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ESM Methods 

Model Overview 
The model development process consisted of a first step of propensity score estimation and a 

second step of developing a treatment selection model using a Bayesian additive regression tree 

(BART) framework [1, 2]. We aimed to balance predictive accuracy with model parsimony and build 

the model around a limited number of routinely collected variables, thus facilitating its use in clinical 

practice. We used the bcf [3] and sparseBCF [2] packages in R to fit the model(s) using Markov chain 

Monte Carlo (MCMC). By default, bcf places stronger regularisation on the moderator side of the 

model, shrinking the treatment effects towards homogeneity where there is a lack of strong 

evidence to the contrary. For this model, we are comparing two therapies against each other (rather 

than a therapy to a control group), so we used the same prior structure for the prognostic and 

moderator parts of the model. 

The Bayesian additive regression trees (BART) technique employs a Bayesian methodology for non-

parametric function estimation through regression trees[4]. These trees employ a recursive binary 

partitioning of the predictor space, creating a series of hyperrectangles to approximate an unknown 

function 𝑓. The predictor space’s dimension equals the number of variables, 𝑝. Due to their flexible 

fitting of interactions and non-linearities, regression tree models are helpful. Models composed of 

multiple regression trees can capture interactions, non-linearities, and additive effects in 𝑓. 

BART can be considered a sum-of-trees ensemble, with a novel estimation approach relying on a 

fully Bayesian probability model. Specifically, the BART model can be expressed as: 

𝒀 = 𝑓(𝑿) +  𝜺 ≈  𝜯𝟏
𝜧(𝑿) + 𝜯𝟐

𝜧(𝑿) + ⋯ + 𝛵𝑚
𝛭(𝑿) + 𝜺,       𝜺 ~ 𝑵𝑛(𝟎, 𝝈𝟐𝑰𝑛) 

( 1 ) 

In this context, 𝒀 represents the response vector with dimensions 𝑛 × 1, while 𝑿 is the 𝑛 × 𝑝 design 

matrix with column-joined predictors. Additionally, 𝜺 represents the 𝑛 × 1 noise vector. The analysis 

involves 𝑚 separate regression trees, each consisting of a tree structure (referred to as 𝚻) and the 

parameters at the terminal nodes or leaves (referred to as 𝚳). When combined, both components 

make up the complete tree denoted as 𝚻𝚳. This complete representation encompasses both the 

structure and set of leaf parameters. 

In the BART model, the prior consists of three distinct components. Firstly, it includes the tree 

structure itself. Secondly, it incorporates the leaf parameters given the tree structure. Finally, it 

encompasses the error variance 𝝈𝟐, independent of the tree structure and leaf parameter. 

ℙ(𝚻1
𝚳, … , 𝚻𝑚

𝚳, 𝝈𝟐) = [∏ ℙ(𝚻𝑡
𝚳)

𝑡

] ℙ(𝝈𝟐) = [∏ ℙ(𝚳𝑡|𝚻𝑡)ℙ(𝚻𝑡)

𝒕

] ℙ(𝝈𝟐) 

                                 = [∏ ∏ ℙ(𝝁𝑡,𝑙|𝚻𝑡)ℙ(𝚻𝑡)

𝑙

ℙ(𝝈𝟐)

𝑡

] 

Initially, we discuss ℙ(𝚻𝑡), a component of the prior that impacts node placement within the tree. 

The probability of nonterminal nodes at a particular depth 𝑑 is 𝛼(1 + 𝑑)−𝛽 where 𝛼 ∈ (0,1) and 𝛽 ∈

[0, ∞]. In this context, depth is measured as the distance from the root. For instance, the root node 

has a depth of 0, while its first child node has a depth of 1, and so on. This prior form can limit the 
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complexity of any single tree by enforcing shallow tree structures. The values for these 

hyperparameters are 𝛼 = 0.95 and 𝛽 = 2, in line with Chipman et al. [4]. 

Next, we discuss the prior component ℙ(𝚳𝑡|𝚻𝑡) which regulates the leaf parameters. When a tree 

has a collection of terminal nodes, each node (or leaf) has a continuous parameter representing the 

“best guess” of the response in that specific partition of predictor space. This parameter is the fitted 

value assigned to any observation within that node. The prior on each of the leaf parameters is 

𝝁𝑙~𝑖𝑖𝑑𝑵(𝝁𝝁/𝑚, 𝝈𝝁
2), where the expectation, 𝝁𝝁, is selected as the range centre, specifically (𝑦min +

𝑦max)/2. However, outliers can impact the range centre, which can be remedied by logging the 

response or applying windsorisation.  

The variance is chosen empirically such that the range centre plus or minus 𝑘 = 2 variances cover 

95% of the response values provided in the training set (where 𝑘 = 2 corresponds to 95% coverage). 

Therefore, given 𝑚 trees, we automatically employ 𝝈𝝁 such that 𝑚𝝁𝝁 − 𝑘√𝑚𝝈𝝁 = 𝑦min and 𝑚𝝁𝝁 +

𝑘√𝑚𝝈𝝁 = 𝑦max. This prior aims to achieve model regularisation by shrinking the leaf parameters 

towards the centre of the response distribution. 

The last prior is on the error variance, and it is selected as 𝝈2~InvGamma(𝜈/2, 𝜈𝜆/2). 𝜆 is 

calculated from the data to ensure that there is a 𝑞 = 90% probability that the BART model will 

outperform the RMSE of an ordinary least squares regression. Consequently, the majority of the 

prior probability mass is positioned beneath the RMSE from the least squares regression. 

Furthermore, this prior restricts the likelihood of small 𝝈2 values to prevent overfitting. 

To generate draws from the posterior distribution of ℙ(𝚻1
𝚳, … , 𝚻𝑚

𝚳, 𝝈2|𝝁), a Gibbs sampler is 

utilised. A key feature of the Gibbs sampler for BART is to employ a form of “Bayesian backfitting” 

where the 𝑗th tree is fit iteratively, holding all other 𝑚 − 1 trees constant by exposing only the 

residual response that remains unfitted. This relies on Metropolis-Hastings draws from the posterior 

of the tree distributions, which involve introducing minor perturbations to the tree structure, such 

as growing a terminal node by adding two child nodes, pruning two child notes to render their 

parent node terminal, or modifying a split rule. These three potential tree adjustments are labelled 

as GROW, PRUNE, AND CHANGE. The prior probabilities for proposing changes to the tree structures 

are: GROW = 2.5/9, PRUNE = 2.5/9 and CHANGE = 4/9. 

BART was modified to handle classification problems for categorical response variables. For the 

binary classification problem (coded with outcomes “0” and “1”), we assume a probit model: 

ℙ(𝒀 = 1|𝑿) = 𝚽 (𝚻1
𝚳(𝑿) + 𝚻2

𝚳(𝑿) + ⋯ + 𝚻𝑚
𝚳(𝑿)), 

where 𝚽 denotes the cumulative density function of the standard normal distribution. In this 

formulation, the sum-of-trees model serves as an estimate of the conditional probit at 𝒙, which can 

be easily transformed into a conditional probability estimate of 𝑌 = 1. The prior on 𝝈𝟐 is not needed 

in the classification setting as the model assumes 𝝈2 = 1. The prior on the tree structure remains 

the same as in the regressions setting, and a few minor modifications are required for the prior on 

the leaf parameters. See Chipman et al. (2010)[4] and Kapelner et al. (2013)[5] for more details. 

Sparse BCF 
Bayesian Additive Regression Trees (BART) are a non-parametric regression model used to estimate 

conditional expectations of a response variables 𝑌𝑖  via a “sum-of-trees”. We can redefine equation 

(1) to be: 
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𝑌𝑖 = 𝑓(𝑿𝑖, 𝑍𝑖) + 𝜀𝑖 ,      where 𝜀𝑖~𝑁(0, 𝜎2) 

Considering this regression framework, we can use BART to flexibly represent 𝑓( . ) as 

𝑓(𝑿, 𝑍) = ∑ 𝑔𝑗 ([𝑿  𝑍], (𝑇𝑗, 𝑀𝑗)) ,

𝑚

𝑗=1

 

where 𝑚 is the total number of trees in the model, and each tree is defined by a pair (𝑇𝑗, 𝑀𝑗). 𝑇𝑗 

represents the binary split rules of the tree, while 𝑀𝑗 is the set of terminal nodes in that tree. The 

function 𝑔𝑗( . ) is specific to each tree and maps the predictors [𝑿  𝑍] to the set of terminal nodes 

𝑀𝑗, following the binary split rules in 𝑇𝑗. The conditional mean function 𝑓(𝒙, 𝑧) =

𝔼[𝑌𝑖|𝑿𝑖 = 𝒙𝑖 , 𝑍𝑖 = 𝑧𝑖] is calculated by adding up all the terminal nodes 𝜓𝑖𝑗 assigned to the 

predictors [𝑿  𝑍] by the tree functions 𝑔𝑗( . ), that is ∑ 𝑔𝑗( . )𝑚
𝑗=1 Error!  Bookmark not defined.. 

This BART method uses a two-stage regression approach: 

𝑍𝑖  ~ Bernoulli (𝜋(𝑿̃𝑖)) , 𝜋(𝒙̃𝑖) = ℙ(𝑍𝑖 = 1|𝑿̃𝑖 = 𝒙̃𝑖) 

( 2 ) 

𝑌𝑖 = 𝜇([𝑿𝑖  𝜋(𝑿̃𝑖)]) + 𝜏(𝑾𝑖)𝑍𝑖 + 𝜀𝑖  
( 3 ) 

The equation (2) deals with propensity score estimation. Equation (3) estimates the prognostic score 

𝜇( . ), defined as the effect of the covariates 𝑿𝑖 ∈ Χ on the outcome 𝑌𝑖  in the absence of treatment 

𝜇(𝒙𝑖) = 𝔼[𝑌𝑖|𝑿𝑖 = 𝒙𝑖, 𝑍𝑖 = 0], and CATE 𝜏( . ). 

BART and BCF can effectively handle sparsity due to the random uniform selection of splitting 

variables. However, they do not explicitly incorporate heterogeneous sparsity or feature shrinkage, 

which results in the assumption of equal levels of heterogeneity for all covariates included in the 

model. Let us define first 𝒔 = (𝑠1, … , 𝑠𝑝) as the vector of splitting probabilities of each predictor 𝑗 ∈

{1, … , 𝑃}, where each 𝑠𝑗 represents the probability for the 𝑗th predictor of being chosen as a splitting 

variable in one of the decision nodes of a tree. Shrinkage BCF places symmetric Dirichlet priors in the 

estimation of prognostic 𝜇( . ) and moderating effects 𝜏( . ) to induce sparsity. For now, we will only 

consider the case where 𝑾𝑖 = 𝑿𝑖, that is, where the same set of covariates is used for the 

estimation of 𝜇( . ) and 𝜏( . ). The priors are: 

𝒔𝜇 ~ Dirichlet (
𝛼𝜇

𝑃 + 1
, … ,

𝛼𝜇

𝑃 + 1
),        

𝛼𝜇

𝛼𝜇 + 𝜌𝜇
 ~ Beta(𝑎, 𝑏) 

𝒔𝜏 ~ Dirichlet (
𝛼𝜏

𝑃
, … ,

𝛼𝜏

𝑃
),         

𝛼𝜏

𝛼𝜏 + 𝜌𝜏
 ~ Beta(𝑎, 𝑏) 

where the Beta’s parameters are chosen to be (𝑎, 𝑏) = (0.5,1). The hyperparameter 𝜌 is set equal 

to (𝑃 + 1) in the case of the prognostic score, and it is set to 
𝑃

2
 in the case of the moderator effect. 

The values for leaf hyperparameters are 𝛼 = 0.95 and 𝛽 = 2. The tree structure hyperparameters 

for the prognostic and moderator effects are similar, corresponding to a sum of 200 trees, leaf 

hyperparameters = 0.95 and 𝛽 = 2, 𝝈𝟐 =  2 × SD(𝑌𝑖) (standard deviation [SD]). See Caron et al. 

(2021) for more details.  
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For the treatment selection model, we revert the prior on splitting probabilities to a uniform 

distribution. Otherwise, our application was as described in the previous sections[6]. 

Propensity score estimation 
The BCF developers[3] recommend including a propensity score variable in the prognostic 

component of BCF models to help alleviate regularisation-induced confounding due to prescribing by 

indication[3]. We used a standard BART model[7] for the propensity score, fitted using MCMC and 

the bartMachine package in R[7]. All variables extracted initially in the development cohort were 

used for initial model fitting. However, a subset of the most predictive variables was selected by 

applying a threshold defined by the proportion of times each predictor was chosen as a spitting rule 

divided by the total number of splitting rules appearing in the model[7, 8] (ESM Fig. 6). The 

propensity score model was then refitted with the selected variables. To assess convergence, we 

monitored the available parameters according to the guidance provided by Kapelner et al. [7] and 

Gelman-Rubin 𝑅̂ values[9]. The BART propensity score model converged quickly, so we ran 25,000 

iterations with the first 15,000 discarded for burn-in; trace plots are available on request and 𝑅̂ < 

1.02. To assess the performance of the final model, received operating characteristic (ROC) and 

precision-recall curves were fitted to both the development and validation cohorts (ESM Fig. 7). 

Variable selection 
Variable selection was deployed to develop a parsimonious final model whilst maintaining predictive 

accuracy. To do this, we used a two-stage approach, wherein the first stage, we built a sparse BCF 

model[1] incorporating all candidate predictors. Sparse BCF extends standard BCF by replacing the 

uniform prior distribution placed over the splitting probabilities of each variable (which means that 

by default, each variable has the same prior probability of being selected for splitting) with a 

Dirichlet prior over the splitting probabilities. As the model converges, the posterior distribution for 

these splitting probabilities induces sparsity by assigning higher weight and, thus, higher variable 

importance to more predictive covariates. This prior was used in the model’s prognostic and 

moderator parts[1]. To define the final predictor set, we selected only variables with a posterior 

mean splitting probability greater than 1/number of variables. This was a subjective choice, but one 

we found was sufficient to minimise the number of final predictors without meaningfully affecting 

predictive accuracy. We ran the sparse BCF model for 250,000 iterations, discarding the first 200,000 

iterations as burn-in and monitoring convergence using trace plots (available on request) and 

Gelman-Rubin 𝑅̂ values (where all 𝑅̂ < 1.01). 

Final model fit 
Following variable selection, we fitted a final model using standard BCF without sparsity-inducing 

priors (since individual-level predictions are not currently possible from the sparse BCF software). 

The model used 300,000 iterations, discarding the first 200,000 iterations and thinning the 

remaining iterations by 4, resulting in 25,000 final posterior samples. The propensity score was not 

included in the final predictor set as it did not meet our threshold for variable selection. As a 

sensitivity analysis, we refitted the model including the propensity score in the predictor set and 

compared predictions across the two models (ESM Fig. 4). 
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Variable importance 
Given the known challenge of extracting variable importance from tree-based models, we 

implemented a pseudo-variable importance measure defined as the proportion of R2 associated with 

each variable for predicting the CATE[10]. This was estimated from a linear regression model using 

all selected variables for the differential part of the model as predictors (with continuous predictors 

fitted as 3-knot restricted cubic splines) and the predicted CATE as the outcome[11]. To assess how 

CATE estimates varied across major routine clinical features, we also summarised the marginal 

distributions of sex, baseline HbA1c, eGFR, current age, and BMI across subgroups defined by the 

degree of predicted glycaemic differences (SGLT2i benefit of 0–3, 3–5 or >5 mmol/mol (2.2-2.4, 2.4-

2.6 or >2.6%); GLP1-RA benefit of 0–3, 3–5 or >5mmol/mol). 

Model validation: sensitivity analysis using propensity scores 
We employ two other different approaches to estimate the average treatment effects (ATE) within 

each subgroup: 

Propensity score matching: Individuals receiving each drug class within each subgroup were 

matched by propensity score (the same propensity score used during HbA1c model development), 

using a caliper distance of 0.05, no replacement and in decreasing order of propensity score values. 

After defining this restricted patient subset, unadjusted linear regression models were used to 

estimate the ATE within each subgroup[12].  

Propensity score matching with adjustment: The linear regression models of approach 2 were 

refitted using a double robust approach by adjusting for the full covariate set used in the HbA1c 

treatment selection model (Table 2 – main manuscript). 

Secondary outcomes 
HbA1c and weight outcomes were modelled with Bayesian linear regressions, placing a normal 

distribution of mean 0 and variance 2 on all parameters. Discontinuation was modelled with a 

Bayesian logistic regression model, placing a normal distribution of mean 0 and a variance 2 on all 

parameters. 

Long-term outcomes (microvascular complications, major adverse cardiovascular events, and heart 

failure) were modelled with a Bayesian survival model, placing a normal distribution of mean 0 and 

variance 2 on all parameters. 

All models used 10,000 MCMC iterations, discarding the first 5,000 iterations as burn-in for four 

chains. Convergence was monitored using trace plots and Gelman-Rubin 𝑅̂ values. Here all 𝑅̂ < 1.04 

and trace plots are available on request. 
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ESM Results 

ESM Table 1: Baseline clinical characteristics of patients initiating GLP-1 receptor agonists and SGLT2-

inhibitors from the UK Clinical Practice Research Datalink for model development and validation 

cohorts. 

Data are mean [SD] and number (%). Standardised mean difference (SMD). Atherosclerotic 

cardiovascular disease – composite of myocardial infarction, stroke, ischemic heart disease, 

peripheral arterial disease and revascularization. *closest values to treatment start in the previous 6 

months. 

a) CPRD HbA1c model development cohort, n= 31,346. 
 GLP-1 receptor agonists (n=6,736) SGLT2i (n=24,610) SMD 

  Missing (%)  Missing (%)  

Current age, years 57.8 [10.7]  58.5 [10.4]  0.063 

Duration of diabetes, years 9.3 [6.4]  9.3 [6.3]  0.002 

Year of drug start 2016 [2]  2017 [2]  0.389 

Sex     0.149 

Male 3,686 (54.7)  15,264 (62.0)   

Female 3,050 (47.3)  9,346 (38.0)   

Ethnicity     0.276 

White 5,862 (87.0)  18,914 (76.9)   

South Asian 461 (6.8)  3,480 (14.1)   

Black 202 (3.0)  1,042 (4.2)   

Other 55 (0.8)  376 (1.5)   

Mixed 49 (0.7)  254 (1.0)   

Missing 107 (1.6)  544 (2.2)   

SGLT2i type      

Canagliflozin   4,424 (18.0)   

Dapagliflozin   10,658 (43.3)   

Empagliflozin   9,520 (38.7)   

Ertugliflozin   16 (0.1)   

GLP1-RA type      

Dulaglutide 2,392 (35.5)     

Exenatide (short-acting) 341 (5.1)     

Exenatide (long-acting) 580 (8.6)     

Liraglutide 2,724 (40.4)     

Lixisenatide 703 (10.4)     

Index of multiple deprivation  2 (<0.1)  10 (<0.1) 0.059 

1 (Least deprived) 1,099 (16.3)  4,207 (17.1)   

2 1,129 (16.8)  4,423 (18.0)   

3 1,345 (20.0)  4,726 (19.2)   

4 1,433 (21.3)  5,430 (22.1)   

5 (Most deprived) 1,728 (25.7)  5,814 (23.6)   

Smoking status     0.061 

Active 1,108 (16.4)  3,977 (16.2)   

Ex-smoker 3,762 (55.8)  13,400 (54.4)   

Non-smoker 1,550 (23.0)  6,240 (25.4)   

Missing 316 (4.7)  993 (4.0)   

Number of glucose-lowering drug  
classes ever prescribed  

 
 

 0.373 

2 823 (12.2)  5,815 (23.6)   

3 1,788 (26.5)  7,734 (31.4)   

4 2,499 (37.1)  4,151 (29.1)   

≥5 1,626 (24.1)  3,910 (15.9)   

Number of other current glucose- 
-lowering drugs  

 
 

 0.086 
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0 278 (4.1)  789 (3.2)   

1 2,490 (37.0)  9,898 (40.2)   

2 3,223 (47.8)  11,173 (45.4)   

3 720 (10.7)  2,700 (11.0)   

≥4 25 (0.4)  50 (0.2)   

Background therapy      

Metformin 6,006 (89.2)  22,465 (91.3)  0.071 

Sulfonylurea 3,273 (48.6)  9,022 (36.7)  0.243 

DPP4i 743 (11.0)  7,184 (29.2)  0.465 

SGLT2i 857 (12.7)     

Thiazolidinedione 317 (4.7)  616 (2.5)  0.118 

GLP1-RA   1,257 (5.1)   

Biomarkers      

HbA1c, mmol/mol* 79.2 [15.6]  76.7 [15.6]  0.161 

HbA1c, * 9.4 [3.6]  9.2 [3.6]  0.161 

BMI, kg/m2 37.7 [7.0] 122 (1.8) 33.6 [6.7] 781 (3.2) 0.589 

eGFR, ml/min per 1.73 m2 92.6 [18.7] 6 (0.1) 94.9 [14.8] 19 (0.1) 0.139 

HDL-cholesterol, mmol/l 1.1 [0.3] 328 (4.9) 1.1 [0.3] 774 (3.1) 0.084 

ALT, IU/l 35.8 [20.4] 418 (6.2) 35.2 [20.2] 1,395 (5.7) 0.033 

Albumin, g/L 41.6 [3.9] 328 (4.9) 42.1 [3.9] 1,010 (4.1) 0.124 

Bilirubin, µmol/l 9.1 [4.7] 265 (3.9) 9.5 [4.9] 914 (3.7) 0.087 

Total cholesterol, mmol/l 4.3 [1.1] 17 (0.3) 4.2 [1.1] 28 (0.1) 0.071 

Mean arterial BP, mmHg 96.1 [8.8] 12 (0.2) 96.0 [8.8] 36 (0.1) 0.010 

Microvascular complications      

Nephropathy 173 (2.6)  461 (1.9)  0.047 

Neuropathy 1,828 (27.1)  5,825 (23.7)  0.080 

Retinopathy 2,438 (36.2)  9,332 (37.9)  0.036 

Cardiovascular conditions      

Angina 768 (11.4)  2,308 (9.4)  0.066 

Atherosclerotic CVD 1,420 (21.1)  4,551 (18.5)  0.065 

Atrial fibrillation 407 (6.0)  1,094 (4.4)  0.072 

Cardiac revascularisation 420 (6.2)  1,520 (6.2)  0.002 

Heart failure 380 (5.6)  913 (3.7)  0.092 

Hypertension 4,057 (60.2)  13,778 (56.0)  0.086 

Ischaemic heart disease 972 (14.4)  3,125 (12.7)  0.051 

Myocardial infarction 466 (6.9)  1,546 (6.3)  0.026 

Peripheral arterial disease 347 (5.2)  1,041 (4.2)  0.044 

Stroke 280 (4.2)  914 (3.7)  0.023 

Transient ischaemic attach 152 (2.3)  557 (2.3)  <0.001 

Other conditions      

Chronic kidney disease 561 (8.3)  731 (3.0)  0.234 

Chronic liver disease 907 (13.5)  2,922 (11.9)  0.048 

QRISK2 10-year score 23.5 [13.4] 308 (4.6) 23.2 [12.8] 1,611 (6.5) 0.021 

HbA1c outcome      

HbA1c, mmol/mol 67.0 [18.2]  64.5 [15.0]  0.152 

HbA1c, % 8.3 [3.8]  8.1 [3.5]  0.152 

Month of HbA1c measure 9.0 [3.5]  9.2 [3.5]  0.067 
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b) CPRD HbA1c model validation cohort, n= 20,865. 
 GLP-1 receptor agonists (n=6,736) SGLT2i (n=24,610) SMD 

  Missing (%)  Missing (%)  

Current age, years 58.2 [10.8]  58.3 [10.3]  0.009 

Duration of diabetes, years 9.3 [6.1]  9.2 [6.3]  0.025 

Year of drug start 2016 [2]  2017 [1]  0.378 

Sex     0.188 

Male 2,460 (53.9)  10,298 (63.2)   

Female 2,100 (46.1)  6,007 (36.8)   

Ethnicity     0.289 

White 3.995 (87.6)  12,596 (77.3)   

South Asian 293 (6.4)  2,267 (13.9)   

Black 133 (2.9)  653 (4.0)   

Other 38 (0.8)  249 (1.5)   

Mixed 41 (0.9)  151 (0.9)   

Missing 60 (1.3)  389 (2.4)   

SGLT2i type      

Canagliflozin   2,921 (17.9)   

Dapagliflozin   7,182 (44.0)   

Empagliflozin   6,190 (38.0)   

Ertugliflozin   13 (0.1)   

GLP1-RA type      

Dulaglutide 1,621 (35.5)     

Exenatide (short-acting) 228 (5.0)     

Exenatide (long-acting) 380 (8.3)     

Liraglutide 1,884 (41.3)     

Lixisenatide 449 (9.8)     

Index of multiple deprivation  3 (0.1)  8 (<0.1) 0.043 

1 (Least deprived) 784 (17.2)  2,810 (17.2)   

2 823 (18.0)  2,905 (17.8)   

3 878 (19.3)  3,197 (19.6)   

4 949 (20.8)  3,609 (22.1)   

5 (Most deprived) 1,123 (24.6)  3,776 (23.2)   

Smoking status     0.055 

Active 760 (16.7)  2,595 (15.9)   

Ex-smoker 2,539 (55.7)  8,890 (54.5)   

Non-smoker 1,057 (23.2)  4,150 (25.5)   

Missing 204 (4.5)  670 (4.1)   

Number of glucose-lowering drug  
classes ever prescribed  

 
 

 0.378 

2 564 (12.4)  3,920 (24.0)   

3 1,232 (27.0)  5,164 (31.7)   

4 1,652 (36.2)  4,663 (28.6)   

≥5 1,112 (24.4)  2,558 (15.7)   

Number of other current glucose- 
-lowering drugs  

 
 

 0.098 

0 199 (4.4)  561 (3.4)   

1 1,682 (36.9)  6,644 (40.7)   

2 2,141 (47.0)  7,364 (45.2)   

3 512 (11.2)  1,692 (10.4)   

≥4 26 (0.6)  44 (0.3)   

Background therapy      

Metformin 4,048 (88.8)  14,961 (91.8)  0.101 

Sulfonylurea 2,206 (48.4)  5,851 (35.9)  0.255 

DPP4i 505 (11.1)  4,584 (28.1)  0.440 

SGLT2i 651 (14.3)     

Thiazolidinedione 195 (4.3)  418 (2.6)  0.094 

GLP1-RA   810 (2.6)   
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Biomarkers      

HbA1c, mmol/mol* 78.8 [15.5]  76.8 [15.3]  0.138 

HbA1c, %* 9.4 [3.6]  9.2 [3.5]  0.138 

BMI, kg/m2 37.4 [6.9] 104 (2.3) 33.7 [6.6] 508 (3.1) 0.549 

eGFR, ml/min per 1.73 m2 91.8 [19.5] 1 (<0.1) 95.2 [14.7] 14 (0.1) 0.196 

HDL-cholesterol, mmol/l 1.1 [0.3] 192 (4.2) 1.1 [0.3] 560 (3.4) 0.074 

ALT, IU/l 35.9 [21.0] 283 (6.2) 35.5 [20.5] 924 (5.7) 0.018 

Albumin, g/L 41.7 [3.9] 197 (4.3) 42.1 [3.9] 725 (4.4) 0.111 

Bilirubin, µmol/l 9.1 [4.4] 168 (3.7) 9.6 [5.0] 640 (3.9) 0.101 

Total cholesterol, mmol/l 4.3 [1.1] 9 (0.2) 4.2 [1.1] 25 (0.2) 0.087 

Mean arterial BP, mmHg 96.1 [9.0] 5 (0.1) 96.2 [8.7] 37 (0.2) 0.011 

Microvascular complications      

Nephropathy 112 (2.5)  328 (2.0)  0.030 

Neuropathy 1,256 (27.5)  3,780 (23.2)  0.100 

Retinopathy 1,706 (37.4)  6,097 (37.4)  <0.001 

Cardiovascular conditions      

Angina 540 (11.8)  1,446 (8.9)  0.098 

Atherosclerotic CVD 1,086 (23.8)  2,979 (18.3)  0.136 

Atrial fibrillation 286 (6.3)  726 (4.5)  0.081 

Cardiac revascularisation 319 (7.0)  1,054 (6.5)  0.021 

Heart failure 249 (5.5)  600 (3.7)  0.085 

Hypertension 2,774 (60.8)  9,089 (55.7)  0.103 

Ischaemic heart disease 703 (15.4)  1,979 (12.1)  0.095 

Myocardial infarction 319 (7.0)  998 (6.1)  0.035 

Peripheral arterial disease 291 (6.4)  675 (4.1)  0.101 

Stroke 238 (5.2)  617 (3.8)  0.069 

Transient ischaemic attach 148 (3.2)  377 (2.3)  0.057 

Other conditions      

Chronic kidney disease 460 (10.1)  447 (2.7)  0.303 

Chronic liver disease 603 (13.2)  1,917 (11.8)  0.044 

QRISK2 10-year score 24.0 [13.3] 224 (4.9) 23.1 [12.8] 1,056 (6.5) 0.067 

HbA1c outcome      

HbA1c, mmol/mol 67.0 [17.8]  64.4 [14.7]  0.161 

HbA1c, % 8.3 [3.8]  8.0 [3.5]  0.161 

Month of HbA1c measure 8.9 [3.5]  9.2 [3.5]  0.089 
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c) Tayside & Fife (Scotland) routine clinical data, n= 2,252. 
 GLP-1 receptor agonists (n=415) SGLT2i (n=1,837) 

  Missing (%)  Missing (%) 

Current age, years 58.7 [9.1]  61.5 [9.7]  

Duration of diabetes, years 7.5 [4.2]  7.4 [4.6]  

Year of drug start 2013 [3]  2017 [1]  

Sex     

Male 226 (54.5)  1,155 (62.9)  

Female 189 (45.5)  682 (37.1)  

Ethnicity     

White 415 (100)  1,837 (100)  

Index of multiple deprivation  14 (3.4)  63 (3.4) 

1 (Least deprived) 93 (23.2)  375 (21.1)  

2 91 (22.7)  407 (22.9)  

3 74 (18.5)  355 (20.0)  

4 73 (18.2)  348 (19.6)  

5 (Most deprived) 70 (17.5)  289 (16.3)  

Smoking status     

Active 296 (71.3)  1,258 (68.5)  

Non-smoker 119 (28.7)  579 (31.5)  

Number of glucose-lowering drug  
classes ever prescribed  

 
 

 

2 43 (10.4)  580 (31.6)  

3 125 (30.1)  612 (33.3)  

4 148 (35.7)  412 (22.4)  

≥5 99 (23.9)  233 (12.7)  

Number of other current glucose- 
-lowering drugs  

 
 

 

0 / 1 109 (26.3)  861 (46.9)  

≥2 306 (73.7)  976 (53.1)  

Biomarkers     

HbA1c, mmol/mol 82.8 [16.8]  76.9 [14.3]  

HbA1c, % 9.7 [3.7]  9.2 [3.5]  

BMI, kg/m2 38.8 [7.4]  34.4 [6.6]  

eGFR, ml/min per 1.73 m2 93.2 [19.1]  92.5 [16.0]  

HDL-cholesterol, mmol/l 1.1 [0.3]  1.1 [0.3]  

ALT, IU/l 38.1 [21.3]  39.3 [23.2]  

Albumin, g/L 40.9 [4.1]  39.6 [3.8]  

Bilirubin, µmol/l 8.7 [4.1]  9.7 [4.6]  

Total cholesterol, mmol/l 4.4 [1.2] 1 (0.2) 4.3 [1.1] 3 (0.2) 

Mean arterial BP, mmHg 100.8 [11.6] 3 (0.7) 97.6 [9.7] 8 (0.4) 

Microvascular complications     

Retinopathy 193 (46.5)  779 (42.4)  

Cardiovascular conditions     

Atrial fibrillation 23 (5.5)   85 (4.6)  

Heart failure 19 (4.6)  41 (2.2)  

Myocardial infarction 24 (5.8)  141 (7.7)  

Peripheral arterial disease 2 (0.5)  11 (0.6)  

Stroke 7 (1.7)  40 (2.2)  

Transient ischaemic attach 2 (0.5)  13 (0.7)  

HbA1c outcome     

HbA1c, mmol/mol 68.2 (17.7]  63.5 [13.8]  

HbA1c, % 8.4 [3.8]  8.0 [3.4]  

Month of HbA1c measure 9.5 [3.2]  9.6 [3.3]  
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d) Clinical trials and prospective cohorts. 
 HARMONY 7 RCT: 

Liraglutide (n= 389) 

HARMONY 7 RCT: 
Albiglutide (n= 1,682) 

PRIBA 
(n= 550) 

Current age, years 55.8 [10.0] 56.4 [10.0] 55.8 [10.3] 

Duration of diabetes, years 8.3 [5.6] 8.1 [6.4] 10.0 [6.5] 

Sex    

Male 203 (52.2) 873 (52.0) 299 (54.4) 

Female 186 (47.8) 809 (48.0) 251 (45.6) 

Number of other current glucose- 
-lowering drugs  

 
 

0 / 1 341 (87.6) 1,476 (87.7) 257 (54.4) 

≥2 48 (12.4) 206 (12.2) 251 (45.6) 

Biomarkers    

HbA1c, mmol/mol 66.0 [14.3] 65.9 [9.9] 82.6 [17.6] 

HbA1c, % 8.2 [3.5] 8.2 [3.1] 9.7 [3.8] 

BMI, kg/m2 32.0 [5.9] 32.7 [5.7] 39.6 [26.6] 

eGFR, ml/min per 1.73 m2 95.3 [16.6] 86.5 [20.4] 92.4 [26.6] 

HDL-cholesterol, mmol/l 1.2 [0.3] 1.2 [0.3] 1.1 [0.6] 

ALT, IU/l 27.7 [13.6] 26.4 [15.7] 34.4 [19.3] 

Albumin, g/L 25.9 [37.2] 28.8 [37.5] 41.6 [14.8] 

Bilirubin, µmol/l 9.6 [4.3] 9.5 [4.2] 9.5 [6.4] 

Total cholesterol, mmol/l 4.5 [1.0] 4.7 [1.1] 4.4 [1.2] 

HbA1c outcome    

HbA1c, mmol/mol 54.0 [12.8] 55.0 [13.9] 68.0 [16.8] 

HbA1c, % 7.1 [3.3] 7.2 [3.4] 8.4 [3.7] 
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e) CPRD patient subgroups defined by predicted HbA1c benefit >5 mmol/mol (>2.6%) with either 

SGLT2i or GLP-1RA, n= 14,149 (values for Fig. 3). 
 Predicted benefit on GLP1-RA >5 

mmol/mol (>2.6%) (n= 3,319) 

Predicted benefit on SGLT2i >5 
mmol/mol (>2.6%) (n= 3,485) 

SMD 

  Missing (%)    

Current age, years 69.4 [9.2]  48.8 [10.1]  2.129 

Duration of diabetes, years 11.5 [7.4]  8.1 [5.4]  0.525 

Year of drug start 2017 [2]  2017 [2]  0.286 

Therapy Taken     0.064 

GLP1-RA 956 (28.8)  904 (25.9)   

SGLT2i 2,363 (71.2)  2,581 (74.1)   

Sex     1.033 

Male 906 (27.3)  2,550 (73.2)   

Female 2,413 (72.7)  935 (26.8)   

Ethnicity     0.249 

White 2,799 (84.3)  2,636 (75.6)   

South Asian 305 (9.2)  555 (15.9)   

Black 133 (4.0)  127 (3.6)   

Other 28 (0.8)  56 (1.6)   

Mixed 21 (0.6)  37 (1.1)   

Missing 33 (1.0)  74 (2.1)   

SGLT2i type      

Canagliflozin 490 (14.8)  453 (13.0)   

Dapagliflozin 845 (25.5)  1,217 (34.9)   

Empagliflozin 1,029 (30.8)  912 (26.2)   

Ertugliflozin 0 (0)  0 (0)   

GLP1-RA type      

Dulaglutide 389 (11.7)  285 (8.2)   

Exenatide (short-acting) 35 (1.1)  57 (1.6)   

Exenatide (long-acting) 71 (2.1)  81 (2.3)   

Liraglutide 384 (11.6)  388 (11.1)   

Lixisenatide 77 (2.3)  92 (2.7)   

Index of multiple deprivation  2 (0.1)  1 (<0.1) 0.249 

1 (Least deprived) 671 (20.2)  473 (13.6)   

2 608 (18.3)  525 (15.1)   

3 668 (20.1)  665 (19.1)   

4 680 (20.5)  841 (24.1)   

5 (Most deprived) 690 (20.8)  980 (28.1)   

Smoking status     0.348 

Active 346 (10.4)  779 (22.4)   

Ex-smoker 2,019 (60.8)  1,677 (48.1)   

Non-smoker 807 (24.3)  889 (25.5)   

Missing 147 (4.4)  140 (4.0)   

Number of glucose-lowering drug  
classes ever prescribed  

 
 

 0.450 

2 792 (23.9)  276 (7.9)   

3 957 (28.8)  1,144 (32.8)   

4 966 (29.1)  1,307 (37.5)   

≥5 604 (18.2)  758 (21.8)   

Number of other current glucose- 
-lowering drugs  

 
 

 1.477 

0 385 (11.6)  25 (0.7)   

1 2,027 (61.1)  467 (13.4)   

2 731 (22.0)  2,346 (67.3)   

3 175 (5.3)  623 (17.9)   

≥4 1 (<0.1)  24 (0.7)   

Background therapy      
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Metformin 2,424 (73.0)  3,362 (96.5)  0.690 

Sulfonylurea 910 (27.4)  2,046 (58.7)  0.666 

DPP4i 556 (16.8)  1,133 (32.5)  0.372 

SGLT2i 2,393 (72.1)  2,731 (78.4)  0.146 

Thiazolidinedione 57 (1.7)  142 (4.1)  0.141 

GLP1-RA 997 (30.0)  1,195 (34.3)  0.091 

Biomarkers      

HbA1c, mmol/mol* 78.6 [20.6]  94.5 [15.5]  0.871 

HbA1c, %* 9.3 [4.0]  10.8 [3.6]  0.871 

BMI, kg/m2 33.6 [8.9]  36.0 [6.2]  0.310 

eGFR, ml/min per 1.73 m2 74.9 [17.9]  108.4 [13.6]  2.106 

HDL-cholesterol, mmol/l 1.2 [0.3] 36 (1.1) 1.0 [0.3] 52 (1.5) 0.661 

ALT, IU/l 27.4 [15.4]  40.8 [23.6]  0.672 

Albumin, g/L 40.9 [4.0] 23 (0.7) 42.0 [3.9] 22 (0.6) 0.285 

Bilirubin, µmol/l 8.8 [4.5] 8 (0.2) 9.6 [5.1] 13 (0.4) 0.179 

Total cholesterol, mmol/l 4.3 [1.1] 1 (<0.1) 4.4 [1.1] 1 (<0.1) 0.089 

Mean arterial BP, mmHg 94.3 [8.9]  97.1 [8.9] 4 (0.1) 0.315 

Microvascular complications      

Nephropathy 90 (2.7)  90 (2.6)  0.008 

Neuropathy 1,536 (46.3)  531 (15.2)  0.714 

Retinopathy 1,837 (55.3)  1,004 (28.8)  0.558 

Cardiovascular conditions      

Angina 472 (14.2)  226 (6.5)  0.256 

Atherosclerotic CVD 974 (29.3)  442 (12.7)  0.418 

Atrial fibrillation 341 (10.3)  119 (3.4)  0.274 

Cardiac revascularisation 242 (7.3)  128 (3.7)  0.159 

Heart failure 293 (8.8)  147 (4.2)  0.188 

Hypertension 2,317 (69.8)  1,601 (45.9)  0.498 

Ischaemic heart disease 580 (17.5)  297 (8.5)  0.269 

Myocardial infarction 256 (7.7)  146 (4.2)  0.149 

Peripheral arterial disease 332 (10.0)  95 (2.7)  0.301 

Stroke 254 (7.7)  103 (3.0)  0.211 

Transient ischaemic attach 175 (5.3)  49 (1.4)  0.216 

Other conditions      

Chronic kidney disease 832 (25.1)  33 (0.9)  0.768 

Chronic liver disease 394 (11.9)  493 (14.1)  0.068 

QRISK2 10-year score 32.0 [14.5] 196 (5.9) 18.3 [11.8] 156 (4.5) 1.040 

HbA1c outcome      

HbA1c, mmol/mol 67.3 [18.9]  73.5 [18.6]  0.326 

HbA1c, % 8.3 [3.9]  8.9 [3.9]  0.326 

Month of HbA1c measure 8.7 [3.6]  9.2 [3.5]  0.131 
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ESM Table 2: Model performance statistics for predicting HbA1c outcome with 95% credible intervals. 

R2 and root mean square error (RMSE) were derived from 25,000 iterations post-convergence of the 

Hba1c treatment selection model. 

 Internal validation 
(development data: n=27,319) 

Internal validation (hold-back 
data: n=19,075) 

R2 0.28 (0.28, 0.29) 0.26 (0.26, 0.27) 
RMSE (mmol/mol) 13.4 (13.3, 13.4) 13.4 (13.3, 13.5) 
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ESM Table 3: Data underlying Fig. 5, showing differential treatment effects for secondary clinical 

outcomes across subgroups defined by clinical cut-offs of predicted treatment effects. 
Estimated values are adjusted for the clinical features used in the treatment selection model (to 

improve precision and control for potential differences in covariate balance within subgroups). 

a) Predicted HbA1c change (n=87,835) 

Predicted HbA1c benefit 
Predicted HbA1c change (mmol/mol) 

N patients 
Predicted HbA1c change 
on SGLT2i (95% CI) 

Predicted HbA1c change 
on GLP1-RA (95% CI) 

Overall 87,835 -12.0 (-12.1, -11.9) -12.0 (-12.3, -11.8) 

Subgroup    

SGLT2i benefit by >5 mmol/mol 6,856 -23.3 (-24.0, -22.6) -18.4 (-19.3, -17.6) 
SGLT2i benefit by 3-5 mmol/mol 8,643 -17.2 (-17.8, -16.7) -12.9 (-13.7, -12.2) 
SGLT2i benefit by 0-3 mmol/mol 26,088 -12.6 (-12.9, -12.3) -10.3 (-10.8, -9.9) 
GLP1-RA benefit by 0-3 mmol/mol 27,415 -9.6 (-9.9, -9.4) -10.8 (-11.3, -10.3) 
GLP1-RA benefit by 3-5 mmol/mol 11,540 -7.4 (-7.8, -7.0) -12.0 (-12.7, -11.3) 
GLP1-RA benefit by >5 mmol/mol  7,293 -9.0 (-9.7, -8.2) -15.7 (-16.6, -14.8) 

 

b) Predicted weight change (n=41,728), with additional adjustment for baseline weight 

Predicted HbA1c benefit 
Predicted weight change (mmol/mol) 

N patients 
Predicted weight change 
on SGLT2i (95% CI) 

Predicted weight change 
on GLP1-RA (95% CI) 

Overall 41,728 -4.20 (-4.3, -4.2) -2.8 (-2.9, -2.7) 

Subgroup    

SGLT2i benefit by >5 mmol/mol 3,152 -3.7 (-3.9, -3.4) -2.4 (-2.8, -2.0) 
SGLT2i benefit by 3-5 mmol/mol 4,196 -3.9 (-4.1, -3.7) -2.0 (-2.4, -1.7) 
SGLT2i benefit by 0-3 mmol/mol 12,935 -4.2 (-4.3, -4.1) -2.6 (-2.8, -2.4) 
GLP1-RA benefit by 0-3 mmol/mol 13,231 -4.3 (-4.4, -4.2) -2.9 (-3.1, -2.7) 
GLP1-RA benefit by 3-5 mmol/mol 5,300 -4.5 (-4.7, -4.3) -3.3 (-3.6, -3.0) 
GLP1-RA benefit by >5 mmol/mol  2,914 -4.4 (-4.7, -4.1) -3.3 (-3.7, -3.0) 

 

c) Risk of discontinuation (n=77,741) 

Predicted HbA1c benefit 
Risk of discontinuation (%) 

N patients Risk of discontinuation 
on SGLT2i (95% CI) 

Risk of discontinuation 
on GLP1-RA (95% CI) 

Overall 77,741 19.8 (19.5, 20.1) 18.7 (18.1, 19.3) 

Subgroup    

SGLT2i benefit by >5 mmol/mol 6,048 13.3 (12.0, 14.6) 16.4 (14.5, 18.4) 
SGLT2i benefit by 3-5 mmol/mol 7,657 14.3 (13.1, 15.4) 16.5 (14.7, 18.3) 
SGLT2i benefit by 0-3 mmol/mol 23,246 18.0 (17.3, 18.7) 18.6 (17.4, 19.7) 
GLP1-RA benefit by 0-3 mmol/mol 24,259 20.3 (19.6, 21.0) 18.7 (17.4, 19.9) 
GLP1-RA benefit by 3-5 mmol/mol 10,168 22.5 (21.4, 23.7) 18.0 (16.3, 19.9) 
GLP1-RA benefit by >5 mmol/mol  6,363 26.5 (24.4, 28.7) 18.9 (16.9, 21.1) 
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d) Microvascular complications (n=34,524), with additional adjustment for baseline 

cardiovascular risk 

Predicted HbA1c benefit 
Risk of developing microvascular complications - hazard ratio 

(less than 1 favours SGLT2i) (95% CI) 

N patients Events Treatment difference 

Overall 34,524 5,228 0.88 (0.82, 0.94) 

Subgroup    

SGLT2i benefit by >5 mmol/mol 3,098 561 0.81 (0.67, 0.97) 
SGLT2i benefit by 3-5 mmol/mol 3,498 598 0.78 (0.65, 0.94) 
SGLT2i benefit by 0-3 mmol/mol 10,288 1,655 0.87 (0.77, 0.98) 
GLP1-RA benefit by 0-3 mmol/mol 11,328 1,567 0.90 (0.79, 1.03) 
GLP1-RA benefit by 3-5 mmol/mol 4,765 620 0.97 (0.80, 1.18) 
GLP1-RA benefit by >5 mmol/mol  1,547 225 1.11 (0.81, 1.53) 

 

e) Major adverse cardiovascular events (MACE) (n=52,052), with additional adjustment for 

baseline cardiovascular risk 

Predicted HbA1c benefit 
Risk of developing MACE - hazard ratio (less 

than 1 favours SGLT2i) (95% CI) 

N patients Events Treatment difference 

Overall 52,052 1,260 1.02 (0.89, 1.18) 

Subgroup    

SGLT2i benefit by >5 mmol/mol 4,236 80 0.69 (0.43, 1.11) 
SGLT2i benefit by 3-5 mmol/mol 5,327 97 0.99 (0.63, 1.57) 
SGLT2i benefit by 0-3 mmol/mol 16,279 382 1.11 (0.86, 1.45) 
GLP1-RA benefit by 0-3 mmol/mol 16,419 412 0.91 (0.71, 1.17) 
GLP1-RA benefit by 3-5 mmol/mol 6,763 160 1.06 (0.70, 1.60) 
GLP1-RA benefit by >5 mmol/mol  3,028 129 1.50 (0.92, 2.46) 

 

f) Heart Failure (n=52,052), with additional adjustment for baseline cardiovascular risk 

Predicted HbA1c benefit 
Risk of heart failure - hazard ratio (less than 1 

favours SGLT2i) (95% CI) 

N patients Events Treatment difference 

Overall 52,052 655 0.71 (0.59, 0.85) 

Subgroup    

SGLT2i benefit by >5 mmol/mol 4,236 42 0.96 (0.48, 1.91) 
SGLT2i benefit by 3-5 mmol/mol 5,327 43 0.49 (0.26, 0.90) 
SGLT2i benefit by 0-3 mmol/mol 16,279 185 0.78 (0.55, 1.09) 
GLP1-RA benefit by 0-3 mmol/mol 16,419 208 0.82 (0.58, 1.16) 
GLP1-RA benefit by 3-5 mmol/mol 6,763 94 0.63 (0.39, 1.02) 
GLP1-RA benefit by >5 mmol/mol  3,028 83 0.52 (0.33, 0.84) 
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g) Developing chronic kidney disease stage 5 or drop of eGFR by 40% (n=52,052), with additional 

adjustment for baseline cardiovascular risk 

Predicted HbA1c benefit 
Risk of chronic kidney disease - hazard ratio 

(less than 1 favours SGLT2i) (95% CI) 

N patients Events Treatment difference 

Overall 52,052 185 0.41 (0.30, 0.56) 

Subgroup    

SGLT2i benefit by >5 mmol/mol 4,236 13 0.60 (0.20, 1.83) 
SGLT2i benefit by 3-5 mmol/mol 5,327 13 0.21 (0.07, 0.64) 
SGLT2i benefit by 0-3 mmol/mol 16,279 42 0.30 (0.16, 0.56) 
GLP1-RA benefit by 0-3 mmol/mol 16,419 53 0.65 (0.34, 1.22) 
GLP1-RA benefit by 3-5 mmol/mol 6,763 36 0.31 (0.16, 0.61) 
GLP1-RA benefit by >5 mmol/mol  3,028 28 0.50 (0.22, 1.15) 
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ESM Fig. 1: CPRD patient flow and inclusion criteria for the development of the treatment selection 

model. 

 

Baseline HbA1c is defined as the closest HbA1c to drug initiation in the previous 6 months. Other 

biomarkers were defined as the closest measure to drug initiation in the previous 2 years. 
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ESM Fig. 2: CPRD patient flowchart and inclusion criteria for the analysis of additional outcomes. 
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ESM Fig. 3: Variables selected for the prognostic (factors predictive of HbA1c response to SGLT2i therapy) component (A) and the moderator (factors 

predictive of differential HbA1c response with GLP1-RA compared to SGLT2i therapies) component (B) of the model.  

Posterior inclusion proportions correspond to the average proportion of times each predictor is chosen as a splitting rule divided by the total number of 

splitting rules appearing in the model component. The threshold used corresponds to one divided by the number of variables used in the model times 100. 
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ESM Fig. 4: Comparison of predicted outcome HbA1c and predicted conditional average treatment 

effect (CATE) estimates from a sparse Bayesian Causal Forest (BCF) model and a BCF model with 

different sets of variables. 

Sparse BCF is fitted with all candidate predictors, and BCF is fitted with the selected variables from 

variable selection (see Table 2). (A.1) and (A.2) show predictions of outcomes HbA1c under both 

models and a histogram of the predicted HbA1c differences, respectively, and (B.1) and (B.2) are 

analogous but for the predicted CATE estimates. 
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ESM Fig. 5: Comparison of predicted outcome HbA1c and predicted conditional average treatment 

effect (CATE) estimates from two Bayesian Causal Forest (BCF) models with and without including 

propensity scores in the development cohort. 

(A.1) and (A.2) show predictions of outcome HbA1c under both models and a histogram of the 

predicted HbA1c differences, respectively, and (B.1) and (B.2) are analogous but for the predicted 

CATE estimates.  
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ESM Fig. 6: Variable selection plot for the propensity score model — identifying the most important predictors.  
This plot presents the variable selection results of a propensity score model. The green lines represent the threshold levels determined from permutation 

distributions that must be exceeded for a variable to be selected by the model. The plotted points indicate the variable inclusion proportions for the 

observed data in the propensity score model. The solid dots represent the variables that are included in the model because their observed values exceed 

the corresponding green bars, while the open dots represent the variables that are not included in the model because their observed values fall below the 

threshold. 
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ESM Fig. 7: Received operating characteristic (ROC) and precision-recall curves of the propensity score 

model developed in the development cohort and validated in hold-out validation data. 

The ROC curves (1) see similar performance in the development (A) and validation (B) cohorts, 

showing the model is performing well in correctly identifying when SGLT2i and GLP-1RA are 

indicated. Precision-recall curves (2) plot the proportion of true positives among all predicted 

positives, against the proportion of true positives among all actual positives. The precision-recall 

curves see similar performance in the development and validation cohorts, showing that the model 

can accurately identify positive instances (GLP-1RA) with minimal false positives for a proportion of 

thresholds. 
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ESM Fig. 8: Calibration plots of predicted conditional treatment effect (CATE) estimates using 

propensity score matching. 

(A) Calibration plots using unadjusted estimates of average treatment effects for each decile of 

predicted conditional average treatment effects in propensity score matched individuals of the 

development (A.1) and validation (A.2) cohorts. (B) Calibration plots using estimates adjusted for all 

variables used in the treatment selection model, in propensity score matched individuals of the 

development (B.1) and validation (B.2) cohorts. 
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ESM Fig. 9: Model interpretability plots 
(x A) Relative variable importance for clinical features predicting differential treatment effects (best linear projection of BCF model; see Methods). (B) Distribution of 

conditional average treatment effect (CATE) estimates for SGLT2i vs. GLP1-RA, by sex.  (C) Predicted treatment effects for all differential clinical features, with individuals 

stratified into quintiles for continuous variables, and black lines corresponding to the median of the stratified group. All estimates are for the overall study population, n= 

46,394. 
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ESM Fig. 10: Differential HbA1c treatment effects in individuals of white ethnicity and people of colour 
Adjusted ATE estimates within subgroups defined by clinically meaningful CATE thresholds (SGLT2i benefit >5, 3-5 and 0-3 mmol/mol, GLP1-RA benefit >5, 3-5 and 0-3 

mmol/mol). Negative values reflect a predicted glucose-lowering treatment benefit with SGLT2i, and positive values reflect a predicted treatment benefit with GLP1-RA. 

The people of colour subgroup is a composite of major UK self-reported ethnicity groups: Black, South Asian, Mixed and Other. Individuals without a recorded ethnicity 

were excluded (n=932). 
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ESM Fig. 11: Calibration plots of predicted conditional individualised treatment effects in the 

validation cohort for those with and without cardiovascular disease (CVD). 

Calibration in those with (A) and without (B) CVD in the hold-out validation cohort. Estimates are 

adjusted with all the variables used in the treatment selection model. 
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ESM Fig. 12: Relative risk of developing new onset chronic kidney disease (CKD) over 5 years, across 

subgroups defined by clinical cut-offs of predicted treatment benefit.  
Chronic kidney disease (CKD) is defined by a drop of 40% in eGFR or reaching CKD – stage 5. Negative 

hazard ratio values correspond to a reduced risk of CKD on SGLT2-inhibitor treatment, and positive 

hazard ratio values correspond to a reduced risk of CKD on GLP-1 receptor agonist treatment. 

Estimates are split into three approaches: (A) all individuals with estimates adjusted for all the 

variables used in the treatment selection model; (B) propensity score matched individuals with 

unadjusted estimates; (C) propensity score matched individuals with estimates adjusted for all the 

variables used in the treatment selection model. 
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ESM Fig. 13: Short-term and long-term clinical outcomes, across subgroups defined by clinical cut-offs of predicted treatment benefit, in propensity score 

matched cohorts 
Replication of Fig. 5 in propensity score matched individuals and without covariate adjustment. Estimates of short-term (A) and long-term (B) outcomes 

(GLP1-RA baseline group) are calculated with propensity score matched individuals. (A.1) 12-month predicted HbA1c change on each treatment. (A.2) 12-

month predicted weight change on each treatment. (A.3) 6-month risk of discontinuation on each treatment. (B.1) 5-year risk of developing microvascular 

complications. (B.2) 5-year of developing major adverse cardiovascular events (MACE). (B.3) 5-year risk of heart failure.  
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ESM Fig. 14: Short-term and long-term clinical outcomes, across subgroups defined by clinical cut-offs of predicted treatment benefit, in propensity score 

matched cohort with additional covariate adjustment. 

Replication of Fig. 5 in propensity score matched individuals. Estimates of short-term (A) and long-term (B) outcomes (GLP1-RA baseline group) are 

calculated with propensity score matched individuals and adjusted with all the variables used in the treatment selection model. (A.1) 12-month predicted 

HbA1c change on each treatment. (A.2) 12-month predicted weight change on each treatment. (A.3) 6-month risk of discontinuation on each treatment. 

(B.1) 5-year risk of developing microvascular complications. (B.2) 5-year of developing major adverse cardiovascular events (MACE). (B.3) 5-year risk of 

heart failure. 

 



35 
 
 

ESM Fig. 15: Evaluation of concordance between estimates of predicted HbA1c outcome with SGLT2i from our model and a recently published SGLT2i-DPP4-

inhibitor treatment selection model[13]. 
82,933 eligible individuals from the overall study population fulfilling inclusion criteria for both studies. (A) Comparison of outcome HbA1c predictions for all 

patients from both models. The red dashed line corresponds to a theoretical equality between both models. The blue line corresponds to the trend line of 

the predictions. (B) Histogram of residual difference between HbA1c predictions (mmol/mol) of both models. 
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 TRIPOD Checklist: Prediction Model Development and Validation 

 
 Section/Topic  Item     Checklist Item Page 

 

 Title and abstract         
 

 
Title 1 

  
D;V 

 Identify the study as developing and/or validating a multivariable prediction model, the 
1  

    target population, and the outcome to be predicted.  

        
 

 
Abstract 2 

  
D;V 

 Provide a summary of objectives, study design, setting, participants, sample size, 
2 

 

    predictors, outcome, statistical analysis, results, and conclusions.  

        
 

 Introduction         
 

        Explain the medical context (including whether diagnostic or prognostic) and rationale 
4 

 

 
Background 

 3a  D;V  for developing or validating the multivariable prediction model, including references to 
 

       
existing models.  

 

and objectives 
      

 

  

3b 
 

D;V 
 Specify the objectives, including whether the study describes the development or 

4 
 

     
 

     validation of the model or both.  

        
 

 Methods         
 

   
4a 

 
D;V 

 Describe the study design or source of data (e.g., randomized trial, cohort, or registry 
5  

 

Source of data 
   data), separately for the development and validation data sets, if applicable.  

       
 

  

4b 
 

D;V 
 Specify the key study dates, including start of accrual; end of accrual; and, if applicable, 

5 
 

     
 

     end of follow-up.  

        
 

   
5a 

 
D;V 

 Specify key elements of the study setting (e.g., primary care, secondary care, general 
5  

 

Participants 
   population) including number and location of centres.  

       
 

  5b  D;V  Describe eligibility criteria for participants. 5  

     
 

   5c  D;V  Give details of treatments received, if relevant. 5 
 

   
6a 

 
D;V 

 Clearly define the outcome that is predicted by the prediction model, including how and 
5  

 Outcome    when assessed.  

       
 

   6b  D;V  Report any actions to blind assessment of the outcome to be predicted. 7 
 

   
7a 

 
D;V 

 Clearly define all predictors used in developing or validating the multivariable prediction 
6  

 

Predictors 
   model, including how and when they were measured.  

       
 

  

7b 
 

D;V 
 Report any actions to blind assessment of predictors for the outcome and other 

6 
 

     
 

     predictors.  

        
 

 Sample size 8   D;V  Explain how the study size was arrived at. 5 
 

 
Missing data 9 

  
D;V 

 Describe how missing data were handled (e.g., complete-case analysis, single 
5,6,7  

    imputation, multiple imputation) with details of any imputation method.  

        
 

   10a  D  Describe how predictors were handled in the analyses. 6,7 
 

   
10b 

 
D 

 Specify type of model, all model-building procedures (including any predictor selection), 
6,7,8,9  

 Statistical    and method for internal validation.  

       
 

 analysis  10c  V  For validation, describe how the predictions were calculated. 7,8,9 
 

 methods  
10d 

 
D;V 

 Specify all measures used to assess model performance and, if relevant, to compare 
7,8,9 

 

     multiple models.  

        
 

   10e  V  Describe any model updating (e.g., recalibration) arising from the validation, if done. - 
 

 Risk groups 11   D;V  Provide details on how risk groups were created, if done. - 
 

 Development 
12 

  
V 

 For validation, identify any differences from the development data in setting, eligibility 
5  

 vs. validation    criteria, outcome, and predictors.  

       
 

 Results         
 

        Describe the flow of participants through the study, including the number of participants 
10 

 

   13a  D;V  with and without the outcome and, if applicable, a summary of the follow-up time. A 
 

        diagram may be helpful. 
 

 
Participants 

      Describe the characteristics of the participants (basic demographics, clinical features, 
10 

 

  13b  D;V  available predictors), including the number of participants with missing data for  

     
 

        predictors and outcome. 
 

   
13c 

 
V 

 For validation, show a comparison with the development data of the distribution of 
10  

     important variables (demographics, predictors and outcome).  

        
 

 
Model  14a  D  Specify the number of participants and outcome events in each analysis. 10 

 

       

If done, report the unadjusted association between each candidate predictor and 
- 

 

 

development 
 

14b 
 

D 
 

 

    outcome.  

        
 

 
Model 

 
15a 

 
D 

 Present the full prediction model to allow predictions for individuals (i.e., all regression 
-  

    
coefficients, and model intercept or baseline survival at a given time point).  

 

specification 
      

 

  
15b  

D  
Explain how to the use the prediction model. 10,11  

     
 

 Model 
16 

  
D;V 

 
Report performance measures (with CIs) for the prediction model. 11,12 

 

 performance    
 

        
 

 
Model-updating 17 

  
V 

 If done, report the results from any model updating (i.e., model specification, model 
11,12,13  

    performance).  

        
 

 Discussion         
 

 
Limitations 18 

  
D;V 

 Discuss any limitations of the study (such as nonrepresentative sample, few events per 
14,15  

    predictor, missing data).  

        
 

   
19a 

 
V 

 For validation, discuss the results with reference to performance in the development 
14,15  

 

Interpretation 
   data, and any other validation data.  

       
 

  

19b 
 

D;V 
 Give an overall interpretation of the results, considering objectives, limitations, results 

14,15 
 

     
 

     from similar studies, and other relevant evidence.  

        
 

 Implications 20   D;V  Discuss the potential clinical use of the model and implications for future research. 14,15 
 

 Other information         
 

 Supplementary 
21 

  
D;V 

 Provide information about the availability of supplementary resources, such as study 
13,17  

 information    protocol, Web calculator, and data sets.  

       
 

 Funding 22   D;V  Give the source of funding and the role of the funders for the present study. 17 
  

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are 

denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD 

Explanation and Elaboration document.   
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