object (but effectively ignores all other pos-
sible weights). Cashaback et al. observed that fingertip grip 
and loading forces minimised prediction error using a MSE 
strategy, as predicted by Bayesian models of sensorimotor 
learning (Körding & Wolpert, 2004). We can ask the same 
question of anticipatory eye movements in a ball-intercep-
tion task with two distinct stimulus onset locations. Here, an 
MSE strategy would minimise the error between the place-
ment of the fovea and the likely location of the ball (e.g. 
positioning gaze part way between two locations in a binary 
choice task), while a MAP strategy would require looking 
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directly at the most probable ball location. Our second aim 
was therefore to test whether eye movements during inter-
ception followed a MSE or MAP strategy.

To further examine the relationship between predictive 
generative models and human visuomotor control, it is also 
prudent to consider neurophysiological responses to surpris-
ing observations. The way in which observers encode pre-
diction errors has often been studied using non-luminance 
mediated changes in pupil diameter, which have been shown 
to track the probabilistic surprise of new sensory observa-
tions (Filipowicz et al., 2020; Hayden et al., 2011; Kloost-
erman et al., 2015; Lavin et al., 2014). These changes in 
pupil dilation are linked to central signalling of surprise 
by the locus coeruleus-norepinephrine system (Joshi et al., 
2016; Nassar et al., 2012). Previously, Harris et al. (2022a) 
reported that task-evoked pupil dilations during an inter-
ceptive task tracked the rate at which gaze behaviours were 
updated trial-to-trial, as estimated via Bayesian learning 
models. Crucially, this was only the case for learning mod-
els fitted to individual responses, not the theoretical levels 
of surprise from a Bayes-optimal simulation, illustrating the 
importance of individual differences in the precision weight-
ing of prediction errors. Our third aim was, therefore, to test 
whether objectively more surprising (unlikely) trials were 
accurately encoded by individual observers and elicited 
greater task-evoked pupil responses.

Using a manipulation of probabilistic context during an 
interceptive task in which a target ball was released from one 
of two horizontally aligned locations, we sought to test the 
following hypotheses:

o	 H1—Eye movements will be deployed in accordance 
with a probabilistic generative model, such that the eye 
position prior to stimulus onset will track the true gen-
erative distribution of the onset location.

o	 H2—Following Bakst & McGuire (2021), we expect 
increased variability of the pre-onset eye position to 
be related to probabilistic uncertainty of the projection 
location.

o	 H3—As outlined in active inference models of oculomo-
tor control (Parr et al., 2021), predictive gaze position 
will be controlled by a minimal squared error, rather 
than maximum a posteriori, strategy. If observers use a 
MSE strategy, predictive gaze position should be more 
extreme under more strongly biased conditions (e.g. 90% 
left location compared to 70% left), but if adopting a 
best guess (i.e. MAP) approach, these conditions should 
be similar.

o	 H4—We expect participants to accurately encode the 
probabilistic context of the task, such that greater phys-
iological signalling of surprise (pupillary indices of 
noradrenergic signalling) will be elicited by events that 
are theoretically more surprising (in a Bayesian sense).

Methods

Design

We used a repeated measures design where all partici-
pants took part in five counterbalanced probability con-
ditions: 90/10; 70/30; 50/50; 30/70; and 10/90 left/right 
distributions.

Transparency and Openness

We report sample size determination, data exclusions, all 
manipulations, and all measures in the study. All data and 
analysis code are available at https://​osf.​io/​tgx6r. Data 
were analysed using RStudio v1.4.1106 (R Core Team, 
2017). The study’s design and analysis plan were pre-
registered on the Open Science Framework and can be 
accessed from https://​osf.​io/​8haen. Any analyses not part 
of the original pre-registration are specified as exploratory.

Participants

Fo r t y- o n e  p a r t i c i p a n t s  ( a ge s  1 8 – 4 4  ye a r s , 
mean = 24.2 ± 7.4; 17 males, 24 females) were recruited 
from the staff and student population at a UK university. 
Participants were naïve to the exact aims of the experi-
ment. Three of the 41 participants reported being left-
handed. They attended a single session of data collection 
lasting ~ 45 min and were compensated £20 for taking 
part. Informed consent was obtained in accordance with 
British Psychological Society guidelines, and the study 
received approval from the Departmental Ethics Commit-
tee (University of Exeter, UK). The study methods closely 
adhered to the approved procedures and the Declaration of 
Helsinki. Data collection was completed between January 
and May 2022.

The target sample size was based on an a priori power 
calculation using observed effects from a preceding phase 
of pilot testing (Harris et al., 2022b). Effects in the range 
of ω2 = 0.04–0.08 were observed for the primary dependent 
variable (predictive eye position) and ω2 = 0.01–0.02 for sec-
ondary variables (task performance and task-evoked pupil 
dilations). A simulation of observed power across a range 
of sample sizes was conducted using Markov chain Monte 
Carlo simulations based on known data variance (simr 
package for R; Green & MacLeod, 2016). For linear mixed 
effects models examining the effect of condition, 30 partici-
pants were sufficient to detect the smaller effects with more 
than 85% power. As a conservative estimate, and to account 
for any potential data loss, we recruited an additional 11 
participants. Plots of the power curves, R code, and further 

https://osf.io/tgx6r
https://osf.io/8haen
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details of the calculations can be found in the supplementary 
files (see https://​osf.​io/​axkjn).

Task and Materials

We used a visuomotor task that consisted of manual inter-
ception of oncoming balls projected from two locations, the 
probability of which could be systematically controlled (see 
Harris et al., 2022b). This allowed us to regulate both the 
likelihood of the projection location and when this marginal 
likelihood changed—i.e. both the expected and unexpected 
uncertainties of the task (Yu & Dayan, 2005). Participants 
were given no information about the statistical structure of 
the task or the optimal strategy, so that any emerging eye 
movement patterns reflected a spontaneous response to the 
task structure.

For this task, a virtual environment, simulating an indoor 
racquetball court, was developed using the gaming engine 
Unity (v2019.3.1f; Unity Technologies, San Francisco, CA) 
(see Fig. 1). The VR environment was presented on an HTC 
Vive head-mounted display (HTC Inc., Taoyuan City, Tai-
wan) a high-precision, consumer-grade VR system which 
has proven valid for small-area movement research tasks 
(field of view 110°, accuracy 1.5 cm, jitter 0.5 mm, latency 
22 ms; (Niehorster et al., 2017)). Two ‘lighthouse’ base 
stations projecting infrared light act as a reference point to 
record movements of the headset and hand controller at 90 
Hz. The headset features inbuilt eye-tracking, which uses 
binocular dark pupil tracking to monitor gaze at 120 Hz 
(spatial accuracy 0.5–1.1°; latency 10 ms, headset display 
resolution 1440 × 1600 pixels per eye). Gaze was calibrated 
over five virtual locations prior to each condition and upon 
any obvious displacement of the headset during trials.

The task consisted of a simplified racquetball game where 
participants were instructed to intercept a ball projected 
from one of two possible locations at the front of the court 

using a virtual racquet operated by the Vive hand control-
ler. Balls were 5.7 cm in diameter and resembled the visual 
appearance of a real-world tennis ball. The visible racquet 
in VR was 0.6 × 0.3 × 0.01 m, although its physical thickness 
was exaggerated by 20 cm to facilitate the detection of ball-
to-racquet collisions.

Procedure

Participants attended the lab for a single visit lasting ~ 45 
min. They first completed an informed consent form and 
were fitted with the VR headset. The in-built eye trackers 
were calibrated at the start of the experiment and on any 
obvious displacement of the headset. Participants first com-
pleted six practice trials (50/50 left/right split) to familiarise 
themselves with the task. On each trial, participants begun 
in the centre of the court. The appearance of each ball was 
cued by three auditory tones which took 2 s to play. The 
tones were followed by a variable onset delay, whereby the 
ball was projected during a 0–5-s window. The onset delay 
on each trial was randomly selected from a uniform distri-
bution. The inclusion of the variable ball onset was based 
on previous pilot testing, as it created an additional source 
of uncertainty and a greater implicit demand on correctly 
predicting the ball origin. The ball was projected to either 
the left or right side of the participant and reached them on 
the full (i.e. without bouncing) at around chest height (1.36 
m). It took 350–400 ms for the ball to reach the participant, 
leaving little time to make gaze shifts after released, again 
placing a demand on correct prediction. When participants 
intercepted the ball with the racquet, the ball disappeared 
and a pleasant ‘ding’ sound was played, alongside a hap-
tic vibration from the handheld controller. If the ball was 
missed, a ‘buzz’ sound was played.

Participants completed a further six blocks of 20 tri-
als each, which were split across the different probability 

Fig. 1   Virtual reality task 
environment. Note: Participants 
stood on the red line on the 
floor. The ball was projected 
from one of the two locations on 
the front wall. The ball passed 
the player without bouncing, 
and they were instructed to 
intercept it with the racquet 
(videos of hit and miss trials of 
the task are available online: 
https://​osf.​io/​tgx6r/)

https://osf.io/axkjn
https://osf.io/tgx6r/
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conditions (10/90; 30/70; 50/50; 70/30; 90/10) and bal-
anced across left and right biases. Trial orders were pseudo-
randomised within each block and presented in one of two 
counterbalanced orders. Twenty trials per block were chosen 
as it has been shown that subjects learn the value of the 
mean of a prior distribution within 10 trials (Berniker et al., 
2010).

Measures

Predictive Gaze Behaviours

The gaze-in-world coordinates (i.e. intersection point of the 
gaze vector with the environment) recorded from the VR eye 
trackers were denoised with a three frame moving median 
filter and then a second-order 15-Hz lowpass Butterworth 
filter (Fooken & Spering, 2020). From this, we calculated 
the following measures of predictive gaze behaviour:

i)	 Predictive gaze location was defined as the horizontal 
gaze position at the termination of the auditory tones 
(averaged over a 50-ms window). As the ball could 
appear at any time after the tone, this was taken as the 
most critical moment for anticipating the projection 
location and the variable that most closely matched the 
predictive gaze variable from Bakst & McGuire (2021).

ii)	 Mean pre-release position was defined as the average 
of the horizontal gaze position coordinates during the 
time window from the first beep until the ball release. 
This therefore reflects the visual search of the projection 
space for the whole pre-stimulus period (e.g. Figure 3D) 
and therefore the locations that were deemed most sali-
ent.

iii)	 Gaze variability was calculated to assess whether vari-
ance in gaze position was related to precision of pre-
dictions. Following Bakst & McGuire (2021), this was 
defined as the cumulative distance travelled by the gaze-
in-world coordinates before stimulus onset (i.e. the 2-s 
window from the start to the end of the tones), using the 
Euclidean distance between successive points.

Pupil Dilation

Task-evoked pupil dilation indexes the neurophysiologi-
cal response to probabilistically surprising events (Harris 
et al., 2022a; Joshi & Gold, 2020; Nassar et al., 2012). We 
therefore used trial-wise changes in pupil diameter to com-
pare whether statistically unlikely trials were experienced as 
surprising by participants, i.e. were they accurately encod-
ing the probabilities. Binocular pupil diameter (in millime-
tres) was recorded at 90 Hz from the in-built eye tracking 
system in the VR headset. The data were processed using 
protocols well established in the literature (Relaño-Iborra & 

Bækgaard, 2020). Firstly, blinks were identified from por-
tions of the data where the pupil diameter was 0, before 
being removed, padded by 150 ms, and replaced by linear 
least-squares interpolation (Lemercier et al., 2014; Relaño-
Iborra & Bækgaard, 2020). The resulting signal was then fil-
tered using a low-pass Butterworth filter with 10-Hz cut-off. 
We performed a baseline correction to account for fluctua-
tions in arousal (as recommended by Mathôt & Vilotijević, 
2022) by subtracting the pupil size during a 2000-ms win-
dow before stimulus onset from the peak pupil response 
over the trial (from ball release until 1000 ms after the ball 
reached the player).

Computational Modelling

In addition to the pre-registered analyses, we used compu-
tational modelling to examine whether eye movements fol-
lowed an active inference (i.e. Bayesian) strategy. We tested 
whether trial-to-trial changes in eye position were better 
explained by simple reinforcement learning or Bayesian 
inference principles. To do this, we compared how accu-
rately two associative learning models—the Rescorla-Wag-
ner (R-W) learning rate model (Rescorla & Wagner, 1972) 
and the Sutton K1 model (Sutton, 1992) —fit our data, com-
pared to Mathys and colleagues’ hierarchical Gaussian filter 
(HGF) model of Bayesian inference (Mathys et al., 2011, 
2014). More detailed descriptions of these approaches to 
human learning are provided in the supplementary files 
(https://​osf.​io/​yadu6), but in short, both associative learn-
ing models assume that beliefs about a value (v) are updated 
over trials (k) in proportion to the size of the preceding pre-
diction error (δ) and a stable learning rate scalar (α), which 
in the Sutton K1 is further weighted by recent prediction 
errors. The HGF instead characterises the learning of a 
parameter value as achieved through hierarchical represen-
tations of probabilities that encode beliefs about the world, 
the (un)certainty of those beliefs, and how likely the world 
is to change (Mathys et al., 2014; Yu & Dayan, 2005). As 
a result, rates of belief updating are adjusted dynamically 
according to uncertainty about observations and the wider 
unpredictability of the environment, which is not the case 
for the R-W or Sutton K1 models.

In the HGF, changing beliefs about a state of the world (x) 
are modelled as a ‘Gaussian random walk’, which describes 
the evolution of a time series via a Gaussian probability 
distribution over x. In the current context, x refers to a belief 
about the likely release location of the target ball. While 
this outcome (left/right) is binary, we model an agent’s 
belief about it using a Gaussian distribution (described by 
the mean and variance), which evolves from the posterior 
estimate at the preceding time point. The values of x can be 
described as follows:

https://osf.io/yadu6
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where k is a time index, x(k−1) is the mean of the distri-
bution, and ϑ is the variance at the preceding time point. 
The value of x at time k will then be normally distributed 
around its values at k-1. This is effectively a two-level HGF 
model, consisting of the observed instances of x and the 
agents evolving beliefs about x. However, the HGF approach 
also allows us to model how learning about the parameter x 
might be faster or slower depending on how changeable the 
environment is perceived to be. Therefore, instead of using 
a fixed variance parameter (ϑ), we can employ a variance 
parameter that may itself also vary (or ‘walks’), creating a 
three-level HGF (see Fig. 7 for a schematic representation). 
This effectively models a state where the observer is not 
only representing how a state changes over time, but how 
its rate of change might itself change (i.e. its volatility). By 
replacing the fixed ϑ parameter with a function of a second 
hidden variable x2, so that x becomes x1 and we create a 
hierarchical model:

This hierarchical model can be further extended so that 
the rate of change of the volatility can itself change over 
time (creating a four-level model), and so on. These addi-
tional hierarchical levels enable us to model more complex 
human learning in shifting environmental contexts (see 
Arthur et al., 2023 for an example with sensorimotor tasks).

An agent’s responses (looking to the left or right) are 
taken to be a function of their evolving belief about the 
release location (x). The agent’s action (eye position) is 
assumed to be a Gaussian distribution around the inferred 
mean of the relevant state (x). The parameter ζ quantifies 
the noise of this distribution, which effectively controls the 
extent to which mapping from beliefs to responses is fully 
deterministic or more exploratory.

Our modelling approach followed the ‘observing the 
observer’ framework (Daunizeau et al., 2010), in which 
Bayesian inference is used to estimate the inference pro-
cesses of the agent (participant). Each learning model con-
sists of two components, a perceptual model and a deci-
sion or response model. The perceptual model is used to 
estimate the agent’s perception of their environment (pos-
terior estimates), while the response model estimates the 
mapping between beliefs and observed actions. When both 
observations (u) and responses (y) are known, the interven-
ing learning parameters can be estimated. Observations (u) 
in the models were the onset location of the ball on each 
trial, and responses (y) were the eye position (i.e. predic-
tive gaze location). All models contained free parameters 
that could vary to accommodate the observed data that we 
wished to model. These parameters were optimised using 

x(k) ∼ N
(

x(k−1), �
)

, k = 1, 2,…

x
(k)

1
∼ N

(

x
(k−1)

1
, f (x2)

)

, k = 1, 2,…

maximum-a-posteriori estimation to provide the highest 
likelihood of the data given the model and parameter val-
ues. For associative learning models, the free values were 
beliefs about onset location and learning rate, which were 
set at a neutral starting value and given wide variance. For 
un-bounded parameters in the HGF models, we chose prior 
means that represented values under which an ideal Bayesian 
agent would experience the least surprise about its sensory 
inputs. As such, they were based on a running a simulation 
with the real sequences from the experiment. The priors 
were given a wide variance to make them relatively unin-
formative and allow for substantial individual differences in 
learning (for additional details on starting priors, and tests 
of parameter recoverability and identifiability, see Table 1 
and https://​osf.​io/​tgx6r/).

The HGF toolbox (Mathys et al., 2011, 2014) from the 
open source software package TAPAS (which can be down-
loaded from http://​www.​trans​latio​nalne​uromo​deling.​org/​
tapas; (Frässle et al., 2021)) was used for model fitting and 
comparison routines. Bayesian model selection (Rigoux 
et al., 2014) was then used to compare model fits, using the 
spm_BMS.m routine from the SPM12 toolbox (https://​www.​
fil.​ion.​ucl.​ac.​uk/​spm/ software/spm12/). Bayesian model 
selection estimates the probability that a given model out-
performs all others in the comparison (the ‘protected exceed-
ance probability’), effectively treating the model as a random 
variable that could differ between participants.

Data analysis

Data processing was performed in MATLAB 2022b (Math-
Works, USA) using bespoke analysis scripts, all of which are 
available from the Open Science Framework project page 
(https://​osf.​io/​gprbu/). For the between-condition compari-
sons (i.e. the non-model-based analyses), the first ten trials 
from each condition were excluded as there was no basis for 
a reliable prediction (given that participants require around 
ten trials to learn the true distribution; Berniker et al., 2010). 
Statistical analysis was performed in Rstudio v1.4.1106 (R 
Core Team, 2017). A series of linear mixed effects models 
(LMMs; fitted using restricted maximum likelihood in the 
lme4 package (Bates et al., 2014)) were used to examine 
the pre-registered hypotheses. Model fit checks were per-
formed using the ‘performance’ package (Lüdecke et al., 
2021) and can be accessed from the supplementary mate-
rials (https://​osf.​io/​p95w6). Our analysis approach sought 
to allow for different baseline values for each participant 
as well as different effects of ‘condition’ for each partici-
pant. For each dependent variable, we therefore compared 
a model with only random intercepts for the ‘participant’ 
factor (i.e. DV ~ IV + (1|Participant)) with a model that 
included both random intercepts and random slopes (i.e. 
DV ~ IV + (1 + IV|Participant)) to determine the best fitting 

https://osf.io/tgx6r/
http://www.translationalneuromodeling.org/tapas
http://www.translationalneuromodeling.org/tapas
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://osf.io/gprbu/
https://osf.io/p95w6
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model. The model with the lower Akaike information cri-
terion (AIC) value was chosen in each case. We report R2 
and standardised beta effect sizes for the mixed effects mod-
els and follow Acock’s (2014) rule of thumb for std. beta 
that < 0.2 is weak, 0.2–0.5 is moderate, and > 0.5 is strong.

Results1

Does the Position of Gaze Prior to Stimulus Onset 
Track the Central Tendency of the Underlying 
Generative Distribution (H1) and Does It Indicate 
a MSE or MAP Strategy (H3)?

To examine if eye movements were indeed deployed in 
accordance with a probabilistic internal model (H1) 
and tracked the generative distributions in the environ-
ment (corresponding to the model-based predictions in 
Fig. 2), we compared the predictive gaze location and 
the mean pre-release position (from the start of the audi-
tory tones to ball release) across conditions. The mixed 
effects model (see Fig. 3A) for predictive gaze location 
(with random intercepts for participant) had a conditional 
R2 of 0.12 and marginal R2 of 0.03. All condition effects 
were significant relative to the reference condition (10/90) 
(ps < 0.002, std. betas > 0.20) and tracked the pattern of 

Table 1   Prior means and variances of the perceptual models

*The HGF class prior means were determined by running a Bayes-
optimal simulation of the task (where the variances were set wide to 
account for individual differences) and taking the resultant posterior 
means as starting values here (Mathys et al., 2011). **Kappa, which 
allows a variable strength of coupling between levels, was fixed to 
reduce model complexity in light of the relatively few trials. ***Con-
straining the variance of the third level prevents any influence of vola-
tility, making this act as a two-level model

Prior mean* Prior variance

Two-level HGF
  κ** 1 0
  ω  − 5.9 8
  ϑ  − 4 0
  μ2 0 8
  σ2 0.1 1
  μ3 1 0***
  σ3 1 1
Three-level HGF
  κ** 1 0
  ω  − 5.9 8
  ϑ  − 4 8
  μ2 0 8
  σ2 0.1 1
  μ3 1 8
  σ3 1 1
Four-level HGF
  κ** 1 0
  ω  − 5.9 8
  ϑ  − 4 8
  ϑ2  − 2 8
  μ2 0 8
  σ2 0.1 1
  μ3 1 8
  σ3 1 1
  μ3 1 8
  σ3 1 1
R-W model
  α 0.5 1
  v 0.5 1
Sutton K1 model
  h 0.5 1
  v 0.005 16

Fig. 2   Model-based simulations of predictive gaze behaviour in the 
experimental task. Note: To help motivate our hypotheses and deter-
mine exactly the behaviour that a Bayes-optimal observer would 
display in this task, we ran a series of simulations using a model of 
Bayesian inference (the hierarchical Gaussian filter (Mathys et  al., 
2011, 2014), described in detail in the ‘Methods’ section). We pro-
vided 40 simulated observers with the exact trial order used in the 
study and recorded their trial-by-trial responses. We allowed a degree 
of randomness/noise in the responses of the simulated agents to pro-
vide some variance in the data, but even so these simulated responses 
are likely to be less variable than real eye movements. The simula-
tions provided a clear demonstration that for Bayes-optimal observ-
ers, mean gaze position would be more extreme under increasingly 
biased conditions. Grey boxplots indicate the interquartile range, with 
overlaid data points. Full details of the modelling approach and the 
MATLAB code are provided in the supplementary files (https://​osf.​
io/​cjkz7)

1  We also pre‑registered a by‑condition comparison of interceptive 
performance, but successful interception was so heavily influenced by 
handedness (forehand easier than backhand) that the comparison of 
the probability conditions was confounded by the difficulty of execut-
ing the swing. This analysis is, therefore, not informative and only 
reported in the supplementary files (https://​osf.​io/​gprbu/).

https://osf.io/cjkz7
https://osf.io/cjkz7
https://osf.io/gprbu/
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simulated responses (see Fig. 1). Pairwise comparisons 
with Bonferroni-Holm adjustment indicated significant 
differences between all conditions (ps < 0.04) except for 
90/10 leftward bias compared to 70/30 (p = 0.56) or 50/50 
(p = 0.30), or between 70/30 and 50/50 (p = 0.10).

The model for mean pre-release gaze position (with 
random slopes and intercepts for participant) had a condi-
tional R2 of 0.50 and marginal R2 of 0.06 (see Fig. 3B). All 
condition effects were significant relative to the reference 
condition (10/90) (ps < 0.001, std. betas > 0.36). Pairwise 
comparisons with Bonferroni-Holm adjustment indicated 
statistically significant differences between all conditions 
(ps < 0.03) except for 30/70 v 50/50 (p = 0.10), 50/50 v 
70/30 (p = 0.08), and 70/30 v 90/10 (p = 0.35).

Does the Variability of the Pre‑onset Eye Position 
Track the Probabilistic Uncertainty of the Projection 
Location (H2)?

To test whether variability in pre-onset eye position was 
related to probabilistic uncertainty, as reported by Bakst & 
McGuire (2021), we fitted a linear mixed model to the gaze 
variability measure (cumulative distance travelled). The model 
(with participant as a random effect) had a large conditional 
R2 of 0.30 but very small marginal R2 of 0.002. Compared to 
the reference category (10/90 condition), only the 30/70 condi-
tion was significant (p = 0.03, std. beta = 0.13) (see Fig. 3C). 
All other condition effects were non-significant (ps > 0.06; 
std. betas < 0.09). No pairwise comparisons were statistically 

Fig. 3   Predictive gaze behaviour results. Note: A Predictive gaze 
location across conditions (estimated marginal means and 95% CI 
error bars). Significant effects are indicated by an asterisk. B Mean 
predictive gaze position across conditions (estimated marginal means 
and 95% CI error bars). C Plot of gaze variability across conditions 

(estimated marginal means and 95%CI error bars), calculated as 
the cumulative distance travelled in coordinate units (equivalent to 
meters). D and E show examples of gaze position for a single trial 
(D) and over a whole condition (E). *p < .05, **p < .01, **p < .001, 
a.u. = arbitrary units
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significant following Bonferroni-Holm adjustment (ps > 0.34), 
which indicates that gaze variability did not track the precision 
of predictions (Fig. 4).

Does Physiological Signalling of Surprise Accurately 
Encode the Probabilistic Context of the Task (H4)?

To test whether participants exhibited larger pupillary 
surprise responses to less probable ball onset locations, 
as would be the case if they were accurately encoding the 
probabilistic context of the task (H4), we fitted a linear 
mixed model (with participant as a random effect) to the 
task-evoked pupil response (normalised peak dilation). We 
entered the ball probability as the predictor (i.e. as a factor 
with levels of 10%, 30%, 50%, 70%, 90%, depending on 
the probability spilt of the block). The model had a large 
conditional R2 of 0.54 and marginal R2 of 0.01. Relative 
to the reference category (50%), all levels were signifi-
cant (ps < 0.02, std. betas > 0.10) (see Fig. 5). Pairwise 
comparisons with Bonferroni-Holm adjustment indicated 
that, as predicted, pupil dilations were significantly larger 
for 10% than 50% (p < 0.001), 30% than 50% (p < 0.001), 
and 10% than 70% (p = 0.004). Unexpectedly, dilations 
for 90% balls were also significantly larger than for 50% 
(p < 0.001). No other pairs remained significant after the 
multiple-comparison correction (ps > 0.10).

Fig. 4   Distributions of predictive gaze location (left) and mean gaze 
position before release (right)

Fig. 5   Pupillometry results. Note: Factor level means and 95% CIs
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Computational Modelling

We compared five potential learning models to determine 
whether trial-to-trial adjustments in gaze position were best 
explained by Bayesian inference or simple associative learn-
ing. Three versions of the HGF with different numbers of 
levels (two levels (HGF2), three levels (HGF3), and four 
levels (HGF4)) were compared to the two associative learn-
ing models (Rescorla-Wagner (R-W) and Sutton K1 (SK1)). 
The functional difference between the three versions of the 
HGF models is whether the random walk of the parameter 
x (i.e. release location) had a fixed variance (HGF2), had an 
additional level encoding changes of the variance parameter 
(i.e. a volatility level—HGF3), or even had a further level 
representing changes in volatility (HGF4). In behavioural 
terms, this relates to whether uncertainty beliefs remained 
stable over the course of each block, or whether they were 
moderated by further high-level beliefs (about whether the 
environment itself is changing and whether these changes 
are regular or unstable over time).

Results of the model fitting and comparison showed that 
the HGF2 (see Fig. 8 left for schematic of HGF with two 
and three levels) was the most likely model, with the highest 
log-model evidence (see Fig. 6, left), the highest probability 
(40.9, see Fig. 6, middle) and a protected exceedance prob-
ability of 1.00. Bayes factors calculated from the exponen-
tial of the differences in the log-model evidence showed the 
HGF2 was 2.6 times more likely than the HGF3, 4.9 times 
more likely than the HGF4, 92.7 times more likely than the 
R-W and 1128.8 times more likely than the SK1.

The winning two-level HGF is effectively a Kalman filter 
(Kalman, 1960), an algorithm for optimal statistical infer-
ence under uncertainty, but which assumes environmental 
stability. Additional hierarchical levels of the HGF enable 
shifts in environmental uncertainty (i.e. volatility) to be 
more effectively modelled, which are not easily accounted 
for by the Kalman filter (although see Piray & Daw, 2020, 

for an extension to volatile environments). The better fit 
of the HGF2 indicates that learning in this task was best 
described by Bayesian inference rather than associative 
learning, but that it did not require additional hierarchical 
levels to account for volatility.

Finally, we explored whether task-evoked pupil responses 
and gaze variability tracked parameters from the fitted learn-
ing models. If pupil dilation and gaze position are both indi-
cators of the encoding of uncertainty, as has been suggested 
previously (Bakst & McGuire, 2021; Harris et al., 2022a), 
then both should correlate with uncertainty-related param-
eters from the participant-wise fitted models (but not beliefs 
themselves). The simple condition comparisons indicated 
that pupil responses partially followed the uncertainty of 
the conditions, but that gaze variability did not. Examining 
their relationship with personalised learning models could 
provide more sensitivity to individual differences in learning 
(Harris et al., 2022a). Following previous studies that have 
examined the relationship between HGF model parameters 
and psychophysiological variables (Filipowicz et al., 2020; 
Lawson et al., 2021), a series of robust linear regression 
analyses (due to the heavy-tailed distributions of the HGF 
parameters) were run to obtain individual β weights for the 
relationship between model parameters and pupil dilation on 
an individual basis. We then examined whether β weights 
significantly differed from zero using one-sample t-tests for 
each of the variables of interest.

Pupil dilations were found to have no relationship with 
the evolving belief trajectory about release location [mu2; 
t(40) = 0.11, p = 0.92, d = 0.02], but were related to both the 
precision of beliefs [sa2; t(40) = 5.01, p < 0.001, d = 0.78] and 
the rate of change of beliefs [om2; t(40) = 5.83, p < 0.001, 
d = 0.91] (see Fig 8). In line with these results, there was 
also a relationship with model-estimated precision weighted 
prediction errors, although this test did not reach significance 
[t(40) = 1.97, p = 0.055, d = 0.31]. Pre-onset gaze variabil-
ity on each trial was again unrelated to beliefs themselves 

Fig. 6   Model comparison and parameter identifiability results. Note: 
Left: Plot of the log-model evidence (LME) for all models. Middle: 
Plot of probabilities of the different models in the participant popula-
tion based on Bayesian model selection, where HGF2 was the most 

likely generative structure. Right: Parameter identifiability matrix 
(correlation matrix) for the HGF2, which indicates that no model 
parameters were highly correlated (i.e. one could not simply be sub-
stituted for another)
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[mu2; t(40) = 0.00, p = 1.00, d = 0.00]. However, as reported 
by Bakst & McGuire (2021), the metric was related to the 
variance (inverse precision) of beliefs [sa2; t(40) = 2.96, 
p = 0.005, d = 0.46], as well as the rate of change of beliefs 
[om2; t(40) = 3.76, p < 0.001, d = 0.59]. No relationship 
with precision-weighted prediction errors was observed 
[t(40) =  − 0.21, p = 0.83, d =  − 0.03].

Discussion

In this paper, we examined how performers attempt to opti-
mise oculomotor control in a dynamic interception task and 
whether eye movements minimise prediction error in a fully 

optimal probabilistic manner (minimal squared error strat-
egy) or, instead, reflect a ‘best-guess’ about the likely state 
of the world (maximum a posteriori strategy). We tested 
recent neurocomputational accounts that appeal to the idea 
of Bayesian inference to explain the deployment of the visual 
system (Friston et al., 2012; Parr et al., 2021). In summary, 
our results indicated that participants did encode the proba-
bilistic relationships of the task as would be the case if eye 
movements were controlled by a generative model (Parr et al., 
2021). However, eye movements did not fully correspond 
with Bayesian inference principles and instead suggested pos-
sible trade-offs between uncertainty reduction and predicted 
action outcomes, or potentially the use of more explicit gaze 
strategies. This work represents an important development in 

Fig. 7   Beta coefficients for relationships of model parameters with 
gaze variability and pupil dilations. Note: Raincloud plots of the beta 
coefficients from the participant-wise robust regressions for beliefs 

(Mu2), precision of beliefs (Sa2), variance of the random walk in 
beliefs (Om2), and precision-weighted prediction errors (PwPE) 
shown for pupil dilation (A, top) and gaze variability (B, bottom)
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the empirical testing of active inference theories in the con-
text of more complex movement behaviours, which contrasts 
with a focus on binary behavioural choices (Smith et al., 
2020) or simple motor or oculomotor movements (Adams 
et al., 2015; Limanowski & Friston, 2020) in previous work.

Or first hypothesis (H1) was that eye movements prior to 
stimulus onset would be deployed in accordance with a proba-
bilistic generative model and would therefore reflect the true 
generative distribution of the onset location. This hypothesis 
was supported. For both the predictive gaze location and the 
mean pre-release position, participants controlled their gaze 
in accordance with the underlying probabilities of the experi-
mental conditions. While not all pairwise comparisons were 
statistically significant, the overall pattern was plainly similar 
to the Bayesian learning model predictions in Fig. 2, suggest-
ing that oculomotor control was, at least in part, governed by 
a generative model that (i) encoded the probabilities of the 
task environment and (ii) directed the visual system accord-
ingly. This finding is in line with previous studies showing 
that eye movements index predictions about the world, which 
are derived from prior experience (Arthur & Harris, 2021; 
Bakst & McGuire, 2021; Diaz et al., 2013; Friston et al., 2012; 
Harris et al., 2022a; Vater & Mann, 2021).

As is evident from the plots in Fig. 3A and B, there was a 
clear leftward bias in gaze position, despite the overall pat-
tern approximating the Bayes-optimal simulations (Fig. 2). 
This asymmetry likely reflects the greater interceptive chal-
lenge on the left side (i.e. a ‘backhand’ shot was required 
on this side for most participants), which participants tried 
to counter by biasing their visual attention towards it, pre-
sumably making the action easier to execute.2 This bias in 
gaze position suggests a possible trade-off between mak-
ing statistically accurate predictions about onset location 
and making predictions that maximise the chance of suc-
cess. While this result was not anticipated, this trade-off is 
explicitly predicted by active inference and is referred to 
within a free energy framework as an ‘epistemic’ versus 
‘pragmatic’ trade-off (Friston, 2010; Parr & Friston, 2019). 
In short, under the free energy principle actions serve to (i) 
fulfil current goals (aka prior preferences) and (ii) reduce 
uncertainty. When uncertainty is high, information gather-
ing is prioritised, but as uncertainty is reduced, the achieve-
ment of prior preferences is prioritised. The biasing of eye 
movements to the left reflects a balancing of the epistemic 
value of predicting correctly, versus the pragmatic value 
of successfully intercepting the ball (based on predictions 
about action outcomes). Ecological and affordance-based 
theories of perception and action also emphasise this tight 

interplay of vision with movement capabilities, asserting 
that a primary function of vision is to allow actors to see 
the world in terms of what they can and cannot do (Fajen, 
2007; Katsumata & Russell, 2012). From a wider theoretical 
perspective, this result highlights the complexity of studying 
perception and action in more realistic and dynamic tasks, 
where action capabilities will influence action policy selec-
tion in a way that is fundamentally different to simple motor 
and behavioural choice tasks (Adams et al., 2015; Cullen 
et al., 2018; Limanowski & Friston, 2020; Smith et al., 
2020). While we used relatively simple learning models to 
characterise Bayesian inference through eye position, model-
ling approaches based on partially observable Markov deci-
sion processes (Smith et al., 2022) can also be used to model 
active inference and condition action choices on anticipated 
future consequences of actions (expected free energy). These 
models may be effective in explaining the behaviour of eye 
movements in more dynamic tasks where anticipated move-
ment capabilities influence action selection.

Notably, results did not support our second hypoth-
esis, which stated that gaze variability prior to stimulus 
onset would track predictive uncertainty (H2), as there 
was very little difference in variability between condi-
tions. This result contrasts with that of Bakst & McGuire 
(2021) who reported greater variance in eye position under 
greater uncertainty (e.g. 50/50 compared to 90/10 con-
ditions), positing that eye movements therefore encoded 
both the central tendency and precision of predictions. A 
possible reason for this difference is the fewer trials in our 
task, which would prevent particularly precise beliefs from 
developing. When examining the relationship between the 
parameters from the HGF2 models and gaze variability (on 
a per subject basis) we did, however, observe a relation-
ship. Beta weights were significantly different from zero 
(d = 0.46), suggesting that gaze variability may, in fact, 
be indicative of belief precision as suggested by Bakst 
& McGuire (2021). The absence of this relationship in 
the between-condition comparisons may thus indicate that 
perceived uncertainty (as estimated by the models) was 
more important than objective uncertainty (as manipulated 
by the experimental conditions).

Our third hypothesis (H3) was that participants would 
use a MSE rather than MAP strategy, and therefore, pre-
dictive gaze position would be more extreme (further from 
centre) under more strongly biased conditions (e.g. 90% 
left location compared to 70% left). This result would sup-
port a Bayesian prediction error minimization explana-
tion of oculomotor control (Adams et al., 2015; Parr et al., 
2021). Results instead suggested that MAP, or perhaps 
some other more conscious strategy, was being employed. 
On the right-hand side of the task space, gaze positions 
for the most biased condition (10/90) were more extreme 
than the next most biased (30/70), consistent with a MSE 

2  To explore whether this bias was only present in left-handed partic-
ipants, we generated plots of gaze position split by handedness, which 
are available in the supplementary files (https://​osf.​io/​7x6fu).

https://osf.io/7x6fu
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strategy. This did not, however, hold for the left-hand side, 
where no significant difference was present for 90/10 ver-
sus 70/30, consistent with a MAP strategy. This disparity 
might reflect the observed asymmetry in task difficulty 
between left and right ball trajectories.

Plots of the distributions of predictive gaze position 
(see Fig. 4 top) showed that immediately prior to ball 
onset, participants were not fully adhering to either a MSE 
or MAP strategy. Participants did not adopt intermediate 
positions between the two locations that matched the mean 
of the generative distribution, consistent with a MSE strat-
egy. Instead, they were predominantly directed to either 
of the projection locations (left or right) or in the centre. 
This suggests that even though participants were learning 
the probability distributions (as shown by the differences 
in predictive gaze location and mean gaze position), at 
the moment of release they were opting to either make 
a best guess or to ‘hedge their bets’ and look centrally, 
relying on peripheral vision for ball tracking (as has been 
reported in some sporting tasks (Klostermann et al., 2020; 
Vater et al., 2017, 2020)). This is partially consistent with 
a MAP approach, but the frequency of looking centrally 
also indicates that participants were not always making 
a ‘best guess’. The fitting of the learning models to eye 
position data did, however, indicate that Bayesian infer-
ence provided a better explanation of the updating of eye 
position over trials than associative learning, thereby pro-
viding further evidence that people were learning the task 
in an approximately Bayesian fashion. Overall, it appears 
that the searching of the task space prior to ball release 
followed a Bayesian or MSE strategy and Bayesian infer-
ence provided a good model for task learning, but at the 
moment of ball release participants mostly adopted a ‘best 
guess’ or a ‘look centrally’ strategy (Vater et al., 2020). 
Anecdotally, many participants reported consciously 
adopting this centre-looking peripheral-tracking strategy 
afterwards, and the functional utility of these behaviours 
(and their relationship with underlying visuomotor net-
works) therefore warrants further examination.

This deviation from Bayes-optimal gaze control might 
reflect the importance of the action component of the task 
(and the close intertwining of perception and action); if 
the primary aim was simply to observe the ball as clearly 
as possible, a MSE strategy may well have been used (as 
was demonstrated in Bakst & McGuire, 2021), but other 
factors such as the potential to use peripheral vision for 
tracking or the challenges of backhand interceptions may 
have led to the alternative gaze control strategies observed 
here. Subramanian et al. (2023) report that during a sac-
cadic suppression displacement task in which partici-
pants had to judge whether a target had moved during 
a saccadic shift, participants displayed aspects of both 
Bayesian and ‘anti-Bayesian’ behaviour. Specifically, 

human participants were Bayesian for continuous reports 
of object displacement but anti-Bayesian for categorical 
reports (shift v no shift). Notably, it was found that a dis-
criminative learning rule model (i.e. learning the boundary 
or decision surface separating different categories) bet-
ter accounted for behaviour in these cases. Hence, while 
observers may display aspects of Bayes-optimal percep-
tion, it appears that alternative approaches may also be 
implemented during active perception tasks.

While the focus of this work was not on performance, 
the difficulty in determining the cost function associated 
with incorrect prediction and mis-alignment of the fovea 
with the release point is a clear limitation. As discussed 
above, task performance was heavily influenced by the 
response difficulty (forehand/backhand), so the relation-
ship between interception and correct prediction was 
unclear. The performance analysis (see supplementary 
files: https://​osf.​io/​9degj) indicated that release location 
(left/right) was a large and significant predictor of perfor-
mance, while the distance between eye position and ball 
position at release was not. In Bayesian decision models 
(Körding & Wolpert, 2006), the relative values of differ-
ent outcomes (i.e. cost functions) are used to scale action 
selection, so sensorimotor decisions are not just based 
on the most likely outcome but also the cost of differ-
ent choices. Here, we could not determine the value of 
incorrectly predicting the wrong location but given that 
participants did adjust predictions in line with the condi-
tion probabilities, it suggests that there was some value 
in anticipating correctly, even if this was not detectable 
in our results.

Our final hypothesis (H4) predicted that participants 
would exhibit greater physiological surprise responses 
(pupil dilations) to stimuli that were theoretically more 
improbable. As expected, the largest task-evoked pupil 
dilations were indeed observed for the 10% and 30% balls 
(see Fig. 8), which indicates that participants were most 
surprised by probabilistically salient sensory events. Dila-
tions for the 90% and 70% balls were, however, larger than 
for the 50% balls—the opposing direction of effect to our 
hypotheses. The 90% balls should theoretically have been 
the least surprising events, yet they still evoked a larger 
response than balls in the 50% condition. One possible 
reason is that the number of trials used here was the mini-
mum amount where participants could have learned the 
true distributions (Berniker et al., 2010), so the beliefs 
about what was ‘normal’ and ‘surprising’ would not have 
been as strongly learnt as tasks with greater numbers of 
trials (e.g. Bakst & McGuire, 2021). For instance, after 
a series of balls from the left-hand side in a 90/10 condi-
tion, participants might have been expecting a ball from 
the right, so could have actually been more surprised when 
balls continued to come from the left. The analysis of the 

https://osf.io/9degj
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relationship between pupil responses and parameters from 
the HGF2 model provided further support for a link with 
encoding of surprise and uncertainty, and a link with 
the locus coeruleus-norepinephrine system (Joshi et al., 
2016). Consistent with this role, no relationship between 
pupil responses and the central tendency of beliefs about 
ball projection location (μ2) emerged in the dataset, but a 
relationship with precision of beliefs about release loca-
tion (σ2) as well as the rate of change in beliefs (ω) was 
observed. These findings replicate previous results reported 
by Harris et al. (2022a) and show that trial-by-trial changes 
in neurophysiological activity align with internal expecta-
tions about environmental uncertainty and stability.

Our results provide an extension to previous work on 
active inference that has predominantly used simple behav-
ioural choice tasks and are therefore more generalizable 
to dynamic visuomotor tasks than many previous studies. 
There are some important constraints on generality because 
this task was still highly simplified compared to real inter-
ceptive skills during tennis or squash. Our participant sam-
ple consisted of undergraduate students who were not task 
experts and extensive prior experience in either this game 
or related interceptive tasks could influence performance. 

There is, however, no reason to suppose that the general 
principles of Bayesian inference and their relationship with 
oculomotor control should be strongly influence by our par-
ticipant sample.

Conclusions

In this work, we examined how probabilistic generative 
models are used to regulate dynamic visuomotor responses, 
and whether human gaze behaviours exhibit the core princi-
ples of Bayesian inference that are proposed in recent neu-
rocomputational theories (Adams et al., 2015; Friston et al., 
2012; Parr & Friston, 2019; Parr et al., 2021). The findings 
suggested that observers did indeed encode the underlying 
probabilistic relationships of the task, but that control of the 
gaze system did not fully adhere to these rules. Instead, we 
observed possible trade-offs between accurate prediction-
making and action capabilities, and the use of gaze strategies 
that did not necessarily follow ‘optimal’ Bayesian principles. 
Future work should examine whether the trade-offs between 
action capabilities and environmental probabilities can also 
be explained as a prediction error minimization process.

Fig. 8   The HGF model. Note: Left: Schematic of the structure of the 
HGF. The perceptual model is described via beliefs (x) represented 
at multiple layers that evolve across time (k), scaled by variance 
parameters (ω, ϑ). The response model characterises the mapping 
between beliefs (x) and responses (y) using the ‘inverse decision tem-
perature’ parameter (ζ), which controls the extent to which mapping 

from beliefs to responses is fully deterministic or more exploratory. 
Right: Example of the learning trajectory taken from a single partici-
pant. The lower panel shows eye position (fuchsia dots), observations 
(green), learning rate (fine black), and posterior expectation of input 
s(μ2) (red). The upper panel shows the evolving belief about x2 over 
trials
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