
1

Joint Charging Scheduling and Computation
Offloading in EV-Assisted Edge Computing: A

Safe DRL Approach
Yongchao Zhang, Jia Hu, Geyong Min, Member, IEEE, Xin Chen, and Nektarios Georgalas, Member, IEEE

Abstract—Electric Vehicle-assisted Multi-access Edge Computing (EV-MEC) is a promising paradigm where EVs share their
computation resources at the network edge to perform intensive computing tasks while charging. In EV-MEC, a fundamental problem is
to jointly decide the charging power of EVs and computation task allocation to EVs, for meeting both the diverse charging demands of
EVs and stringent performance requirements of heterogeneous tasks. To address this challenge, we propose a new joint charging
scheduling and computation offloading scheme (OCEAN) for EV-MEC. Specifically, we formulate a cooperative two-timescale
optimization problem to minimize the charging load and its variance subject to the performance requirements of computation tasks. We
then decompose this sophisticated optimization problem into two sub-problems: charging scheduling and computation offloading. For
the former, we develop a novel safe deep reinforcement learning (DRL) algorithm, and theoretically prove the feasibility of learned
charging scheduling policy. For the latter, we reformulate it as an integer non-linear programming problem to derive the optimal
offloading decisions. Extensive experimental results demonstrate that OCEAN can achieve similar performances as the optimal
strategy and realize up to 24% improvement in charging load variance over three state-of-the-art algorithms while satisfying the
charging demands of all EVs.

Index Terms—Electric vehicles, edge computing, charging scheduling, computation offloading, safe reinforcement learning.

✦

1 INTRODUCTION

E LECTRIC vehicles (EVs), as an environment-friendly
alternative to conventional petroleum-based vehicles,

have been receiving considerable attention from the auto-
mobile industry and governments. According to a report
from the International Energy Agency, the number of EVs
will reach 250 million globally by 2030 [1]. Meanwhile,
with the emergence of diverse delay-sensitive vehicular
applications such as autonomous driving and vehicular
video streaming [2], modern vehicles are expected to be
equipped with performant computation and storage devices
to effectively run these applications. However, these rich
resources on EVs are mostly underutilized when they are
parked somewhere (e.g., in a parking lot), overlooking the
fact that their idle resources could be used to support
various computing tasks at the network edge [3], [4]. Nev-
ertheless, due to the limited battery capacities, parked EVs
may be reluctant to share their computation resources for
task execution.

To address this issue, a promising way is to effectively

• Yongchao Zhang, Jia Hu and Geyong Min are with the Department of
Computer Science, University of Exeter, Exeter EX4 4QF, U.K.
E-mails: yz737@exeter.ac.uk; j.hu@exeter.ac.uk; g.min@exeter.ac.uk

• Xin Chen is with the Computer School, Beijing Information Science and
Technology University, Beijing 100101, China.
E-mail: chenxin@bistu.edu.cn

• Nektarios Georgalas is with Applied Research Department, British Tele-
com, London EC1A 7AJ, U.K.
E-mail: nektarios.georgalas@bt.com

• This work was supported in part by UKRI Grant No. EP/X038866/1 and
Horizon EU Grant No. 101086159. For the purpose of open access, the
author has applied a Creative Commons Attribution (CC BY) license to
any Author Accepted Manuscript version arising.

• Corresponding authors: Jia Hu and Geyong Min.

utilize the vast idle resources of EVs to extend the compu-
tational and storage capabilities of the network edge while
EVs are charging [5], which we refer to as the EV-assisted
multi-access edge computing (EV-MEC). Given a certain
incentive mechanism (e.g., monetary reward and free park-
ing), the EVs while charging are generally willing to share
their computation resources to assist task processing as long
as their charging demands can be satisfied before leaving
[6]. In the EV-MEC, a group of EVs as a whole acts as a static
network infrastructure that can provide effective computing
and storage services. For example, a pool of EVs charged in
the parking lot of shopping malls can be envisioned as an
edge computing platform to serve a myriad of customers
inside the mall [7]. Thus, EV-MEC can alleviate the huge
economic and time costs of deploying massive edge servers
to meet the ever-increasing computing demands of various
delay-sensitive applications.

In the EV-MEC, a fundamental problem is to jointly
determine the charging power of EVs and allocation of com-
putation tasks among EVs, which has attracted increasing
attention in recent years [5], [8], [9]. Specifically, it is crucial
to efficiently schedule the charging power of EVs to meet
the diverse EV charging demands. Meanwhile, the compu-
tation offloading decisions should be jointly optimized to
minimize the energy consumption of task processing and
satisfy the stringent performance requirements (e.g., service
delay) of computation tasks. Therefore, an efficient joint
charging scheduling and computation offloading strategy
is necessary for the EV-MEC.

However, the design of such a strategy faces two critical
challenges. First, the lack of knowledge on the system
dynamics, including the diverse EV charging demands,

2

dynamic task arrivals, and heterogeneous performance re-
quirements, causes huge complexity to the joint charging
scheduling and offloading optimization problem in the EV-
MEC. Specifically, since these system dynamics are heavily
influenced by various uncertain factors (e.g., traffic con-
ditions, vehicle behaviors, and user preferences), it is ex-
tremely difficult to acquire their complete knowledge in ad-
vance, posing significant challenges in finding the optimal
charging scheduling and computation offloading decisions.
Second, even if this knowledge is known as a priori, the
varied target battery levels, charging time, computation
abilities of EVs, and processing demands of computation
tasks (e.g., computation density and service delay) as well
as the mutual coupling between charging scheduling and
computation offloading create significant challenges in the
problem-solving.

Many efforts have been devoted to the charging schedul-
ing for EVs [10]–[12] and computation offloading in MEC
[13]–[15], respectively. Meanwhile, some recent studies have
paid attention to the joint charging scheduling and com-
putation offloading in EV-MEC [5], [8], [9]. However, they
did not take the dynamics of both charging demands and
computation task arrivals into account, which are important
characteristics of the practical EV-MEC systems. To fill this
gap, we develop a novel joint charging scheduling and
computation offloading (OCEAN) algorithm for the EV-
MEC based on safe model-free deep reinforcement learning
(DRL), which can automatically learn the system dynamics
and make reliable and optimal decisions accordingly. Our
major contributions are summarized as follows.

• We formulate a cooperative two-timescale optimization
problem that is composed of the charging scheduling
of EVs at a long timescale (e.g., in minutes) and the
offloading of computation tasks at a short timescale (e.g.,
in seconds). The optimization objective is to minimize
the charging load and its variance while satisfying the
constraints of the performance requirements of compu-
tation tasks and charging demands of EVs.

• We model the charging scheduling of EVs as a con-
strained Markov decision process (CMDP), and de-
velop a novel Lyapunov-based safe DRL algorithm to
efficiently solve this CMDP. Specifically, we apply the
Lyapunov approach to transform the long-term con-
straints into a sequence of single-step state-wise safety
constraints, and devise a new action projection approach
to obtain the safe actions that satisfy the above state-wise
safety constraints.

• We theoretically prove the feasibility of learned charging
scheduling strategy that can satisfy the charging de-
mands of EVs. Given the charging scheduling decisions,
we formulate the offloading of computation tasks as an
integer non-linear programming problem to determine
the task assignment and computation resource alloca-
tion, with the aim of minimizing the energy consump-
tion of task processing while meeting the strict delay
requirements of tasks.

• Extensive simulation results and performance analysis
demonstrate that OCEAN can guarantee the selected
charging scheduling and computation offloading deci-
sions to meet the charging demands of EVs. Further-

more, OCEAN can achieve similar performances as the
optimal strategy (which knows ahead all system un-
certainties such as EV charging demands and task ar-
rivals), and realize up to 24% improvement in charging
load variance over three state-of-the-art algorithms while
guaranteeing the charging demands of all EVs.
The rest of this paper is organized as follows. Section

2 describes the related work. The system model and prob-
lem formulation are presented in Section 3. In Section 4,
we propose the OCEAN algorithm. Simulation results are
presented and analyzed in Section 5. Finally, Section 6
concludes this paper.

2 RELATED WORK

In this section, we discuss the existing studies on charging
scheduling for EVs and computation offloading in MEC as
well as summarize the differences between this work and
previous studies.

There exist many studies focusing on the charging
scheduling for EVs. Liu et al. [10] introduced software-
defined networking into vehicular edge computing, based
on which they proposed a scalable EV charging scheduling
approach to jointly optimize the charging station selection
and route planning decisions for minimizing the charging
time and fares. Yan et al. [11] focused on the dynamic wire-
less charging problem for EVs. They developed an offline
deployment approach for mobile energy disseminators and
proposed a DRL method to adjust the deployment deci-
sions in an online manner based on real-time road traffic.
Li et al. [12] formulated a constrained EV charging and
discharging scheduling problem to minimize the charging
cost and proposed a reinforcement learning-based method
to learn the scheduling strategy. Cao et al. [16] studied
the charging scheduling problem to reduce the electricity
bill of EV fleets under unknown future information on EV
arrival time, departure time, and charging demand, and
designed an actor-critic learning-based charging approach
that improves computational efficiency through reducing
the state dimension during training processes.

The computation offloading in MEC has also attracted
widespread interest in recent years. Tütüncüoğlu et al. [13]
proposed a queuing network model of task graph execu-
tion and designed an online distributed rate-adaptive task
offloading strategy to solve Nash equilibrium. Yan et al. [14]
formulated a mixed non-linear programming problem to
jointly optimize the computation offloading and resource
allocation decisions in MEC, and developed two imita-
tion learning approaches to learn the near-optimal policy
and fast adapt to the changes in network environments,
respectively. Li et al. [15] modelled the quality-of-service
driven task offloading problem as a mixed integer non-
linear programming and presented a convex optimization
and Gibbs sampling-based algorithm that can converge to
the global optimal solution with a high probability. Teng
et al. [17] formulated a multi-server multi-task allocation
and scheduling problem with the objective of maximizing
MEC system profit as well as designed both centralized and
distributed greedy-based algorithms to solve this problem.

Meanwhile, some efforts have been devoted to joint
charging scheduling and computation offloading in EV-

3

Station
Controller

Charging Scheduling Task OffloadingCharging
Pile

EV

Tasks

Charging Station

Fig. 1: An illustration of the studied EV-MEC.

MEC. Wei et al. [5] developed a multi-attribute contract-
based charging and computation offloading scheme to max-
imize the utility of charging stations. Huang et al. [8] for-
mulated a bi-level optimization problem to determine the
charging/discharging power of EVs with the constraint of
service delay, and took advantage of duality theory and
linear relaxation method to solve the above problem. Zhang
et al. [9] studied the joint optimization of task allocation
and charging scheduling of mobile charging vehicles to
minimize the total energy consumption. However, these
works all focused on a static optimization problem, ignoring
the dynamics of charging demands and task arrivals. This
paper differs significantly from all the above studies. Both
the dynamic charging demands and task arrivals are fully
considered in our formulated optimization problem. We for-
mulate a cooperative two-timescale optimization problem,
rather than the single-timescale problem in all aforemen-
tioned works. In addition, we propose a new safe DRL-
based algorithm that can theoretically guarantee that the
charging demands of EVs can be met.

3 CHARGING SCHEDULING AND COMPUTATION
OFFLOADING FOR EV-MEC
3.1 System Overview
We consider a charging station equipped with N charging
piles denoted by N = {1, 2, · · · , N}, as shown in Fig.
1. The entire time horizon is divided into T time slots
T = {0, 1, · · · , T − 1} with an equal length of τ . Due to the
high time-sensitivity of computation tasks, their offloading
is performed at each time slot t ∈ T , e.g., every second.
However, as it is impractical to adjust the charging power
of EVs at such a short timescale, the charging scheduling
decisions are updated every T̃ time slots (1 < T̃ < T), e.g.,
every 15 minutes, as shown in Fig. 2.

3.2 Charging Scheduling of EVs
For the EV using the i-th charging pile (i.e., EVi)1, let tai ∈ T
denote its arrival time, and SoCa

i denote its initial state of
charge (SoC). Due to the high mobility of EVs, the arrival
rates of incoming EVs at different time slots of the day

1. For simplicity, we use EVi to represent the EV that occupies the
i-th charging pile at time slot t.

…

Task offloading at
short timescale

Charging scheduling at
long timescale

1 2 3 �𝑇𝑇
…

2 �𝑇𝑇0 𝑡𝑡

Fig. 2: Charging scheduling and task offloading at two
different timescales.

T are different, which means the EV arrival at charging
stations has a time-varying distribution. In this paper, we
consider that when an EV arrives at the charging station, it
will report its departure time and target SoC to the charging
station controller [18], [19]2, which are denoted by tdi ∈ T
and SoCd

i , respectively. In addition, we denote the SoC of
EVi at the beginning of time slot t as SoCt

i , which should
satisfy

0 ≤ SoCt
i ≤ 1,∀i ∈ N , (1)

where SoCt
i = 0 indicates that the battery of EVi is empty,

while SoCt
i = 1 represents a full battery.

Considering the dynamic arrival time of EVs and diverse
charging demands, the total energy demand of all EVs while
charging at the charging station also varies over time. At
each time slot t, the charging station controller needs to
determine the charging power for each EVi, i.e., pti, which is
limited by

0 ≤ pti ≤ pmax
i ,∀i ∈ N , (2)

where pmax
i is the maximum charging power of EVi. Note

that as mentioned before, the charging power of each EV is
updated every T̃ time slot.

For each EVi, in order to meet its charging demand
before leaving, we have the following constraint

SoCd
i ≤ SoC

tdi
i ,∀i ∈ N . (3)

In this work, we investigate the dynamics of charging
demands by taking into account the uncertain EV arrival
times along with the varying both initial and target SoC
levels, and make an assumption that EVs would leave as
scheduled (as in many prior works, e.g., [18], [21]–[23]). It is
worth noting that our proposed algorithm is also adaptable
to scenarios where EV users change their plans and leave
earlier or later. EVs can notify the charging station of a
new departure time, and our learned scheduling policy can
accordingly adjust the charging power, in order to meet their
charging demands. However, if EV users drive away before
the predefined time, they need to accept that their desired
charging demands may not be satisfied, like [24], [25].

3.3 Offloading of Computation Tasks

In this paper, we can consider the scenario of a roadside
charging station, where EVs charging at this station collab-
oratively share their computation resources to support the

2. In case this setting is not applicable or available, predictive an-
alytics techniques can be used to forecast the departure time of EVs
based on historical charging data of EVs, which has been validated in
previous studies and shown to obtain excellent prediction results, e.g.,
[20].

4

traffic management for smart cities [26]–[28]. The tasks in-
clude traffic prediction, video analysis for congestion mon-
itoring, traffic control, etc. The need for offloading comput-
ing tasks arises due to the rapidly growing computational
demands of modern urban traffic systems. A centralized
system handling all the above tasks would necessitate vast
computation resources. By leveraging the computation ca-
pabilities of parked EVs at roadside charging stations, we
can distribute the computational load to enhance efficiency
and reduce response times, thereby optimizing overall traf-
fic management performance.

At each time slot t, we assume there are total Mt com-
putation tasks to be computed, each of which is represented
by a tuple (btj , χ

t
j , d

t
j,max), where btj is the data size of task

j ∈ {1, 2, · · · ,Mt}, χt
j is the required CPU cycles that can

be obtained by using the call-graph analysis method [29],
and dtj,max is the maximal tolerable delay to accomplish this
task. In this paper, we consider delay-sensitive computation
tasks [30]–[32], assuming that each task is required to be
completed within one time slot, i.e., dtj,max ≤ τ . Without
loss of generality, Mt varies across different time slots due
to the highly dynamic task arrivals. At the beginning of
each time slot, the charging station allocates these compu-
tation tasks to different EVs for computing, and then the
computation results are returned after the task execution is
completed. Since the output of computation tasks is often
much smaller than their input size, the transmission delay
and energy consumption of result returning are neglected,
which is a common setting in the related literature [33]. Let a
binary variable αt

i,j denote the assignment decision of task j
at time slot t. If task j is assigned to EVi, αt

i,j = 1; otherwise,
αt
i,j = 0. Since each task can only be assigned to one EV for

processing, it yields

N∑
i=1

αt
i,j = 1,∀j ∈ {1, 2, · · · ,Mt}. (4)

To encourage and compensate EVs for sharing their idle
computation resources, we adopt a discounted charging
price as the monetary reward, which is modelled as a func-
tion of the total CPU cycles required for all tasks processed
by each EV during its charging period. In more detail, the
discounted charging price received by EVi is defined as
vi = κ ·max{0, 1− λ · xi}, where κ represents the standard
price, λ is a positive coefficient, and xi denotes the total CPU
cycles required for all tasks processed by EVi throughout its
charging period, calculated by

xi =

tdi∑
t=tai

Mt∑
j=1

αt
i,jχ

t
j . (5)

This pricing function ensures that EVs contributing greater
computation resources benefit from a lower charging price,
thereby guaranteeing the fairness across all participating
EVs while providing a monetary incentive for joining in
resource sharing. Note that the function mentioned above
is just one example to formulate the discounted charging
price. Other decreasing functions with respect to xi can also
be employed to define the discounted price.

Then, the transmission delay dt,uj of task j is

dt,uj = btj/
N∑
i=1

αt
i,jϖ

t
i , (6)

where ϖt
i is the wireless transmission rate of EVi. Since EVs

are stationary while charging, we consider a quasi-static
wireless channel model, where the transmission rate ϖt

i

remains unchanged during one time slot, but varies among
different time slots.

Let f t
i,j denote the amount of computation resource (i.e.,

CPU frequency) allocated to compute task j. Note that if
αt
i,j = 0, then f t

i,j also equals to zero. Due to the limited
computation capacity of EVi, we have

Mt∑
j=1

αt
i,jf

t
i,j ≤ fmax

i ,∀i ∈ N , (7)

where fmax
i is the maximum CPU frequency of EVi. Then,

the task computing delay is

dt,cj =
N∑
i=1

αt
i,j · χt

j/f
t
i,j . (8)

Thus, the total service delay of task j is dtj = dt,uj + dt,cj .
To meet the delay requirement of each task, the following
constraint must be satisfied,

dtj ≤ dtj,max,∀j ∈ {1, 2, · · · ,Mt}. (9)

In addition, for each EVi, its energy consumption for
task computing can be calculated as,

eti =
Mt∑
j=1

αt
i,jϑiχ

t
j(f

t
i,j)

2, (10)

where ϑi is the effective switched capacitance that depends
on the chip architecture of each EV. Based on the above
definitions, the dynamics of EV battery energy from time
slot t to t+ 1 can be expressed as

SoCt+1
i = SoCt

i +
ηi · pti · τ − eti

bmax
i

, (11)

where bmax
i is the battery capacity of EVi, and ηi is the

charging efficiency coefficient. To guarantee that each EV
has enough energy to compute the assigned tasks, we have
the following constraint

SoCt
i · bmax

i + ηi · pti · τ ≥ eti. (12)

3.4 Problem Formulation
With the large integration of EVs into our power grids in
the future, we here seek to minimize the long-term load
variance of the charging station, so as to avoid sudden load
peaks and thus improve the stability of power systems. To
this end, for a charging station, we define its load variance
function as the sum of squares of its energy consumption
over time [34], which is

∑T−1
t=0 (

∑N
i=1 p

t
i · τ)2. By squaring

the values, we emphasize the significance of large devia-
tions from the average load, while downplaying smaller
fluctuations. This approach allows to effectively evaluate the
impact of extreme load peaks and their contribution to the
overall load variance. Based on the above definitions and

5

models, we jointly optimize the charging power of EVs (i.e.,
pti), task assignment (i.e., αt

i,j), and computation resource
allocation (i.e., f t

i,j), to minimize the load variance of the
charging station while meeting the delay requirements of
computation tasks and charging demands of EVs. Thus,
the problem of joint charging scheduling and computation
offloading (CSCO) can be formulated as

CSCO: min
pt
i,α

t
i,j ,f

t
i,j

E[
T−1∑
t=0

(
N∑
i=1

ptiτ)
2],

s.t. (1), (2), (3), (4), (7), (9), (12).

(13)

In (13), it can be observed that the task assignment
decision αt

i,j is the binary variable, whereas the allocated
computation resource f t

i,j and charging power pti are con-
tinuous variables. Additionally, the constraints defined in
(3), (9), and (12) are non-linear. Therefore, our formulated
problem CSCO can be classified as a mixed-integer non-
linear programming problem, which is typically NP-hard.
This implies that it is challenging to find an optimal so-
lution to CSCO in polynomial time. In addition, consider-
ing the long-term optimization goal in CSCO, it requires
prior knowledge of the system dynamics, such as charging
demands of EVs and computation task arrivals, to derive
the optimal solutions. However, it is extremely difficult to
acquire such knowledge accurately, resulting in significant
challenges in solving CSCO. Meanwhile, the charging de-
mand constraint (3) involves the charging scheduling and
offloading decisions across multiple time slots, which makes
the optimization of these decisions tightly coupled. This also
brings many difficulties in solving CSCO.

4 ALGORITHM DESIGN

In this section, we develop a novel safe DRL-based al-
gorithm, called OCEAN, to effectively solve CSCO. We
decompose CSCO into two subproblems: long timescale
charging scheduling and short timescale computation of-
floading. For the former, we develop a Lyapunov-based safe
DRL algorithm to learn the optimal charging scheduling
strategy. For the latter, we reformulate it as an integer non-
linear programming problem to derive the computation
offloading decisions.

4.1 Long Timescale Charging Scheduling Subproblem
Considering that the charging demand constraint (3) in-
volves the decisions across multiple time slots, we first
model the long timescale charging scheduling subproblem
as a CMDP, which is an extension of the standard MDP aug-
mented with long-term constraints on expected cumulative
cost. The CMDP can typically be described by a five-tuple
(S,A,P, R, C). S denotes the set of states, A is the set of
feasible actions, P represents the state transition probability,
which is the probability of next state s′ when selecting action
a at state s, R is the reward function to define the immediate
reward received after performing action a at state s, and
C represents the constraint cost function. Let π denote the
policy that is a decision rule mapping from a state to an
action. The goal in a CMDP is to find an optimal policy
π that not only maximizes the expected cumulative reward
but also satisfies the additional long-term constraints. In this

paper, the main components of our formulated CMDP are
defined as follows,
• State: At each decision time of charging scheduling
t = κT̃ (κ = 0, 1, 2, · · ·), the system state st ∈ S con-
sists of the target SoC of each EV SoCd

i , the remaining
charging duration before leaving tdi − t, and current SoC
SoCt

i . In addition, since the charging scheduling and
computation offloading are tightly coupled, information
about the computation tasks during the last T̃ time
slots [(κ − 1)T̃ , κT̃ − 1] is also included. However, it
would lead to an extremely large state space if the input
data size, required CPU cycles, and tolerance delay of
all computation tasks during the last T̃ time slots are
included one by one. Thus, we use (Wt, b̄t, χ̄t, d̄t) to
represent these computation tasks, where Wt is the total
number of computation tasks generated during last T̃
time slots, b̄t is average data input size, χ̄t is the average
required CPU cycles, and d̄t is the average maximal
tolerable delay. Thus, the system state st at each decision
time t is

st = {[SoCd
i , t

d
i − t, SoCt

i]∀i∈N ,Wt, b̄t, χ̄t, d̄t}. (14)

• Action: The action at ∈ A is composed of the charging
powers of all EVs, which is at = {a1,t, a2,t, · · · , aN,t}
where ai,t = pti. Note that the action at should satisfy
the constraint (2), and ai,t = 0 if the i-th charging pile is
not in use.

• State Transition: P : S × A× S → [0, 1] denotes the state
transition function, which describes the distribution of
next state st+1 given the current state st and the selected
action at.

• Reward: In the standard RL, the goal of the RL agent is to
maximize the expected cumulative reward. However, in
our formulated optimization problem (13), the charging
station aims to minimize its load variance. Therefore, in
order to model our proposed optimization problem as an
RL problem and minimize the load variance, the reward
function rt is defined as the negative of load variance
during the period [κT̃ , κT̃ + T̃ − 1], which is

rt = −T̃ (
N∑
i=1

ptiτ)
2. (15)

• Constraint Cost: The immediate constraint cost function
ci(st),∀i ∈ N is defined as

ci(st) =

{
1− SoCt

i , if t = tdi ;
0, Otherwise. (16)

Then, to satisfy the charging demand of each EV, which
is (3), the long-term cumulative constraint cost should
satisfy

E{
tdi∑

t=tai

ci(st)} ≤ 1− SoCd
i ,∀i ∈ N . (17)

Compared to standard MDP, the long-term constraint
(17) in the above CMDP, also called the safety constraint,
makes the actions of multiple time slots highly coupled,
which renders this CMDP difficult to solve directly. To
make it more tractable, we first transform the long-term
safety constraint (17) into a sequence of single-step state-wise

6

constraints by taking advantage of the Lyapunov approach
[35].

4.1.1 Lyapunov-based Safety Constraint Transformation

We denote ∆(s) = {π(·|s)|
∑

a∈A π(a|s) = 1,∀s ∈ S} as a
set of Markov stationary policies. Let Tπ,h[V](s) denote the
generic Bellman operator w.r.t. policy π ∈ ∆ and generic
cost function h, which is

Tπ,h[V](s) =
∑
a

π(a|s)[h(s, a)+
∑
s′∈S

P(s′|s, a)V (s′)]. (18)

Then, we define a set of Lyapunov functions as

Definition 1. Given the immediate constraint cost function ci(s)
in (16) and letting q̂i = 1− SoCd

i denote the safety threshold, a
set of Lyapunov functions is defined as

Li,πB
(q̂i) = {Li : S → R≥0 :

TπB ,ci [Li](s) ≤Li(s) ≤ q̂i,∀s ∈ S;Li(x) = 0,∀s /∈ S},
(19)

where πB is a feasible (i.e., safe) policy of the above CMDP that
satisfies (17).

For any arbitrary Lyapunov function Li ∈ Li,πB
(qi), we

denote FLi
(s) = {π(·|s) ∈ ∆ : Tπ,ci [Li](s) ≤ Li(s)} as

the set of Li−induced Markov stationary policies. Due to
the contraction mapping property of the Bellman operator
Tπ,ci , it is clear that any Li−induced policy π satisfies

Di,π(s) = E{
∑tdi

t=tai
ci(st)|π, s} ≤ q̂i because Di,π(s) =

limk→∞ T k
π,ci [Li](s) ≤ Li(s) and Li(s) ≤ q̂i. Thus, we can

find that FLi
(s) is a set of feasible policies of the above

CMDP. In this context, we need to find out a Lyapunov func-
tion Li ∈ Li,πB

(q̂i) whose Li−induced policies include the
optimal policy π∗. To this end, the following Lemma 1 is first
presented to demonstrate that given an optimal policy π∗,
with the proper cost shaping, Di,π∗(s) can be transformed
into a Lyapunov function induced by any feasible policy πB ,
which is Lϵ

i ∈ Li
i,πB

(q̂i).

Lemma 1. For any feasible policy πB , there exists an auxiliary
function ϵi(s) : S → R such that the Lyapunov function given
by Lϵ

i(s) = E[
∑tdi

t=tai
ci(st) + ϵi(st)|πB , s],∀s ∈ S,∀i ∈ N

satisfies Lϵ
i(s) = 0,∀s /∈ S and Lϵ

i(s) = Di,π∗(s).

The proof of Lemma 1 can be found in [35]. In addition,
this auxiliary constraint cost ϵi(s) is proved to be uniformly
bounded by ϵ̂i(s) = 2(tdi − tai)Di,maxDTV (π

∗∥πB)(s),
where Di,max is the maximum immediate constraint cost,
and DTV (π

∗∥πB)(s) = 1
2

∑
a∈A |πB(a|s) − π∗(a|s)|. With

this upper bound ϵ̂i(s), we can construct a Lyapunov func-
tion as

Lϵ̂
i(s) = E[

tdi∑
t=tai

ci(st) + ϵ̂i(st)|πB , s]. (20)

Then, it is proved in [35] that if the feasible
baseline policy πB satisfies maxs∈S ϵ̂i(s) ≤
Di,max · min{ q̂i−Di,πB

(s)

(tdi −tai)Di,max
,
(tdi −tai)Di,max−D̄i

(tdi −tai)Di,max+D̄i
} where

D̄i = maxs∈S maxπ Di,π(s), then its Lϵ̂
i -induced feasible

set of policies FLϵ̂
i

contains an optimal policy. However,
it is extremely difficult to obtain ϵ̂i(s) since it requires

calculating the distance between πB and optimal policy π∗

that is unknown.
To address this issue, we approximate ϵ̂i(s) with an aux-

iliary constraint cost ϵ̃i. In order to allow FLϵ̃
i

to include as
many policies as possible so that it is more likely to contain
the optimal policy π∗, ϵ̃i is chosen as the largest auxiliary
constraint cost while satisfying the Lyapunov condition
TπB ,ci [L

ϵ̃
i](s) ≤ Lϵ̃

i(s),∀s ∈ S and the safety constraint
Lϵ̃
i(s) ≤ q̂i. Thus, ϵ̃i is calculated by

ϵ̃i = (q̂i −Di,πB
(s))/(tdi − tai),∀i ∈ N . (21)

Then, we can construct the Lyapunov function Lϵ̃
i(s) as

Lϵ̃
i(s) = E[

tdi∑
t=tai

ci(st) + ϵ̃i|πB , s],∀s ∈ S,∀i ∈ N . (22)

By using the Lyapunov function Lϵ̃
i(s), the original long-

term cumulative safety constraint (17) can be transformed
into a state-wise Lyapunov safety constraint, which is

Tπ,ci [L
ϵ̃
i](s) ≤ Lϵ̃

i(s),∀s ∈ S. (23)

That is any policy π satisfying Tπ,ci [L
ϵ̃
i](s) ≤ Lϵ̃

i(s) holds

that E[
∑tdi

t=tai
ci(st)|π] ≤ 1− SoCd

i ,∀i ∈ N . This is because,
based on (23) and the definition of Lyapunov function, we
have Di,π(s) = limk→∞ T k

π,ci [L
ϵ̃
i](s) ≤ Lϵ̃

i(s). Combining
(20) and (21), it yields Lϵ̃

i(s) ≤ q̂i = 1 − SoCd
i . Hence, we

can obtain Di,π(s) = E{
∑tdi

t=tai
ci(st)|π, s} ≤ 1− SoCd

i .
Consequently, given a feasible policy πB , the charging

scheduling subproblem can be reformulated as

SP1-1: min
π

E[
T−1∑
t=0

(
N∑
i=1

pti · τ)2|π],

s.t. (2) and Tπ,ci [L
ϵ̃
i](s) ≤ Lϵ̃

i(s),∀s ∈ S,∀i ∈ N .

(24)

4.1.2 Proposed Safe DRL Algorithm
In the following, we devise a novel safe DRL algorithm
to solve SP1-1. We first define Qr(s, a) as the state-action
reward function to represent the cumulative reward after
executing action a at state s. In addition, let Qi

c(s, a) denote
the state-action constraint cost function, which is

Qi
c(s, a) = ci(s) +

∑
a∈A

π(a|s)P (s′|s, a)Di,πB
(s′). (25)

Then, according to (22), the state-action Lyapunov function
is denoted as Qi

l(s, a), which is Qi
l(s, a) = Qi

c(s, a) + ϵ̃i.
Given this, we have Lϵ̃

i(s) =
∑

a πB(a|s)⊤Qi
c(s, a) + ϵ̃i.

Moreover, based on the definition of Tπ,ci [L
ϵ̃
i](s) in (18), we

can obtain Tπ,ci [L
ϵ̃
i](s) =

∑
a π(a|s)⊤Qi

c(s, a). Thus, SP1-1
can be rewritten as

SP1-2: max
π

∑
a

π(a|s)⊤Qr(s, a),

s.t.(2),
∑
a

(π(a|s)− πB(a|s))⊤Qi
c(s, a) ≤ ϵ̃i,∀s ∈ S,∀i ∈ N .

In the context of EV charging scheduling, the charg-
ing power of EVs is considered as a continuous variable.
Thus, we employ a Gaussian distribution to model the
continuous charging power for each EV. This modelling
approach is widely used in policy gradient and actor-critic

7

methods with continuous action space [36]–[38]. The Gaus-
sian distribution offers several advantages. Firstly, Gaussian
distributions are differentiable, which is important when
applying optimization techniques like gradient descent to
update the policy parameters based on the policy gradient.
Secondly, the standard deviation of Gaussian distributions
can effectively characterize the uncertainty about the chosen
actions by the RL agent, which allows for a principled way
to balance exploration and exploitation. In this case, the
charging power of each EVi is sampled from a Gaussian
distribution, which is π(ai|s) ∼ N (µi, σ

2),∀i ∈ N . In this
paper, σ is set to be fixed or independent of the state [39],
which is used to control the action exploration. Considering
that the stochastic Gaussian policy π(ai|s) is parameterized
by the deterministic parameters s, µ and σ, according to
identical machinery [40], SP1-2 is equivalent as

SP1-3: max
µ

Q′
r(s,µ),

s.t. (2) and Q′i
c (s,µ)−Q′i

c (s,µB) ≤ ϵ̃i,∀s ∈ S,∀i ∈ N .

where µ = {µ1, µ2, · · · , µN}, Q′
r(s,µ) =

r(s,µ) +
∑

a∈A π(a|s;µ, σ)P (s′|s, a)VπB
(s′),

VπB
(s) = E{

∑T−1
t=0 rt|s, πB}, and Q′i

c (s,µ) =
ci(s) +

∑
a∈A π(a|s;µ, σ)P (s′|s, a)Di,πB

(s′). For SP1-
3, we can find that it requires the accurate Q′

r(s, a), Q
′i
c (s, a)

and µB to derive the optimal solution. Due to the highly
complex non-linear relationship making it extremely hard
to directly derive an explicit mathematical expression, as
well as the continuous state and action space, we here
adopt deep neural networks (DNNs) to approximate
their actual values. Specifically, let Q̃′

r(s, a; θr) denote the
critic network, and Q̃′

c(s, a; θc) denote the constraint cost
network, where θr and θc are the network parameters. In
addition, let ω(s; θω) denote the policy network, which
outputs the mean of Gaussian policy for each action
dimension, i.e., {µ1, µ2, · · · , µN}.

However, it is very challenging to directly derive the
optimal solutions of SP1-3 since the continuous action space
makes it impossible to traverse all feasible actions to find the
optimum. To tackle this issue, we apply the idea of safety
layer [41] to solve SP1-3. The unconstrained actions are first
calculated to maximize the reward through standard pol-
icy gradient algorithms, such as deep deterministic policy
gradient (DDPG) and proximal policy optimization (PPO),
without taking the Lyapunov safety constraint into account.
Then, these unconstrained actions are passed through a
safety layer (which is implemented by a DNN) to project
them onto the feasibility set induced by the Lyapunov con-
straints. Specifically, let µunc denote the unconstrained ac-
tion to solve SP1-3 without the Lyapunov constraints. Then,
we project this unconstrained action µunc into a constrained
(i.e., feasible) one. In order to minimize the impact of action
perturbation on reward degradation, we seek to perturb
the unconstrained actions as little as possible. Toward this
aim, the feasible action is obtained by solving the following
action projection problem at each state s ∈ S :

argmin
µ

1

2
∥µ− µunc∥2, (26)

s.t. Q′i
c (s,µ)−Q′i

c (s,µB) ≤ ϵ̃i,∀s ∈ S,∀i ∈ N . (27)

To solve (26), Chow et al. [40] proposed to approximate the
Lyapunov constraint (27) with its first-order Taylor series
at action µB . However, this approximation is inaccurate in
practice as the action may not have a linear relationship
with the cost function, hence it cannot guarantee the derived
solutions satisfy the Lyapunov constraints, as shown in
Section 5.2.

To overcome this drawback, we develop a novel ap-
proach based on the state-cost action function to solve the
action projection problem (26). In detail, let A(s, q) denote
the state-cost action function to represent the action to be ex-
ecuted at state s whose cumulative constraint cost is q. Based
on A(s, q), we can then derive the feasible actions given a
state s and the target cumulative constraint cost q. Thus, to
solve (26), we first discretize ϵ̃i with an equal interval ϵ̃i

K

and obtain a set of discrete values, i.e., {0, ϵ̃i
K , 2ϵ̃i

K , · · · , ϵ̃i}.
Then, a set of feasible state-action constraint costs can be
constructed by

G = {Q′i
c (s,µB), Q

′i
c (s,µB)−

ϵ̃i
K

,

Q′i
c (s,µB)−

2ϵ̃i
K

, · · · , Q′i
c (s,µB)− ϵ̃i}.

(28)

Given G, we can derive a set of safe actions using the state-
cost action function A(s, q), which is

U = {µk|µk = A(s,Q′i
l (s,µB)−

k · ϵ̃i
K

),

∀k ∈ {1, 2, · · · ,K}}.
(29)

Based on the set of safe actions U , the action projection
problem (26) can be simplified as

SP1-4: arg min
µ∈U

1

2
∥µ− µunc∥2. (30)

SP1-4 is a convex problem that can be easily solved by
the standard convex optimization techniques such as CVX
solver [42]. Let µ∗ denote its optimal solution. Similar to
the above critic network and constraint cost network, as it is
extremely hard to explicitly model the highly complex non-
linear relationship of A(s, q), we also utilize a DNN to ap-
proximate its accurate value, denoted by Ã(s, q; θA) where
θA is the network parameter. However, there inevitably ex-
ists an approximation error between Ã(s, q; θA) and its exact
value, thus µ∗ might not be able to satisfy the Lyapunov
constraint in some cases. To address this issue, we next give
a safe policy π′. Compared to the policy obtained by solving
(30), although π′ has smaller improvements against πB , it
always guarantees the safety. To do this, we first give the
following Theorem 1.

Theorem 1. (Consistent Feasibility) Given a safe base-
line policy πB , suppose the successive policy π′ satis-
fies that

∫
a |π

′(ai|s) − πB(ai|s)| ≤ ϵ̃i
2q̂i−Di,πB

(s) ,∀s ∈
S , then the policy update is consistently feasible, i.e., if
Di,πB

(s) = E{
∑tdi

t=tai
ci(st)|πB , s} ≤ q̂i, then Di,π′(s) =

E{
∑tdi

t=tai
ci(st)|π′, s} ≤ q̂i.

The proof of Theorem 1 can be found in Appendix A.
According to Theorem 1, we can find that when the

distance between polices π′ and πB is within a bound, i.e.,
ξ(s) = ϵ̃i

2q̂i−Di,πB
(s) , this new policy π′ is also feasible.

8

Recall that we adopt Gaussian distribution to represent
the probability distribution of the agent’s actions. Here, we
let N (µ′, σ2) denote the parameterized policy π′(a|s), and
N (µB , σ

2) denote the parameterized policy πB(a|s). In this
case, we can further derive the relationship between µ′ and
µB to guarantee the distance between policies π′ and πB

within the bound ξ(s), which is presented in the following
Theorem 2.

Theorem 2. Given π′(a|s) = 1
(
√
2πσ)N

e−
∑N

i=1(ai−µ′
i)

2

2σ2 and

πB(a|s) = 1
(
√
2πσ)N

e−
∑N

i=1(ai−µB,i)
2

2σ2 , letting x∗ and ς∗ be

the solutions of xN − (
√
2πσ − x)N = ξ(

√
2πσ)N

2N and x∗

σ =√
2π

√
π
2 e

(− ς
2σ

)2

2 (− ς
2σ+

√
(− ς

2σ)2+ 8
π)

, respectively, if |µ′
i − µB,i| ≤

ς∗,∀i ∈ {1, 2, · · · , N}, it holds
∫
a |π

′(a|s)− πB(a|s)|da ≤ ξ.

The proof of Theorem 2 can be found in Appendix B.
Based on Lemma 1 and Theorem 2, we can transform

(26) into the following problem:

argmin
µ

1

2
∥µ− µθ,unc∥2,

s.t. − ς∗ ≤ µ′
i − µB,i ≤ ς∗,∀i ∈ N ,∀s ∈ S.

(31)

Problem (31) is convex, thus its optimal solution µ′∗
i can be

derived by using the CVX solver [42]. The above analysis
proves that the solution µ′∗

i can guarantee to satisfy the
Lyapunov safety constraint.

Compared to other constrained policy optimization
methods, one of the key benefits of our proposed Lyapunov-
based safe reinforcement learning approach is its ability
to provide theoretical safety guarantees during both the
learning and execution phases, meaning that the long-term
constraints in the formulated CMDP can be consistently
satisfied in theory. This is accomplished by ensuring the
system stays within a safety region defined by the Lya-
punov function. However, maintaining safety throughout
the learning phase can pose challenges when employing
some other constrained policy optimization methods. For
instance, the work presented in [43] employs a risk func-
tion to indicate whether the selected actions violate the
constraints and aims to learn a policy to minimize the
violation risk. Given such a strategy, during the learning
phase, the RL agent will perform a variety of actions to
collect information about the environment. Some of these
actions could be risky and potentially violate the constraints.
Furthermore, although this approach strives to minimize the
probability of constraint violations, it cannot fully guarantee
that the learned policy always meets the safety constraints.
In contrast, our proposed Lyapunov-based safe reinforce-
ment learning approach can offer a theoretical guarantee
of safety for the learned policy, as given by Theorem 1 in
Appendix A, thus presenting a compelling advantage over
other methods.

4.2 Short Timescale Computation Offloading Subprob-
lem

Recall that the objective in (13) is to minimize the en-
ergy consumption by EV charging while flattening the
load profile. Toward this aim, at each time slot t, based

on the EV charging decisions pti obtained by solving the
above charging scheduling subproblem, we optimize the
task assignment αt

i,j and computation resource allocation
f t
i,j to minimize the sum of energy consumption by task

processing of all EVs under the task delay constraints. Thus,
we formulate the short timescale computation offloading
subproblem as follows:

SP2-1: min
αt

i,j ,f
t
i,j

N∑
i=1

eti,

s.t. (4), (7),(9), (12),

SoCt
i +

pmax
i · (tdi − t)− eti

bmax
i

≥ SoCd
i ,∀i ∈ N . (32)

Constraint (32) guarantees to satisfy the charging demands
of all EVs. SP2-1 includes a crucial constraint to ensure the
completion of all computation tasks before their deadlines,
as detailed in (9). As a result, we can guarantee that all
tasks assigned to EVs will be computed and finished on
time. We here give an example to better illustrate these
constraints. Considering a scenario with three EVs sharing
their computation resources, namely EV-1, EV-2, and EV-3.
They are equipped with computation capacities of 1.8 GHz,
2 GHz, and 2.3 GHz, respectively [44]. There are 30 compu-
tation tasks that need to be processed, and for simplicity, we
categorize them into three different types, each with specific
characteristics (bt, χt, dtmax): (300 KB, 60 Megacycles, 0.5s),
(500 KB, 70 Megacycles, 0.6s), and (700 KB, 80 Megacycles,
0.7s), respectively [44]. The number of computation tasks
for each type is set to 10. The transmission rate to each EV is
set at 3 Mbps [44]. Based on these settings, we can calculate
that the minimum computation resources required by all
three types of tasks to meet their deadlines are 0.15 GHz,
0.16 GHz, and 0.17 GHz, respectively. We then consider a
task allocation scheme where all tasks are assigned to EV-
1. However, it is impossible for EV-1 to complete all tasks
before their maximum tolerance delays since EV-1 does not
have enough computing capacity. To address this issue, we
introduce a crucial constraint (7) into our optimization prob-
lem, ensuring that the tasks allocated to each EV must not
exceed its computation capacity. Under such a constraint,
one feasible solution to our problem is to allocate all type-1
tasks to EV-1, type-2 tasks to EV-2, and type-3 tasks to EV-3.
This ensures that each EV possesses sufficient computation
resources to complete its received tasks within the specified
delay requirements. Therefore, solving our optimization
problem can provide an effective task offloading strategy
that efficiently considers both the computation capacities of
the EVs in (7) and the task performance requirements in (9).
As a result, all tasks assigned to the EVs will be computed
and finished before their respective deadlines.

Next, according to the Lemma 1 in [45], we transform
SP2-1 into the following problem:

SP2-2:min
αt

i,j

N∑
i=1

eti, (33)

s.t. (4), (12), (32),
Mt∑
j=1

f∗,t
i,j ≤fi,max,∀i ∈ N ,

9

where f∗,t
i,j =

αt
i,j ·χj

dj,max−
bj

rt
i

. SP2-2 is an integer nonlinear

programming problem, which is solved by using CPLEX
[46]. In the context of the joint charging scheduling and
computation offloading problem addressed in this paper,
the dimensionality of the above computation offloading
subproblem (i.e., SP2-2) primarily depends on the number
of EVs involved, which in turn is determined by the num-
ber of charging piles within the charging station. In cases
where the charging station is with a great many charging
piles, the partitioning methods can be incorporated into our
proposed algorithm. By partitioning the large charging sta-
tion into smaller subregions, we can schedule EV charging
and allocate tasks for each subregion independently. This
partitioning strategy can effectively reduce the complexity
of the problem in large-scale charging station scenarios,
allowing for efficient problem-solving with CPLEX. How-
ever, due to the considerations of power grid stability and
economic factors, charging stations typically have only a
few dozen charging piles [47], helping ensure power grid
stability and prevent excessive strain on the infrastructure.
Given this setup where charging stations have a relatively
modest number of charging piles, it is unlikely to encounter
extremely high-dimensional spaces when solving the above
task offloading subproblem. Therefore, CPLEX remains a
suitable solver for efficiently addressing the optimization
problem SP2-2.

Fig. 3 shows the implementation architecture of the
proposed task offloading algorithm in a charging station.
This system can be divided into two main sections including
the Charging Station Controller and the EVs. The Charging
Station Controller plays an important role in the task of-
floading and includes the following components:

• Task Profiling Module: This module is in charge of
collecting and analyzing the incoming computation tasks
to extract their task attributes such as data size, com-
putational requirements, and deadlines. Acquiring these
attributes is necessary for task offloading.

• Resource Monitoring Module: It is used to continuously
monitor the CPU, memory, battery level, and wireless
channel status of each EV, and provide the real-time EV
resource status to the Task Scheduler, for making the task
offloading decisions.

• Task Scheduler: As the core of the system, the Task
Scheduler employs our learned task offloading policy to
intelligently allocate tasks to the proper EVs. By carefully
evaluating both the task profiles and EV resource status,
it aims to optimize the task offloading while guarantee-
ing all tasks are completed by their deadlines.

• Data Transmission Unit: This unit sends tasks to the EVs
according to the decisions made by the Task Scheduler
and receives the computing results from EVs. It acts as
the communication bridge between the charging station
and the EVs.

For the EVs, each of them is equipped with two main
components:

• Data Transmission Unit: It is responsible for receiving
computation tasks from the Charging Station Controller
and returning the computing results. It ensures smooth
communication between the EV and the Controller.

Task Profiling

Module

Resource

Monitoring Module

D
ata

T
ran

sm
issio

n
 U

n
it

Task Scheduler

Offloading Policy

Charging Station Controller

Data Transmission

Unit

Task Execution

Unit

Vehicle 1

Task Execution

Unit

Data Transmission

Unit

Vehicle N

Data Transmission

Unit

Task Execution

Unit

Vehicle 2

Task

Arrival Tasks

Allocated

Tasks

Results

Allocated

Tasks

Results

Allocated

Tasks

Results

Resource Information

Resource Status

Task Profiles …

Fig. 3: The implementation architecture of task offloading in
OCEAN.

• Task Execution Unit: This unit takes charge of carrying
out the computation tasks received from the Task Sched-
uler. It ensures that tasks run securely and efficiently,
constrained by the computation ability of the EV.
The task offloading workflow begins with the arrival

of computation tasks at the Charging Station Controller.
The Task Profiling Module creates detailed profiles for each
task, while the Resource Monitoring Module acquires in-
formation about the resource status of the EVs. Utilizing
the above information, the Task Scheduler intelligently allo-
cates tasks to suitable EVs by using our learned offloading
policy. The Controller then offloads these tasks to the EVs
through the Data Transmission Unit. On the EV side, the
Data Transmission Unit receives the allocated tasks, and
the Task Execution Unit securely executes the computation
tasks within their deadlines. Once the tasks are completed,
EVs transmit the computing results back to the Controller,
completing the task offloading process.

4.3 Joint Charging Scheduling and Computation Of-
floading

Based on the above analysis, we now formally specify the
procedure of OCEAN, as shown in Algorithm 1. OCEAN
can be divided into three major parts: trajectory generation,
network training, and action projection.

Firstly, we initialize the DNN parameters θr,0, θc,0, θA,0,
θω,0, and θϕ,0, where θϕ,0 denotes the parameters of the
safety layer ϕ(s, µ). In addition, let πB(s) = π0(s) =
N (ϕ(s, ω(s; θω,0); θϕ,0), σ

2). In the stage of trajectory gen-
eration, at the time slot t = κT̃ (κ = 0, 1, 2, · · ·), based on
state st, we can calculate µt = ϕ(st, ω(st; θω,k); θϕ,k), and
select the charging power based on πk. Then, at each time
slot t, the task assignment and resource allocation decisions
are obtained by solving (33). Next, the selected charging
scheduling and offloading decisions are performed. At the
end of the time slot t = κT̃ + T̃ − 1, we can receive the
reward rt and constraint cost ci(st). At the end of time slot
T − 1, the trajectory ξz,k = {st, µt, rt, ci(st)}T−1

t=0 is stored
for the following network training.

10

Algorithm 1: Joint Charging Scheduling and Com-
putation Offloading Algorithm (OCEAN)

1 Initialize the number of trajectories Z and DNN
parameters θr,0, θc,0, θA,0, θω,0, θϕ,0, let
πB(s) = π0(s) = N (ϕ(s, ω(s; θω,0); θϕ,0), σ

2);
2 for k = 0, 1, 2, · · · do
3 // Trajectory Generation;
4 for z = 0 to z = Z − 1 do
5 Let κ = 0;
6 for t = 0 to t = T − 1 do
7 At the time slot t = κT̃ , observe the

system state st, obtain
µt = ϕ(st, ω(st; θω,k); θϕ,k), and select
the charging power of each EV based on
policy ai,t ∼ πk;

8 Obtain the task assignment decision αt
i,j

and resource allocation decision f t
i,j by

solving (33);
9 Perform actions ai,t, αt

i,j and f t
i,j ;

10 At the end of time slot t = κT̃ + T̃ − 1,
obtain the reward rt, constraint cost
ci(st), and κ = κ+ 1;

11 At the end of time slot T − 1, store the
trajectory ξz,k = {st, µt, rt, ci(st)}T−1

t=0 ;

12 // Network Training;
13 Using the collected Z trajectories {ξj,k}Zz=1,

update the network parameters θr,k, θc,k, θA,k,
θω,k according to (34), (35), (36), and (37);

14 // Action Projection;
15 For any given state s ∈ {ξz,k}Zz=1, compute the

auxiliary constraint cost ϵ̃i;
16 Obtain the candidate action µc

i by solving (30);
17 if Q̃′i

c (s, µ
c
i)− Q̃′i

c (s, µi,B) ≤ ϵ̃i then
18 Let µ∗

i = µc
i ;

19 else
20 Obtain µv

i by solving (31), and let µ∗
i = µv

i ;

21 Update the parameters of the safety layer
according to (38);

22 Set πk+1(s) = N (ϕ(s, ω(s; θω,k); θϕ,k), σ
2), and

let πB = πk+1.

In the stage of network training, as shown in Fig. 4, using
the collected Z trajectories, we update the critic network
Q̃′

r , constraint cost network Q̃′
c, state-cost action network

Ã(s, q), and policy network ω(s, θω,k). Specifically, the pa-
rameter θr,k of the critic network is updated to minimize the
following loss function:

Loss(θr,k) = E[yr − Q̃′
r(st, µt; θr,k)]

2, (34)

where yr =
∑T−1

ι=t rι is the target value.
Similarly, the parameter θc of the constraint cost network

is updated by minimizing the following loss function:

Loss(θc,k) = E{
N∑
i=1

[yi,c − Q̃′i
c (st, µt; θc,k)]

2}, (35)

where yi,c =
∑T−1

ι=t ci(sι) is the target value.

Update
𝜃𝜙

Policy network

… … …

…

𝜔(𝑠; 𝜃𝜔)

… … …

…

Critic network

෨𝑄𝑟
′ (𝑠, 𝑎; 𝜃𝑟)

… … …

…

Constraint cost
network

෨𝑄𝑐
′ (𝑠, 𝑎; 𝜃𝑐)

State-cost action
network

… … …

…

ሚ𝐴(𝑠, 𝑞; 𝜃𝐴)

… … …

…

Safety layer
network

𝜙(𝑠, 𝑎; 𝜃𝜙)

Trajectories

{𝑠𝑡 , 𝜇𝑡 , 𝑟𝑡, 𝑐𝑖(𝑠𝑡)}𝑡=0
𝑇−1

𝑠𝑡 , 𝜇𝑡

𝐿𝑜𝑠𝑠(𝜃𝑟) (34) 𝐿𝑜𝑠𝑠(𝜃𝑐) (35) 𝐿𝑜𝑠𝑠(𝜃𝐴) (36)

Update
𝜃𝑟

Update
𝜃𝑐

Update
𝜃𝐴

𝑠𝑡 , 𝜇𝑡𝑟𝑡 𝑐𝑖(𝑠𝑡) 𝜇𝑡

∇𝜇 (37) Update
𝜃𝜔

Compute 𝜇𝑖
𝑐(30)

Compute ǁ𝜖𝑖 (21)

𝑠𝑡 , 𝑐𝑖(𝑠𝑡)

Compute 𝜇𝑖
∗ via

Algorithm1 lines 17-20

𝐿𝑜𝑠𝑠(𝜃𝜙) (38)

Fig. 4: Training framework of the proposed safe DRL ap-
proach.

Then, the parameter θA of the state-cost action network
is updated to minimize the following loss function:

Loss(θA,k) = E[µt − Ã(st, {yi,c}Ni=1; θA,k)]
2. (36)

In addition, for the policy network ω(s; θω,k), its param-
eter θω,k is updated by following the objective gradient, so
as to maximize the action-value function:

θω,k = θω,k − ϑkEst∈{ξj,k}Z
z=1

[∇θωω(st; θω)|θω=θω,k
·

∇µQ̃r(st, µ)|µ=ω(st;θω,k)].
(37)

After the network training, we perform action projection
to map the actions generated by the policy network into
feasible ones that adhere to given safety constraints. This
projection procedure is implemented by the safety layer net-
work ϕ(s, µ), which takes as input the system states as well
as unconstrained actions generated by the policy network,
and then transforms the input actions into feasible ones
induced by the Lyapunov constraint in (23), ultimately guar-
anteeing that the charging demand constraints of EVs are
always met. Toward this aim, at any given state s in the tra-
jectories {ξz,k}Zz=1, we first compute the auxiliary constraint
cost ϵ̃i. Based on derived ϵ̃i, we can obtain a candidate action
µc
i at state s by solving (30). In order to check the safety of

this candidate action, we calculate Q̃′i
c (s, µ

c
i) − Q̃′i

c (s, µi,B)
and compare it with ϵ̃i. If Q̃′i

c (s, µ
c
i) − Q̃′i

c (s, µi,B) ≤ ϵ̃i, it
means action µc

i can satisfy the Lyapunov safety constraint,
so we let µ∗

i = µc
i . Otherwise, another feasible action µv

i can
be obtained by solving (31), and let µ∗

i = µv
i . Based on the

derived feasible action µ∗ = {µ∗
1, µ

∗
2, · · · , µ∗

N} at any state
s in {ξz,k}Nz=1, the safety layer is trained to minimize the
following loss function:

Loss(θϕ,k) = E[µ∗ − ϕ(s, ω(s; θω,k); θϕ,k))]
2. (38)

According to the policy network and safety layer, we can
obtain an improved and feasible charging scheduling policy
πk+1(s) = N (ϕ(s, ω(s; θω,k); θϕ,k), σ

2). We repeat steps (3)-
(22) in Algorithm 1 until convergence.

11

TABLE 1: Electric Specifications of Four EV Models [12], [50]

Model bmax
i [kWh] pmax

i [kW]
Tesla Model 3 55 0-11
Nissan Leaf 24 0-6

BMW i3 33 0-7.7
Hyundai Ioniq Elec. 28 0-7

5 PERFORMANCE EVALUATION

In this section, we first describe the parameter settings in
our experiments, and then present simulation results to
demonstrate the effectiveness of OCEAN.

5.1 Experimental Settings

We consider a charging station consisting of N = 25
charging piles. Four different types of EVs are used in the
experiments, which are Nissan Leaf, BMW i3, Tesla Model
3, and Hyundai Ioniq Elec. The electric specifications of
these EVs are listed in Table 1. For each EV arriving to
charge, its initial SoC is sampled from the truncated normal
distribution N (0.5, 0.12) within the interval [0.2, 0.8], and
the target SoC is sampled from N (0.9, 0.12) with the bound
[0.85, 0.95] [36]. The charging efficiency coefficient is set
as 0.95. The charging time of each EV follows a Weibull
distribution where the scale parameter is 2.57 and the shape
parameter is 1.27 [21]. The standard charging price κ is
0.10015 $/kWh [48], and the coefficient λ is 5 · 10−14.
The charging scheduling decisions are updated every 15
minutes. For the computation offloading, we consider the
number of computation tasks to be randomly distributed in
[70, 110]. The task size, required CPU cycles, and task delay
follow the uniform distributions U [100, 900] KB, U [50, 90]
Megacycles, and U [0.5, 1] s, respectively [44]. The length of
each time slot is τ = 1s. The wireless transmission rate is set
to 3 Mbps [44], and the CPU energy consumption coefficient
ϑi = 5 · 10−26. In addition, the computation capacities of
four different EVs are set as 1.8 GHz (Nissan leaf), 2 GHz
(BMW i3), 2.3 GHz (Tesla Model 3), and 1.8 GHz (Hyundai
Ioniq Elec.) [49]. The constraint cost network consists of four
hidden layers where the numbers of neurons are 128, 256,
128, and 64, respectively. The safety layer network has three
hidden layers, where the numbers of neurons are 256, 128,
and 64, respectively. Both the critic and actor networks have
two hidden layers each with 128 neurons and 64 neurons.
The learning rate of the critic network is set to 0.001, and
that of the actor network is 0.0001.

5.2 Performance of OCEAN

We first study the convergence and safety performance
of OCEAN. Specifically, OCEAN is compared with classic
Lyapunov-based safe reinforcement learning (LSRL) [40] to
show its advantage. We also implement the optimal policy
to show the upper bound of performance and the safe
condition. In order to obtain the optimal policy, it is assumed
that all system uncertainties such as EV charging demands
and task arrivals are known in advance. In this case, CSCO
in (13) can be considered as a deterministic problem, whose
optimal solutions are solved by the CPLEX solver [46].
To deal with the various safety constraint thresholds of

0 5 10 15 20 25 30 35 40
Episode

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Ac
cu

m
ul

at
iv

e
re

wa
rd

1e5

LSRL
OCEAN
Optimal

(a) Accumulative reward

0 5 10 15 20 25 30 35 40
Episode

0.5

1.0

1.5

2.0

Ac
cu

m
ul

at
iv

e
Co

ns
tra

in
t C

os
t

LSRL
OCEAN
Optimal

(b) Accumulative constraint cost

Fig. 5: The accumulative reward and constraint cost of
OCEAN, LSRL, and Optimal during training.

different EVs, we normalize the cumulative constraint cost
(17) as

ϱi =
1− SoCd

i

E[
∑T−1

t=0 ci,t]
,∀i ∈ N . (39)

When ϱi ≥ 1, the safety constraint of EVs can be satisfied.
Figs. 5(a) and 5(b) plot the accumulative reward and con-

straint cost achieved by OCEAN, classic LSRL, and Optimal
varying with the increase of training episodes, respectively.
From Fig. 5(a), we can observe that the accumulative reward
of OCEAN rises with the number of training episodes, and
converges after around 15 episodes. It means that a better
policy can be learned by OCEAN during training to improve
the system reward, and a stable policy can be learned at
the end of training. It can also be seen that OCEAN can
gradually approach the optimal policy, which validates its
superior performance. In addition, we can observe that the
classic LSRL converges after around 30 episodes, which is
much slower than OCEAN. Notice that although classic
LSRL can achieve a higher reward than the optimal policy,
this is at the expense of safety violation, as shown in Fig.
5(b). Specifically, OCEAN can keep guaranteeing the safety
of learned policy and gradually approach the optimum,
while classic LSRL violates the safety condition after around
16 episodes. It is because in order to solve (26), classic LSRL
approximates the Lyapunov safety constraint with its first-
order Taylor series, but this approximation is inaccurate in
practice, which cannot guarantee that the derived solutions
meet the safety constraint.

To look into the reason behind the improvement by
OCEAN over classic LSRL, we plot the loss curves of the
safety layer network obtained by OCEAN and classic LSRL
at different training episodes in Fig. 6. At episode 1, the
loss curves of both OCEAN and classic LSRL can rapidly
decrease to zero. At episode 5, the loss curve of OCEAN can
still reduce to around zero, but that of classic LSRL reduces
to about 0.2 and does not decrease any more. Similar results
can also be observed at episodes 10 and 15. In addition, as
the increase of training episodes, the loss value obtained
by classic LSRL also rises. This is because classic LSRL
cannot guarantee the safety of the selected actions, causing
inefficiency in the training of the safety layer network. In
contrast, since OCEAN is able to learn the safe policy during
training, the loss value obtained by OCEAN can rapidly
reduce to around zero.

Then, we study the monetary benefits received by EVs
for sharing their idle computation resources. Fig. 7 plots the
total CPU cycles required for all tasks processed by each

12

0 500 1000 1500 2000 2500 3000
Step

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Lo
ss

LSRL
OCEAN

(a) Episode 1

0 500 1000 1500 2000 2500 3000
Step

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

LSRL
OCEAN

(b) Episode 5

0 500 1000 1500 2000 2500 3000
Step

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Lo
ss

LSRL
OCEAN

(c) Episode 10

0 500 1000 1500 2000 2500 3000
Step

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Lo
ss

LSRL
OCEAN

(d) Episode 15

Fig. 6: The loss curves of safety layer network obtained by
OCEAN and classic LSRL at different training episodes.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
EV index

0

1

2

3

4

5

To
ta

l C
PU

 c
yc

le
s r

eq
ui

re
d

 fo
r a

ll
pr

oc
es

se
d

ta
sk

s

1e12

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Ch

ar
gi

ng
 p

ric
e

($
/k

W
h)

Fig. 7: The total CPU cycles required for all tasks processed
by each EV and their charging prices.

EV and their charging prices. It can be observed that the
charging price is inversely correlated with the total CPU
cycles required for all processed tasks, indicating that the
EVs with a larger computational workload have a smaller
charging price. In other words, EVs that contribute more
to assisting with the task processing during their charging
periods are rewarded a lower charging price, which serves
as an effective incentive and compensation for their resource
sharing.

Moreover, we analyze the impact of various parame-
ters of offloaded tasks in their scheduling. To facilitate the
analysis, we consider four different types of computation
tasks and three types of EVs [44], [49], as detailed in Tables
2 and 3. The number of tasks for each type is set to 30
and the number of EVs for each type is set to 7. Fig. 8
shows the scheduling of computation tasks to respective
types of EVs. It can be observed that Type-1 tasks are only
assigned to Type-2 and Type-3 EVs, with no allocation to
Type-1 EVs. This is because Type-1 tasks have substantial
data sizes and stringent latency requirements, which require
a short communication latency, making them not fit for the
offloading to Type-1 EVs whose communication rates are the

Task Type-1 Task Type-2 Task Type-3 Task Type-4
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m
be

r o
f e

ac
h
ty
pe

 o
f t
as
ks
 o
ffl
oa

de
d

 t
o
di
ffe

re
nt
 ty

pe
s o

f E
Vs

EV Type-1
EV Type-2
EV Type-3

Fig. 8: Scheduling of computation tasks to EVs.

TABLE 2: Parameters of computation tasks

Task Type Data size (KB) CPU cycles (Megacycles) Delay (s)
1 700 70 0.6
2 500 90 0.6
3 300 70 0.6
4 700 70 1.0

lowest. In contrast, Type-2 tasks, having the same latency
constraints but smaller data sizes compared to Type-1 tasks,
exhibit diversification in their allocation. Some of them are
assigned to Type-1 EVs, owing to their reduced communica-
tion requirements resulting from diminished data sizes. The
majority, however, are still scheduled to Type-2 and Type-3
EVs, characterized by enhanced communication and com-
putation capacities in line with these tasks’ requirements
of substantial CPU resources and strict latency constraints.
Similarly, we can observe that Type-3 tasks are distributed
across all EV types for processing. This is due to their
moderate communication and computation requirements,
making them compatible for processing across all types
of EVs. Lastly, Type-4 tasks have more relaxed delay con-
straints compared to the other types of tasks, which allows
for their effective offloading and processing on Type-1 EVs
as they do not need fast responses like the other tasks.

5.3 Comparison Results
Next, we carry out comparison experiments to further
demonstrate the effectiveness of our algorithm. In addition
to the above optimal policy, we implement three DRL-based
state-of-the-art algorithms.
• Optimal: As mentioned before, assuming all system

uncertainties such as EV charging demands and task
arrivals are known ahead, the CPLEX solver is used to
derive the optimal solutions to problem CSCO. How-
ever, the dynamic nature of charging demands is influ-
enced by various factors, e.g., user driving habits, traffic
conditions, and weather, making their precise predic-
tions difficult. It is also challenging to accurately predict
uncertain task arrivals and varying task characteristics,
such as data sizes, required computation resources, and
delays. Thus, the optimal solution that requires complete

13

15 20 25 30 35
The number of charging piles

0

1

2

3

4

5

6

7

8

Lo
ad

 v
ar

ia
nc

e

1e4

Optimal
OCEAN
PDSO
DDPGSO
PPOSO

(a) Numbers of charging piles

50 70 90 110 130
The number of computation tasks

2

3

4

5

6

7

8

Lo
ad

 v
ar

ia
nc

e

1e4

Optimal
OCEAN
PDSO
DDPGSO
PPOSO

(b) Numbers of computation tasks

0.5 0.55 0.6 0.65 0.7
Initial SoC of EVs

2

3

4

5

6

Lo
ad

 v
ar

ia
nc

e

1e4

Optimal
OCEAN
PDSO
DDPGSO
PPOSO

(c) Initial SoC of EVs

20 35 50 65 80
Required CPU cycles

2

3

4

5

6

7

8

Lo
ad

 v
ar

ia
nc

e

1e4

Optimal
OCEAN
PDSO
DDPGSO
PPOSO

(d) Required CPU cycles

Fig. 9: The load variances of all five algorithms under different parameters.

TABLE 3: Parameters of EVs

EV Type Wireless Communication
Rate (Mbps)

Computing Capacity
(GHz)

1 1 1.8
2 2 2
3 3 2.3

knowledge of these uncertainties is impractical as such
information cannot be accurately known in advance.

• DDPG-based joint charging scheduling and compu-
tation offloading (DDPGSO): Many works in the liter-
ature have employed DDPG algorithm to address the
charging scheduling for EVs [51] and computation of-
floading in MEC [52]. We implement this technique to
jointly optimize the charging scheduling and computa-
tion offloading.

• PPO-based joint charging scheduling and computa-
tion offloading (PPOSO): Some recent studies adopted
PPO algorithm to solve the charging scheduling [37]
and computation offloading [53] problems. We use the
same method as in the above studies to learn the joint
optimization strategy.

• Primal-dual RL based joint charging scheduling and
computation offloading (PDSO): The primal-dual RL
approach has also been used recently to address the
safe learning problem in many previous works, e.g.,
[54], [55]. We here leverage this approach to solve our
joint charging scheduling and computation offloading

problem.
To ensure the safety of learned joint charging scheduling
and computation offloading policies, similar to the safe RL
algorithms proposed in previous studies, e.g., [56], [57],
DDPGSO and PPOSO utilize a penalty-augmented objec-
tive, which combines the expected reward objective with
a penalty term associated with constraint violations for
learning the safe policy.

Fig. 9(a) plots the load variances achieved by all five
algorithms when the number of charging piles varies from
15 to 35. We can see that OCEAN can achieve a similar
load variance as the optimal policy, and always has a better
performance than PDSO, DDPGSO, and PPOSO. E.g., when
N = 25, OCEAN achieves a load variance of 36165.7,
compared to 41264.6 obtained by PDSO with a 12.4% reduc-
tion, 47547.2 obtained by DDPGSO with a 23.9% reduction,
and 46530.1 obtained by PPOSO with a 22.3% reduction.
On average, OCEAN can decrease the load variance by
12.7%, 19.3%, and 22.6% over PDSO, DDPGSO, and PPOSO,
respectively. It indicates that OCEAN can effectively opti-
mize the charging scheduling and offloading decisions to
minimize the load variance.

Fig. 9(b) shows the load variance achieved by all five
algorithms when the number of computation tasks varies
from 50 to 130. We can also see that OCEAN always
outperforms PDSO, DDPGSO, and PPOSO. On average,
OCEAN can achieve 9.1%, 19.2%, and 22.1% load variance
reduction over PDSO, DDPGSO, and PPOSO, respectively.
Fig. 9(c) presents the load variance achieved by all five

14

TABLE 4: Comparison of all five algorithms on the normalized cumulative constraint cost with different parameters.

Optimal OCEAN PDSO DDPGSO PPOSO Optimal OCEAN PDSO DDPGSO PPOSO

Number of
charging piles

15 1 1.001 1.099 1.222 1.234

Initial SoC of
EVs

0.5 1 1.010 1.119 1.203 1.222
20 1 1.003 1.123 1.171 1.173 0.55 1 1.007 1.116 1.243 1.252
25 1 1.026 1.144 1.191 1.185 0.6 1 1.026 1.101 1.272 1.283
30 1 1.032 1.138 1.316 1.322 0.65 1 1.006 1.174 1.350 1.375
35 1 1.034 1.107 1.205 1.248 0.7 1 1.001 1.185 1.425 1.432

Number of
computation tasks

50 1 1.004 1.120 1.225 1.218

Required
CPU cycles

20 1 1.006 1.021 1.034 1.195
70 1 1.015 1.103 1.189 1.161 35 1 1.030 1.114 1.208 1.218
90 1 1.015 1.113 1.209 1.227 50 1 1.007 1.089 1.193 1.209
110 1 1.011 1.101 1.202 1.218 65 1 1.024 1.109 1.210 1.222
130 1 1.005 1.087 1.200 1.184 80 1 1.011 1.096 1.200 1.205

algorithms when the initial SoC of EVs varies from 0.5 to
0.7. Compared to PDSO, DDPGSO, and PPOSO, OCEAN
can reduce 8.3%, 22.7%, and 24.5% load variance on average,
respectively. Fig. 9(d) shows the load variance achieved by
all five algorithms when the required CPU cycles vary from
20 Megacycles to 80 Megacycles. On average, OCEAN can
achieve 8.4%, 19.1%, and 22.4% load variance reduction over
PDSO, DDPGSO, and PPOSO, respectively. To show the
safety of OCEAN, Table 4 lists the normalized cumulative
constraint costs of all five algorithms at convergence under
different parameters. We can see that the constraint costs
of all five algorithms are larger than 1, which means all
of them can guarantee the safety of policy. Nevertheless,
the constraint cost of OCEAN is significantly smaller than
those of PDSO, DDPGSO, and PPOSO, and OCEAN can
achieve a similar constraint cost as the optimal policy. These
comparison results demonstrate that OCEAN can effectively
reduce the load variance while guaranteeing the feasibility
of the learned policy.

Additionally, Table 5 showcases the execution times of all
five algorithms across varying numbers of charging stations.
We can observe that our proposed algorithm, OCEAN,
exhibits longer execution times than PDSO, DDPGSO, and
PPOSO. The reason is that OCEAN combines an actor net-
work and a safety network for action generation, whereas
PDSO, DDPGSO, and PPOSO all rely solely on an actor
network for decision-making. Despite this, OCEAN can
still maintain its execution time within a remarkably short
duration, not exceeding 7 ms. Moreover, as the number
of charging stations increases, all five algorithms show an
increase in execution time. Notably, Optimal shows a signifi-
cantly rapid increase in execution time due to its exponential
growth in computational complexity. In particular, when
the number of charging stations is 60, it is unable to find
an optimal solution. Although the optimal solutions can be
obtained when the number of charging stations is less than
60, the execution time of Optimal is vastly larger than those
of the other four algorithms.

6 CONCLUSION

This paper studies the joint charging scheduling and com-
putation offloading for EV-MEC. First, we formulate a two-
timescale optimization problem with the objective of mini-
mizing the load variance while satisfying both the charging
demands of EVs and the strict performance requirements
of computation tasks. Next, we develop a novel safe DRL-
based intelligent algorithm, called OCEAN. Specifically, a

TABLE 5: Execution times (in Seconds) of all five algorithms
across varying numbers of charging stations. (N/A denotes
cases unable to find optimum.)

Number of
charging
stations

Optimal OCEAN PDSO DDPGSO PPOSO

20 96 0.006225 0.003856 0.004081 0.004569
30 385 0.006242 0.003881 0.004103 0.004593
40 1165 0.006278 0.003919 0.004124 0.004617
50 2792 0.006319 0.003935 0.004131 0.004631
60 N/A 0.006350 0.003954 0.004155 0.004660

new safe DRL algorithm is proposed to optimize the charg-
ing scheduling for EVs, and the optimization of compu-
tation offloading is reformulated as an integer nonlinear
programming problem. Extensive experiments and perfor-
mance comparison results show the superiority of OCEAN
in reaching similar performances as the optimal strategy and
considerably reducing the charging load variance compared
to three state-of-the-art algorithms, while ensuring that the
learned policy can satisfy the charging demands of all EVs.

For future work, the uncertainties of EV departure time
will be taken into account to extend the proposed approach,
which could be modelled to follow a normal distribu-
tion with the mean representing the scheduled departure
time. We will also explore leveraging chance-constrained
planning methods in DRL to effectively manage uncertain
vehicle departures.

REFERENCES

[1] I. G. E. Outlook et al., “Scaling-up the transition to electric mobil-
ity,” International Energy Agency: Paris, France, 2019.

[2] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular
edge computing and networking: A survey,” Mobile networks and
applications, vol. 26, no. 3, pp. 1145–1168, 2021.

[3] C. Ma, J. Zhu, M. Liu, H. Zhao, N. Liu, and X. Zou, “Parking
edge computing: Parked-vehicle-assisted task offloading for urban
vanets,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9344–
9358, 2021.

[4] X.-Q. Pham, T. Huynh-The, E.-N. Huh, and D.-S. Kim, “Partial
computation offloading in parked vehicle-assisted multi-access
edge computing: A game-theoretic approach,” IEEE Transactions
on Vehicular Technology, vol. 71, no. 9, pp. 10 220–10 225, 2022.

[5] Z. Wei, B. Li, R. Zhang, and X. Cheng, “Contract-based charging
protocol for electric vehicles with vehicular fog computing: An
integrated charging and computing perspective,” IEEE Internet of
Things Journal, pp. 1–1, 2022.

[6] Y. Li, B. Yang, Z. Chen, C. Chen, and X. Guan, “A contract-
stackelberg offloading incentive mechanism for vehicular parked-
edge computing networks,” in Proceedings of 2019 IEEE 89th Vehic-
ular Technology Conference (VTC2019-Spring), 2019, pp. 1–5.

[7] M. Sookhak, F. R. Yu, Y. He, H. Talebian, N. Sohrabi Safa, N. Zhao,
M. K. Khan, and N. Kumar, “Fog vehicular computing: Augmen-
tation of fog computing using vehicular cloud computing,” IEEE
Vehicular Technology Magazine, vol. 12, no. 3, pp. 55–64, 2017.

15

[8] X. Huang, W. Zhong, J. Nie, J. Kang, Z. Xiong, Y. Wu, and
M. Guizani, “Joint parking and power management for electric
vehicle edge computing: A bilevel optimization approach,” in
Proceedings of 2022 International Wireless Communications and Mobile
Computing (IWCMC), 2022, pp. 719–724.

[9] W. Zhang, R. Wang, C. Yi, and K. Zhu, “Joint optimization
of computation task allocation and mobile charging scheduling
in parked-vehicle-assisted edge computing networks,” in Proceed-
ings of International Conference on Wireless Algorithms, Systems, and
Applications (WASA), 2022, pp. 406–418.

[10] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang, and Y. Zhang, “Smart
and resilient ev charging in sdn-enhanced vehicular edge comput-
ing networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 1, pp. 217–228, 2020.

[11] L. Yan, H. Shen, L. Kang, J. Zhao, Z. Zhang, and C. Xu, “Mo-
bicharger: Optimal scheduling for cooperative ev-to-ev dynamic
wireless charging,” IEEE Transactions on Mobile Computing, 2022,
DOI: 10.1109/TMC.2022.3200414.

[12] H. Li, Z. Wan, and H. He, “Constrained ev charging scheduling
based on safe deep reinforcement learning,” IEEE Transactions on
Smart Grid, vol. 11, no. 3, pp. 2427–2439, 2020.

[13] F. Tütüncüoğlu, S. Jošilo, and G. Dán, “Online learning for rate-
adaptive task offloading under latency constraints in serverless
edge computing,” IEEE/ACM Transactions on Networking, 2022,
DOI: 10.1109/TNET.2022.3197669.

[14] Z. Yan, P. Cheng, Z. Chen, B. Vucetic, and Y. Li, “Two-dimensional
task offloading for mobile networks: An imitation learning frame-
work,” IEEE/ACM Transactions on Networking, vol. 29, no. 6, pp.
2494–2507, 2021.

[15] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, and A. X. Liu, “Qos
driven task offloading with statistical guarantee in mobile edge
computing,” IEEE Transactions on Mobile Computing, vol. 21, no. 1,
pp. 278–290, 2022.

[16] Y. Cao, H. Wang, D. Li, and G. Zhang, “Smart online charging al-
gorithm for electric vehicles via customized actor–critic learning,”
IEEE Internet of Things Journal, vol. 9, no. 1, pp. 684–694, 2022.

[17] H. Teng, Z. Li, K. Cao, S. Long, S. Guo, and A. Liu, “Game
theoretical task offloading for profit maximization in mobile edge
computing,” IEEE Transactions on Mobile Computing, pp. 1–1, 2022.

[18] J. Jin and Y. Xu, “Optimal policy characterization enhanced actor-
critic approach for electric vehicle charging scheduling in a power
distribution network,” IEEE Transactions on Smart Grid, vol. 12,
no. 2, pp. 1416–1428, 2021.

[19] X. Chen, K.-C. Leung, A. Y. S. Lam, and D. J. Hill, “Online schedul-
ing for hierarchical vehicle-to-grid system: Design, formulation,
and algorithm,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 2, pp. 1302–1317, 2019.

[20] O. Frendo, N. Gaertner, and H. Stuckenschmidt, “Improving
smart charging prioritization by predicting electric vehicle depar-
ture time,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 10, pp. 6646–6653, 2021.

[21] C. B. Saner, A. Trivedi, and D. Srinivasan, “A cooperative hierar-
chical multi-agent system for ev charging scheduling in presence
of multiple charging stations,” IEEE Transactions on Smart Grid,
vol. 13, no. 3, pp. 2218–2233, 2022.

[22] L. Liu and K. Zhou, “Electric vehicle charging scheduling con-
sidering urgent demand under different charging modes,” Energy,
vol. 249, p. 123714, 2022.

[23] T. Long, Q.-S. Jia, G. Wang, and Y. Yang, “Efficient real-time ev
charging scheduling via ordinal optimization,” IEEE Transactions
on Smart Grid, vol. 12, no. 5, pp. 4029–4038, 2021.

[24] S. Han, S. Han, and K. Sezaki, “Development of an optimal
vehicle-to-grid aggregator for frequency regulation,” IEEE Trans-
actions on Smart Grid, vol. 1, no. 1, pp. 65–72, 2010.

[25] W. Shi and V. W. Wong, “Real-time vehicle-to-grid control algo-
rithm under price uncertainty,” in 2011 IEEE International Con-
ference on Smart Grid Communications (SmartGridComm), 2011, pp.
261–266.

[26] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: En-
abling real-time traffic management for smart cities,” IEEE Wireless
Communications, vol. 26, no. 1, pp. 87–93, 2019.

[27] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehi-
cles: A fog-enabled real-time traffic management system,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4568–4578,
2018.

[28] S.-S. Lee and S. Lee, “Resource allocation for vehicular fog
computing using reinforcement learning combined with heuristic

information,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
10 450–10 464, 2020.

[29] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mo-
bile cloud computing,” SIGMETRICS Perform. Eval. Rev., vol. 40,
no. 4, p. 23–32, 2013.

[30] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation
offloading for mobile-edge computing with energy harvesting
devices,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 12, pp. 3590–3605, 2016.

[31] K. Guo and T. Q. Quek, “Dynamic computation offloading in
multi-server mec systems: An online learning approach,” in Pro-
ceedings of IEEE Global Communications Conference (GLOBECOM),
2020, pp. 1–6.

[32] H. Hu, Q. Wang, R. Q. Hu, and H. Zhu, “Mobility-aware offload-
ing and resource allocation in a mec-enabled iot network with
energy harvesting,” IEEE Internet of Things Journal, vol. 8, no. 24,
pp. 17 541–17 556, 2021.

[33] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu,
“Energy-efficient admission of delay-sensitive tasks for mobile
edge computing,” IEEE Transactions on Communications, vol. 66,
no. 6, pp. 2603–2616, 2018.

[34] N. I. Nimalsiri, E. L. Ratnam, D. B. Smith, C. P. Mediwaththe, and
S. K. Halgamuge, “Coordinated charge and discharge scheduling
of electric vehicles for load curve shaping,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 7, pp. 7653–7665, 2022.

[35] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh,
“A lyapunov-based approach to safe reinforcement learning,”
Advances in neural information processing systems, vol. 31, 2018.

[36] L. Yan, X. Chen, J. Zhou, Y. Chen, and J. Wen, “Deep reinforcement
learning for continuous electric vehicles charging control with
dynamic user behaviors,” IEEE Transactions on Smart Grid, vol. 12,
no. 6, pp. 5124–5134, 2021.

[37] Y. Jiang, Q. Ye, B. Sun, Y. Wu, and D. H. Tsang, “Data-driven co-
ordinated charging for electric vehicles with continuous charging
rates: A deep policy gradient approach,” IEEE Internet of Things
Journal, vol. 9, no. 14, pp. 12 395–12 412, 2022.

[38] C. Dai, K. Zhu, and E. Hossain, “Multi-agent deep reinforcement
learning for joint decoupled user association and trajectory design
in full-duplex multi-uav networks,” IEEE Transactions on Mobile
Computing, pp. 1–15, 2022.

[39] H. Satija, P. Amortila, and J. Pineau, “Constrained markov decision
processes via backward value functions,” in Proceedings of Interna-
tional Conference on Machine Learning (ICML), 2020, pp. 8502–8511.

[40] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and
M. Ghavamzadeh, “Lyapunov-based safe policy optimization for
continuous control,” arXiv preprint arXiv:1901.10031, 2019.

[41] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and
Y. Tassa, “Safe exploration in continuous action spaces,” arXiv
preprint arXiv:1801.08757, 2018.

[42] M. Grant, S. Boyd, and Y. Ye, “Cvx: Matlab software for disciplined
convex programming,” 2008.

[43] C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen,
“Deep reinforcement learning for delay-oriented iot task schedul-
ing in sagin,” IEEE Transactions on Wireless Communications, vol. 20,
no. 2, pp. 911–925, 2021.

[44] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning
enabled task scheduling for online vehicular edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 2, pp. 598–611,
2022.

[45] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, “Tof-
fee: Task offloading and frequency scaling for energy efficiency of
mobile devices in mobile edge computing,” IEEE Transactions on
Cloud Computing, vol. 9, no. 4, pp. 1634–1644, 2021.

[46] I. I. Cplex, “V12. 1: User’s manual for cplex,” International Business
Machines Corporation, vol. 46, no. 53, p. 157, 2009.

[47] Z. Zhao, C. K. M. Lee, J. Ren, and Y. P. Tsang, “Optimal ev fast
charging station deployment based on a reinforcement learning
framework,” IEEE Transactions on Intelligent Transportation Systems,
vol. 24, no. 8, pp. 8053–8065, 2023.

[48] C. B. Saner, A. Trivedi, and D. Srinivasan, “A cooperative hierar-
chical multi-agent system for ev charging scheduling in presence
of multiple charging stations,” IEEE Transactions on Smart Grid,
vol. 13, no. 3, pp. 2218–2233, 2022.

[49] Z. Ning, X. Wang, J. J. P. C. Rodrigues, and F. Xia, “Joint com-
putation offloading, power allocation, and channel assignment

16

for 5g-enabled traffic management systems,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 5, pp. 3058–3067, 2019.

[50] O. Fallah-Mehrjardi, M. H. Yaghmaee, and A. Leon-Garcia,
“Charge scheduling of electric vehicles in smart parking-lot under
future demands uncertainty,” IEEE Transactions on Smart Grid,
vol. 11, no. 6, pp. 4949–4959, 2020.

[51] R. Jin, Y. Zhou, C. Lu, and J. Song, “Deep reinforcement learning-
based strategy for charging station participating in demand re-
sponse,” Applied Energy, vol. 328, p. 120140, 2022.

[52] Z. Sun, H. Yang, C. Li, Q. Yao, D. Wang, J. Zhang, and A. V. Vasi-
lakos, “Cloud-edge collaboration in industrial internet of things:
A joint offloading scheme based on resource prediction,” IEEE
Internet of Things Journal, vol. 9, no. 18, pp. 17 014–17 025, 2022.

[53] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya, and N. Georgalas,
“Dependent task offloading for edge computing based on deep
reinforcement learning,” IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2449–2461, 2022.

[54] R. Yan, Q. Xing, and Y. Xu, “Multi agent safe graph reinforcement
learning for pv inverter s based real-time de centralized volt/var
control in zoned distribution networks,” IEEE Transactions on
Smart Grid, pp. 1–1, 2023.

[55] Q. Bai, A. S. Bedi, M. Agarwal, A. Koppel, and V. Aggarwal,
“Achieving zero constraint violation for constrained reinforcement
learning via primal-dual approach,” Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 36, no. 4, pp. 3682–3689, Jun.
2022.

[56] P. Ning, H. Wang, T. Tang, L. Zhu, and X. Wang, “A service-
oriented energy efficient resource allocation approach for wireless
communications of the tunnel construction,” IEEE Transactions on
Vehicular Technology, vol. 72, no. 4, pp. 4948–4958, 2023.

[57] Q. Luo, T. H. Luan, W. Shi, and P. Fan, “Deep reinforcement
learning based computation offloading and trajectory planning for
multi-uav cooperative target search,” IEEE Journal on Selected Areas
in Communications, vol. 41, no. 2, pp. 504–520, 2023.

[58] L. Duembgen, “Bounding standard gaussian tail probabilities,”
arXiv preprint arXiv:1012.2063, 2010.

Yongchao Zhang received the M.S. degree in
computer technology from the School of Com-
puter, Beijing Information Science and Technol-
ogy University, China, in 2020. He is currently
working toward the PhD degree in computer sci-
ence at the University of Exeter. His research
interests include wireless communication, smart
grid, edge computing, and deep reinforcement
learning.

Jia Hu received the BEng and MEng degrees
in electronic engineering from the Huazhong
University of Science and Technology, China,
in 2006 and 2004, respectively, and the PhD
degree in computer science from the University
of Bradford, UK, in 2010. He is an associate
professor of computer science at the University
of Exeter. His research interests include edge-
cloud computing, resource optimization, applied
machine learning, and network security.

Geyong Min received the BSc degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 1995, and
the PhD degree in computing science from the
University of Glasgow, United Kingdom, in 2003.
He is a professor of high performance comput-
ing and networking in the Department of Com-
puter Science at the University of Exeter, United
Kingdom. His research interests include com-
puter networks, wireless communications, par-
allel and distributed computing, ubiquitous com-

puting, multimedia systems, modeling and performance engineering.

Xin Chen received the PhD degree in computer
science from the Beijing Institute of Technol-
ogy, Beijing, China. He is currently a professor
with the Computer School, Beijing Information
Science and Technology University. His current
research interests include the performance eval-
uation of wireless networks. He received the
Postdoctoral Fellowship in Computer Architec-
ture from Tsinghua University in 2006. He is a
senior member of the China Computer Feder-
ation (CCF), a member of the CCF Technical

Committee of Theoretical Computer Science, and the CCF Technical
Committee of Petri Nets.

Nektarios Georgalas is a Principal Researcher
with the Applied Research department of British
Telecom. In his current role, he leads two collab-
orative research programmes with key BT part-
ners delivering innovations in the areas of cloud,
data centres, network virtualisation, smart cities,
IoT and mobility. During his career with BT, since
1998, he has managed numerous collaborative
and internal research projects in areas such as
network management, market-driven data man-
agement systems, policy-based management,

distributed information systems, SOA/Web services, model-driven de-
sign and development of telecoms OSS, cloud and NFV. He is the
inventor and co-inventor of 11 patents. He has also authored more than
60 papers in international journals and conferences. He has served
as general co-chair, programme cochair, programme committee and
keynote speaker or invited panelist in top international IEEE academic
and TMForum conferences.

17

APPENDIX A
PROOF OF THE THEOREM 1
Proof. Combining (21) and (22), for ∀s ∈ S , we have

Lϵ̃
i(s) = E[

tdi∑
t=tai

ci(st) +
q̂i −Di,πB

(s)

tdi − tai
|πB , s],

= E[
tdi∑

t=tai

ci(st)|πB , s] + q̂i −Di,πB
(s)

(40)

Recall that E[
∑tdi

t=tai
ci,t(st)|πB , s] ≤ q̂i,∀s ∈ S . Then,

according to (40), we can obtain

Lϵ̃
i(s) ≤ 2q̂i −Di,πB

(s),∀s ∈ S. (41)

Rearranging the condition in Theorem 1, i.e.,∫
a |π

′(ai|s)− πB(ai|s)| ≤ ϵ̃i
2q̂i−Di,πB

(s) , we have∫
a
|π′(ai|s)− πB(ai|s)|(2q̂i −Di,πB

(s)) ≤ ϵ̃i. (42)

Substituting (41) into (42), we can get∫
a
|π′(ai|s)− πB(ai|s)|

∑
s′∈S

P (s′|s, ai)Lϵ̃
i(s

′) ≤ ϵ̃i. (43)

Since Lϵ̃
i(s) ≥ 0,∀s ∈ S , we have∫

a
π′(ai|s)

∑
s′∈S

P (s′|s, ai)Lϵ̃
i(s

′)−∫
a
πB(ai|s)

∑
s′∈S

P (s′|s, ai)Lϵ̃
i(s

′) ≤ ϵ̃i.
(44)

Adding ci(s) to the both sides of (44), it holds∫
a
π′(ai|s)[ci(s) +

∑
s′∈S

P (s′|s, ai)Lϵ̃
i(s

′)] ≤∫
a
πB(ai|s)[ci(s) + ϵ̃i +

∑
s′∈S

P (s′|s, ai)Lϵ̃
i(s

′)].
(45)

According to (18) and (22), (45) can be rewritten as,

Tπ′,ci [L
ϵ̃
i](s) ≤ Lϵ̃

i(s) (46)

As Tπ′,ci is a contraction mapping, we have

Di,π′(s) = lim
k→∞

T k
π′,ci [L

ϵ̃
i](s) ≤ Lϵ̃

i(s). (47)

Then, based on Lϵ̃
i(s) = Di,πB

(s)+ ϵ̃i · (tdi − tai) and (21),
we have

Di,π′(s) ≤ Di,πB
(s) + q̂i −Di,πB

(s) = q̂i. (48)

APPENDIX B
PROOF OF THEOREM 2
Proof. We first consider the case that µ′

i ≥ µB,i,∀i ∈ N .
According to the conditions of Theorem 2, we have

0 ≤ µ′
i − µB,i ≤ ς∗,∀i ∈ {1, 2, · · · , N}. (49)

Since ς∗ is the solution of x∗

σ =
√
2π

√
π
2 e

(− ς
2σ

)2

2 (− ς
2σ+

√
(− ς

2σ)2+ 8
π)

, based on 1√
2π

∫∞
x1

e−
x2

2 dx ≤

1
√

π
2 e

x2
1
2 (x1+

√
x2
1+

8
π)

[58], we can get

σ

∫ ∞

− ς∗
2σ

e−
ǎ2

2 dǎ ≤ x∗. (50)

As
∫∞
0 e−

(ǎ− ς∗
2

)2

2σ2 dǎ =
∫∞
− ς∗

2
e−

ǎ2

2σ2 dǎ = σ
∫∞
− ς∗

2σ
e−

ǎ2

2 dǎ

and according to (49),we have

1

2
≤

∫ ∞

0
e−

(ǎ−
µ′
i−µB,i

2
)2

2σ2 dǎ ≤
∫ ∞

0
e−

(ǎ− ς∗
2

)2

2σ2 dǎ ≤ x∗. (51)

As x∗ is the solution of xN − (
√
2πσ − x)N = ξ(

√
2πσ)N

2N ,
we can obtain

(

∫ ∞

0
e−

(ǎ−
µ′
i−µB,i

2
)2

2σ2 dǎ)N

−(
√
2πσ −

∫ ∞

0
e−

(ǎ−
µ′
i−µB,i

2
)2

2σ2 dǎ)N ≤ ξ(
√
2πσ)N

2N
.

(52)

Letting ai = ǎi +
µ′
i+µB,i

2 , it yields
∫∞
0 e−

(ǎ−
µ′
i−µB,i

2
)2

2σ2 dǎ =∫∞
µB,i+µ′

i
2

e
−(ai−µ′

i)
2

2σ2 dai. In addition, due to the symmetry of

Gaussian distributions, we can obtain

1−
∫ ∞

µB,i+µ′
i

2

1√
2πσ

e
−(ai−µ′

i)
2

2σ2 dai

=

∫ ∞

µB,i+µ′
i

2

1√
2πσ

e
−(ai−µB,i)

2

2σ2 dai

(53)

Thus, (52) can be rewritten as,∫ ∞

µB,1+µ′
1

2

· · ·
∫ ∞

µB,N+µ′
N

2

(e−
∑N

i=1(ai−µ′
i)

2

2σ2

−e−
∑N

i=1(ai−µB,i)
2

2σ2)da ≤ ξ(
√
2πσ)N

2N
.

(54)

Rearranging (54), we can obtain

2N ·
∫ ∞

µB,1+µ′
1

2

· · ·
∫ ∞

µB,N+µ′
N

2

1

(
√
2πσ)N

(e−
∑N

i=1(ai−µ′
i)

2

2σ2

−e−
∑N

i=1(ai−µB,i)
2

2σ2)da ≤ ξ.

(55)

Then, we have

1

(
√
2πσ)N

∫
|e−

∑N
i=1(ai−µ′

i)
2

2σ2 − e−
∑N

i=1(ai−µB,i)
2

2σ2 |da ≤ ξ.

(56)
Thus, we can find that at the case that µ′

i ≥ µB,i,∀i ∈
{1, 2, · · · , N}, if µ′

i − µB,i ≤ ς∗,∀i ∈ {1, 2, · · · , N}, then∫
a |π

′(a|s) − πB(a|s)|da ≤ ξ. Thanks to the symmetry of
Gaussian distributions, other cases when µ′

i ≤ µB,i can also
be easily proved. The detailed processes are omitted here to
be brief.

