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H I G H L I G H T S  

• A hierarchical ensemble clustering method was proposed to uncover spatial patterns of climate. 
• The latest climate data from the UK Climate Projection 2018 were employed. 
• Representative climate zones were created to enable climate-responsive building design. 
• Microclimates such as large urban areas and national parks were also identified. 
• The climate zones enable more accurate consideration of local climate for building design.  
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A B S T R A C T   

Climate zones play an important role in promoting climate responsive building design and implementing climate- 
specific prescriptions in national building standards and regulations. The existing studies on climate zoning are 
subject to several limitations, i.e. the incapability of distinguishing microclimates and the lack of consideration of 
climate change. In this research, we propose a two-tiered ensemble clustering method for the identification of 
granular climate zones using the projections of future climate. The first tier identifies primary climate zones 
using a combination of climatic features and geographical locations, whereas the second tier identifies distinct 
local variations within each primary climate zone using the temperature related features. The proposed ensemble 
clustering model is applied to the UK to create a mapping of granular climate zones for future proofing building 
design. The method identified 14 distinct primary zones and distinguished microclimates at a range of scales 
from large urban areas, such as the Greater London Area, to national parks, such as Dartmoor and the Pennines. 
The identified mapping resolves two major obstacles in the creation and usage of weather data for building 
performance assessment in the UK, i.e. the lack of guidance for selecting weather files, and the absence of sci-
entific rationale for representing the UK climate using the current 14 locations.   

1. Introduction 

Climate has a significant impact on performance of buildings, such as 
energy efficiency and thermal comfort [1]. Climate responsive design 
has been adopted as one of the essential principles in architecture 
design, where low-grade energy sources from local climate and envi-
ronment are exploited to maintain a comfortable indoor environment 
while reducing building energy consumption [2–4]. The critical role of 
climate is also widely recognised in the regulatory landscape of build-
ings. Various climate-dependent prescriptions are specified in building 
regulations and standards to promote better building design among 

countries, such as the prescriptions on the performances of building 
envelopes and annual energy consumption adopted by the US [5], China 
[6], France [7], and Greece [8], etc. The relationship between climate 
conditions and prescriptive requirements are usually established 
through the development of representative climate zones. More specif-
ically, a country is divided into several zones according to the diversity 
and characteristics of its climate. Within each zone, the climate is 
deemed homogeneous with negligible variations [9,10]. Subsequently, 
the uniform recommendations and prescriptions are applied for the 
whole area within each climate zone, whereas different settings are 
employed among different zones to embed climate responsive principles 
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in national building regulations and standards. 
The identification of representative climate zones is challenging 

owing to the intricacy of spatial variations in climate, the lack of 
consensus on a legitimate methodology, the need for large amounts of 
climate data, as well as the inevitable requirement for expert judgement 
to ensure practicality. The majority of the existing studies create climate 
zones using historical meteorological records [11–21]. The climatic 
variables most frequently used for the characterisation of climate are air 
temperature, relative humidity, solar radiation, precipitation, and wind 
speed [22–26]. The temporal resolutions of the employed climate data 
differ among existing studies, ranging from hourly values to annual 
means [27]. While degree day is the most conventional method used for 
climate zoning, it oversimplifies the representation of climate patterns 
by considering only air temperature. In contrast, clustering analysis has 
attracted substantial attention in recent years and demonstrated great 
potential in the state-of-the-art studies on climate zoning, owing to its 
advantages of handling large number of variables, avoiding the problem 
of oversimplification, and establishing more accurate characterisation of 
the climate [28–31]. 

Despite the latest development in applying machine learning algo-
rithms and combining climate data with building performance data for 
creating climate zones, there are some intrinsic limitations in the data 
and the methods applied in the study of climate zoning which have yet to 
be addressed. Firstly, the employment of historical observations leads to 
compromised results of climate zones due to the limited availability of 
weather stations, the inadequacy of recorded data, and the lack of 
consideration of climate change. To be specific, the discontinuity of the 
observation data and the sparsity of data samples in regions of interest 
make it challenging to establish accurate boundaries between two 
climate zones, especially when rapid variations of climate conditions are 
present due to complex landscapes. The studies using observation data 
also suffer from various problems concerning the quality of the data sets, 
such as the lack of essential climatic variables, the inadequate length of 
records, and the gaps within the observations [27]. Besides, as the 
climate changes, there is a momentum of incorporating the concept of 
future-proof building design into the guidance and standards and 
assessing design against future climate conditions [32]. In this regard, 
climate zones produced using historical data will not suffice due to the 
lack of consideration of climate change. 

In addition to the limitations of observation data, the existing zoning 
methods are designed to produce large primary climate zones and fail to 
distinguish granular zonal variations resulted from different types of 
land uses and geographical features within an individual climate zone. 
While the large-scale primary climate zones may satisfy regulatory 
purposes at a national level, the microclimates at a local scale, such as 
urban heat island [33,34], have direct impacts on building design and its 
operational performance. Without distinguishing microclimates from 
primary climate zones, inaccurate assumptions on local climate can be 
applied for building design and assessment. As a result, it is challenging 
to achieve accurate building performance assessment and climate 
responsive design using the climate zones derived from historical ob-
servations, owing to the lack of spatial granularity in the identified 
climate patterns. More advanced zoning methods are needed to over-
come the current limitations and create climate zones with better ac-
curacy and granularity. 

Apart from the above research gaps, there is also an imperative in 
creating climate zones in the UK to overcome two longstanding obstacles 
pertaining to the creation and use of weather files, i.e. 1) the justification 
of representing the UK climate using the current 14 locations; 2) the 
ambiguity when selecting weather files for locations within microcli-
mates. More specifically, the actual design of a building is required to 
demonstrate a better performance than its corresponding notional 
building in the UK. According to Building Regulations Part L, three types 
of assessments on energy efficiency are specified for regulatory 
compliance, i.e. Standard Assessment Procedure (SAP) for dwellings, 
Simplified Building Energy Model BEM) and Dynamic Simulation 

Modelling (DSM) for non-domestic buildings [35,36]. While monthly 
climate data is supplied for every postcode district in SAP, the weather 
files for 14 locations created by the Chartered Institution of Building 
Services Engineers (CIBSE) are employed for SBEM and DSM assessment 
[37]. Historically, the selection of the 14 locations was largely decided 
based on the availability of weather stations, rather than the climate 
patterns across the UK. There is a lack of justification as to whether they 
are truly capable of representing the UK climate. In fact, the concern on 
representing the climate of Scotland using only two locations, i.e. 
Edinburgh and Glasgow, has already been raised [38]. 

Moreover, due to this lack of understanding of the spatial pattern of 
UK climate, the ambiguity looms when selecting weather files. Accord-
ing to the National Calculation Methodology (NCM) modelling guide, it 
is recommended to select the weather file from the location which is 
closest to the building site. In the presence of a microclimate, one of the 
other 13 weather files may be used if the weather data is deemed more 
appropriate [39]. The guidance recognises the necessity of using the 
weather file representative of local climate, but provides no clarity 
regarding the definition and the criterion for assessing representative-
ness. Geographical proximity does not necessarily entail climate simi-
larity, especially when local variations occur due to land features and 
usage. The representativeness of climate should be assessed based on a 
profound understanding of characteristics and spatial patterns of the 
climate. Consequently, to fill the knowledge gap and eliminate ambi-
guities regarding the use of weather files, there is an imperative in 
creating representative climate zones in the UK to aggregate areas with 
homogeneous climate characteristics and distinguish those with distinct 
variations. 

To overcome the intrinsic limitations of the existing climate zoning 
methods and eliminate the ambiguity in using CIBSE weather files for 
regulatory compliance in the UK, in this research we propose a two- 
tiered ensemble clustering method to create granular climate zones 
using the latest climate projections for future-proof building design in 
the UK. The proposed method elevates the state-of-the-art studies on 
climate zoning in three aspects: 1) using a two-layer structure in clus-
tering to enhance the granularity of zoning results; 2) using ensemble 
learning to address the uncertainty of climate change projections and 
guarantee the reliability of zoning results; 3) establishing an improved 
representation of climate by extracting diverse climatic features from 
the high-resolution climate projection data. More specifically, a two- 
tiered ensemble clustering method is designed to generate dominant 
climate zones and microclimates hierarchically using climate pro-
jections. In the first tier, the primary climate zones are identified using 
the combination of climatic features and geographical locations. In the 
second tier, microclimates within each primary climate zone are then 
distinguished using the temperature related features. While the pro-
posed method provides a generalised approach for creating granular 
climate zones, the UK is employed as a case study due to the imperative 
to provide more clarity on using appropriate weather data in its building 
regulations. Therefore, the regional projections from the UK Climate 
Projections 2018 (UKCP18) [40] are employed to create representative 
climate zones with high granularity in the UK. The original contribu-
tions of this research are twofold, i.e. methodological and practical. The 
proposed method resolves three major challenges faced by the existing 
studies of climate zoning, namely the discontinuity and inadequacy of 
observation data, the lack of consideration of climate change, as well as 
the need for distinguishing microclimates. Moreover, the identified 
mapping of granular climate zones of the UK fills two major gaps asso-
ciated with the weather data for building performance assessment, i.e. 
the lack of guidance for selecting weather files, and the absence of sci-
entific rationale for representing the UK climate using the current 14 
locations. 

The remainder of the paper is organised as follows. In Section 2, the 
details of the proposed two-tiered ensemble clustering method are pre-
sented. Section 3 presents the clustering results of primary climate zones 
and microclimates. The determination of the optimal number of climate 
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zones and the trade-off between climate similarity and spatial continuity 
are also elaborated. Furthermore, the benefits of the generated granular 
climate zones in comparison with the current 14 locations available for 
CIBSE weather files are discussed. Lastly, the conclusions are drawn and 
future research directions are presented in Section 4. 

2. Methodology 

In this research, a two-tiered ensemble clustering process is proposed 
to create granular climate zones using climate projections for future- 
proof building design in the UK. The schematic of the proposed clus-
tering process is shown in Fig. 1. The regional projections in the UKCP18 
are employed to provide essential climatic variables and a complete 
coverage of the geographical area of the UK for climate zone division. An 
ensemble clustering process is developed to address the ensemble nature 
of climate projections and establish robust climate zones. Furthermore, a 
two-tiered clustering model is designed to distinguish local variations 
within each climate zone and to obtain granular zoning results. 

More specifically, the essence of creating climate zones is to identify 
and merge individual geographical locations exhibiting homogeneous 
climate patterns based on the measure of similarity of climatic charac-
teristics. Four key questions need to be addressed in this process, namely 
1) how to extract effective features to characterise climate from a sig-
nificant amount of data; 2) how to measure the level of climate simi-
larity among different locations; 3) how to address multiple plausible 
outcomes of climate projection; 4) how to identify granular variations of 
climate at a local scale. The proposed two-tiered ensemble clustering 
method is designed to address the above challenges. For each 
geographical location, a total of 41 climatic and geographical features 
are constructed to encapsulate its climate pattern. KM algorithm is 
employed as the base model to group all geographical locations in the 
UK into several representative climate zones, according to the similarity 
of climate patterns. The similarity is measured by Euclidean distance in 
the feature space constructed by the pre-processed 41 features. The 
closer two locations are in the feature space, the more likely they are 
grouped together. The grouping is conducted independently for each 
member of plausible climate projections and the clustering results from 
different members are then aggregated to yield the ultimate outcome of 
climate zones based on the probability of co-occurrence. Besides, it is 
rather challenging to identify large primary climate zones and small 
microclimates simultaneously, due to the scarcity of representative data 
samples. Therefore, a hierarchical process is developed whereby the 
large primary climate zones are identified first and the microclimates 
within primary zones are identified thereafter following a similar clus-
tering process. As such, a mapping of diverse climate zones with a high 
level of granularity can be established in the UK. 

2.1. Climate projections 

The majority of existing studies use historical meteorological records 
for the identification of climate zones [1,23,41]. The division of climate 
zones is unlikely to be accurate owing to the limited availability of 
historical observations, especially the data samples on the boundaries of 
two neighbouring zones. Besides, the use of historical data fails to 
consider the impact of climate change. As an alternative to observations, 
a variety of climate projections datasets are available, such as the 
UKCP18 [42], the Coordinated Regional Climate Downscaling Experi-
ment (CORDEX) [43], or the Coupled Model Intercomparison Project 
(CMIP) [44]. Climate projections can be more suitable for climate 
zoning as they provide coherent gridded climate variables with high 
spatial resolutions over a long-term horizon. 

To overcome the limitations of historical observations, we employ 
the regional projections from the UKCP18 in this study. UKCP18 is the 
latest generation of national climate projections for the UK. Four types of 
projections with different spatial resolutions are available in UKCP18, 
including the probabilistic projections (25 km), the global projections 

Fig. 1. Schematic of the proposed two-stage clustering process.  

H. Xie et al.                                                                                                                                                                                                                                      



Applied Energy 357 (2024) 122549

4

(60 km), the regional projections (12 km), and the local projections (2.2 
km). The regional projections are adopted in this study due to the 
consideration of the trade-off between the fine resolution and the 
computational cost. The regional projections are generated by down-
scaling the outputs of the selected global climate models (GCMs), 
namely Met Office Hadley Centre model, using the regional climate 
models (RCMs). An ensemble of 12 climate projections is available at 12 
km spatial resolution. Compared to the global projections, the regional 
projections account for the effects of mountains, coastlines, lakes and 
mesoscale atmospheric circulations in greater detail. Currently, the 
regional projections are only available for RCP8.5 scenario, i.e. the 
highest emission scenario adopted by IPCC [45], over a period of 
1981–2080 for the UK and Europe. A total of 15 variables are included, 
which contains all variables essential for building performance assess-
ment, e.g. cloud cover, precipitation, solar radiation, relative humidity, 
temperature, and wind speed. Hence, the regional projections in 
UKCP18 offer a great alternative for climate zoning studies due to its 
advantages in spatial resolution and continuity, as well as the encap-
sulation of patterns of climate change. 

2.2. Ensemble learning 

The process of creating climate projections entails many layers of 
uncertainties, such as the uncertainty in future carbon emissions, the 
modelling uncertainty, which indicates the uncertainty caused by an 
imperfect knowledge of the climate system, as well as the uncertainty 
from the measurement errors in the baseline observations. It is unlikely 
to fully comprehend these uncertainties and generate a perfect projec-
tion of future climate using a single deterministic model, due to the 
complexity of the climate system. Therefore, a perturbed parameter 

ensemble (PPE) was developed to produce a wide range of diverse 
climate outcomes in UKCP18 [42]. The ensemble encompasses different 
variants generated from a particular climate model, namely HadCM3, by 
perturbing essential model parameters. As a result, the regional pro-
jections in UKCP18 include a 12-member ensemble of regional climate 
simulations over Europe at 12 km resolution. Each member represents a 
unique yet plausible realization of future climate. This ensemble nature 
of climate projection data presents a major challenge for downstream 
applications, as opposed to using observations which represents a single 
deterministic reality. 

In this research, we adopt the idea of ensemble learning to address 
the challenge of the ensemble nature of climate projections. The 
ensemble learning refers to a machine learning approach that combines 
the learning results from multiple base models to generate more robust 
outcomes with better generalization capabilities. In general, ensemble 
learning methods can be classified into three categories, namely 
bagging, boosting, and stacking [46]. Considering the ensemble nature 
of climate projections, we employ bagging method where each base 
model is trained using different samples from the training dataset. In this 
section, we focus on introducing the overarching process of ensemble 
learning, whereas the details of applying ensemble learning for climate 
zoning will be presented in the next section. The process of ensemble 
learning is illustrated in Fig. 2. 

To be specific, the climate zoning is in essence a clustering problem, 
where locations with similar climate characteristics need to be grouped 
into one cluster. To achieve this, we employ K-means (KM) clustering as 
the base clustering model in the proposed ensemble learning process. 
The KM clustering runs an iterative process to minimise the sum of intra- 
cluster distances, as shown in Eq. (1). 

Fig. 2. An illustration of ensemble learning.  
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D =
∑k

n=1

∑

Oi∈Cn
(Oi − Zn)

2 (1)  

where Oi, Cn, Zn represent the i-th data sample, the n-th cluster, and the 
n-th centroid for the n-th cluster, respectively. k denotes the total 
number of clusters. 

In each iteration, a data sample is assigned to a cluster to which it has 
the shortest distance, as measured by the Euclidean distance between 
the data sample and the centroid of the cluster. After all data samples are 
assigned, the centroid of each cluster is subsequently updated as the 
mean of all data samples within the cluster. The iteration continues until 
a termination criterion is satisfied. In this study, each KM model is 
trained using a member dataset from the regional projections. The total 
number of base KM models is equal to the size of the ensemble regional 
projections, i.e. 12. Subsequently, the clustering results yielded by all 12 
KM models are aggregated in two steps. Firstly, the co-occurrence matrix 
is calculated for clustering objects based on the number of times that 
they occur in the same cluster. Then an agglomerative clustering process 
is conducted using the co-occurrence matrix as the input. It starts by 
considering each object as one cluster and merges clusters from bottom 
to up. Ward's minimum variance method is employed as the criterion for 
merging [47]. As such, the robust clustering results can be obtained by 
exploiting and combining insights from all plausible climate projections 
through this ensemble learning process. 

2.3. The proposed two-tiered ensemble clustering process 

A two-tiered ensemble clustering process is proposed to establish a 
mapping of homogeneous climate zones across the UK encompassing the 
segmentation of microclimates. The two-tiered structure is developed to 
overcome the lack of capability of distinguishing microclimates within 
individual climate zones. The ensemble clustering is employed to 
accommodate the ensemble nature of the climate projections and 
address the uncertainty in climate change. The yielded mapping of the 
granular climate zones fills the knowledge gap regarding the trade-off 
between the simplicity and the representativeness required for the cre-
ation of standard weather files for building performance assessment 
[48]. In this section, we mainly focus on the experimental settings and 
feature extraction involved in the two stages of the proposed ensemble 
clustering process, since the clustering mechanism is already elaborated 
in Section 2.2. 

2.3.1. Ensemble clustering for identifying primary climate zones 
The aim of the first stage in the proposed two-tiered clustering pro-

cess is to identify the primary climate zones across the UK. The sche-
matic is shown in Fig. 3. All 12 climate projections over a 100-year 
period, i.e. 1981–2080, under the RCP8.5 emission scenario in the 
regional projections in UKCP18 are employed as the input for the 
ensemble clustering model. Each member dataset is fed into a single base 
KM model following the bagging method. A total of 13 monthly climatic 
variables are employed to establish a comprehensive characterisation of 

Fig. 3. The schematic of the first-stage clustering for identifying primary climate zones.  
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climate similarity, namely cloud cover (clt), precipitation (pr), net 
longwave radiation (rls), net shortwave radiation (rss), relative humidity 
(hurs), sea level pressure (psl), specific humidity (huss), maximum tem-
perature (tasmax), mean temperature (tas), minimum temperature 
(tasmin), wind speed (sfcWind), wind speed eastwards (uas), wind speed 
northwards (vas). 

The essence of establishing climate zones through KM clustering is to 
identify and merge individual geographical locations demonstrating 
homogeneous climate patterns based on the measure of similarity of 
climatic variables. One of the key limitations with KM clustering is its 
sensitivity to data noise and redundant features, owing to its mechanism 
of representing similarity using Euclidean distance. Besides, a high 
number of input features contained in the original climate data set, i.e. 
13 (number of climatic variables) × 12 (number of months) × 100 
(number of years), can also incur the curse of dimensionality, where the 
data samples become very sparse due to the vast expansion of space, 
hence increasing the difficulty of identifying patterns through clus-
tering. To overcome the intrinsic limitation of KM clustering and reduce 

feature dimensionality, a bespoke data pre-processing procedure 
incorporating three operations, i.e. feature selection, feature extraction, 
and feature scaling, is designed to remove redundant climate informa-
tion while selecting effective features for climate zone division. 

Firstly, a feature extraction process is applied for each climate vari-
able where only the values at three percentiles, i.e. 10%, 50%, and 90%, 
are adopted for the distance calculation and similarity comparison in 
KM clustering. The extracted features are then normalised into the range 
[0,1] using min-max scaling. In principle, climate zones should be 
determined according to the similarity of climate characteristics. How-
ever, the zoning results are often compromised due to the data noises 
embedded in the climate projections, the oversimplification of climate 
features during feature extraction, as well as the inevitable structural 
bias of clustering algorithms. To overcome the above problems, 
geographical proximity is included in the calculation of similarity to 
enhance the reliability of zoning results. The proximity is represented by 
two additional input variables of geographic location in the process of 
clustering, i.e. the projected x and y coordinates. Nevertheless, climate 

Fig. 4. The schematic of the second-stage clustering for identifying microclimates.  
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similarity is always adopted as the primary criterion while the spatial 
continuity is employed as the secondary condition to refine the results of 
the climate zones. 

As such, a total of 41 features, including 39 climatic features and 2 
features of geographical location are constructed for each member 
dataset for the clustering analysis. The 12 sets of climate zoning results 
which are derived from the initial analysis are further aggregated to 
generate the final climate zones using agglomerative clustering, as 
detailed in Section 2.2. The elbow method is then employed to inform 
the decision on the optimal number of climate zones. 

2.3.2. Ensemble clustering for distinguishing microclimates 
The accurate assessment of building performance and overheating 

risks requires local weather files representative of microclimates in local 
areas [49]. It is rather challenging to identify microclimates without any 
screening process, owing to the sparsity of representative abnormal data 
samples. The identification of the primary climate zones in the first stage 
makes the task easier since the scale of the problem becomes smaller. 
Here we are aiming to distinguish the local variations and microclimates 
within each primary climate zone to enhance the granularity of zone 

divisions in the second stage of the proposed clustering process. 
The schematic for the second stage of the clustering is shown in 

Fig. 4. The clustering methodology is very similar to the first stage, 
regarding the experiment settings, the method for feature extractions, as 
well as the aggregation process. The only difference lies in the climatic 
variables and their percentile values used for clustering analysis. Since 
temperature is one of the most important variables for building perfor-
mance assessment and is widely used to measure the microclimate, such 
as the intensity of urban heat island (UHI), we only employ three tem-
perature related variables in the second stage of clustering, namely 
maximum temperature (tasmax), mean temperature (tas), minimum 
temperature (tasmin). Three percentile values, namely 5%, 50%, and 
95%, are employed to better capture temperature anomaly. The tem-
perature features are fed into the ensemble clustering model to identify 
microclimates. The same process is repeated until all primary climate 
zones are iterated. As such, the granular climate zone divisions 
encompassing the segmentation of microclimates can be achieved by the 
proposed two-tiered ensemble clustering process. 

Fig. 5. Pearson correlation coefficients matrix of the extracted 41 features.  
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3. Results and discussion 

In this section, the clustering results of primary climate zones and 
microclimates are presented. The correlations among extracted features 
are examined. Several common challenges regarding climate zoning are 
then discussed, including the optimal number of clusters, the trade-off 
between climate similarity and geographical proximity. In addition, 
the microclimates identified using different seasons are examined. 
Finally, the identified granular climate zones are compared against the 
current 14 locations for weather file selection. 

3.1. Variable correlations 

The correlations among the extracted features are demonstrated by 
the Pearson correlation coefficient matrix, as shown in Fig. 5. The three 
temperature measures demonstrate strong positive correlations among 
themselves, i.e. maximum temperature (tasmax), mean temperature 
(tas), minimum temperature (tasmin). They are also highly correlated 
with net shortwave radiation (rss), sea level pressure (psl), and specific 
humidity (huss). In contrast, the temperature measures exhibit strong 
negative correlations with cloud cover (clt), relative humidity (hurs), 
and net longwave radiation (rls). Some lower level of correlations can 
also be observed between the temperature features and wind speed 
(sfcWind). The identified correlations among climatic features all 
conform to their inherent psychrometric and meteorologic relationships. 

With respect to the two features of geographical location, the pro-
jected y coordinate, transformed from latitude, has positive correlations 
with cloud cover (clt) and precipitation (pr), and negative correlations 
with net shortwave radiation (rss). In comparison, the projected x co-
ordinate, transformed from longitude, demonstrates strong positive 
correlations with maximum temperature (tasmax) and net shortwave 
radiation (rss). As such, the extracted feature set can preserve the 
meteorological relationships of climatic variables and the spatial infor-
mation, as well as capture the interactions among them, while signifi-
cantly reducing the size of the climate projection dataset. 

3.2. Optimal number of primary climate zones 

One of the major challenges with climate zone division is to deter-
mine the optimal number of zones. In many applications of clustering 
analysis, the number of clusters can be predefined based on domain 
knowledge, such as medical image segmentation [50] and anomaly 
detection [51]. With regard to climate zoning, there is a limited 
knowledge about optimal number of zones due to the lack of docu-
mentation [1]. The information about the UK is even more scarce since 
few studies have been conducted on the topic of climate zone division in 
the UK. Based on the literature, there is no direct link between the 
number of climate zones and the area of a country. In fact, small 
countries may adopt climate zones with high granularity to address 
geographical, climatic, and even political divisions, e.g. ten zones in 
Tunisia for design guidance, whereas large countries tend to prioritise 
practicality by limiting the number of zones, e.g. five zones in China [1]. 
In this study, we combine the insights from the clustering analysis, the 
characteristics of the UK climate, and the current practice regarding the 
provision of weather files to determine the most suitable number of 
climate zones in the UK. 

The transformation of primary climate zones under various settings 
of zone numbers are generated, as shown in Fig. 6. Each colour repre-
sents an individual climate zone. As the number of zones increases, the 
division of climate zones becomes more granular. Starting from four 
zones, the divisions in the north appear in a latitudinal manner, whereas 
the divisions in the south are longitudinal. The four primary zones are 
shown in Fig. 6a. To be specific, the first zone covers Northern Scotland, 
and the second zone occupies Southern Scotland, Northern Ireland, and 
Northern England. The third zone covers Wales and Southwest England, 
and the last zone occupies Midlands, Southeast England, and East 

England. Such divisions conform with the longstanding spatial patterns 
of the UK climate, i.e. cold in the north and warm in the south, wet in the 
west and dry in the east [52]. 

When increasing the number of zones to 8, all previous four zones are 
split into two. The islands of Scotland in the first zone, Northern Island 
in the second zone, Wales in the third zone, and Midlands in the fourth 
zone, become separate zones, as shown in Fig. 6b. As the number of 
zones further increases to 14, more granular divisions are formed 
longitudinally in the southern part of England, as shown in Fig. 6d. Also, 
the original zone that covers Southern Scotland and Northern England is 
split into three smaller zones. Further increasing the number of zones 
beyond 14 yields similar divisions with little difference, as shown in 
Fig. 6e and f. Overall, the increase in the number of clusters results in 
greater granularity in zone divisions, but the spatial pattern remains 
consistent at the large scale. The dominant patterns identified in the 
scenario of 4 clusters can be largely reproduced by merging the granular 
results with higher number of clusters. 

We also employ the elbow method to gain more insights regarding 
the optimal number of clusters. The method measures the compactness 
of clusters by calculating the within cluster sum of squared errors (WSS) 
for various settings of cluster numbers. It then identifies the optimal 
number by choosing the elbow point where the decrease of WSS slows 
down noticeably [53]. The result of the elbow method from a member of 
the ensemble projection dataset is demonstrated as an exemplar in 
Fig. 7. An optimal number of 11 clusters is identified on this specific 
member dataset. Overall, the results of the elbow method vary slightly 
across different member datasets, but are all within the range [9,14]. 
The insights from the elbow method can be used as a screening process 
to narrow down the range of suitable cluster numbers. 

In addition to statistical evidence, it is also critical to consider the 
practicality when determining the optimal number of climate zones, 
since it has significant implications on the provision of weather files for 
building performance assessment and regulatory compliance. In this 
regard, there is an inherent trade-off between the simplicity and the 
granularity of climate zones. On the one hand, there is a convention in 
keeping a minimum number of climate zones for the convenience of 
regulatory purposes. On the other hand, an increasing interest in 
creating local weather files with higher spatial resolutions are witnessed 
to pursue more accurate assessment in a localised environment [1]. As 
data availability is less of an issue, the granularity should be prioritised 
over the simplicity to satisfy the growing demand on granular weather 
files, within the identified range regarding the optimal number of 
climate zones. Therefore, combining the evidence from the clustering 
results, the elbow method, the analysis on the gap regarding the pro-
vision of weather files, as well as expert opinions, we employ 14 as the 
number of climate zones in this study. 

3.3. Trade-off between climate similarity and spatial continuity 

Clustering results can be fuzzy and fragmented in challenging 
problems where the clusters are non-compact and inseparable [50,54]. 
Climate zone division is no exception. Spatial patterns of climate can be 
complex due to sophisticated local variations resulted from a variety of 
factors, such as altitude, latitude and longitude, distance to oceans, 
landforms, and prevailing winds. Inherent limitations in clustering al-
gorithms and climate data can also lead to compromised results. 
Therefore, climate zones generated without applying continuity 
constraint can be excessively fragmented and impractical, imposing 
significant barriers on its understanding, adoption, and implementation 
[55]. 

To alleviate spatial discontinuity and achieve the balance between 
authenticity and practicality of the zoning results, we incorporate 
geographical proximity into the similarity calculation in KM clustering. 
Two weighting factors with a sum of 1 are applied for the considered two 
types of similarity measures, i.e. the climate similarity and the 
geographical proximity. The results of climate zones from three different 
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Fig. 6. Clustering results of primary climate zones with different zone numbers.  
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combinations of weighting factors are demonstrated in Fig. 8. A total of 
14 clusters are employed based on the analysis in section 3.2. 

As shown in Fig. 8a, when no continuity constraint is applied, several 
identified climate zones are intertwined with fragmentations of various 
scales dotted among them. For example, the two climate zones covering 
Midlands and East England, as highlighted by the dark blue and green 
colours, are blended, with ambiguous boundaries especially towards the 
west end. Similar phenomena can also be observed in regions such as 
North West England, Yorkshire, and North Wales, which are 

characterised by hills and mountains in their landscapes. This suggests 
that geographical features can result in local variations in climate zones. 
As the weighting factor for geographical proximity increases as 
demonstrated Fig. 8b, the spatial discontinuity reduces, and the patterns 
of climate zones become more recognisable. 

Since there is limited literature on the relative importance of 
geographical proximity in climate zoning, we reason that the impact of 
geographical variables should be minimised so that the inherent climate 
patterns are not distorted. According to the experiment results, a 

Fig. 7. Distortion score across different number of primary climate zones.  

Fig. 8. Results of primary climate zones generated with different weighting factors for geographical proximity.  
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weighting factor of 0.2 for geographical proximity attains a good trade- 
off between preserving spatial patterns of the UK climate and ensuring 
spatial continuity, as shown in Fig. 8b. The yielded climate zones 
become more compact and less noisy, and the divisions in the South East 
of England are also more granular, compared to the results without 
applying continuity constraint. The further increase of the weighting 
factor undermines the authentic climate patterns and results in over-
simplified zone divisions, as shown in Fig. 8c. As such, the 14 primary 
climate zones considering the trade-off between climate similarity and 
spatial continuity are generated through the first stage of the proposed 
clustering process. They will be employed as the foundation for identi-
fying microclimates. 

3.4. Microclimates using different combinations of seasons 

Microclimates, especially urban microclimates such as UHI, exert 
significant influences on building energy consumption, thermal comfort, 
and air quality [56–60]. Identifying climate zones and microclimates in 
parallel is challenging due to the imbalance of sample size and the 
distinct contrast of their respective scales. Therefore, an additional 
clustering process is conducted to distinguish microclimates hierar-
chically from each primary climate zone. 

The results of the microclimates identified using three combinations 
of calendar months, namely summer months (June, July, August), 
summer and winter (December, January, February) months, all twelve 
months in a calendar year, are demonstrated in Fig. 9. To be specific, 
each primary climate zone in Fig. 8b is further segmented into two 
clusters, as highlighted by the same colour but different levels of satu-
ration in Fig. 9. It is evident that the regions with distinct variations in 
their climate are successfully detected and distinguished across all three 
scenarios, such as the Greater London area, Cornwall, Lake District and 
Pennines, Dartmoor National Park, Cairngorms National Park, Eryri 
National Park etc. The results of the identified microclimates are 

coherent between using both the summer and the winter months, and 
using all twelve months in a calendar year, as shown in Fig. 9a and 
Fig. 9b. In contrast, the microclimates identified from using only sum-
mer months tend to be larger and less compact. This can be caused by 
incomplete information contained in the summer months for microcli-
mate detection. Temperature information in winter can complement the 
identification of microclimates since microclimates, such as UHI, still 
exist in winter [34]. 

Owing to the distance calculation and minimization mechanism in 
KM, the smaller area the microclimate covers, the more distinct it is from 
the climate zone it belongs to. The Greater London area segmented from 
its climate zone in the South East is an exemplar. This indicates that the 
climate patterns across the UK are much more complicated than sug-
gested by the current provision of weather files. The current 14 locations 
provided with weather files are insufficient to represent the spatial 
variability of the UK climate. The lack of spatial granularity in weather 
files implies that users will have to make a compromised decision when 
selecting weather files for certain locations. This could in turn impose 
arbitrary constraints and costs on building designs. 

3.5. Comparison between the granular climate zones and the current 14 
locations 

In this section, we compare the granular climate zones identified by 
the proposed ensemble clustering process with the status quo, i.e. the 14 
locations available for CIBSE weather files in the UK, as shown in Fig. 10. 
Due to the lack of official guidance on how to select weather files for 
building performance assessment, we assume that the current practice is 
based on geographical proximity and the whole UK can be divided into 
14 zones, accordingly, as shown in Fig. 10a. The black dots on the map 
represent the 14 locations of CIBSE weather files. 

Significant differences can be observed between the distance-based 
and the climate-oriented zoning results in Fig. 10b. If following the 

Fig. 9. Results of microclimates generated from different combinations of seasons.  
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distance-based zone divisions, weather data from Manchester can be 
used to assess a building in Eryri National Park, and Newcastle can be 
used for Lake District. This indicates that geographical proximity does 
not necessarily entail climate similarity. Assuming climate similarity 
based on proximity can result in problems of over design and under 
design. The current guidance recognises the importance of using the 
weather file which is representative of local climate, but provides no 
clarity regarding the definition and the criterion of assessing represen-
tativeness. In contrast, if weather files are developed according to the 
generated granular representative climate zones, such controversies can 
be eliminated ultimately owing to the enhanced representation of 
diverse climate conditions, such as the climate in urban area, coastal 
area, mountain area, etc. Furthermore, the local variations within in-
dividual climate zones can also be captured by the established mapping 
of granular microclimates. This enables the creation of more localised 
weather files, ensures accurate assessment of building performance, as 
well as eliminates confusion regarding the selection of weather files. 

3.6. Case study 

In this section, the implications with two different paradigms of 
weather file selection, namely the climate-based and the distance-based, 
on building design are further discussed and compared using a case 
study. We employed two typical scenarios where the selection of 
weather files is deemed disputable. In the first scenario, a coastal loca-
tion in Sussex, i.e. Burgess Hill, is selected to investigate the plausibility 
of using an inland location to represent coastal regions. If using distance- 
based criteria, the weather file of London should be used for Burgess 
Hill. Alternatively, if selecting purely based on climate similarity, the 
weather file of Southampton should be used for Burgess Hill. In the 
second scenario, Eryri National Park is selected to investigate the 
appropriateness of using urban areas to represent mountainous regions. 
More specifically, the weather file of Manchester is used for Eryri Na-
tional Park based on geographical proximity. If selecting based on 

climate similarity, another set of weather file capable of representing the 
climate in mountainous regions in Wales should be adopted. However, 
such weather files are currently absent. We use the weather file from the 
adjacent zone, i.e. Cardiff, as a comprise for the purpose of 
demonstration. 

For case study, a two-storey detached residential house with a total 
building area of 223 m2 is created in DesignBuilder. The building pa-
rameters and settings remain the same for all scenarios, with the 
weather file as the only variable to ensure a fair comparison. The 
building geometry and the results of simulation are presented in the 
Fig. 11 and Table 1 as below. 

With respect to the scenario of Eryri National Park, if selecting 
weather file based on distance, the annual heating energy demand is 7% 
higher than selecting the file based on climate. For the scenario of 

Fig. 10. Comparison of the identified granular climate zones against 14 existing locations.  

Fig. 11. The residential house employed in the case study.  
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Burgess Hill, the difference on the annual heating energy demand is less 
significant, i.e. -1.54%, but a large deviation on the peak heating de-
mand is observed, i.e. 5.63%. The deviations on peak energy demand 
and total energy demand resulted from two weather file selection 
criteria can affect building design on different levels. Firstly, the vari-
ance on building performance metrics may translate into different out-
comes of regulatory compliance. This adds an additional layer of 
complexity on building design where good design efforts and intentions 
can be discouraged due to the selection of inappropriate weather files. 
Secondly, different weather file selection criteria can lead to different 
sizing outcomes, which can cause problems of oversizing or undersizing. 
As a result, the case study demonstrates that large performance de-
viations can occur on the same building design when using two different 
weather file selection paradigms, i.e. climate similarity and geograph-
ical proximity. This can have cascade impacts on regulatory compliance, 
size of system, and cost effectiveness. Therefore, it is critical to establish 
climate zones and create weather files which are truly representative of 
local climate to achieve climate-responsive and resilient building design. 

In all, the granular climate zones generated by our proposed method 
resolve the longstanding issue of disconnection between the creation of 
weather files and the spatial variability in the climate of the UK. While 
this study mainly focuses on the development of methodology for 
creating climate zones, we will produce a set of new Test Reference Year 
(TRY) and Design Summer Year (DSY) weather files for each represen-
tative climate zone and conduct a large-scale empirical evaluation, 
especially on overheating, in the next stage. 

4. Conclusion 

In this research, a hierarchical ensemble clustering method has been 
proposed for undertaking the problem of climate zoning. The method 
has three advantages over the existing approaches, namely 1) the 
avoidance of climate observations which are spatially discontinuous, 2) 
the inclusion of climate change projections, 3) the ability to distinguish 
microclimates within clusters. The method can be easily applied where 
climate projection data is available at a high resolution. By applying this 
method specifically to the UK, we have also filled two major gaps 
associated with the current guidance around the use of weather data for 
building performance assessment, namely 1) the lack of specific guid-
ance for selecting weather files for a particular location beyond spatial 
proximity, and 2) the absence of scientific rationale for representing the 
UK climate using the current 14 locations. 

The proposed method generates the primary climate zones and the 
microclimates hierarchically, in a two-stage clustering process using 
regional climate projections in UKCP18. In the first stage, a total of 14 
climate zones are identified across the UK through a bagging ensemble 
clustering model that incorporates 12 base KM algorithms. A total of 41 
features, including 39 climatic features and 2 features of geographical 
locations, are extracted to establish a comprehensive characterisation of 
climate similarity. The geographical proximity is employed as a 
constraint on spatial continuity to achieve the trade-off between the 
authenticity and the compactness of the identified climate zones. The 
elbow method is applied to help determine the optimal number of 
climate zones in the UK. In the second stage, the microclimates are 
distinguished within each primary climate zone by running another 
ensemble clustering process using only temperature data. The 

microclimates are generated using three different combinations of sea-
sons and compared. As a result, the climate zones with great granularity 
are established across the UK. The local variations at a variety of scales 
are also successfully discriminated, such as the Greater London area, 
Cornwall, Lake District and Pennines, Dartmoor National Park, and Eryri 
National Park etc. Compared to the current 14 locations available for 
CIBSE weather files, the established climate zones provide ground evi-
dence for weather file creation and ensures accurate assessment of 
building performance by demystifying the grey area in weather file se-
lection. As such, the outcome of our study resolves the longstanding 
issue of disconnection between weather file provision and climate 
characterisation. 

For future research, more empirical studies will be conducted to 
validate the generated granular climate zones using dynamic building 
simulation [55,61]. Besides, the results of climate zones will be refined 
by merging some divisions with little heterogeneity in their climate. 
Indicators of building performance will also be considered in clustering 
to establish climate zones for bespoke purposes, such as passive design 
[1,62,63]. Furthermore, advanced machine learning algorithms will be 
explored to enhance clustering performance of the proposed ensemble 
model [54,64,65]. 
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Table 1 
The results of annual heating demand and peak heating demand for two scenarios.  

Scenarios Selection 
method 

Annual heating demand 
[KWh] 

Actual 
difference 

Difference in 
percentage 

Peak demand 
[W] 

Actual 
difference 

Difference in 
percentage 

Burgess 
Hill 

Climate 8859.34 
− 134.43 − 1.54% 9627.17 

− 513.35 − 5.63% 
Distance 8724.91 9113.82 

Eryri 
Climate 9212.62 

696.04 7.02% 
9203.32 

31.73 0.34% Distance 9908.66 9235.05  
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climate classification. Hydrol Earth Syst Sci 2007;11(5):1633–44. 
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