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HIGHLIGHTS

o A hierarchical ensemble clustering method was proposed to uncover spatial patterns of climate.
o The latest climate data from the UK Climate Projection 2018 were employed.

e Representative climate zones were created to enable climate-responsive building design.

e Microclimates such as large urban areas and national parks were also identified.

e The climate zones enable more accurate consideration of local climate for building design.

ARTICLE INFO ABSTRACT
Keywords: Climate zones play an important role in promoting climate responsive building design and implementing climate-
Climate zone specific prescriptions in national building standards and regulations. The existing studies on climate zoning are

Weather files

Building performance assessment
Clustering analysis

Ensemble learning

subject to several limitations, i.e. the incapability of distinguishing microclimates and the lack of consideration of
climate change. In this research, we propose a two-tiered ensemble clustering method for the identification of
granular climate zones using the projections of future climate. The first tier identifies primary climate zones
using a combination of climatic features and geographical locations, whereas the second tier identifies distinct
local variations within each primary climate zone using the temperature related features. The proposed ensemble
clustering model is applied to the UK to create a mapping of granular climate zones for future proofing building
design. The method identified 14 distinct primary zones and distinguished microclimates at a range of scales
from large urban areas, such as the Greater London Area, to national parks, such as Dartmoor and the Pennines.
The identified mapping resolves two major obstacles in the creation and usage of weather data for building
performance assessment in the UK, i.e. the lack of guidance for selecting weather files, and the absence of sci-
entific rationale for representing the UK climate using the current 14 locations.

1. Introduction countries, such as the prescriptions on the performances of building
envelopes and annual energy consumption adopted by the US [5], China

Climate has a significant impact on performance of buildings, such as [6], France [7], and Greece [8], etc. The relationship between climate
energy efficiency and thermal comfort [1]. Climate responsive design conditions and prescriptive requirements are usually established
has been adopted as one of the essential principles in architecture through the development of representative climate zones. More specif-
design, where low-grade energy sources from local climate and envi- ically, a country is divided into several zones according to the diversity
ronment are exploited to maintain a comfortable indoor environment and characteristics of its climate. Within each zone, the climate is
while reducing building energy consumption [2-4]. The critical role of deemed homogeneous with negligible variations [9,10]. Subsequently,
climate is also widely recognised in the regulatory landscape of build- the uniform recommendations and prescriptions are applied for the
ings. Various climate-dependent prescriptions are specified in building whole area within each climate zone, whereas different settings are
regulations and standards to promote better building design among employed among different zones to embed climate responsive principles
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in national building regulations and standards.

The identification of representative climate zones is challenging
owing to the intricacy of spatial variations in climate, the lack of
consensus on a legitimate methodology, the need for large amounts of
climate data, as well as the inevitable requirement for expert judgement
to ensure practicality. The majority of the existing studies create climate
zones using historical meteorological records [11-21]. The climatic
variables most frequently used for the characterisation of climate are air
temperature, relative humidity, solar radiation, precipitation, and wind
speed [22-26]. The temporal resolutions of the employed climate data
differ among existing studies, ranging from hourly values to annual
means [27]. While degree day is the most conventional method used for
climate zoning, it oversimplifies the representation of climate patterns
by considering only air temperature. In contrast, clustering analysis has
attracted substantial attention in recent years and demonstrated great
potential in the state-of-the-art studies on climate zoning, owing to its
advantages of handling large number of variables, avoiding the problem
of oversimplification, and establishing more accurate characterisation of
the climate [28-31].

Despite the latest development in applying machine learning algo-
rithms and combining climate data with building performance data for
creating climate zones, there are some intrinsic limitations in the data
and the methods applied in the study of climate zoning which have yet to
be addressed. Firstly, the employment of historical observations leads to
compromised results of climate zones due to the limited availability of
weather stations, the inadequacy of recorded data, and the lack of
consideration of climate change. To be specific, the discontinuity of the
observation data and the sparsity of data samples in regions of interest
make it challenging to establish accurate boundaries between two
climate zones, especially when rapid variations of climate conditions are
present due to complex landscapes. The studies using observation data
also suffer from various problems concerning the quality of the data sets,
such as the lack of essential climatic variables, the inadequate length of
records, and the gaps within the observations [27]. Besides, as the
climate changes, there is a momentum of incorporating the concept of
future-proof building design into the guidance and standards and
assessing design against future climate conditions [32]. In this regard,
climate zones produced using historical data will not suffice due to the
lack of consideration of climate change.

In addition to the limitations of observation data, the existing zoning
methods are designed to produce large primary climate zones and fail to
distinguish granular zonal variations resulted from different types of
land uses and geographical features within an individual climate zone.
While the large-scale primary climate zones may satisfy regulatory
purposes at a national level, the microclimates at a local scale, such as
urban heat island [33,34], have direct impacts on building design and its
operational performance. Without distinguishing microclimates from
primary climate zones, inaccurate assumptions on local climate can be
applied for building design and assessment. As a result, it is challenging
to achieve accurate building performance assessment and climate
responsive design using the climate zones derived from historical ob-
servations, owing to the lack of spatial granularity in the identified
climate patterns. More advanced zoning methods are needed to over-
come the current limitations and create climate zones with better ac-
curacy and granularity.

Apart from the above research gaps, there is also an imperative in
creating climate zones in the UK to overcome two longstanding obstacles
pertaining to the creation and use of weather files, i.e. 1) the justification
of representing the UK climate using the current 14 locations; 2) the
ambiguity when selecting weather files for locations within microcli-
mates. More specifically, the actual design of a building is required to
demonstrate a better performance than its corresponding notional
building in the UK. According to Building Regulations Part L, three types
of assessments on energy efficiency are specified for regulatory
compliance, i.e. Standard Assessment Procedure (SAP) for dwellings,
Simplified Building Energy Model BEM) and Dynamic Simulation
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Modelling (DSM) for non-domestic buildings [35,36]. While monthly
climate data is supplied for every postcode district in SAP, the weather
files for 14 locations created by the Chartered Institution of Building
Services Engineers (CIBSE) are employed for SBEM and DSM assessment
[37]. Historically, the selection of the 14 locations was largely decided
based on the availability of weather stations, rather than the climate
patterns across the UK. There is a lack of justification as to whether they
are truly capable of representing the UK climate. In fact, the concern on
representing the climate of Scotland using only two locations, i.e.
Edinburgh and Glasgow, has already been raised [38].

Moreover, due to this lack of understanding of the spatial pattern of
UK climate, the ambiguity looms when selecting weather files. Accord-
ing to the National Calculation Methodology (NCM) modelling guide, it
is recommended to select the weather file from the location which is
closest to the building site. In the presence of a microclimate, one of the
other 13 weather files may be used if the weather data is deemed more
appropriate [39]. The guidance recognises the necessity of using the
weather file representative of local climate, but provides no clarity
regarding the definition and the criterion for assessing representative-
ness. Geographical proximity does not necessarily entail climate simi-
larity, especially when local variations occur due to land features and
usage. The representativeness of climate should be assessed based on a
profound understanding of characteristics and spatial patterns of the
climate. Consequently, to fill the knowledge gap and eliminate ambi-
guities regarding the use of weather files, there is an imperative in
creating representative climate zones in the UK to aggregate areas with
homogeneous climate characteristics and distinguish those with distinct
variations.

To overcome the intrinsic limitations of the existing climate zoning
methods and eliminate the ambiguity in using CIBSE weather files for
regulatory compliance in the UK, in this research we propose a two-
tiered ensemble clustering method to create granular climate zones
using the latest climate projections for future-proof building design in
the UK. The proposed method elevates the state-of-the-art studies on
climate zoning in three aspects: 1) using a two-layer structure in clus-
tering to enhance the granularity of zoning results; 2) using ensemble
learning to address the uncertainty of climate change projections and
guarantee the reliability of zoning results; 3) establishing an improved
representation of climate by extracting diverse climatic features from
the high-resolution climate projection data. More specifically, a two-
tiered ensemble clustering method is designed to generate dominant
climate zones and microclimates hierarchically using climate pro-
jections. In the first tier, the primary climate zones are identified using
the combination of climatic features and geographical locations. In the
second tier, microclimates within each primary climate zone are then
distinguished using the temperature related features. While the pro-
posed method provides a generalised approach for creating granular
climate zones, the UK is employed as a case study due to the imperative
to provide more clarity on using appropriate weather data in its building
regulations. Therefore, the regional projections from the UK Climate
Projections 2018 (UKCP18) [40] are employed to create representative
climate zones with high granularity in the UK. The original contribu-
tions of this research are twofold, i.e. methodological and practical. The
proposed method resolves three major challenges faced by the existing
studies of climate zoning, namely the discontinuity and inadequacy of
observation data, the lack of consideration of climate change, as well as
the need for distinguishing microclimates. Moreover, the identified
mapping of granular climate zones of the UK fills two major gaps asso-
ciated with the weather data for building performance assessment, i.e.
the lack of guidance for selecting weather files, and the absence of sci-
entific rationale for representing the UK climate using the current 14
locations.

The remainder of the paper is organised as follows. In Section 2, the
details of the proposed two-tiered ensemble clustering method are pre-
sented. Section 3 presents the clustering results of primary climate zones
and microclimates. The determination of the optimal number of climate
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zones and the trade-off between climate similarity and spatial continuity
are also elaborated. Furthermore, the benefits of the generated granular
climate zones in comparison with the current 14 locations available for
CIBSE weather files are discussed. Lastly, the conclusions are drawn and
future research directions are presented in Section 4.

2. Methodology

In this research, a two-tiered ensemble clustering process is proposed
to create granular climate zones using climate projections for future-
proof building design in the UK. The schematic of the proposed clus-
tering process is shown in Fig. 1. The regional projections in the UKCP18
are employed to provide essential climatic variables and a complete
coverage of the geographical area of the UK for climate zone division. An
ensemble clustering process is developed to address the ensemble nature
of climate projections and establish robust climate zones. Furthermore, a
two-tiered clustering model is designed to distinguish local variations
within each climate zone and to obtain granular zoning results.

More specifically, the essence of creating climate zones is to identify
and merge individual geographical locations exhibiting homogeneous
climate patterns based on the measure of similarity of climatic charac-
teristics. Four key questions need to be addressed in this process, namely
1) how to extract effective features to characterise climate from a sig-
nificant amount of data; 2) how to measure the level of climate simi-
larity among different locations; 3) how to address multiple plausible
outcomes of climate projection; 4) how to identify granular variations of
climate at a local scale. The proposed two-tiered ensemble clustering
method is designed to address the above challenges. For each
geographical location, a total of 41 climatic and geographical features
are constructed to encapsulate its climate pattern. KM algorithm is
employed as the base model to group all geographical locations in the
UK into several representative climate zones, according to the similarity
of climate patterns. The similarity is measured by Euclidean distance in
the feature space constructed by the pre-processed 41 features. The
closer two locations are in the feature space, the more likely they are
grouped together. The grouping is conducted independently for each
member of plausible climate projections and the clustering results from
different members are then aggregated to yield the ultimate outcome of
climate zones based on the probability of co-occurrence. Besides, it is
rather challenging to identify large primary climate zones and small
microclimates simultaneously, due to the scarcity of representative data
samples. Therefore, a hierarchical process is developed whereby the
large primary climate zones are identified first and the microclimates
within primary zones are identified thereafter following a similar clus-
tering process. As such, a mapping of diverse climate zones with a high
level of granularity can be established in the UK.

2.1. Climate projections

The majority of existing studies use historical meteorological records
for the identification of climate zones [1,23,41]. The division of climate
zones is unlikely to be accurate owing to the limited availability of
historical observations, especially the data samples on the boundaries of
two neighbouring zones. Besides, the use of historical data fails to
consider the impact of climate change. As an alternative to observations,
a variety of climate projections datasets are available, such as the
UKCP18 [42], the Coordinated Regional Climate Downscaling Experi-
ment (CORDEX) [43], or the Coupled Model Intercomparison Project
(CMIP) [44]. Climate projections can be more suitable for climate
zoning as they provide coherent gridded climate variables with high
spatial resolutions over a long-term horizon.

To overcome the limitations of historical observations, we employ
the regional projections from the UKCP18 in this study. UKCP18 is the
latest generation of national climate projections for the UK. Four types of
projections with different spatial resolutions are available in UKCP18,
including the probabilistic projections (25 km), the global projections
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Regional Projections
in UKCP18

[ Prepare geographical

and climatic features

y

Ensemble clustering -
stage 1

y

The result of
primary climate zones

Are all primary climate
zones iterated ?

Prepare temperature
related features

Ensemble clustering -
stage 2

y

The result of microclimates
within the primary climate zon

y

The finalised result of primary
climate zones and microclimate

Fig. 1. Schematic of the proposed two-stage clustering process.
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(60 km), the regional projections (12 km), and the local projections (2.2
km). The regional projections are adopted in this study due to the
consideration of the trade-off between the fine resolution and the
computational cost. The regional projections are generated by down-
scaling the outputs of the selected global climate models (GCMs),
namely Met Office Hadley Centre model, using the regional climate
models (RCMs). An ensemble of 12 climate projections is available at 12
km spatial resolution. Compared to the global projections, the regional
projections account for the effects of mountains, coastlines, lakes and
mesoscale atmospheric circulations in greater detail. Currently, the
regional projections are only available for RCP8.5 scenario, i.e. the
highest emission scenario adopted by IPCC [45], over a period of
1981-2080 for the UK and Europe. A total of 15 variables are included,
which contains all variables essential for building performance assess-
ment, e.g. cloud cover, precipitation, solar radiation, relative humidity,
temperature, and wind speed. Hence, the regional projections in
UKCP18 offer a great alternative for climate zoning studies due to its
advantages in spatial resolution and continuity, as well as the encap-
sulation of patterns of climate change.

2.2. Ensemble learning

The process of creating climate projections entails many layers of
uncertainties, such as the uncertainty in future carbon emissions, the
modelling uncertainty, which indicates the uncertainty caused by an
imperfect knowledge of the climate system, as well as the uncertainty
from the measurement errors in the baseline observations. It is unlikely
to fully comprehend these uncertainties and generate a perfect projec-
tion of future climate using a single deterministic model, due to the
complexity of the climate system. Therefore, a perturbed parameter
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ensemble (PPE) was developed to produce a wide range of diverse
climate outcomes in UKCP18 [42]. The ensemble encompasses different
variants generated from a particular climate model, namely HadCM3, by
perturbing essential model parameters. As a result, the regional pro-
jections in UKCP18 include a 12-member ensemble of regional climate
simulations over Europe at 12 km resolution. Each member represents a
unique yet plausible realization of future climate. This ensemble nature
of climate projection data presents a major challenge for downstream
applications, as opposed to using observations which represents a single
deterministic reality.

In this research, we adopt the idea of ensemble learning to address
the challenge of the ensemble nature of climate projections. The
ensemble learning refers to a machine learning approach that combines
the learning results from multiple base models to generate more robust
outcomes with better generalization capabilities. In general, ensemble
learning methods can be classified into three categories, namely
bagging, boosting, and stacking [46]. Considering the ensemble nature
of climate projections, we employ bagging method where each base
model is trained using different samples from the training dataset. In this
section, we focus on introducing the overarching process of ensemble
learning, whereas the details of applying ensemble learning for climate
zoning will be presented in the next section. The process of ensemble
learning is illustrated in Fig. 2.

To be specific, the climate zoning is in essence a clustering problem,
where locations with similar climate characteristics need to be grouped
into one cluster. To achieve this, we employ K-means (KM) clustering as
the base clustering model in the proposed ensemble learning process.
The KM clustering runs an iterative process to minimise the sum of intra-
cluster distances, as shown in Eq. (1).

/ Input data set /

/
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Lo RO IR \[ Training data 3 ]
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ﬁaming outcome‘/ ﬁarning outcome/

[ Ensemble member 2] OO0 [ Ensemble member n ]
OO0 ﬁarning outcome/

[ Aggregate learning results ]

A

ﬁe finalised learning resV

Fig. 2. An illustration of ensemble learning.
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D= Zizlzo,ec,,(oi -z) @

where O;, C,, Z, represent the i-th data sample, the n-th cluster, and the
n-th centroid for the n-th cluster, respectively. k denotes the total
number of clusters.

In each iteration, a data sample is assigned to a cluster to which it has
the shortest distance, as measured by the Euclidean distance between
the data sample and the centroid of the cluster. After all data samples are
assigned, the centroid of each cluster is subsequently updated as the
mean of all data samples within the cluster. The iteration continues until
a termination criterion is satisfied. In this study, each KM model is
trained using a member dataset from the regional projections. The total
number of base KM models is equal to the size of the ensemble regional
projections, i.e. 12. Subsequently, the clustering results yielded by all 12
KM models are aggregated in two steps. Firstly, the co-occurrence matrix
is calculated for clustering objects based on the number of times that
they occur in the same cluster. Then an agglomerative clustering process
is conducted using the co-occurrence matrix as the input. It starts by
considering each object as one cluster and merges clusters from bottom
to up. Ward's minimum variance method is employed as the criterion for
merging [47]. As such, the robust clustering results can be obtained by
exploiting and combining insights from all plausible climate projections
through this ensemble learning process.
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2.3. The proposed two-tiered ensemble clustering process

A two-tiered ensemble clustering process is proposed to establish a
mapping of homogeneous climate zones across the UK encompassing the
segmentation of microclimates. The two-tiered structure is developed to
overcome the lack of capability of distinguishing microclimates within
individual climate zones. The ensemble clustering is employed to
accommodate the ensemble nature of the climate projections and
address the uncertainty in climate change. The yielded mapping of the
granular climate zones fills the knowledge gap regarding the trade-off
between the simplicity and the representativeness required for the cre-
ation of standard weather files for building performance assessment
[48]. In this section, we mainly focus on the experimental settings and
feature extraction involved in the two stages of the proposed ensemble
clustering process, since the clustering mechanism is already elaborated
in Section 2.2.

2.3.1. Ensemble clustering for identifying primary climate zones

The aim of the first stage in the proposed two-tiered clustering pro-
cess is to identify the primary climate zones across the UK. The sche-
matic is shown in Fig. 3. All 12 climate projections over a 100-year
period, i.e. 1981-2080, under the RCP8.5 emission scenario in the
regional projections in UKCP18 are employed as the input for the
ensemble clustering model. Each member dataset is fed into a single base
KM model following the bagging method. A total of 13 monthly climatic
variables are employed to establish a comprehensive characterisation of

ﬁegional Projedions/

in UKCP18
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i Projection 2 in PP;/

Projection 12 in PPE,

y N
Climatic and geographical Climatic and geographical OO O Climatic and geographical
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y L
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ﬁmate zone outoom;/ Climate zone outcom% OO0 Amate zone outcome1/

Calculate co-occurrence matrix

A

Aggregate different sets of climate
zones by hierarchical clustering

4

The results of primary climate zones

Fig. 3. The schematic of the first-stage clustering for identifying primary climate zones.
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climate similarity, namely cloud cover (clt), precipitation (pr), net
longwave radiation (rls), net shortwave radiation (rss), relative humidity
(hurs), sea level pressure (psl), specific humidity (huss), maximum tem-
perature (tasmax), mean temperature (tas), minimum temperature
(tasmin), wind speed (sfcWind), wind speed eastwards (uas), wind speed
northwards (vas).

The essence of establishing climate zones through KM clustering is to
identify and merge individual geographical locations demonstrating
homogeneous climate patterns based on the measure of similarity of
climatic variables. One of the key limitations with KM clustering is its
sensitivity to data noise and redundant features, owing to its mechanism
of representing similarity using Euclidean distance. Besides, a high
number of input features contained in the original climate data set, i.e.
13 (number of climatic variables) x 12 (number of months) x 100
(number of years), can also incur the curse of dimensionality, where the
data samples become very sparse due to the vast expansion of space,
hence increasing the difficulty of identifying patterns through clus-
tering. To overcome the intrinsic limitation of KM clustering and reduce
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feature dimensionality, a bespoke data pre-processing procedure
incorporating three operations, i.e. feature selection, feature extraction,
and feature scaling, is designed to remove redundant climate informa-
tion while selecting effective features for climate zone division.

Firstly, a feature extraction process is applied for each climate vari-
able where only the values at three percentiles, i.e. 10%, 50%, and 90%,
are adopted for the distance calculation and similarity comparison in
KM clustering. The extracted features are then normalised into the range
[0,1] using min-max scaling. In principle, climate zones should be
determined according to the similarity of climate characteristics. How-
ever, the zoning results are often compromised due to the data noises
embedded in the climate projections, the oversimplification of climate
features during feature extraction, as well as the inevitable structural
bias of clustering algorithms. To overcome the above problems,
geographical proximity is included in the calculation of similarity to
enhance the reliability of zoning results. The proximity is represented by
two additional input variables of geographic location in the process of
clustering, i.e. the projected x and y coordinates. Nevertheless, climate
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Fig. 4. The schematic of the second-stage clustering for identifying microclimates.



H. Xie et al.

similarity is always adopted as the primary criterion while the spatial
continuity is employed as the secondary condition to refine the results of
the climate zones.

As such, a total of 41 features, including 39 climatic features and 2
features of geographical location are constructed for each member
dataset for the clustering analysis. The 12 sets of climate zoning results
which are derived from the initial analysis are further aggregated to
generate the final climate zones using agglomerative clustering, as
detailed in Section 2.2. The elbow method is then employed to inform
the decision on the optimal number of climate zones.

2.3.2. Ensemble clustering for distinguishing microclimates

The accurate assessment of building performance and overheating
risks requires local weather files representative of microclimates in local
areas [49]. It is rather challenging to identify microclimates without any
screening process, owing to the sparsity of representative abnormal data
samples. The identification of the primary climate zones in the first stage
makes the task easier since the scale of the problem becomes smaller.
Here we are aiming to distinguish the local variations and microclimates
within each primary climate zone to enhance the granularity of zone
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divisions in the second stage of the proposed clustering process.

The schematic for the second stage of the clustering is shown in
Fig. 4. The clustering methodology is very similar to the first stage,
regarding the experiment settings, the method for feature extractions, as
well as the aggregation process. The only difference lies in the climatic
variables and their percentile values used for clustering analysis. Since
temperature is one of the most important variables for building perfor-
mance assessment and is widely used to measure the microclimate, such
as the intensity of urban heat island (UHI), we only employ three tem-
perature related variables in the second stage of clustering, namely
maximum temperature (tasmax), mean temperature (tas), minimum
temperature (tasmin). Three percentile values, namely 5%, 50%, and
95%, are employed to better capture temperature anomaly. The tem-
perature features are fed into the ensemble clustering model to identify
microclimates. The same process is repeated until all primary climate
zones are iterated. As such, the granular climate zone divisions
encompassing the segmentation of microclimates can be achieved by the
proposed two-tiered ensemble clustering process.
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3. Results and discussion

In this section, the clustering results of primary climate zones and
microclimates are presented. The correlations among extracted features
are examined. Several common challenges regarding climate zoning are
then discussed, including the optimal number of clusters, the trade-off
between climate similarity and geographical proximity. In addition,
the microclimates identified using different seasons are examined.
Finally, the identified granular climate zones are compared against the
current 14 locations for weather file selection.

3.1. Variable correlations

The correlations among the extracted features are demonstrated by
the Pearson correlation coefficient matrix, as shown in Fig. 5. The three
temperature measures demonstrate strong positive correlations among
themselves, i.e. maximum temperature (tasmax), mean temperature
(tas), minimum temperature (tasmin). They are also highly correlated
with net shortwave radiation (rss), sea level pressure (psl), and specific
humidity (huss). In contrast, the temperature measures exhibit strong
negative correlations with cloud cover (clt), relative humidity (hurs),
and net longwave radiation (rls). Some lower level of correlations can
also be observed between the temperature features and wind speed
(sfcWind). The identified correlations among climatic features all
conform to their inherent psychrometric and meteorologic relationships.

With respect to the two features of geographical location, the pro-
jected y coordinate, transformed from latitude, has positive correlations
with cloud cover (clt) and precipitation (pr), and negative correlations
with net shortwave radiation (rss). In comparison, the projected x co-
ordinate, transformed from longitude, demonstrates strong positive
correlations with maximum temperature (tasmax) and net shortwave
radiation (rss). As such, the extracted feature set can preserve the
meteorological relationships of climatic variables and the spatial infor-
mation, as well as capture the interactions among them, while signifi-
cantly reducing the size of the climate projection dataset.

3.2. Optimal number of primary climate zones

One of the major challenges with climate zone division is to deter-
mine the optimal number of zones. In many applications of clustering
analysis, the number of clusters can be predefined based on domain
knowledge, such as medical image segmentation [50] and anomaly
detection [51]. With regard to climate zoning, there is a limited
knowledge about optimal number of zones due to the lack of docu-
mentation [1]. The information about the UK is even more scarce since
few studies have been conducted on the topic of climate zone division in
the UK. Based on the literature, there is no direct link between the
number of climate zones and the area of a country. In fact, small
countries may adopt climate zones with high granularity to address
geographical, climatic, and even political divisions, e.g. ten zones in
Tunisia for design guidance, whereas large countries tend to prioritise
practicality by limiting the number of zones, e.g. five zones in China [1].
In this study, we combine the insights from the clustering analysis, the
characteristics of the UK climate, and the current practice regarding the
provision of weather files to determine the most suitable number of
climate zones in the UK.

The transformation of primary climate zones under various settings
of zone numbers are generated, as shown in Fig. 6. Each colour repre-
sents an individual climate zone. As the number of zones increases, the
division of climate zones becomes more granular. Starting from four
zones, the divisions in the north appear in a latitudinal manner, whereas
the divisions in the south are longitudinal. The four primary zones are
shown in Fig. 6a. To be specific, the first zone covers Northern Scotland,
and the second zone occupies Southern Scotland, Northern Ireland, and
Northern England. The third zone covers Wales and Southwest England,
and the last zone occupies Midlands, Southeast England, and East
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England. Such divisions conform with the longstanding spatial patterns
of the UK climate, i.e. cold in the north and warm in the south, wet in the
west and dry in the east [52].

When increasing the number of zones to 8, all previous four zones are
split into two. The islands of Scotland in the first zone, Northern Island
in the second zone, Wales in the third zone, and Midlands in the fourth
zone, become separate zones, as shown in Fig. 6b. As the number of
zones further increases to 14, more granular divisions are formed
longitudinally in the southern part of England, as shown in Fig. 6d. Also,
the original zone that covers Southern Scotland and Northern England is
split into three smaller zones. Further increasing the number of zones
beyond 14 yields similar divisions with little difference, as shown in
Fig. 6e and f. Overall, the increase in the number of clusters results in
greater granularity in zone divisions, but the spatial pattern remains
consistent at the large scale. The dominant patterns identified in the
scenario of 4 clusters can be largely reproduced by merging the granular
results with higher number of clusters.

We also employ the elbow method to gain more insights regarding
the optimal number of clusters. The method measures the compactness
of clusters by calculating the within cluster sum of squared errors (WSS)
for various settings of cluster numbers. It then identifies the optimal
number by choosing the elbow point where the decrease of WSS slows
down noticeably [53]. The result of the elbow method from a member of
the ensemble projection dataset is demonstrated as an exemplar in
Fig. 7. An optimal number of 11 clusters is identified on this specific
member dataset. Overall, the results of the elbow method vary slightly
across different member datasets, but are all within the range [9,14].
The insights from the elbow method can be used as a screening process
to narrow down the range of suitable cluster numbers.

In addition to statistical evidence, it is also critical to consider the
practicality when determining the optimal number of climate zones,
since it has significant implications on the provision of weather files for
building performance assessment and regulatory compliance. In this
regard, there is an inherent trade-off between the simplicity and the
granularity of climate zones. On the one hand, there is a convention in
keeping a minimum number of climate zones for the convenience of
regulatory purposes. On the other hand, an increasing interest in
creating local weather files with higher spatial resolutions are witnessed
to pursue more accurate assessment in a localised environment [1]. As
data availability is less of an issue, the granularity should be prioritised
over the simplicity to satisfy the growing demand on granular weather
files, within the identified range regarding the optimal number of
climate zones. Therefore, combining the evidence from the clustering
results, the elbow method, the analysis on the gap regarding the pro-
vision of weather files, as well as expert opinions, we employ 14 as the
number of climate zones in this study.

3.3. Trade-off between climate similarity and spatial continuity

Clustering results can be fuzzy and fragmented in challenging
problems where the clusters are non-compact and inseparable [50,54].
Climate zone division is no exception. Spati