
JSS Journal of Statistical Software
May 2024, Volume 109, Issue 10. doi: 10.18637/jss.v109.i10

Emulation and History Matching Using the hmer
Package

Andrew Iskauskas
Durham University

Ian Vernon
Durham University

Michael Goldstein
Durham University

Danny Scarponi
London School of Hygiene

and Tropical Medicine

Nicky McCreesh
London School of Hygiene

and Tropical Medicine

Trevelyan J. McKinley
University of Exeter

Richard G. White
London School of Hygiene

and Tropical Medicine

Abstract

Modeling complex real-world situations such as infectious diseases, geological phenom-
ena, and biological processes can present a dilemma: the computer model (referred to as
a simulator) needs to be complex enough to capture the dynamics of the system, but each
increase in complexity increases the evaluation time of such a simulation, making it dif-
ficult to obtain an informative description of parameter choices that would be consistent
with observed reality. While methods for identifying acceptable matches to real-world
observations exist, for example optimization or Markov chain Monte Carlo methods, they
may result in non-robust inferences or may be infeasible for computationally intensive
simulators. The techniques of emulation and history matching can make such determina-
tions feasible, efficiently identifying regions of parameter space that produce acceptable
matches to data while also providing valuable information about the simulator’s struc-
ture, but the mathematical considerations required to perform emulation can present a
barrier for makers and users of such simulators compared to other methods. The hmer
package provides an accessible framework for using history matching and emulation on
simulator data, leveraging the computational efficiency of the approach while enabling
users to easily match to, visualize, and robustly predict from their complex simulators.

Keywords: emulation, history matching, calibration, R.

https://doi.org/10.18637/jss.v109.i10
https://orcid.org/0000-0003-2825-3651
https://orcid.org/0000-0002-9161-9946
https://orcid.org/0000-0002-0216-9913
https://orcid.org/0000-0002-7587-9182
https://orcid.org/0000-0003-1409-8531
https://orcid.org/0000-0002-9485-3236
https://orcid.org/0000-0003-4410-6635

2 hmer: Emulation and History Matching in R

1. Introduction: Emulation and history matching

In many scientific disciplines, complex computer models, or simulators, are necessary to com-
prehend or explore the behavior of physical systems. Examples range from biological simula-
tions at the microscopic level (Vernon, Liu, Goldstein, Rowe, Topping, and Lindsey 2018) to
physical simulations of galaxy formation in the observable universe (Vernon, Goldstein, and
Bower 2010); of particular interest and relevance is the application of computer simulators
to models of infectious disease and epidemics. Despite their disparate subjects most, if not
all, of these models share similar characteristics: by virtue of the complexity of the system
being represented the simulators themselves are often necessarily complex, requiring a large
parameter space and a lot of computational time to run. If one wishes to use the simulator to
match to observed data (for instance to gain insight into the initial conditions of the formation
of a particular galaxy, or the characteristics of a particular strain of an infection), this can be
an arduous task where the region of parameter space with non-negligible support under the
data is small, hard-to-find, and often requires an infeasible number of simulator evaluations.
Even if a match to observed data can be found, we may not be able to determine with any
certainty whether the found parameter set is truly representative of the state of the real-world
system due to the various uncertainties present.

We deal with these drawbacks with two methodologies. The first, emulation, provides a
means by which we can statistically represent the output of the simulator given a sample
of runs from it. The emulators that we construct are fast to evaluate at unseen parts of
parameter space, and their statistical nature allows us to explicitly and rigorously encode
the uncertainty around predictions at any point in the parameter space. This alone can
be useful for understanding the structure of the simulator as well as offering a gateway to
a deep analysis of the uncertainty in a (necessarily imperfect) representation of a physical
system given by the simulator. In order to address the issue of finding acceptable matches
to observed data, we couple the emulation to a process of “history matching”: a means of
iteratively removing unacceptable parts of the parameter space so that, by complementarity,
we find the full space of acceptable parameter combinations. The conjunction of these two
techniques allows us to explore the parameter space systematically and quickly, minimizing the
number of computationally expensive simulator evaluations required to identify all possible
combinations of input parameters that could result in a match to observational data.

The history matching and emulation approach has been employed in a variety of epidemiologi-
cal systems, including for models of HIV (Andrianakis et al. 2017a,b) and the implementation
of anti-retroviral therapy therein (McCreesh et al. 2017a,b), models of tuberculosis and HIV
across multiple countries across the world (Clark et al. 2022), and large-scale agent-based
models of Covid in the UK (Aylett-Bullock et al. 2021; Vernon et al. 2022). Emulation has
also been applied successfully in a range of disciplines beyond epidemiology: for example,
in astrophysics (Higdon, Kennedy, Cavendish, Cafeo, and Ryne 2004; Kaufman, Bingham,
Habib, Heitmann, and Frieman 2011; Vernon, Goldstein, and Bower 2014); climate science
(Castelletti, Galelli, Ratto, Soncini-Sessa, and Young 2012; Williamson et al. 2013; Edwards
et al. 2021); engineering (Du, Sun, Goldstein, and Harrison 2021); and vulcanology (Gu
and Berger 2016; Marshall et al. 2019). However, the statistical machinery required to effi-
ciently and accurately apply emulation to such simulators presents a barrier to most modeling
communities. Techniques such as optimization, Markov chain Monte Carlo (MCMC), or ap-
proximate Bayesian computation (ABC) can be preferred due to their ease of implementation;

Journal of Statistical Software 3

however, these methods typically require large numbers of simulator evaluations and hence
may not be viable, or even computationally tractable, for high-dimensional spaces. Fur-
thermore, such techniques may not find the full space of acceptable matches, making robust
inference difficult or even impossible. The creation of package hmer (Iskauskas and McKinley
2024) for R (R Core Team 2024) is designed to remove the conceptual barrier that precludes
modelers from using emulation and history matching, providing accessible functionality to
perform the history matching procedure while giving the user the flexibility to interact with
the mathematical structure as much as they see fit.
There are a number of options in R that perform emulation on complex models, the majority
of which focus on Gaussian process (GP) emulation. Notable examples are emulator (Hankin
2005) and its successor multivator (Hankin 2012), stilt (Olson, Chang, Keller, and Haran 2018)
and RobustGaSP (Gu, Wang, and Berger 2018). While GP emulation is a powerful tool, it
can be challenging for a user to adequately specify the full Bayesian prior structure for such an
emulator and it includes distributional assumptions that can be hard to justify. In addition,
these packages focus (understandably) on the emulation of simulator outputs and not on the
tools that would aid a user in understanding and visualizing the structure of their simulator
via emulation. They also do not leverage the power of history matching, a key tool when the
principal expected usage of emulation is to find acceptable fits to data arising from complex
simulators of complex real-life processes. In contrast, due to the more flexible framework
and simpler prior specifications used, hmer may be a more accessible tool for emulation
and, coupled with the power of history matching, provides a more straightforward means of
approaching complex calibration problems using emulation. Package hmer is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=
hmer.
The structure of this paper is as follows. In Section 2 we briefly outline the fundamentals
of emulation and history matching. In Section 3 we detail the functionality of the main
components of the hmer package, along with their arguments. In Section 4 we apply the core
functionality, along with some of the visualization tools, to a toy model to demonstrate its
usage. In Section 5 we discuss one of the more advanced techniques available to an expert user,
particularly variance emulation for stochastic simulators. Finally, in Section 6 we conclude
and discuss considerations that should be made during the process of emulation.

2. Bayes linear emulation and history matching
In this section we briefly outline the mathematical framework of Bayes linear emulation, as
well as the algorithmic description of history matching. Multiple works exist that provide a
fuller description of emulation; see, for instance, Craig, Goldstein, Seheult, and Smith (1997);
Vernon et al. (2018); Santner, Williams, Notz, and Williams (2003); Bowman and Woods
(2016).

2.1. Emulation

Suppose we have a simulation of a real-world process which takes a set of input parameters,
described as a vector x of length d, and returns a set of m outputs {fi(x)}i=1,...,m. A (univari-
ate) Bayes linear emulator is a fast statistical approximation of the simulator output, built
using a comparatively small set of simulator runs, which provides an expected value for the

https://CRAN.R-project.org/package=hmer
https://CRAN.R-project.org/package=hmer

4 hmer: Emulation and History Matching in R

simulator output at any point x along with a corresponding uncertainty estimate reflecting
our beliefs about the uncertainty in the approximation.
Concretely, we may create a prior representation of a simulator output fi(x) in emulator form
as

fi(x) =
pi∑

j=1
βijgij(xAi) + ui(xAi) + wi(x).

Here, xAi , Ai ⊆ {1, . . . , d}, are the set of “active variables” for output fi(x); that is, the
components of x that are most influential in determining the behavior of fi(x). The gij are pi

known simple functions of xAi , with the βij the corresponding coefficients; together these two
terms define a regression surface encoding the global behavior of the output. The term ui(xAi)
is a second-order weakly stationary process which captures residual variation in xAi and can
be seen as governing the local behavior of the simulator output. We make the assumption
that ui(xAi) is zero-mean and a priori uncorrelated with the regression coefficients βij . We
further assume the following covariance structure for ui(xAi):

COV[ui(xAi), ui(x′
Ai

)] = (1 − δi)σ2
i c(xAi , x′

Ai
),

where c(x, x′) is a suitable correlation function (common examples can be found in Rasmussen
2003, Ch. 4) and δi ∈ [0, 1]. The “nugget” term, wi(x), represents the effects of the remaining
“inactive” inputs; we again assume this is zero-mean and uncorrelated to βij and ui(xAi), and
that

COV[wi(x), wi(x′)] = δiσ
2
i Ix=x′ , (1)

where Ix=x′ is an indicator function with Ix=x′ = 1 if x = x′ and 0 otherwise.
Before we can update the emulated structure with respect to data, we need to complete the
a priori specification for the random quantities βij , ui(xAi), and wi(x). This can be done in
a variety of ways: for instance, if one is willing and able to specify full distributions for these
quantities, we could then use maximum likelihood or maximum a posteriori (MAP) estimates
to determine plug-in estimates for their hyperparameters (Andrianakis and Challenor 2012),
or use cross-validation (Maatouk, Roustant, and Richet 2015). We may not be able (or
willing) to make full distributional specifications for these quantities, whether due to a lack
of prior knowledge required for such a specification or a lack of faith in any such specification.
It is rare, however, that we have similar reservations about the second-order specification
of such a system (that is, expectations and covariances), and the Bayes linear framework
requires only these quantities. We therefore leverage this framework and require, with the
assumptions listed already, specification of the expectation and covariance of the regression
coefficients E[β] and VAR[β], as well as the quantities that furnish the covariance structure of
ui(x) and wi(x); namely δi, σi, and the hyperparameters of the correlation function c(x, x′).
These can be determined using a full a priori specification or by using pragmatic plug-in
estimates (Santner et al. 2003; Kennedy and O’Hagan 2001; Rasmussen 2003). With these
quantities defined, we are in a position to update our knowledge in light of data using the
Bayes linear framework, which we now describe.
Let us imagine that we have a collection of runs obtained from running the simulator at a
series of points (x(1), x(2), . . . , x(n)), resulting in a collection of simulator outputs

Di =
(
fi(x(1)), . . . , fi(x(n))

)
.

Journal of Statistical Software 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
4

−
2

0
2

4

Emulation of a Simple 1d Function

x

f(
x)

Function value
Emulated value
Uncertainty Bounds

Figure 1: An example of emulation of a simple one dimensional example. Red dotted lines
represent 2σ bounds as determined by the emulator uncertainty, and training points are
denoted by black dots.

The Bayes linear emulator output for fi(x) at a new point x is given by the Bayes linear
update formulae (Goldstein and Wooff 2007):

EDi [fi(x)] = E[fi(x)] + COV[fi(x), Di]VAR[Di]−1(Di − E[Di]), (2)
VARDi [fi(x)] = VAR[fi(x)] − COV[fi(x), Di]VAR[Di]−1COV[Di, fi(x)], (3)

as well as the covariance between the outputs at two points x, x′

COVDi [fi(x), fi(x′)] = COV[fi(x), fi(x′)] − COV[fi(x), Di]VAR[Di]−1COV[Di, fi(x′)].

The emulator expectation given by Equation 2 provides a prediction for f(x) at an unevalu-
ated point x, while the emulator variance in Equation 3 provides us with the corresponding
uncertainty of this prediction. Both of these quantities are extremely fast to evaluate, requir-
ing little more than matrix multiplication, so the emulators allow an extensive exploration of
the function’s behavior over the input space. A one-dimensional example is shown in Figure 1,
where the true function can be evaluated: the black line represents the true value, while the
blue line is the corresponding emulator prediction. Red dotted lines represent 2σ bounds as
determined by the emulator uncertainty, and training points D are denoted by black dots.
This example is included within the hmer vignettes:

R> vignette("low-dimensional-examples", package = "hmer")

We note a few general features of emulation with reference to this example. At training points,
the emulator exactly reproduces the simulator output with zero variance.1 Away from the

1This is true of any deterministic emulation – this is not true of stochastic emulation, as we will see in
Section 5.

6 hmer: Emulation and History Matching in R

training points, the emulator’s interpolation and extrapolation follows the simulator values
well, with appropriate uncertainty as we move further from known points. The true value
does not extend beyond the bounds of the emulator uncertainty, even in the regime where
extrapolation is necessary.
We may briefly note that, were we to assume normal and Gaussian process priors for β and
u(x), respectively, then the approach here is almost identical to Gaussian process emulation
(Conti, Gosling, Oakley, and O’Hagan 2009). However, Gaussian process emulation requires
invoking additional distributional assumptions that may be difficult to justify, force stricter
and more complicated diagnostics to be satisfied, and fundamentally affect the final inference.
This demonstrates the advantage of Bayes linear emulation: in requiring only second-order
specifications, we are somewhat removed from the associated difficulty and pitfalls inherent
in a distributional approach. Finally, the simplicity of the Bayes linear framework allows
tractable consideration of more complex applications of emulation, including multi-level or
hierarchical emulation (Cumming and Goldstein 2009).
Despite its simple structure, it can still be difficult for a model expert to make the second-
order determinations with reasonable certainty. In Section 3.1 we discuss how the hmer
package creates the prior specifications and determines hyperparameters (for example those
in the correlation function c(x, x′)), in order to create robust emulators.

2.2. The implausibility measure and history matching
One of the main advantages of the emulation framework described above is speed compared
to the simulator that it approximates. An emulator evaluation at a previously unseen point
is often orders of magnitude faster than the complex simulator from which it is derived –
in applications we have used, the speed increase of emulation compared to simulation is
between 102 and 1010 time faster. We can therefore use an emulator to intuit the structure
and behavior of the simulated output over the parameter space, without resorting to large
numbers of computationally expensive simulator runs. The statistical nature of the emulators
means that any such intuition is made in the presence of the uncertainty of the emulator at
a given point, and this must be taken into account. However, a common aim when using
complex simulators is to answer the following question:

Given observed data corresponding to a simulator output, what combinations of
input parameters could give rise to output consistent with this observation?

Of course, there are a variety of approaches to matching complex simulators to data, from
optimization to Monte Carlo methods such as data-augmented Markov chain (DA-MCMC)
or sequential (SMC) methods (Gibson and Renshaw 1998; O’Neill and Roberts 1999; Jewell,
Kypraios, Neal, and Roberts 2009), to approximate Bayesian computation (ABC, McKinley
et al. 2018; McKinley, Cook, and Deardon 2009; Toni, Welch, Strelkowa, Ipsen, and Stumpf
2009), to full Bayesian inference (Kennedy and O’Hagan 2001). The benefits and drawbacks
of each are varied; primary in our consideration here is that in any technique we apply
we should best leverage the structure of our emulators to find the full space of acceptable
matches. To that end, we use the history matching approach (Craig et al. 1997), which aims
to find the space of acceptable parameter sets via complementarity. For further discussion and
comparison with other approaches, see Vernon et al. (2010); McKinley et al. (2018); Vernon
et al. (2018). We first must consider the link between an observation of a real-world process
to an emulator before we describe the history matching procedure.

Journal of Statistical Software 7

Let us denote the real physical process which one output of the complex simulator represents
by yi. Observations of this physical process are almost certainly made imperfectly (for exam-
ple, in epidemiological models it is common to suspect that case numbers for a disease are
subject to under-reporting issues). We link the observation zi to the physical process via

zi = yi + ei,

where ei is a random quantity reflecting the uncertainty about the accuracy of our observation.
Similarly, we should not expect that the simulator is a perfect representation of the real-life
process it represents; the simulator output fi(x) can be linked to the physical process via

yi = f(x⋆
i) + ϵi,

where ϵi, the structural model discrepancy, is a random quantity representing our uncertainty
about the imperfections of the simulator (Goldstein, Seheult, and Vernon 2013; Brynjars-
dottir and O’Hagan 2014; Vernon et al. 2010). Here we follow the “best input” approach,
which suggests that there exists a value x⋆ which best represents the real physical system
(Goldstein and Rougier 2006). We already have a well-defined means by which to link the
emulated output to the simulator, at least to second-order, due to the inherent uncertainty
quantification that the emulator provides. This set of uncertainties provides a chain allowing
us to link the emulator prediction directly to the observation. We frequently assume that ei

and ϵi are zero-mean, constant variance quantities that are uncorrelated with each other and
with the emulated output; the generalization is straightforward in the equations that follow.
This uncertainty structure allows us to approach the problem of matching in a markedly
different way to, e.g., optimization. Rather than seeking points whose simulator outputs
are likely to be good fits to the observational data, we instead focus on removing parts of
parameter space that are highly unlikely to give rise to good fits, even accounting for the
combined uncertainties linking the observation to the emulator. By systematically removing
bad parts of parameter space and improving the emulator predictions over the remaining “non-
bad” parameter space, we can arrive by complementarity at the complete space of acceptable
parameter combinations relative to the observational data.
Concretely, we define an implausibility measure (Vernon et al. 2014) for observation zi

I2
i (x) = (EDi [fi(x)] − zi)2

VARDi [fi(x)] + VAR[ei] + VAR[ϵi]
.

If I(x) is “large”2 then we may think it unlikely that we would obtain an acceptable match to
observed data were we to run the simulator at the point x; in this case, we term the point x
implausible. Conversely, if I(x) is “small” then we cannot rule out the possibility that x would
give rise to a good match to data; x is deemed non-implausible, or not-yet-ruled-out (NROY).
Note that a point can be deemed non-implausible either because the emulator expectation
E[fi(x)] is close to the observation zi, suggesting a good fit, or because the uncertainties
(particularly VAR[fi(x)]) are large, suggesting that investigation of that part of parameter
space using additional simulator runs would allow us greater insight into the structure of
the non-implausible space. A point is deemed implausible only if, even accounting for the

2The question of what we mean by “large” or “small” is a good one. We may appeal to Pukelsheim’s 3σ
rule (Pukelsheim 1994), which suggests that for a unimodal continuous distribution 95% of the probability
mass is within 3σ of the mean, to suggest a good starting point for a cut-off is I = 3.

8 hmer: Emulation and History Matching in R

uncertainties in the simulator, observation, and emulator, a simulator evaluation at this point
is very unlikely to provide a match to the observational data.
For multiple outputs we may also define a combined implausibility measure; a natural ap-
proach is to require all implausibility measures across all outputs to be satisfied, resulting in
a maximum implausibility measure for m outputs:

IM (x) = max
i

{Ii(x)}i=1,...,m.

Other obvious, and less restrictive, measures follow immediately: the second-maximum im-
plausibility is defined as

I2M (x) = max
i

{Ii(x) \ IM (x)}

and so on. Other options are available – for example, the definition of a multivariate im-
plausibility measure (Vernon et al. 2010) which can capture some of the correlations between
outputs; these will be included in a subsequent update of the hmer package.
The history matching algorithm proceeds as follows. We apply a series of iterations, called
waves, which discard regions of the parameter space at each wave. At wave k, a set of
emulators are constructed for a collection of outputs, Qk, based on a representative sample
of points and their corresponding simulator evaluations from wave k − 1.3 These emulators
are used to assess implausibility over the space, Xk, that remained at wave k − 1, discarding
those regions deemed implausible to produce representatives of a smaller parameter space,
Xk+1. These points in turn inform the emulators at wave k + 1 and so on. For an illustration
of the results of the process applied over multiple waves, including the concomitant reduction
of the non-implausible region, see Figure 6 in Scarponi et al. (2023).

1. Let X0 be the initial domain of interest and set k = 1;

2. Generate an appropriate design for a set of runs over the non-implausible space Xk−1;

3. Identify the collection of informative outputs, Qk, and obtain the corresponding simu-
lator evaluations by running the simulator for this design of points;

4. Construct new, more accurate, emulators defined only over Xk−1 for the collection Qk;

5. Use the emulators to calculate implausibility across the entirety of Xk−1, discarding
points with high implausibility to define a smaller non-implausible region Xk.

6. If any of our stopping criteria have been met, continue to Step 7. Otherwise, repeat the
algorithm from Step 2 for wave k + 1.

7. Generate a large number of acceptable runs from Xk, sampled appropriately.

By construction, it is the case that Xk ⊆ Xk−1 ⊆ · · · ⊆ X0. Thus the history matching proce-
dure iteratively removes parts of parameter space that are obviously unsuitable, allowing us

3Note that Qk need not be the entire set of outputs of interest — especially at early waves, we may select
an informative (and straightforward to emulate) subset of them with a view to including others at later waves.
The complementarity of the history matching procedure ensures that this is a valid approach, and allows us to
initially focus on “stable” outputs governed by large-scale behavior across the parameter space (Vernon et al.
2018).

Journal of Statistical Software 9

to create emulators that are more confident in the remaining region of interest, and eventually
leaving us with a well-understood, complete, non-implausible region. This approach allows
us to consider only collections of outputs, Qk, at each wave in a way that other methods
do not: since we are removing unsuitable regions of parameter space rather than focusing
on suitable regions, the absence of some outputs in a wave does not affect the validity of
the points chosen. Particularly at early stages of the history matching procedure, when the
parameter space can be large and contain corners of the space where the simulator behavior
is unstable, it is very useful to be able to omit outputs that cannot be satisfactorily emulated.
Once we have reduced the parameter space to a point where such an output can be reliably
emulated, we can reintroduce that output, with no deleterious consequences on our inference
about the non-implausible space.

The stopping condition touched on in Step 6 depends on the outcome of the waves and of
the eventual aim of the history match. One common stopping condition is if the emulator
uncertainties are small compared to any other uncertainties in the system; if VAR[fi(x)] is
small in contrast to VAR[ei] and VAR[ϵi], then additional waves of emulator training will not
remove any more parameter space and hence are not worth performing. Alternatively, the
waves of history matching can proceed to a point where Xk = ∅; this is informative, suggesting
a conflict between the simulator and the real-world observation, but there is obviously no
advantage to performing additional waves to “further” reduce this space. Finally, we may
wish to find matches to observational data in order to reliably infer the properties of other
simulated quantities, and depending on the application we may be satisfied if M matches are
obtained; in which case, it would be reasonable to stop the history match once we obtain the
desired M parameter sets (subject to considerations about the distribution of those parameter
sets).

The history matching algorithm, coupled with emulation, provides a powerful toolkit for effi-
ciently exploring the output of complex simulators in high-dimensional parameter space. The
emulators allow us to predict the simulator response at points in parameter space in a fraction
of the time a simulator evaluation would take, with the addendum that any such prediction
comes with uncertainty; the history matching approach takes advantage of the speed of eval-
uation and the uncertainty in prediction to systematically, rigorously and comprehensively
remove parts of parameter space that cannot result in an acceptable match to data. In so
doing, this approach provides an obvious framework in which we can consider the sources of
uncertainty in the simulator as well as that arising from the emulator and the observation.

One caveat appears in Step 2 of the history matching algorithm, where we specify that an
“appropriate” design of currently non-implausible points is required to train the emulators.
By “appropriate”, we mean that the points chosen are space-filling over Xk, thus mitigating
any problems the emulators may have in determining the regression surface or the uncertainty
therein (Santner et al. 2003). A main aim of the hmer package is to construct an accessible
framework for performing the history matching and emulation procedure, and to this end
ensuring that a representative sample can be elicited at each wave without recourse to user-
defined approaches and the concomitant complications this brings. The function detailed in
Section 3.3, along with its siblings, allow a user to step through the emulation and history
matching process with minimal difficulty or external specification of priors, and with no
recourse to distributional assumptions that would complicate or undermine any final inference.

10 hmer: Emulation and History Matching in R

3. The hmer package: fundamentals
Package hmer can be installed and loaded in the usual manner:4

R> install.packages("hmer")
R> library("hmer")

The hmer package, at its core, is centered around one R6 object ‘Emulator’ (itself dependent
on a ‘Correlator’ object) and three functions that act upon it, corresponding to emulator
construction (emulator_from_data()), emulator validation (validation_diagnostics())
and new point proposal (generate_new_runs()). We use R6 objects for the benefits that the
object-orientated approach gives, such as efficient modifying-in-place, delineation of public
and private functions and arguments, and the ability to set up prototypical objects for user
flexibility (a point we return to in Section 5.2). We detail each of these functions in turn, its
use, and the arguments provided to it. The functions have a variety of optional arguments
that can be passed to it; we do not discuss all of them but highlight those that are necessary
to explain the default behavior of the function. The hmer documentation may be consulted
for complete descriptions of the optional arguments and their usage. Descriptions of the
Emulator and Correlator structure and functionality may be found in Appendix A.

A note on parameter sets
In what follows, we frequently refer to collections of parameter sets. The structure of these
inputs is important to bear in mind; the ‘Emulator’ object and all associated functions as-
sume that parameter sets are provided to them as a data.frame whose rows are individual
parameter sets, with named columns corresponding to the names of the components of a
parameter set. This is crucial for the correct determination of active variables as well as
distinguishing a single d dimensional parameter set from d one dimensional parameter sets.
Hence, for a pair of parameter sets x1 = (1, 1), x2 = (2, −1) with components rate1, rate2,
a correct syntactical expression for it is

R> example_points <- data.frame(rate2 = c(1, -1), rate1 = c(1, 2))

(note that hmer automatically arranges columns before operations), whereas the following
will not work when passed to an Emulator function, due to the lack of named columns (the
issue persists the matrix is coerced to data.matrix or data.frame):

R> points <- matrix(c(1, 1, 2, -1), nrow = 2, byrow = TRUE)

3.1. Training emulators with emulator_from_data()

Often it is not practical or time-efficient to manually determine the prior specifications for an
emulator, especially in situations where we wish to emulate many outputs from our simula-
tor. Instead, we may provide the data from the simulator to emulator_from_data(), which
furnishes us with a list of ‘Emulator’ objects appropriately specified. The minimal syntax
of emulator_from_data(), allowing it to make its best determinations about the emulator
structure, is

4The development version of the package is located on GitHub (https://github.com/andy-iskauskas/
hmer).

https://github.com/andy-iskauskas/hmer
https://github.com/andy-iskauskas/hmer

Journal of Statistical Software 11

emulator_from_data(input_data, output_names, ranges)

Given a data.frame consisting of all parameter sets and their corresponding simulator out-
puts, the steps performed by this function for a single output fi(x) are as follows.

1. All input parameters are scaled to the range [−1, 1], using the ranges provided. This
guarantees orthogonality of linear and quadratic terms in the putative basis functions:
for a parameter xi,

⟨xi, x2
i ⟩ =

∫ 1

−1
x3

i dx = 0.

2. The regression surface is determined: basis functions in the parameters up to quadratic
order (with interaction terms) form the candidate space for the collection gij(x). The
relevant subset is decided upon by either stepwise add or stepwise delete, as appropriate
to the dimensionality of the parameter space compared to the number of simulator runs
available. The final collection of terms is examined and thinned based on the propor-
tion of variance explained by each term. The coefficients of the regression surface and
their variance matrix are also collected. By default, in the presence of reasonably large
numbers of simulator evaluations, we assume a separation between “global” and “local”
behavior – once determined, the regression coefficients are considered “known”, so that
VAR[β] = 0. This avoids identifiability issues between the regression surface and the
weakly stationary surface ui(x) and can help with our physical understanding of the
simulator behavior; the assumption of a “known” regression surface is seldom problem-
atic as the weakly stationary process u(x) accounts for any and all residual variability,
whether intrinsic to the output or as a consequence of the regression parameter estima-
tion. Other options are supported: for instance, we could go to the other extreme and
assume a non-informative prior for the regression coefficients, or take some compromise
in between these two choices (Santner et al. 2003).

3. The basis functions determined above are used to define the collection of active variables,
xAi . A variable is considered active if it contributes to a basis function: parameter xj

is considered active for fi(x) if one of the basis functions for fi(x) is xj or x2
j , or if it

appears in an interaction term xixj .

4. The residuals of the regression surface are determined from the above, and the specifica-
tions of the correlation structure are determined via a bounded maximum a posteriori
(MAP) estimate (Sorenson 1980). Unlike in traditional maximum likelihood estima-
tion, we do not believe in the existence of a “true” value for the hyperparameters in
the correlation structure, only reasoning that the correlation length should be no larger
than the greatest distance between roots of polynomial one order higher than the fitted
regression surface, and no smaller than the average distance away from those same roots
(Vernon et al. 2010). This is akin to viewing the contribution of the correlation struc-
ture as a third-order correction to the quadratic regression surface. The hyperparameter
estimation includes an estimate of δi.

5. The prior emulator for fi(x) is created using the above specifications via a call to
Emulator$new(...), and then the Bayes linear update formulae are applied to obtain
the trained emulators via em$adjust().

12 hmer: Emulation and History Matching in R

For multiple outputs, this process is applied in the expected fashion: we fit regression surfaces
to each output in turn, use their residuals to define the specifications for each correlation
structure, then perform Bayes linear adjustment on each. This approach pointedly makes no
statements about the dependency between outputs; if our univariate emulators can capture
their respective outputs well, then we deem this suitable for making statements about the
non-implausible space. Of course, one could impose correlations between outputs in a manner
similar to that in multivator (Hankin 2012) – an automated approach to this is an interesting
direction for improvement within the hmer package.
One thing to remember is that emulator_from_data() (and its descendants, one of which we
discuss in Section 5) will always return a named list of ‘Emulator’ objects, even in the event
that we wish to train to only one output. This ensures compatibility with functions in the
package. A particular emulator can be accessed using the usual syntax for named lists; for
example, in a list of three emulators emulating outputs y1, y2, y3, we may access the emulator
for y2 via either of the following commands:

emulators[[2]]
emulators$y2

The emulator_from_data() function can be customized in almost any conceivable way: for
details of the arguments that can be provided to it one may consult the associated help file.
However, in the absence of any strong prior knowledge about the behavior of the simulator
outputs, the default behavior is often appropriate to train acceptable emulators to the known
data.

3.2. Validation of emulators: validation_diagnostics()

Having obtained emulators for our series of outputs, we must ensure that they are suitable for
predicting their outputs over the current non-implausible space. As previously mentioned, a
variety of diagnostic tests are possible, but the function validation_diagnostics() collects
three of the most common such into one summary.

validation_diagnostics(emulators, targets, validation, ...)

Here, emulators is the list of emulators to validate, targets is the set of observations that
we wish to match to, and validation is a set of validation points: parameter sets for which
we have simulator runs which were not provided to the emulators during training. The only
mandatory argument is emulators: the omission of the argument targets precludes us from
performing one of the diagnostic tests and modifies the results of the others; if validation
is not provided then cross-validation is performed using the emulators’ training runs (the
default being leave-one-out cross-validation). For ease of notation, we refer to the set of runs
upon which the emulators are tested as the “validation set”, whether or not they comprise a
hold-out set or whether cross-validation has been performed.
The diagnostic tests are as follows:

• The emulator predictions over the validation set are compared to the corresponding
results from the simulator, accounting for the uncertainty. A “perfect” emulator would

Journal of Statistical Software 13

have EDi [fi(xj)] = fi(xj); as the emulators are statistical approximations with a well-
defined uncertainty structure we instead view an emulator prediction at a point xi as
satisfactory if, for a suitable choice of c ∈ R,

fi(xj) ∈
[
EDi [fi(xj)] − c

√
VARDi [fi(xj)], EDi [f(xj)] + c

√
VARDi [fi(xj)]

]
.

For example, c = 3 suggests that we deem a prediction satisfactory if the true simulator
evaluation lies within three standard deviations of the emulator prediction. If large num-
bers of points do not satisfy this requirement, it suggests a conflict between emulator
and simulator, and warrants investigation - especially if the emulator is systematically
over- or under-estimating the simulator output. The inclusion of the targets argu-
ment in validation_diagnostics() restricts the consideration of bad predictions to a
neighborhood of the observations, reflecting the fact that we are not overly concerned
by bad diagnostics in parts of the input space far from where the simulator itself would
agree with the data.

• The emulator implausibility is compared to the “simulator implausibility”, which we
define in a similar vein for a parameter set xj :

I2
sim(xj) = (fi(xj) − zi)2

VAR[ei] + VAR[ϵi]
.

Let Iem(xj , c) be the membership function for the emulator implausibility, Iem(xj , c) = 1
if Ii(xj) ≤ c and 0 otherwise, and similarly for the membership function for the simulator
implausibility Isim(xj , c). Then we may summarize the options in a “classical” form:5

Simulator Isim(xj , c) = 0 Type II Correct
Isim(xj , c) = 1 Correct Type I

Iem(xj , c) = 1 Iem(xj , c) = 0
Emulator

For the purposes of history matching, we have no concerns about “Type II” errors
(false positives): an emulator will often fail to rule out a point that would be ruled out
by the simulator, by virtue of the additional uncertainty induced by emulation. We
anticipate that later waves, when the non-implausible space has been reduced and the
emulators thus trained are more accurate, will rule out any such xj . However, “Type I”
errors are of more concern: this suggests that the emulator would rule out xj when
in fact the simulator output is acceptably close to the observational value. Any such
point represents a failure of the emulator to accurately represent the output response
across the full parameter space; there are, however, caveats. Firstly, in the context of
history matching this only becomes an issue if all other emulated outputs would deem
xj non-implausible: due to the structure of the emulators mismatches between emulator
and simulator output can often occur in corners of space where simulator behavior is
unstable, and where the majority of observational output is far from the data. Hence
a Type I error in isolation could be of concern, but the part of parameter space in

5The ordering of rows and columns is chosen to match the output of the diagnostic: see, for example,
Figure 4.

14 hmer: Emulation and History Matching in R

which xj resides is not worthy of consideration when considering all outputs. Secondly,
the usage of classical terminology is intentionally suggestive: we will see shortly that
our standard implausibility cutoff is chosen under the assumption that ∼ 95% of the
probability mass of is contained within the non-implausible region. Therefore we have
an approximate Type I error rate of α = 0.05, in accordance with normal arguments.
These comments notwithstanding, examination of this diagnostic should focus on those
“Type I” points and one should ensure that there are no systematic problems with
the emulator regression surface, estimation of uncertainty, or coverage of the input
parameter space. To ignore such concerns and proceed with history matching could
preclude parts of parameter space that, rightfully, we should consider as being capable
of giving rise to the observed reality.

Due to the fact that the calculation of implausibility requires us to have observational
data zi, this test cannot be run if validation_diagnostics() is not provided a targets
argument.

• The standardized prediction errors,

Ui(x) = fi(x) − EDi [fi(x)]√
VARDi [fi(x)]

, (4)

are calculated for each point in the validation set. Large standardized errors may suggest
conflict between the emulator and simulator predictions; in most cases we may appeal
to Pukelsheim once more and consider errors larger than 3 to be of interest. At the
same time, these standardized errors can indicate under-confidence or overfitting, if all
of the errors are very small (i.e., less than 1). Broadly speaking, we would expect that
the errors would be unimodally distributed somewhere around 0 with moderate extent.

The validation_diagnostics() function, by default, calculates all three of these measures
for each emulated output fi(x), plotting the results of the diagnostics (and highlighting prob-
lematic points) for ease of analysis, returning a data.frame of parameter sets which failed
one or more diagnostics. We will see this in action in Section 4.

3.3. Proposal of new points using generate_new_design()

Suppose we have trained a set of emulators, and by recourse to their diagnostics are satis-
fied that they can sufficiently emulate their outputs over the parameter region of interest.
We now wish to use these emulators to determine the new non-implausible region. As men-
tioned in Section 2.2, to successfully train a set of emulators for the next wave we require
an “appropriate” design over the non-implausible space: ideally it should be space-filling and
uniform across the space. For most (if not all) applications, a direct parametrization of the
non-implausible space is impossible, so we cannot simply define a membership function for
the non-implausible space Xk at wave k. Instead, we use a variety of methods to try to ensure
that we understand the boundary of Xk as well as suitably populate the interior of the space.
The minimal specification for the function generate_new_design() is

generate_new_design(emulators, n_points, targets)

Journal of Statistical Software 15

The emulators and targets arguments are the same as that of validation_diagnostics();
the n_points argument simply indicates how many points we wish to generate from the non-
implausible space X . The normal behavior of the function employs the following techniques:

1. A large Latin hypercube design (LHD, McKay, Beckman, and Conover 2000) is gener-
ated across the minimum enclosing hyperrectangle (MEH) of the non-implausible space
X . The points in the design are rejected if their implausibility exceeds our cut-off.

2. The points that remain are randomly pairwise-selected (with greater weight given to
those points which have larger separation) and points are sampled along a ray containing
the pair of points which extends to the edge of the MEH. Implausibilities along the ray
are calculated, with points being retained if they are non-implausible and satisfy one of
the following:

(a) An immediate neighbor of the point on the ray is deemed implausible;
(b) The point is one of the terminating points on the ray; that is, it lies on the boundary

of the space.

3. The remaining points from the LHD, supplemented by the boundary points, are used to
define the centers for a collection of ellipsoids, from which we may generate a mixture
distribution of uniform ellipsoids. The radii of the ellipsoids are such that each ellipsoid
extends to the boundary of the MEH, and so in general ellipsoids overlap significantly
– optimal radii for the ellipsoids are determined using a burn-in phase. When propos-
ing points, an importance sampling argument is used to avoid over-sampling at the
intersection of ellipsoids.

4. The space is resampled: the complete set of proposal points are thinned to half of the
number desired, according to a maximin argument. Steps 2 and 3 are performed again.

5. We apply thinning once more to obtain n_points points with a maximin argument.

We can see a diagrammatic demonstration of these steps in Figure 2, excepting Step 4 (the
resampling step). For this, a contrived example of a non-implausible space was defined: the
space is a cardioid with a hole removed from inside it. We can see that the line sampling step
(Step 2) picks up both the external and the internal boundaries, as we would expect.
While Figure 2 demonstrates the process for a simple 2 dimensional problem, the challenge
of uniformly exploring a small space in higher dimensions is difficult. For a high-dimensional
problem, the number of corners in the space increases exponentially, and it can be infeasible
to investigate all of the corners (let alone the complete boundary). However, missing such
corners is not disastrous in the context of history matching; parts of the boundary that
are missed will continue to have high emulator uncertainty and therefore not be ruled out
until we sample from that region. For specific problems where we have some intuition for or
expectation of viable parameter combinations, there may be other approaches that would give
a more representative sample of the space; we discuss briefly how these could be incorporated
in Section 5.
The default approach is designed to leverage the emulators’ comparative speed in evaluat-
ing implausibility – an emulator evaluation takes O(10−5) seconds which vastly outpaces

16 hmer: Emulation and History Matching in R

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x
y

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

y

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

x

y

Figure 2: From top-left to bottom-right, the steps in generate_new_runs, applied to an artificial
example of a non-implausible space: Latin hypercube sampling with rejection; line sampling, uniform
ellipsoid importance sampling, and a final thinning stage. Points in grey are rejected points (in the
case of Latin hypercube sampling and line sampling) or the initial set of points defining the mixture
distribution (for importance sampling).

most simulator outputs – in order to explore both the boundary and the interior of the non-
implausible region in a straightforward manner. With this in mind, the steps above can
efficiently provide a uniform sample from a non-implausible space, while also giving us ade-
quate coverage on the boundary of the space. Were we to train emulators on the proposed
points, the boundary points therein will aid in the learning of the regression terms while the
points in the interior will aid in the learning of the weakly stationary process.

Journal of Statistical Software 17

4. Example: Application to an SIRS model
We now use the core functions and objects described in Section 3 on a simple toy SIRS epi-
demic model, representing movement through a system where an individual can be (S)uscep-
tible to the infection, (I)nfected with it, or (R)ecovered from it. Recovered individuals can
return to the susceptible state, representing a loss of immunity over time. While simple, it
will suffice to demonstrate the functionality we wish to show. The model in question can be
described by the following differential equations:

dS

dt
= αSRR − αSISI

S + I + R
,

dI

dt
= αSISI

S + I + R
− αIRI,

dR

dt
= αIRI − αSRR.

The model has three states S, I, and R representing susceptible, infected, and recovered
individuals; three input parameters, αSI , αIR and αSR representing rate of infection, recov-
ery, and waning immunity respectively; and we will focus on three outputs nS ≡ S(10),
nI ≡ I(10), nR ≡ R(10), namely the numbers of susceptible, infected, and recovered indi-
viduals at time t = 10. The choices of a single output from each compartment are purely for
demonstrative purposes; we choose to investigate these outputs at t = 10 in order to allow
sufficiently interesting behavior across the parameter space without reverting to complete
die-out of the disease modeled. We also note that, in the absence of vital dynamics, we would
expect S(t)+I(t)+R(t) = N constant, which provides a good check on the performance of the
emulators (which are not, a priori, provided with this constraint). The model is initialized at
t = 0 with S(0) = 950, I(0) = 50 and R(0) = 0. The fact that this model is low-dimensional
and consists of relatively uncomplicated differential equations means that we could generate a
vast number of simulator evaluations and forgo emulation entirely: this is seldom the case in
real-world applications. However, even in this simple example the emulator evaluation time
is faster than that for the simulator by two orders of magnitude; for more complex simulators
and applications, this difference becomes even more pronounced and forms a large part of the
motivation for employing emulation.
The model considered is comparatively simple, for ease of evaluation, while being complex
enough to necessitate functionality of the package that we wish to detail below. Examples
of more complex applications of emulation and history matching, including some using hmer
directly, can be found in Andrianakis et al. (2015); Craig et al. (1997); Vernon et al. (2010);
Scarponi et al. (2023); Vernon et al. (2022).

4.1. Initial simulator runs and emulator training

To set up the first wave of history matching, we require a set of simulator runs across the
full parameter space in question. One option would be to create a Latin hypercube design
with the desired number of points before putting them into the simulator function: sample
functions for doing so can be found at the top of the Supplementary Material (namely the
functions ode_results(), get_res(), and get_lhs_design()). Methods that allow us to
cover the space and encompass as much of the interesting simulator behavior as possible are
reasonable for producing a first design6 (Santner et al. 2003).

6However, the hmer package has a collection of pre-built datasets which includes the requisite runs from
this simulator and parameter space: they can be accessed using data("SIRSample", package = "hmer"), and
we will use these henceforth.

18 hmer: Emulation and History Matching in R

The ranges of our parameters are αSI ∈ [0.1, 0.8], αIR ∈ [0, 0.5], αSR ∈ [0, 0.05]. This choice
of ranges is somewhat artificial, but our general principle is that we choose initial ranges
to be large enough to cover all feasible parameter combinations without being unphysical.
Wider ranges will, of course, result in more “waves” of history matching: balancing extensive
ranges against computational demands is generally a judgement to be determined by the
model expert. The “observations” we wish to match to are synthetic, as this model has no
real world analogue; to these targets we have added some uncertainty reflecting the range of
observation we would see in reality. Both ranges and targets are defined as follows.

R> ranges <- list(aSI = c(0.1, 0.8), aIR = c(0, 0.5), aSR = c(0, 0.05))
R> targets <- list(nS = c(580, 651), nI = list(val = 169, sigma = 8.45),
+ nR = c(199, 221))

Given the synthetic nature of the model we obtained targets by running the equivalent stochas-
tic model at a given parameter set, using this as a proxy for observation of the quantities. In
concrete applications such targets arise from observational studies or secondary modeling (for
example, data on confirmed cases of a disease and the derived prevalence or incidence based
on observation). Note that we have two different conventions for specifying targets and their
uncertainties. The one which most aligns with the mathematical discussion of observation
error is that for the output nI, where we observe a value with a corresponding uncertainty.
Such a framework is not always possible; for distributional or other reasons we may only be
able to state that we know that our target value lies within a specified interval. These two
conventions can be used concurrently in a set of targets as deemed necessary.
Our initial simulator runs, consisting of 30 training runs and 60 validation runs, are shown
in Figure 3. Note that we plan to use only 30 runs to train the emulators over the entire
space: this is the minimum that we should consider using for a 3 dimensional system such as
this.7 Nevertheless, this is very little information required by the emulators for us to make
inferences about the structure of the entire space. The choice of the size of the training
and validation sets, as well as the spread of points within, is a model-dependent decision:
generally we would try to ensure both sets are representative of model behavior, in that they
cover the input parameter space insofar as is possible. The size of the validation set may
vary depending on the computational cost of obtaining simulator evaluations, and depends
on expert judgement and understanding of model constraints. With the initial parameters
and data set up, we use hmer to train some emulators to the three targets.

R> ems_wave1 <- emulator_from_data(SIRSample$training,
+ names(targets), ranges)

Fitting regression surfaces...
Building correlation structures...
Creating emulators...
Performing Bayes linear adjustment...

There are a number of messages that indicate our progress through emulator training; in
the event where there are many more outputs to train to, further messages are displayed to

7As a general rule of thumb, one should aim to have at least 10d points for a d dimensional parameter space
as training runs (Loeppky, Sacks, and Welch 2009).

Journal of Statistical Software 19

aSI
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0 0.1 0.2 0.3 0.4 0.5

aIR

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

aSR

Figure 3: The initial set of simulator runs: runs that we will use for training are plotted as
circles and those for validation as crosses.

indicate which output is being considered. Once trained, we may examine the structure of an
emulator by invoking its built-in print() statement: for example, to view the emulator for
the nI output, we can enter the following.

R> ems_wave1$nI

Parameters and ranges: aSI: c(0.1, 0.8): aIR: c(0, 0.5): aSR: c(0, 0.05)
Specifications:

Basis functions: (Intercept); aSI; aIR; I(aIR^2); aSI:aIR
Active variables aSI; aIR
Regression Surface Expectation: 149.8096; 199.5466; -281.9466;
201.6298; -196.1621

Regression surface Variance (eigenvalues): 0; 0; 0; 0; 0
Correlation Structure:
Bayes-adjusted emulator - prior specifications listed.

Variance (Representative): 3226.426
Expectation: 0
Correlation type: exp_sq
Hyperparameters: theta: 0.9033
Nugget term: 0.05

Mixed covariance: 0 0 0 0 0

20 hmer: Emulation and History Matching in R

The print statement details the basis functions chosen, the corresponding regression coeffi-
cient prior specifications, and the active variables, as well as the specifics of the Correlator
object: particularly its prior variance σ2, hyperparameters for the chosen correlation func-
tion, and the nugget term δ. Note that the Emulator print statement also informs us that the
emulator has been Bayes-adjusted. We can access the unadjusted emulator, should we wish
to (for example to make adjustments to the correlation structure or regression surface), by
calling ems_wave1nIo_em. We may already note from this printout that the variable αSR

is not anticipated to be informative for the number of infected people at t = 10, due to its
absence in the active variable set. This is a partial justification for our choice of a “known”
regression surface – simply by examining the structure of the regression surface, we can deter-
mine physically interesting properties of the simulator. Here, the constructed emulator lends
weight to a qualitative observation about the system: we would not expect waning immunity
to have had a substantial effect on the output of the simulator at t = 10, since it is unlikely
that we have had a large number of individuals infected, recovered, returned to susceptibility,
and infected once more. Such observations can be extremely useful in motivating further
explorations of particular regions of the parameter space of the simulator, and we may obtain
these insights through a simple print statement in the package.
We, in principle, now have a collection of emulators for the outputs of interest, and can
therefore explore the parameter space without recourse to simulator evaluations.

4.2. Validating the emulators

Before we do anything else with these emulators, we must ensure they are suitable for in-
ference. We use the validation_diagnostics() function to check the quality of their pre-
dictions with respect to unseen simulator runs. Along with the following code output, it
produces a plot of the diagnostics which we include in Figure 4.

R> validation_diagnostics(ems_wave1, targets, SIRSample$validation)

[1] aSI aIR aSR
<0 rows> (or 0-length row.names)

The output of validation_diagnostics() is an empty data.frame, indicating no conflict
between the emulators and the simulator outputs. Each row of the plot corresponds to an
emulated output; each column to a different diagnostic.
The first column compares the simulator output (x-axis) with the emulator prediction (y-axis):
the green line represents the line of “perfect” fit where fi(x) = EDi [fi(x)]. The error-bars
encode the emulator uncertainty around its prediction. We can see that almost all error-
bars contain the green line. There are a few exceptions to this, where error-bars just miss
the line of perfect fits — in particular, the prediction in the lower range of the nR emulator
(bottom-left plot). The reason these have not been judged to have failed diagnostics is
due to the fact that the simulator predictions are a long way away from the observation —
according to the simulator the parameter set in the bottom of the nR plot gives a value in
the region of 10 recovered people, when in actual fact we anticipate any relevant points to
provide a value closer to 200 as a minimum. If we omit the targets argument from the
validation_diagnostics() function call, these points will be highlighted in red, and the
function would return a non-empty data.frame, as shown in Figure 5 in general and for the nR

Journal of Statistical Software 21

0 200 400 600 800

0
40

0
80

0

nS

f(x)

E
[f(

x)
]

0 20 60 100

0
5

10
15

nS

Emulator Implausibility

S
im

ul
at

or
 Im

pl
au

si
bi

lit
y

nS

Standardised Error

F
re

qu
en

cy

−4 −2 0 2 4

0
5

10
20

0 200 400 600 800

0
20

0
60

0

nI

f(x)

E
[f(

x)
]

0 5 10 20 30

0
20

40
60

80

nI

Emulator Implausibility

S
im

ul
at

or
 Im

pl
au

si
bi

lit
y

nI

Standardised Error

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2

0
5

10
20

100 300 500

−
10

0
20

0
40

0
60

0

nR

f(x)

E
[f(

x)
]

0 10 20 30 40 50

0
5

15
25

nR

Emulator Implausibility

S
im

ul
at

or
 Im

pl
au

si
bi

lit
y

nR

Standardised Error

F
re

qu
en

cy

−6 −2 0 2 4 6 8

0
5

10
20

Figure 4: Plots of the validation diagnostics for the SIR emulators.

emulator specifically. The second column considers potential emulator misclassification. On
the x-axis is emulator implausibility for each point; on the y-axis is simulator “implausibility”
as defined in Section 3.2. A vertical and horizontal line are placed on the plot to indicate
the relevant cut-off values for each of the simulator and emulator. Points in the upper-right
or lower-left segments fall into the first category detailed in the relevant part of Section 3.2
(simulator agrees with emulator) and points in the upper-left segment fall into our second
category (emulator does not rule a point out); neither of these are cause for concern. A
point in the lower-right quadrant suggests that it would be ruled out as implausible by the
emulator but not by the simulator, would be highlighted in red, and would warrant further
investigation as already discussed in Section 3.2.
The final column provides a histogram of the standardized errors in Equation 4. Here, we are
simply looking to see a reasonable spread centered around 0, with no more than a couple of
outliers (points for which Ui(x) has magnitude greater than around 3, say). We see that this
is the case; there is one potentially egregious point in the bottom-right plot, but we expect
this due to the considerations of the corresponding plot in the first column.

22 hmer: Emulation and History Matching in R

0 200 400 600 800

0
40

0
80

0

nS

f(x)

E
[f(

x)
]

nS

Standardised Error

F
re

qu
en

cy

−4 −2 0 2 4

0
5

10
20

0 200 400 600 800

0
20

0
60

0

nI

f(x)

E
[f(

x)
]

nI

Standardised Error

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2

0
5

10
20

100 200 300 400 500

−
10

0
20

0
40

0
60

0

nR

f(x)

E
[f(

x)
]

nR

Standardised Error

F
re

qu
en

cy

−6 −4 −2 0 2 4 6 8

0
5

10
20

40 60 80 100 120 140

−
50

0
50

10
0

15
0

20
0

25
0

nR

f(x)
E

[f(
x)

]

Figure 5: Validation diagnostics without provided targets for all emulators (left) and com-
parison diagnostics for nR (right).

A number of other diagnostic functions are available in the package, including a series of plots
obtained from individual_errors() which implements many of the tests described in Bastos
and O’Hagan (2009), residual_diag() which allows us to look directly at the performance
of the regression surface, and distributional tests for goodness-of-fit within summary_diag().
Each of these functions takes a single emulator as an argument, and these can be used to
supplement any intuition gained from validation_diagnostics().

4.3. Emulator and history matching visualization

The major advantage of emulation is that we can efficiently explore the parameter space
without a large number of (usually computationally expensive) simulator runs. Here we
detail a few functions in hmer that allow us to inspect and gain insight into the simulator
behavior across the full parameter space, not just those parts for which we have runs.
The most useful function for this purpose is emulator_plot(emulators, plot_type, ...)
which produces a contour plot of a desired emulator statistic over a two-dimensional slice of
the parameter space. It can be called with a collection of emulators as its first argument,
or directly from a single emulator via the plot command. Either option returns a ‘ggplot2’
object which, by the nature of such objects, can be modified after the fact to add other plot
objects to it.8

R> emulator_plot(ems_wave1)
R> ems_wave1nRplot(plot_type = 'sd', params = c('aSI', 'aIR'),
+ fixed_vals = c(aSR = 0.045)) +
+ geom_point(data = SIRSample$training, aes(x = aSI, y = aIR))

8The first of these commands returns a ggmatrix of plots, so augmentation of individual plots is more
involved but still possible. For details on modifying these objects, consult the ggplot2 (Wickham 2016) and
GGally (Schloerke et al. 2024) packages.

Journal of Statistical Software 23

nS

nR

nI

 nS nI nR

−200 −100 −60

−148 −56 −33.6

−96 −12 −7.2

−44 32 19.2

8 76 45.6

60 120 72

112 164 98.4

164 208 124.8

216 252 151.2

268 296 177.6

320 340 204

372 384 230.4

424 428 256.8

476 472 283.2

528 516 309.6

580 560 336

632 604 362.4

684 648 388.8

736 692 415.2

788 736 441.6

840 780 468

892 824 494.4

944 868 520.8

996 912 547.2

1048 956 573.6

0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

aSI

aI
R

Emulator Expectations

Figure 6: The output from the emulator_plot function. Each plot displays the qualitative
behavior of the output across the particular two-dimensional slice of parameter space.

The output of the first of these commands is shown in Figure 6. For multiple output plots, no
scale is typically shown as we will likely be considering trends of behavior, and individually
plot those emulators where magnitude of prediction is paramount: here, we have included
them for completeness. We can see the perturbations arising from the Bayes linear update
beyond that of the regression surface: recall that the regression surfaces consist of constant,
linear and quadratic terms, which would not be sufficient to describe the contour lines we see
here.
Indeed, one can view the unadjusted emulators using a very similar plotting argument so as
to make a direct comparison by using the em$o_em argument: for example to examine the
prior (untrained) emulator for output nR

R> plot(ems_wave1nRo_em)

The result of this is shown in Figure 7. We have plotted the unadjusted and the adjusted
emulators on their own in order to include the scales over which they are defined, and can see
clearly the effect of the training points on the structure of the output surface as predicted by
the emulator. The emulator_plot() command takes a variety of arguments alongside the
emulators. Some have been used in the examples above: the params argument determines
which two parameters are to be plotted with respect to, and the fixed_vals argument

24 hmer: Emulation and History Matching in R

0.0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8
aSI

aI
R

exp

(−172.8, −144.0]

(−144.0, −115.2]

(−115.2, −86.4]

(−86.4, −57.6]

(−57.6, −28.8]

(−28.8, 0.0]

(0.0, 28.8]

(28.8, 57.6]

(57.6, 86.4]

(86.4, 115.2]

(115.2, 144.0]

(144.0, 172.8]

(172.8, 201.6]

(201.6, 230.4]

(230.4, 259.2]

(259.2, 288.0]

(288.0, 316.8]

(316.8, 345.6]

(345.6, 374.4]

(374.4, 403.2]

(403.2, 432.0]

(432.0, 460.8]

(460.8, 489.6]

nR Emulator Expectation

0.0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8
aSI

aI
R

exp

(−82.5, −55.0]

(−55.0, −27.5]

(−27.5, 0.0]

(0.0, 27.5]

(27.5, 55.0]

(55.0, 82.5]

(82.5, 110.0]

(110.0, 137.5]

(137.5, 165.0]

(165.0, 192.5]

(192.5, 220.0]

(220.0, 247.5]

(247.5, 275.0]

(275.0, 302.5]

(302.5, 330.0]

(330.0, 357.5]

(357.5, 385.0]

(385.0, 412.5]

(412.5, 440.0]

(440.0, 467.5]

(467.5, 495.0]

(495.0, 522.5]

(522.5, 550.0]

nR Emulator Expectation

Figure 7: The emulator expectation for output nS before (left) and after (right) Bayes linear
adjustment.

determines the fixed values of the remaining parameters. The plot_type command can be
one of five options: "exp" for emulator expectation (the default); "var" for emulator variance;
"sd" for emulator standard deviation, "imp" for emulator implausibility; and "nimp" for n-
th maximum implausibility. The latter two arguments require targets to be specified; the
final argument can also accept an nth argument to determine which maximized implausibility
to plot. We may also increase the fidelity of the plot using the points-per-dimension (ppd)
argument.
Central to the history matching procedure is the definition of an implausibility measure,
as the choice of a cutoff for a point to be deemed non-implausible is integral to the ex-
tent to which the parameter space is reduced on subsequent waves. Correspondingly, the
plots from emulator_plot() where we visualize implausibility of an emulated output (via
plot_type = "imp") or implausibility of a collection of emulators as considered in Section 2.2
(via plot_type = "nimp") can be critical in making determinations on what constitutes an
acceptable cutoff. We will discuss other means of selecting an appropriate implausibility
cutoff shortly, but we first note that we may use the emulator plots to examine the non-
implausible space under a number of putative cutoffs, as well as the geometric structure of
the space. The output of each of these commands is shown in Figure 8, and gives an indi-
cation of the contribution of the nS emulator (left) to our overall measure (right): a clear
correlation between acceptable values of aSI and aIR is present if we wish to simply match
to the number of susceptible people, but the structure of the overall space when all outputs
are considered limits this simple relationship considerably. After considering the shapes and
size of the contours, were we to determine that the amount of space that would be reduced at
a given implausibility cutoff was too severe or too conservative we may apply this knowledge
in the history matching procedure by selecting an informed value for the cutoff.

R> emulator_plot(ems_wave1$nS, plot_type = "imp", targets = targets)
R> emulator_plot(ems_wave1, plot_type = "nimp", targets = targets,
+ ppd = 40, cb = TRUE)

Journal of Statistical Software 25

0.0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8
aSI

aI
R

I

15

10

5

3

2

1

0

nS Emulator Implausibility

0.0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8
aSI

aI
R

I

15

10

5

3

2

1

0

 Maximum Implausibility

Figure 8: The emulator implausibility for a single emulated output (in this example, the
number of susceptible people, nS) and the maximum implausibility over all three emulated
outputs.

Implausibility plots and colorblindness. In any plots which calculate and display im-
plausibility, the common color scheme is shading from red to green, where red indicates a
higher (and therefore worse) implausibility value. This aligns with the common scheme used
in previous papers (for example Vernon et al. (2010), Figure 6), but can cause problems for
colorblind users, particularly those with deuteranopia or protanopia. In any plot where this
issue could arise, the cb option exists, which when set to TRUE plots instead on a two-colour
gradient color scheme that aligns with the tenets behind the viridis package (Garnier, Ross,
Rudis, Sciaini, Camargo, and Scherer 2024). Any other plots in the hmer package use either
a single-color scheme or one of the viridis color schemes.
There are many other visualization functions available within the hmer package: for instance,
functionality to visually examine which variables are active for a collection of emulated out-
puts (plot_actives()); plotting tools to identify the most influential inputs to each output
(effect_strength()); simple plotting functions to demonstrate output-input dependence
based on either the emulator predictions or on the simulator output directly (output_plot(),
behaviour_plot()); and a pairs plot to simultaneously examine diagnostics and implausi-
bility relative to their position in parameter space (validation_pairs()).9 We detail only
two further emulator visualization tools here, which deal with considering implausibility: the
first is the plot_lattice() function and the second is the space_removed() function.
Despite its utility, a two-dimensional slice of parameter space does not give us a definitive
picture of where acceptable matches might be found, and is highly dependent on the slice
chosen. For instance, suppose the acceptable part of parameter space here lies in a small
neighborhood of αSI = 0.45, αIR = 0.25, αSR = 0.01 (i.e., the center of the space in αSI

and αIR but toward the lower end of the range for αSR), and we consider implausibility
plotted over αSI and αIR with αSR = 0.045. The plot thus produced would be unlikely to
show the probable location of the non-implausible region, and in fact may suggest that a

9For details of any of these, see the documentation (e.g., ?validation_pairs).

26 hmer: Emulation and History Matching in R

non-implausible region could exist away from the center of the space since the variance may
be higher at the edges of the space. We could produce multiple slices through the space quite
easily in this example, but for higher-dimensional spaces this becomes infeasible. Instead, we
may turn to the plot_lattice() command.
Taking as a minimum the emulators and the corresponding targets, the plot_lattice()
function returns a grid of plots. Each plot represents a summary of the implausibility over
the entire space, projected in the relevant fashion:

• Minimum maximized implausibility (upper triangle): the maximum (or n-th-maximum)
implausibility is calculated across the space. We collect implausibilities based on the
projection of the input points into the particular two-dimensional subspace of interest,
and calculate the minimum of the (n-th) maximum implausibilities. This quantity is
plotted;

• Two-dimensional optical depth (lower triangle): Points are collected in the same fashion
as above, but we instead consider the proportion of points projected that have acceptable
implausibility. A value of 1 suggests that all projected points are acceptable; a value of
0 suggests that none are;

• One-dimensional optical depth (diagonal): Similar to the two-dimensional case but
projecting to a single parameter direction. Each of these plots has y-axis range of [0, 1].

The term “optical depth” corresponds to a particular conceptualization of the non-implausible
region. Let us assume that we have determined an implausibility cutoff that delineates accept-
able and unacceptable points, and choose two parameter directions of interest. The optical
depth is then defined as the thickness of the non-implausible space along the line of sight
defined by picking fixed values for the two chosen parameters. This is easiest to visualize
in three dimensions, as the optical depth for any pair of the chosen parameters is the den-
sity along a line in the remaining direction, but the concept applies in higher dimensions.
This, combined with the minimum maximized implausibilities, give the outline of the non-
implausible region as well as a measure of its density: for more details, see Vernon et al.
(2018). Note that for a “true” description of optical depth, one would need to integrate over
the (d − 2) directions not included in the plot for each pair of parameters; the efficiency of
emulator evaluation means that in many applications we may approximate this integration by
considering sufficiently many points in the (d − 2) dimensional region. For lower dimensional
input spaces, we evaluate the emulators over a fine regular grid; for higher dimensional spaces
where this becomes computationally infeasible even using the emulators, we generate a large
Latin hypercube from which we infer the density for each pair of parameter values of interest.
The use of plot_lattice() is as below, with the corresponding output in Figure 9.

R> plot_lattice(ems_wave1, targets, ppd = 35)

This visualization can be extremely helpful in visualizing the overall acceptability of the
space with respect to pairs of arguments, as well as identifying correlation structure between
input parameters (for example, that between αSI and αIR). The optical depth also gives us
an indication of where in the projected space the strongest chance of finding an acceptable
match lies: we can see a stronger signal toward the center of the αSR parameter range.
In this particular example, the inclusion of the αSR parameter in the plot provides little

Journal of Statistical Software 27

aSI aIR aSR

aS
I

aIR
aS

R

0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.4 0.00 0.01 0.02 0.03 0.04

Min. Imp

15

10

5

3

2

1

0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Op. Depth

Minimum Implausibility and Optical Depth

Figure 9: The result of a call to plot_lattice(). Each plot is a particular combination
of parameters; the upper diagonal provides minimum implausibility across the space; the
lower diagonal the two-dimensional optical depth; the diagonal one-dimensional optical depth.
We note that the combined effect of αSI and αIR is driving the identification of the non-
implausible region.

additional information at this wave, due to its subdominant impact on the emulated outputs
(as remarked on in Section 4.1); we can see this by the predominantly straight lines in those
plots that include it. In more realistic higher dimensional problems such a combined plot of
all parameter pairs can be crucial in understanding the structure of the non-implausible space
– for example, in a more complex model we may treat this set of waves of history matching
as exploratory, choosing in a final assay to exclude αSR from our varying parameters. In so
doing, we may account for this parameter’s exclusion with suitable internal discrepancy via
a sensitivity analysis based on this ensemble of runs, providing this to the emulators via the
discrepancies argument mentioned in Appendix A. The speed of emulator evaluation makes
such an exploratory analysis feasible, as we have been able to explore the full parameter space
and make this inference with only a handful of simulator runs to guide us.
Finally, the choice of implausibility cut-off is not always straightforward to determine. For a
single emulator’s implausibility, we are interested in finding a suitable value c such that

P
(

|ED[f(x)] − z| ≥ c
√

VARD[f(x)] + VAR[e] + VAR[ϵ]
)

≤ α

holds for a chosen α. We often appeal to Pukelsheim’s 3σ rule, choosing α = 0.05 and use
I = 3 as the cut-off for acceptability (Pukelsheim 1994); however, for n-th maximized im-
plausibility over multiple outputs may not be so clear. If we can assume that m of the N

28 hmer: Emulation and History Matching in R

70%

80%

90%

100%

0 2.5 5 7.5 10
Implausibility cut−off

R
em

ov
ed

% Observational
Error

80%

90%

100%

110%

120%

Space removed as a function of implausibilty cut−off and observational error

Figure 10: The result of space_removed() applied to our wave 1 emulators. We can see that
a cut-off of I = 3 would be sufficient to rule out over 95% of the current space, a figure that
is relatively stable to changes in the choice of observational error. At higher cut-off values,
the choice of observational error has a more pronounced effect.

outputs are independent, and under the assumption of normality, then a heuristic argument
for a reasonable cut-off can be found in Goldstein et al. (2013). However, these assumptions
may not be valid, or may be hard to justify. Instead we can explore the robustness of various
implausibility cut-off choices by examining the proportion of the current non-implausible re-
gion that will be removed by particular choices. The space_removed() function provides this
insight, as well as allowing us to consider how changes to model discrepancy and observation
error can affect the space removed.
At the most basic level, all that is required for the space_removed() function is the set of
emulators and their corresponding targets: the below command computes the space removal
with a grid of 203 = 8000 points from the current non-implausible region, considering modi-
fying the observational error to varying proportions of its current value. We can, therefore,
choose more aggressive or more cautious cut-off values with appropriate insight into the effect
these will have on reduction of the parameter space.

R> space_removed(ems_wave1, targets, ppd = 20) +
+ geom_vline(xintercept = 3, lty = 2)

The space_removed() function can also provide stratification of the space removed with
respect to inflation and deflation of the prior emulator variances σ2

i , the hyperparameters θi,
or the model discrepancies σmi . This is controlled by the argument modified; the details of

Journal of Statistical Software 29

the stratification are determined by the u_mod argument which by default is c(0.8, 0.9,
1, 1.1, 1.2). As with many of the plots in hmer, they can be augmented with additional
ggplot2 objects; in Figure 10 we have added a vertical line at I = 3 using the geom_vline()
function.

R> space_removed(ems_wave1, targets, modified = "var", ppd = 20,
+ u_mod = seq(0.5, 1.5, by = 0.1))

The collection of visualization tools available within the hmer package allow us to gain a
deeper understanding of the structure of the simulator, the input space, and the expected
size and shape of the non-implausible region we expect to obtain from point proposals. For
complex models where evaluations are expensive, this can be an invaluable tool for supple-
menting and augmenting our knowledge about the model. In high-dimensional models (in
input and/or output dimension), some of the visualizations require a moderate amount of
computational time; however, this time should be weighed against the equivalent time it
would take to perform simulator runs at thousands of parameter sets and the ensuing anal-
ysis provided automatically by these functions. In all but the fastest of computer models,
the emulators allow for an exploration of the model behavior across the parameter space that
simply would not be possible otherwise: an emulator evaluation at a parameter set takes
between 10−6 to 10−2 seconds, whereas simulators on which emulation has been applied have
varied in evaluation time between seconds (Scarponi et al. 2023), hours (Andrianakis et al.
2015), and days (Vernon et al. 2014), representing an efficiency gain of 103 to 1010 compared
with running the simulator.

4.4. Proposing points and inspecting results

The point proposal stage, for creating a design of points for the next wave, consists of a single
call to the function generate_new_design(). As with emulator_from_data(), there are a
multitude of optional arguments which are described in the associated help file; we detail the
most salient of those arguments here.
Here, we apply the default usage discussed in Section 3.3.

R> proposal1 <- generate_new_design(ems_wave1, 500, targets)

[1] "Proposing from LHS..."
[1] "102 initial valid points generated for I=3"
[1] "Performing line sampling..."
[1] "Line sampling generated 40 more points."
[1] "Performing importance sampling..."
[1] "Importance sampling generated 474 more points."
[1] "Resample 1"
[1] "Performing line sampling..."
[1] "Line sampling generated 40 more points."
[1] "Performing importance sampling..."
[1] "Importance sampling generated 385 more points."
[1] "Selecting final points using maximin criterion..."

30 hmer: Emulation and History Matching in R

aSI
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

0.1 0.3 0.5 0.7

0.0 0.1 0.2 0.3 0.4 0.5

aIR

0.
1

0.
3

0.
5

0.
7

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
02

0.
04

aSR

Figure 11: A simple plot of the points proposed at wave 1, with respect to the original ranges
of the parameters. We can see the parameter restrictions, as well as the correlation between
αSI and αIR.

The function provides status updates as it proceeds through the stages of point proposal, and
returns a data.frame of the points thus chosen.10 These points can be passed to the simulator
as a representative sample of the non-implausible space X1, and we may start the next wave of
history matching. We may also plot these in whatever fashion we desire: the native R plot()
command produces an adequate pairs plot of inputs, or we can use plot_wrap() to plot the
proposed parameter sets with respect to other ranges: for example, plotting the points of Xk

with respect to the minimum enclosing hyperrectangle of Xk−1 to inspect the shrinkage of
parameter space. The resulting plot can be seen in Figure 11.

R> plot_wrap(proposal1, ranges)

4.5. Visualizing the simulator space

After a few waves of history matching, we will have gained an evolving picture of the structure
of the non-implausible space as well as the behavior of the corresponding simulator runs. It
is often instructive to look at this changing picture, so as to gain an understanding into
which parameters are driving the reduction of non-implausible space, how the outputs react
to changing parameter values, and indeed the progress towards matching all targets. To this
end, a set of multi-wave visualization tools are available: wave_values(), wave_points(),

10In this case we requested 500 points, which would certainly be far more points than we would need
for a second wave of history matching for this particular simulator. However, there is little computational
disadvantage to doing so, given the speed of emulator evaluation.

Journal of Statistical Software 31

wave_dependencies(), and simulator_plot(). The wave prefixed functions return a grid
of plots in output, input, or input-output space (respectively), allowing us to look at the
behavior and evolution of the space over multiple waves. The final plot is a simple heuristic
plot that allows us to evaluate the suitability of simulator runs over the ensemble of points
at each wave. Here, we demonstrate the use of wave_values() and simulator_plot(); the
equivalent output of wave_points() is used throughout the paper and can be found in the
Supplementary Material.
These functions are most effective when we have access to a few waves of history matching.
One could quite easily replicate the steps demonstrated above (using get_res to obtain
simulator runs at the end of each wave), but here we will use an hmer dataset which contains
sets of points sampled from Xi for i = 0, . . . , 3, namely SIRMultiWaveData. This dataset
consists of a four-element list, where each element is the relevant data.frame of points. The
wave_values() function, as mentioned, returns a grid of plots (in the fashion of a pairs plot)
with axes corresponding to the simulator outputs. The lower diagonal shows the values of
the simulator runs, colored by which wave their generating point was proposed at, as well as
an overlay of the target bounds for the two targets in question.11 The upper diagonal shows
the same plot but “zoomed in” to around the target bounds, in order to see the structure in
the region of interest. The diagonal shows density plots for each individual output; here the
target bounds are simply vertical lines. A simple code chunk is shown below, along with the
resulting plot in Figure 12. Here, we have used the default arguments to the function, aside
from using l_wid to slightly thin the target bound lines; options for excluding particular
waves, controlling the level of “zoom”, and plotting particular outputs, among others, are
available.

R> data("SIRMultiWaveData", package = "hmer")
R> wave_values(SIRMultiWaveData, targets, l_wid = 0.8)

As well as providing an insight into the dependencies of the simulator, we may also consider
this a barometer of how many waves we require to generate a large sample from our final non-
implausible region. Here, we can see that most of the points proposed at wave 3 lie within the
bounds of every target, and so we could determine that further waves are unnecessary. This
is backed up by a quick inspection of the emulator uncertainties at the final wave (accessible
via load("SIRMultiWaveEmulators"); a list of three sets of trained emulators).

R> sapply(SIRMultiWaveEmulators[[3]], function(x) x$u_sigma)

nS nI nR
1.4776221 2.1416256 0.5041151

Comparison of these with the uncertainties on the observations themselves suggests that
the emulator uncertainty is vastly subdominant to that of the observation, and subsequent
waves of emulation will not substantially improve on the emulators from wave 3. This is
partly because of the simplicity of the toy model we are using (both in terms of the model
dynamics itself and the low parameter and output dimension) and this three-wave completion
should not be viewed as a “standard”; whereas some models can be matched to data within

11For targets that have been defined in terms of a value and a sigma, the bounds correspond to 3σ below
and above the value.

32 hmer: Emulation and History Matching in R

nS nI nR

nS
nI

nR

0 250 500 750 0 250 500 750 0 100 200 300 400 500

0.00

0.01

0.02

0

250

500

750

0

100

200

300

400

500

wave

0

1

2

3

Output plots with targets

Figure 12: The result of wave_values() applied to the SIRMultiWaveData dataset. As we
proceed through the waves, we see that more and more of the proposed points are lying within
the bounds of the targets, as well as a strengthening correlation between nS and nI.

3 to 5 waves (Vernon et al. 2010; Craig et al. 1997), the necessity of performing around 10
waves (Andrianakis et al. 2015) or even closer to 20 (Scarponi et al. 2023) is not uncommon.
Nevertheless, the techniques to evaluate the progress of the history matching remain true;
plots such as wave_values() give us an easily interpretable measure for the status of the
history match.
One thing that cannot be (directly) determined from the wave_values() plots is whether
a particular parameter set matches all targets. The simulator_plot() function provides a
visualization of the most fundamental question in the history matching process: are there any
points that match to all outputs?

R> simulator_plot(SIRMultiWaveData, targets, barcol = "black")

In this case, the plot in Figure 13 indicates to us the quality of the points proposed at wave
3. In more complex systems where a match is harder (or impossible) to obtain, this plot in
conjunction with the wave_... plots can give an insight into which outputs are being missed,
whether there are conflicts between outputs, or how close we are to obtaining a fit to all
targets. Such an analysis, using these visualization tools, was performed in Scarponi et al.
(2023), where the inability to find matches to observational data in a small number of cases
could be traced to conflicts between particular outputs or potential misspecification in the
observations.
In this section we have detailed the main stages of emulation and history matching using the
hmer package. This introduction is by no means comprehensive, but aims to highlight the

Journal of Statistical Software 33

0

250

500

750

nS nI nR

name

va
lu

e

Wave

0

1

2

3

Simulator evaluations at wave points

Figure 13: All “trajectories” across the outputs, for all waves, plotted using
simulator_plot(). The wild fitting behavior in our wave 0 (yellow) quickly settles down as
the emulators propose points, until at wave 3 (blue) practically all trajectories pass through
the targets.

most important functions and visualization tools. More involved examples of using the hmer
package can be found in the vignettes, including lower- and higher-dimensional examples,
demonstrations of more visualization tools, and a brief exploration of some of the advanced
techniques we are about to touch upon.

5. Variance emulation and prototypical emulators

5.1. Variance emulation

The flexibility of the Bayes linear emulation approach allows us to extend the framework
beyond that of simple emulation of deterministic systems. In this section, we primarily discuss
an aspect of more advanced functionality in the hmer package — namely, the emulation of
stochastic systems using hierarchical emulation.
The simple example described in Section 4 was defined by a set of differential equations, which

34 hmer: Emulation and History Matching in R

naturally (up to machine precision in the ODE solver of choice) result in the same output
for repeated runs of the same input parameters. Complex models do not always possess this
deterministic behavior: in particular, in epidemiology, a stochastic compartmental model or
an agent-based model (ABM) can be used, where transition between states in the system is
probabilistic (Wilkinson 2020). As a result, repeated simulator runs at the same parameter
values (which we term realizations) will result in different values of the outputs. Such a
simulator is referred to as stochastic.
Stochastic simulators can (and often do) exhibit heteroskedasticity, where the variance across
the parameter space can be wildly different due to the variability in the model. For example,
consider a simple Birth-Death model where individuals are born at a rate λ, and die at a
rate µ. For low values of (λ, µ), the system changes very little over time and the variability is
minimal (the limit where λ, µ → 0 of course gives no variability whatsoever); for high values
of (λ, µ) the variability over multiple repetitions of the simulator is much higher.
For such systems, we may apply a hierarchical approach to emulation, leveraging the flexibility
of the Bayes linear emulation approach (Cumming and Goldstein 2010). Suppose we have
a set of simulator outputs at points (x(1), x(2), . . . , x(n)) where, for each point x(j), we have
repeated the simulator evaluation Nj times. We therefore have a collection of ∑

j Nj simulator
runs, which can be categorized by where in parameter space they were evaluated. The Nj

need not be the same at each point: for instance, where a simulator is slower to run in a
part of parameter space we may perform fewer runs than at a more “well-behaved” region of
parameter space. This possible distinction between information at points is handled by the
package.
From the collections of outputs we can determine a collection of sample means and sample
variances, indexed by x(j). The key stage in emulating this system is to treat the sample
variances, which we denote s2

i (x(j)), obtained as an output in their own right and create an
emulator for the variance of the stochastic simulator itself. This requires an understanding
of, or sensible priors for, the fourth-order quantities of the system; since our “expectation”
E[s2

i (x)] is the variance of the system, the “variance” VAR[s2
i (x)] is the variance of the variance.

There are various ways to decide on sensible priors for the relevant quantities (Goldstein
and Wooff 2007, Ch. 8) which provide a set of emulators that can offer predictions as to the
stochasticity of the simulator across the non-implausible region.12 As with all such emulators,
they know the level of stochasticity at training points, and provide a statistical approximation
of it at unseen points.
Of course, we want to explore the space of simulator outputs, not of its variability. For
example, the primary interest is often in the examination of the mean surface of the stochastic
model. However, the variance emulators trained above can help to correct for any uncertainty
induced by the fact that, due to finite sample size, we cannot observe the “true” underlying
mean process from a collection of realizations of the stochastic simulator. The use of variance
emulation therefore allows us to train much more representative emulators to the mean surface
which, moreover, have an intrinsic understanding of the underlying stochastic process.
Training such emulators is a multi-step process, naturally, but aside from some considerations
has much the same structure as the training process for deterministic emulators. To that
end, the function emulator_from_data also provides the means by which this hierarchical

12If no expert prior knowledge is available for these quantities, hmer will determine these as part of the
emulator training process.

Journal of Statistical Software 35

structure can be determined, constructed, and adjusted with respect to data. It takes the same
collection of arguments, with two caveats: firstly, the data provided to input_data should be
unaggregated, comprising data from all realizations from all input parameter combinations;
secondly, we provide the argument emulator_type = "variance".
The estimates of the fourth-order quantities are determined, dependent on the nature of the
data available, and the correction for sample quantities is incorporated. Unlike the output
of emulator_from_data, this function returns a nested list of emulators: one set named
variance and one named expectation13, corresponding to the variance and mean emulators
for the outputs, respectively. Once trained, this collection of emulators can be passed as
an argument to any of the usual functions as appropriate: in particular, the core functions
handle the nested collection of emulators in the manner appropriate to their usage.
We briefly show the results of training emulators to stochastic data here, using the stochastic
equivalent of the SIRS model described in Section 4, where results are generated using the
Gillespie algorithm. Much of the hmer code is unchanged and does not bear repetition
(one may find sample code within the Supplementary Material, snippets of which we detail
below); we merely highlight the comparative ease of use of the hmer package when dealing with
stochastic simulators, and highlight a few key differences between stochastic and deterministic
emulation.

R> stoch_emulators <- emulator_from_data(training_stoch, names(targets),
+ ranges, emulator_type = "variance")
R> emulator_plot(stoch_emulators$variance[c('nS', 'nR')])

Figure 14 shows that the stochasticity is very different across the space: in particular the
model is far more variable for high values of αSI , as one would expect. The increased stochas-
ticity detected by the variance emulators informs the mean emulators, while not dominating
the determination due to training points. The effect of hierarchical emulation is most clear
when we evaluate the emulator uncertainties at training points:

R> stoch_emulators$expectation$nI$get_cov(train_sample)

[1] 4.4071402 4.8046878 3.8312408 0.4252775 5.4449707 4.2755128 5.0306219
[10] 2.4890733 5.4863137 0.4671496

While for deterministic systems the uncertainty at points used to train the emulators iden-
tically vanishes, this is not the case for a stochastic emulator. This is a consequence of the
fact that the emulators are designed so as to predict the “true” mean response of the simu-
lator that would be seen if we could perform infinitely many realizations; since we only have
finitely many realizations at each training point the emulators automatically incorporate this
uncertainty due to finite sample size.
Validation of emulators proceeds in the same way with validation_diagnostics(), with
the understanding that the validation set again comprises the unaggregated results from the
simulator; the process of generating new runs with generate_new_design() is also unchanged
from a code perspective.

13A note on terms here: we use “expectation” to denote the mean emulators in order to avoid possible
conflicts with R’s native mean function.

36 hmer: Emulation and History Matching in R

nS Variance nR Variance

 nS nR

0 0

132 108

264 216

396 324

528 432

660 540

792 648

924 756

1056 864

1188 972

1320 1080

1452 1188

1584 1296

1716 1404

1848 1512

1980 1620

2112 1728

2244 1836

2376 1944

2508 2052

2640 2160

2772 2268

2904 2376

3036 2484

3168 2592

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

aSI

aI
R

Emulator Expectations

Figure 14: Emulator plots of expectation of variance emulators.

0 200 400 600 800

0
40

0
80

0

nS

f(x)

E
[f(

x)
]

0 5 10 15

0
5

10
15

nS

Emulator Implausibility

S
im

ul
at

or
 Im

pl
au

si
bi

lit
y

nS

Standardised Error

F
re

qu
en

cy

−2 −1 0 1 2

0
5

15
25

0 200 400 600 800

0
40

0
80

0

nI

f(x)

E
[f(

x)
]

0 10 20 30 40

0
20

60

nI

Emulator Implausibility

S
im

ul
at

or
 Im

pl
au

si
bi

lit
y

nI

Standardised Error

F
re

qu
en

cy

−4 −2 0 2 4

0
5

10
20

100 300 500

0
20

0
60

0

nR

f(x)

E
[f(

x)
]

0 2 4 6 8 10 14

0
10

20
30

nR

Emulator Implausibility

S
im

ul
at

or
 Im

pl
au

si
bi

lit
y

nR

Standardised Error

F
re

qu
en

cy

−4 −2 0 2 4

0
5

10
15

aSI aIR aSR

aS
I

aIR
aS

R

0.35 0.40 0.45 0.50 0.15 0.20 0.25 0.00 0.01 0.02 0.03 0.04 0.05

0

5

10

15

20

25

0.15

0.20

0.25

0.00

0.01

0.02

0.03

0.04

0.05

Method

Stochastic

Deterministic

Wave Points Location

Figure 15: Diagnostics for variance emulators (left), and a comparison of point proposals for
the stochastic (yellow) and deterministic (purple) simulators (right).

Journal of Statistical Software 37

R> validation_stoch <- validation_diagnostics(stoch_emulators, targets,
+ valid_stoch)
R> stoch_points <- generate_new_design(stoch_emulators, 90, targets)

Figure 15 shows the result of proposing points after two waves of emulation and history
matching of both the deterministic model introduced in Section 4 and its stochastic equivalent
introduced here. We can see that the stochastic NROY space is a superset of its deterministic
counterpart: this is as we would expect since the calculation of non-implausibility takes into
account the stochasticity of the model. In particular, we know from Figure 14 that the
stochasticity is strongest for high values of αSI and αIR: this is borne out by the fact that
this is the region of non-implausible space in Figure 15 that is furthest from the deterministic
equivalent. The difference between the two proposals, even for a simple model such as the
SIRS model under consideration, highlights the importance of robustly incorporating the
effect of stochasticity into a calibration process: without it, we run the risk of ignoring parts
of parameter space that could actually represent the real-world behavior we seek to match to.
This machinery allows us to accurately emulate heavily stochastic systems with minimal mod-
ification to the history matching workflow described in Section 2.2. If our only interest is in
matching to the means of the stochastic outputs, then the emulators for the variance con-
tribute only at the stage of building the mean emulators and do not complicate the procedure
of history matching; if in fact we have observations of the real-life variability of the system in
question then we can use the variance emulators alongside those for the mean to find parts
of parameter space with the expected output behavior and the expected variation, allowing
for more powerful and efficient waves of history matching.

5.2. “Prototyping” emulation

Throughout the paper, we have presented emulation and history matching as an inseparable
process where one requires the use of the other. However, the use of Bayes linear emulation
is not solely useful for history matching; nor does history matching require Bayes linear em-
ulators. For example, one may consider optimal design using Bayes linear emulators (Jones,
Goldstein, Jonathan, and Randell 2016), thereby using a different metric for “suitability”
than the standard approach in history matching, or use the framework of history match-
ing and point proposal with Gaussian process emulators (Audouin, Roehrig, Couvreux, and
Williamson 2021) Here we briefly discuss ways in which a user may separate the two proce-
dures.
In the former situation, the generate_new_design function can be used with arbitrary met-
rics via the accept_measure argument in opts. The syntax for such a function is as follows.

custom_func <- function(ems, x, z, cutoff, ...)

The output of this function should follow the format of implausibility, returning either a
boolean or a numeric for a parameter set. This allows a generic measure of suitability when
considering proposals, regardless of how the emulators are to be used. This also allows for
a semi-multivariate approach to emulation, where we may define the implausibility using a
Mahalanobis distance rather than using an nth maximized implausibility, or a composite mea-
sure where (say) we require maximum implausibility no greater than 4 and second-maximum
no greater than 2.5.

38 hmer: Emulation and History Matching in R

In the latter situation, the Proto_emulator object allows for generic functions to be treated
as if they were emulators, to leverage visualization, point proposal and history matching
mechanisms within hmer. This creates R6 objects akin to Emulator objects; the minimal
syntax of the constructor is

Proto_emulator$new(ranges, output_name, predict_func, variance_func)

This structure allows the majority of functionality within the package to be used with other
predictive methods – for instance, in emulating likelihoods where the structure of a Bayes
linear emulator is not necessarily useful or appropriate.
The functionality for both of these use-cases can be found in more detail in the hmer docu-
mentation. The inclusion of these options in the package is an appreciation of the value of
other approaches, depending on the application, while still wanting to make accessible the
diagnostic and visualization tools and other relevant aspects of the package functionality.

6. Conclusion and discussion
The hmer package provides an accessible means of applying the powerful techniques of Bayes
linear emulation and history matching to complex, often computationally intensive, simula-
tions of real-world processes. The framework has been employed to great success in a variety
of modeling situations, and the hmer package itself has been used by epidemiologists to find
matches to TB and HIV simulators of varying complexity and evaluation time (Scarponi et al.
2023; Clark et al. 2022). The core functionality of the package is designed to require, by de-
fault, as little understanding of the mathematical machinery that underpins emulation as is
possible, while still providing the flexibility for advanced users to create bespoke emulators
for their particular circumstance using expert judgments for prior specifications.
In this article, we have detailed the main, “front-facing”, functions of the package, with which
a user can follow the process of training and validating emulators and propose appropriate
representative collections of points from the resulting non-implausible space. We have also
detailed, by demonstration, a sample of the visualizations that can be derived from the
computationally fast emulators to gain insight into the structure of the simulator they purport
to replicate. The toy model we have used to demonstrate these features is of simplistic form,
but the principles and processes apply equally to simulators whose run-time per evaluation is
of the order of days, rather than seconds (Williamson et al. 2013; Vernon et al. 2022, 2014).
The comparatively small number of parameter sets required to train the emulator minimizes
the computational load for slow simulators and allows a thorough investigation of the non-
implausible space at every stage, resulting in a potentially very large collection of suitable
points without constant recourse to the simulator. Points generated from the non-implausible
space can be used to fully furnish and investigate the space of acceptable matches to data in
a number of different ways, which we have outlined.
The hmer package is model-agnostic and code-agnostic, requiring only that the outcome of
multiple simulator runs can be collated into a data.frame (such an object can be easily
obtained from, say, a csv file, often requiring minimal user-time to produce). We have
placed particular emphasis on epidemiological models and disease modeling, due to the specific
features of such models and the obvious advantages some aspects of the package can offer;
however, all techniques presented in the package have potential applicability across all fields

Journal of Statistical Software 39

of computer modeling. Many of the techniques employed here have existed in the literature
for some time but remained out of reach of a modeler without a deep understanding of the
emulation framework. The hmer package is designed with the intention of removing that
barrier to usage.
Nevertheless, emulation is not a panacea for all difficulties in modeling. To best utilize the
inherent uncertainty structure, it is incumbent on the user to think carefully about their
simulator, any discrepancies between it and reality, and the quality and accuracy of the
observational data that they wish to match to. The framework provided for emulation is
permissive with regards to the specification of these quantities; this does not mean that it
should be ignored if one wishes to comprehensively determine the space of acceptable matches,
subject to all the uncertainties that separate the simulator from the real-world process.
Similarly, the automated process of emulator training and even the default choices for im-
plausibility cut-offs, composite measures, and point sampling methods are designed to best
accommodate as large a class of models as is possible. The scope of models and systems that
these processes could be applied to is sufficiently diverse so as to preclude any unified auto-
mated approach to emulation and history matching, and the user should see emulation as an
interactive process that allows them to learn about their simulator, strengths and drawbacks,
while exploring the parameter space of interest. Here, we briefly discuss a few situations
where user-interaction can vastly improve the quality and efficiency of a history match.

• Expert knowledge about a simulator can make a big difference to the quality of emu-
lators. The choice of initial parameter space X0 can hugely impact the ability of the
emulators to accurately represent the simulator, as can the choice of points within that
parameter space upon which to train the emulators. If we anticipate that interest-
ing behavior should occur in particular regions of X0, then we should ensure that the
emulators are privy to that information via judicious choice of training points. This
becomes especially pronounced in high-dimensional models, where to fully represent the
behavior across the parameter space with a reasonable number of simulator evaluations
is near-impossible. In such cases, more advanced “border-block” designs can be used
(Cumming and Goldstein 2009).

• The process of training emulators is fast and there is little disadvantage to creating a
collection of emulators and, in light of emulator diagnostics, retraining with additional
points in parameter space designed to overcome any shortcomings identified. Similarly,
the choice of targets can hugely impact the inferential power of the emulators; choosing
which outputs to emulate at a given wave is currently a determination for the user, as
well as whether there exist any sensible transformations of the data that highlight the
structure of the simulator.

• The default behavior of generate_new_design will, for most non-implausible regions,
produce a well-spread representative sample of the space. However, there are circum-
stances under which the algorithm described in Section 3.3 will be ill-suited to the
task. Two obvious examples are when the non-implausible space Xk+1 is many orders
of magnitude smaller than its superset, Xk, or when Xk+1 consists of differently sized
disconnected regions. In both cases, the default generate_new_design process may fail
to pick up on the small regions of Xk+1 or indeed fail to find the space at all. In such
circumstances, it may be helpful to consider moving to a less restrictive composite mea-
sure of implausibility, relaxing the cut-off, or identifying the most restrictive outputs

40 hmer: Emulation and History Matching in R

and removing them from this wave. In extremis, the function idemc exists as a com-
putationally intensive search of the space which operates akin to evolutionary Monte
Carlo methods (Williamson and Vernon 2013). This should be viewed as an approach
of last-resort, coming after an investigation of the space, the emulators, and our own
intuition about the behavior of the simulator and of the observational data we possess.

In future updates to the hmer package we plan to enhance the functionality to make sur-
mounting some of the issues mentioned above easier, as well as introducing new methodology
for finding acceptable fits and leveraging the additional information that can be gained from
an inspection of the emulator structure. For example, for models that are “easy” to match to
(where the regression surface accounts for a large part of the behavior across the space), it can
be helpful to use the properties of the regression surface to heuristically identify promising re-
gions of parameter space as well as diagnose regions that are underrepresented in training; we
may use the active variable structure to “cluster” emulators and their active variables and so
operate on multiple reduced-dimension parameter spaces when proposing points (Cumming
and Goldstein 2010); for heavily stochastic systems where multiple states could be present
(for instance, “bimodality” of outputs) it may be appropriate to emulate the states separately
in order to obtain a good fit to our simulator; we may even emulate the derivative of the sim-
ulator at a point with or without further information or training runs in order to identify
best directions of approach for finding good parameter sets. These examples of enhanced
functionality are present in some form in the hmer package, and will be further improved as
the package evolves.
The hmer package is designed to allow a robust and careful analysis of a simulator, as well as
identify regions of parameter space that produce an acceptable fit to observed data. History
matching with emulation is a powerful tool in performing this delicate task, and our aim has
been to provide a means by which modelers can implement these methods with a minimum of
statistical involvement, while allowing a deeper inspection into the structure of the emulation
for those that wish to do so. During development we have seen considerable success in the use
of hmer to calibrate (both with and without direct user input) complex simulators (Scarponi
et al. 2023; Clark et al. 2022), and we expect that the power that modelers and the wider
community can leverage from these techniques, presented in a user-friendly form, will increase
as the user-base and the scope of the package expands. Furthermore, having access to a tool
that allows careful examination of models without recourse to expensive simulator runs will
allow modelers to incorporate these techniques into model design and debugging, uncertainty
quantification and forecasting, and model comparison more generally.

Acknowledgments
AI and DS would like to acknowledge the support and funding provided by the Wellcome Trust
grant 218261/Z/19/Z, as well as the valuable feedback and package testing provided by Re-
becca Clark, Christinah Mukandavire, Chathika Weerasuriya, Arminder Deol, Roel Bakker,
and all in the TB Modelling group at London School of Hygiene and Tropical Medicine.
AI would also like to acknowledge the helpful comments of Dario Domingo on the final
manuscript. TJM is supported by an Expanding Excellence in England (E3) award from
Research England. IV would like to acknowledge the support of the UK Research and Inno-
vation grant EP/W011956/1. RGW is funded by the Welcome Trust (218261/Z/19/Z), NIH

Journal of Statistical Software 41

(1R01AI147321-01), EDTCP (RIA208D-2505B), UK MRC (CCF17-7779 via SET Blooms-
bury)), ESRC (ES/P009011/1), BMGF (OPP1084276, OPP1135288 & INV-001754), and the
WHO (2020/985800-0).

References

Andrianakis I, Challenor PG (2012). “The Effect of the Nugget on Gaussian Process Emula-
tors of Computer Models.” Computational Statistics & Data Analysis, 56(12), 4215–4228.
doi:10.1016/j.csda.2012.04.020.

Andrianakis I, McCreesh N, Vernon I, McKinley TJ, Oakley JE, Nsubuga RN, Goldstein M,
White RG (2017a). “Efficient History Matching of a High Dimensional Individual-Based
HIV Transmission Model.” SIAM/ASA Journal on Uncertainty Quantification, 5(1), 694–
719. doi:10.1137/16m1093008.

Andrianakis I, Vernon I, McCreesh N, McKinley TJ, Oakley JE, Nsubuga RN, Goldstein
M, White RG (2015). “Bayesian History Matching of Complex Infectious Disease Models
Using Emulation: A Tutorial and a Case Study on HIV in Uganda.” PLoS Computational
Biology, 11(1). doi:10.1371/journal.pcbi.1003968.

Andrianakis I, Vernon I, McCreesh N, McKinley TJ, Oakley JE, Nsubuga RN, Goldstein M,
White RG (2017b). “History Matching of a Complex Epidemiological Model of Human
Immunodeficiency Virus Transmission by Using Variance Emulation.” Journal of the Royal
Statistical Society C, 66(4), 717. doi:10.1111/rssc.12198.

Audouin O, Roehrig R, Couvreux F, Williamson D (2021). “Modeling the GABLS4
Strongly-Stable Boundary Layer With a GCM Parameterization: Parametric Sensitivity
or Intrinsic Limits?” Journal of Advances in Modeling Earth Systems, 13(3). doi:
10.1029/2020MS002269.

Aylett-Bullock J, Cuesta-Lazaro C, Quera-Bofarull A, Icaza-Lizaola M, Sedgewick A, Truong
H, Curran A, Elliott E, Caulfield T, Fong K, et al. (2021). “June: Open-Source Individual-
Based Epidemiology Simulation.” Royal Society Open Science, 8(7), 210506. doi:10.1098/
rsos.210506.

Bastos LS, O’Hagan A (2009). “Diagnostics for Gaussian Process Emulators.” Technometrics,
51(4), 425–438. doi:10.1198/tech.2009.08019.

Bowman VE, Woods DC (2016). “Emulation of Multivariate Simulators Using Thin-Plate
Splines with Application to Atmospheric Dispersion.” SIAM/ASA Journal on Uncertainty
Quantification, 4(1), 1323–1344. doi:10.1137/140970148.

Brynjarsdottir J, O’Hagan A (2014). “Learning about Physical Parameters: The Importance
of Model Discrepancy.” Inverse Problems, 30(11), 114007. doi:10.1088/0266-5611/30/
11/114007.

Castelletti A, Galelli S, Ratto M, Soncini-Sessa R, Young PC (2012). “A General Framework
for Dynamic Emulation Modelling in Environmental Problems.” Environmental Modelling
& Software, 34, 5–18. doi:10.1016/j.envsoft.2012.01.002.

https://doi.org/10.1016/j.csda.2012.04.020
https://doi.org/10.1137/16m1093008
https://doi.org/10.1371/journal.pcbi.1003968
https://doi.org/10.1111/rssc.12198
https://doi.org/10.1029/2020MS002269
https://doi.org/10.1029/2020MS002269
https://doi.org/10.1098/rsos.210506
https://doi.org/10.1098/rsos.210506
https://doi.org/10.1198/tech.2009.08019
https://doi.org/10.1137/140970148
https://doi.org/10.1088/0266-5611/30/11/114007
https://doi.org/10.1088/0266-5611/30/11/114007
https://doi.org/10.1016/j.envsoft.2012.01.002

42 hmer: Emulation and History Matching in R

Clark RA, Mukandavire C, Portnoy A, Weerasuriya CK, Deol A, Scarponi D, Iskauskas A,
Bakker R, Quaife M, Malhotra S, Gebreselassie N, Zignol M, Hutubessy RC, Giersing B,
Jit M, Harris RC, Menzies NA, White RG (2022). “The Impact of Alternative Deliv-
ery Strategies for Novel Tuberculosis Vaccines in Low- And Middle-Income Countries: A
Modelling Study.” medRxiv 2022.04.16.22273762, Cold Spring Harbor Laboratory Press.
doi:10.1101/2022.04.16.22273762.

Conti S, Gosling JP, Oakley JE, O’Hagan A (2009). “Gaussian Process Emulation of Dynamic
Computer Codes.” Biometrika, 96(3), 663–676. doi:10.1093/biomet/asp028.

Craig PS, Goldstein M, Seheult AH, Smith JA (1997). “Pressure Matching for Hydrocar-
bon Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer
Experiments.” In Case Studies in Bayesian Statistics, pp. 37–93. Springer-Verlag. doi:
10.1007/978-1-4612-2290-3_2.

Cumming JA, Goldstein M (2009). “Small Sample Bayesian Designs for Complex High-
Dimensional Models Based on Information Gained Using Fast Approximations.” Techno-
metrics, 51(4), 377–388. doi:10.1198/tech.2009.08015.

Cumming JA, Goldstein M (2010). “Bayes Linear Uncertainty Analysis for Oil Reservoirs
Based on Multiscale Computer Experiments.” The Oxford Handbook of Applied Bayesian
Analysis, pp. 241–270. doi:10.1093/oxfordhb/9780198703174.013.10.

Du H, Sun W, Goldstein M, Harrison GP (2021). “Optimization via Statistical Emulation and
Uncertainty Quantification: Hosting Capacity Analysis of Distribution Networks.” IEEE
Access, 9, 118472–118483. doi:10.1109/access.2021.3105935.

Edwards TL, Nowicki S, Marzeion B, Hock R, Goelzer H, Seroussi H, Jourdain NC, Slater DA,
Turner FE, Smith CJ, et al. (2021). “Projected Land Ice Contributions to Twenty-First-
Century Sea Level Rise.” Nature, 593(7857), 74–82. doi:10.1038/s41586-021-03302-y.

Garnier S, Ross N, Rudis B, Sciaini M, Camargo AP, Scherer C (2024). viridis: Colorblind-
Friendly Color Maps for R. R package version 0.6.5, URL https://CRAN.R-project.org/
package=viridis.

Gibson GJ, Renshaw E (1998). “Estimating Parameters in Stochastic Compartmental Models
Using Markov Chain Methods.” Mathematical Medicine and Biology, 15(1), 19–40. doi:
10.1093/imammb15.1.19.

Goldstein M, Rougier J (2006). “Bayes Linear Calibrated Prediction for Complex Sys-
tems.” Journal of the American Statistical Association, 101(475), 1132–1143. doi:
10.1198/016214506000000203.

Goldstein M, Seheult A, Vernon I (2013). “Assessing Model Adequacy.” In J Wainwright,
M Mulligan (eds.), Environmental Modelling: Finding Simplicity in Complexity, 2nd edi-
tion, chapter 26, pp. 435–449. John Wiley & Sons. doi:10.1002/9781118351475.ch26.

Goldstein M, Wooff D (2007). Bayes Linear Statistics: Theory and Methods, volume 716.
John Wiley & Sons. doi:10.1002/9780470065662.

https://doi.org/10.1101/2022.04.16.22273762
https://doi.org/10.1093/biomet/asp028
https://doi.org/10.1007/978-1-4612-2290-3_2
https://doi.org/10.1007/978-1-4612-2290-3_2
https://doi.org/10.1198/tech.2009.08015
https://doi.org/10.1093/oxfordhb/9780198703174.013.10
https://doi.org/10.1109/access.2021.3105935
https://doi.org/10.1038/s41586-021-03302-y
https://CRAN.R-project.org/package=viridis
https://CRAN.R-project.org/package=viridis
https://doi.org/10.1093/imammb15.1.19
https://doi.org/10.1093/imammb15.1.19
https://doi.org/10.1198/016214506000000203
https://doi.org/10.1198/016214506000000203
https://doi.org/10.1002/9781118351475.ch26
https://doi.org/10.1002/9780470065662

Journal of Statistical Software 43

Gu M, Berger JO (2016). “Parallel Partial Gaussian Process Emulation for Computer Models
with Massive Output.” The Annals of Applied Statistics, 10(3), 1317–1347. doi:10.1214/
16-aoas934.

Gu M, Wang X, Berger JO (2018). “Robust Gaussian Stochastic Process Emulation.” The
Annals of Statistics, 46(6A), 3038–3066. doi:10.1214/17-aos1648.

Hankin RKS (2005). “Introducing BACCO, an R Bundle for Bayesian Analysis of Computer
Code Output.” Journal of Statistical Software, 14(16), 1–21. doi:10.18637/jss.v014.i16.

Hankin RKS (2012). “Introducing multivator: A Multivariate Emulator.” Journal of Statis-
tical Software, 46(8), 1–20. doi:10.18637/jss.v046.i08.

Higdon D, Kennedy M, Cavendish JC, Cafeo JA, Ryne RD (2004). “Combining Field Data
and Computer Simulations for Calibration and Prediction.” SIAM Journal on Scientific
Computing, 26(2), 448–466. doi:10.1137/s1064827503426693.

Iskauskas A, McKinley TJ (2024). hmer: History Matching and Emulation Package. R pack-
age version 1.6.0, URL https://CRAN.R-project.org/package=hmer.

Jewell CP, Kypraios T, Neal P, Roberts GO (2009). “Bayesian Analysis for Emerging Infec-
tious Diseases.” Bayesian Analysis, 4(3), 465–496. doi:10.1214/09-ba417.

Jones M, Goldstein M, Jonathan P, Randell D (2016). “Bayes Linear Analysis for Bayesian
Optimal Experimental Design.” Journal of Statistical Planning and Inference, 171, 115–
129. doi:10.1016/j.jspi.2015.10.011.

Kaufman CG, Bingham D, Habib S, Heitmann K, Frieman JA (2011). “Efficient Emulators
of Computer Experiments Using Compactly Supported Correlation Functions, with an
Application to Cosmology.” The Annals of Applied Statistics, 5(4), 2470–2492. doi:10.
1214/11-aoas489.

Kennedy MC, O’Hagan A (2001). “Bayesian Calibration of Computer Models.” Journal of
the Royal Statistical Society B, 63(3), 425–464. doi:10.1111/1467-9868.00294.

Loeppky JL, Sacks J, Welch WJ (2009). “Choosing the Sample Size of a Computer Exper-
iment: A Practical Guide.” Technometrics, 51(4), 366–376. doi:10.1198/tech.2009.
08040.

Maatouk H, Roustant O, Richet Y (2015). “Cross-Validation Estimations of Hyper-
Parameters of Gaussian Processes with Inequality Constraints.” Procedia Environmental
Sciences, 27, 38–44. doi:10.1016/j.proenv.2015.07.105.

Marshall L, Johnson JS, Mann GW, Lee L, Dhomse SS, Regayre L, Yoshioka M, Carslaw KS,
Schmidt A (2019). “Exploring How Eruption Source Parameters Affect Volcanic Radia-
tive Forcing Using Statistical Emulation.” Journal of Geophysical Research: Atmospheres,
124(2), 964–985. doi:10.1029/2018jd028675.

McCreesh N, Andrianakis I, Nsubuga RN, Strong M, Vernon I, McKinley TJ, Oakley JE,
Goldstein M, Hayes R, White RG (2017a). “Improving ART Programme Retention and
Viral Suppression Are Key to Maximising Impact of Treatment as Prevention–a Modelling
Study.” BMC Infectious Diseases, 17(1), 1–8. doi:10.1186/s12879-017-2664-6.

https://doi.org/10.1214/16-aoas934
https://doi.org/10.1214/16-aoas934
https://doi.org/10.1214/17-aos1648
https://doi.org/10.18637/jss.v014.i16
https://doi.org/10.18637/jss.v046.i08
https://doi.org/10.1137/s1064827503426693
https://CRAN.R-project.org/package=hmer
https://doi.org/10.1214/09-ba417
https://doi.org/10.1016/j.jspi.2015.10.011
https://doi.org/10.1214/11-aoas489
https://doi.org/10.1214/11-aoas489
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1198/tech.2009.08040
https://doi.org/10.1198/tech.2009.08040
https://doi.org/10.1016/j.proenv.2015.07.105
https://doi.org/10.1029/2018jd028675
https://doi.org/10.1186/s12879-017-2664-6

44 hmer: Emulation and History Matching in R

McCreesh N, Andrianakis I, Nsubuga RN, Strong M, Vernon I, McKinley TJ, Oakley JE,
Goldstein M, Hayes R, White RG (2017b). “Universal Test, Treat, and Keep: Improving
ART Retention Is Key in Cost-Effective HIV Control in Uganda.” BMC Infectious Diseases,
17(1), 1–11. doi:10.1186/s12879-017-2420-y.

McKay MD, Beckman RJ, Conover WJ (2000). “A Comparison of Three Methods for Se-
lecting Values of Input Variables in the Analysis of Output From a Computer Code.”
Technometrics, 42(1), 55–61. doi:10.1080/00401706.2000.10485979.

McKinley T, Cook AR, Deardon R (2009). “Inference in Epidemic Models Without Likeli-
hoods.” The International Journal of Biostatistics, 5(1). doi:10.2202/1557-4679.1171.

McKinley TJ, Vernon I, Andrianakis I, McCreesh N, Oakley JE, Nsubuga RN, Goldstein M,
White RG (2018). “Approximate Bayesian Computation and Simulation-Based Inference
for Complex Stochastic Epidemic Models.” Statistical Science, 33(1), 4–18. doi:10.1214/
17-sts618.

Olson R, Chang W, Keller K, Haran M (2018). stilt: Separable Gaussian Process Interpola-
tion (Emulation). R package version 1.3.0, URL https://CRAN.R-project.org/package=
stilt.

O’Neill PD, Roberts GO (1999). “Bayesian Inference for Partially Observed Stochas-
tic Epidemics.” Journal of the Royal Statistical Society A, 162(1), 121–129. doi:
10.1111/1467-985x.00125.

Pukelsheim F (1994). “The Three Sigma Rule.” The American Statistician, 48(2), 88–91.
doi:10.1080/00031305.1994.10476030.

Rasmussen CE (2003). “Gaussian Processes in Machine Learning.” In Advanced Lectures
on Machine Learning, Lecture Notes in Computer Science, pp. 63–71. Springer-Verlag.
doi:10.1007/978-3-540-28650-9_4.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Santner TJ, Williams BJ, Notz WI, Williams BJ (2003). The Design and Analysis of Com-
puter Experiments, volume 1. Springer-Verlag. doi:10.1007/978-1-4757-3799-8.

Scarponi D, Iskauskas A, Clark RA, Vernon I, McKinley TJ, Goldstein M, Mukandavire C,
Deol A, Weerasuriya C, Bakker R, et al. (2023). “Demonstrating Multi-Country Calibration
of a Tuberculosis Model Using New History Matching and Emulation Package – hmer.”
Epidemics, 43, 100678. doi:10.1016/j.epidem.2023.100678.

Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley
J (2024). GGally: Extension to ggplot2. R package version 2.2.1, URL https://CRAN.
R-project.org/package=GGally.

Sorenson HW (1980). Parameter Estimation: Principles and Problems, volume 9 of Control
and Systems Theory. 1st edition. M. Dekker, New York.

https://doi.org/10.1186/s12879-017-2420-y
https://doi.org/10.1080/00401706.2000.10485979
https://doi.org/10.2202/1557-4679.1171
https://doi.org/10.1214/17-sts618
https://doi.org/10.1214/17-sts618
https://CRAN.R-project.org/package=stilt
https://CRAN.R-project.org/package=stilt
https://doi.org/10.1111/1467-985x.00125
https://doi.org/10.1111/1467-985x.00125
https://doi.org/10.1080/00031305.1994.10476030
https://doi.org/10.1007/978-3-540-28650-9_4
https://www.R-project.org/
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1016/j.epidem.2023.100678
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=GGally

Journal of Statistical Software 45

Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2009). “Approximate Bayesian Com-
putation Scheme for Parameter Inference and Model Selection in Dynamical Systems.”
Journal of the Royal Society Interface, 6(31), 187–202. doi:10.1098/rsif.2008.0172.

Vernon I, Goldstein M, Bower R (2010). “Galaxy Formation: A Bayesian Uncertainty Anal-
ysis.” Bayesian Analysis, 5(4), 619–669. doi:10.1214/10-ba524.

Vernon I, Goldstein M, Bower R (2014). “Galaxy Formation: Bayesian History Matching for
the Observable Universe.” Statistical Science, pp. 81–90. doi:10.1214/12-sts412.

Vernon I, Liu J, Goldstein M, Rowe J, Topping J, Lindsey K (2018). “Bayesian Uncertainty
Analysis for Complex Systems Biology Models: Emulation, Global Parameter Searches
and Evaluation of Gene Functions.” BMC Systems Biology, 12(1), 1–29. doi:10.1186/
s12918-017-0484-3.

Vernon I, Owen J, Aylett-Bullock J, Cuesta-Lazaro C, Frawley J, Quera-Bofarull A, Sedgewick
A, Shi D, Truong H, Turner M, Walker J, Caulfield T, Fong K, Krauss F (2022). “Bayesian
Emulation and History Matching of JUNE.” medRxiv 2022.02.21.22271249, Cold Spring
Harbor Laboratory Press. doi:10.1101/2022.02.21.22271249.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
doi:10.1007/978-0-387-98141-3.

Wilkinson DJ (2020). Stochastic Modelling for Systems Biology. 3rd edition. Chapman &
Hall/CRC. doi:10.1201/9781351000918.

Williamson D, Goldstein M, Allison L, Blaker A, Challenor P, Jackson L, Yamazaki K (2013).
“History Matching for Exploring and Reducing Climate Model Parameter Space Using
Observations and a Large Perturbed Physics Ensemble.” Climate Dynamics, 41(7), 1703–
1729. doi:10.1007/s00382-013-1896-4.

Williamson D, Vernon I (2013). “Implausibility Driven Evolutionary Monte Carlo for Efficient
Generation of Uniform and Optimal Designs for Multi-Wave Computer Experiments.” arXiv
1309.3520, arXiv.org E-Print Archive. doi:10.48550/arXiv.1309.3520.

https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.1214/10-ba524
https://doi.org/10.1214/12-sts412
https://doi.org/10.1186/s12918-017-0484-3
https://doi.org/10.1186/s12918-017-0484-3
https://doi.org/10.1101/2022.02.21.22271249
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1201/9781351000918
https://doi.org/10.1007/s00382-013-1896-4
https://doi.org/10.48550/arXiv.1309.3520

46 hmer: Emulation and History Matching in R

A. Emulator and Correlator objects

A.1. The Correlator object

The Correlator object is an R6 object which performs the function of u(xAi)+wi(x), except
with unit variance. Its constructor takes three arguments:

Correlator$new(corr, hp, nug)

where corr is a string corresponding to the name of the desired correlation function, hp is
a named list of hyperparameters for the chosen correlation function, and nug is the size of
the nugget term (equivalent to δi in the emulator specification in Equation 1). The default
Correlator object is initialized by Correlator$new("exp_sq", list(theta = 0.1), nug
= 0).
The type of the first argument allows us to specify correlation functions either from a list of
those available: in the hmer package are exponential-squared "exp_sq", Matérn "matern",
Ornstein-Uhlenbeck "orn_uhl", and rational quadratic "rat_quad". The Correlator ob-
ject searches for an available function whose name matches the string provided to the corr
argument, allowing a user to define their own correlation function user_func(...) and pro-
vide it to the Correlator object. The requirements of a user-defined function are detailed
in the help file ?Correlator. This approach to the emulator correlation structure allows
for consistent hyperparameter estimation across any conceivable correlation functions within
emulator_from_data().
A Correlator object possesses a print() method, getters and setters for the hyperparame-
ters, and most importantly a function that returns the correlation between two collections of
points, get_corr().

A.2. The Emulator object

The Emulator object is the central object in the hmer package. An individual emulator is
an R6 object: it is infrequently used directly but the constructor function for an Emulator
object is

Emulator$new(basis_f, beta, u, ranges, ...)

The details of each of these arguments is as follows:

• basis_f: a list of basis functions equivalent to {gi(x)}. At a minimum, this should
include the constant function function(x) 1, and the functions should be designed
to act on a vector of numerics: for instance, the basis functions gi(x) : R2 → R3,
(x, y) 7→ (1, x, y) can be entered as

R> bf <- c(function(x) 1, function(x) x[1], function(x) x[2])

• beta: This provides the second-order specifications for the regression coefficients β.
This consists of a named list list(mu = ..., sigma = ...) corresponding to the
expectation vector and variance matrix for β, respectively. In the above example, we
may have

Journal of Statistical Software 47

R> b <- list(mu = c(0.1,-1, 1), sigma = diag(0, nrow = 3))

where we to expect that the regression surface has the form 0.1−x+y with no variance
in the regression surface. Note that this does not result in an emulator with no variance;
the choice of zero-variance in the regression coefficients allows us to separate global and
local behavior, with all residual variance accounted for in the weakly stationary process
u.

• u: This represents the correlation structure, whose argument is a list list(corr = ...,
sigma = ...), where corr is the Correlator object and sigma the standard deviation
given by

√
VAR[ui(x)]; for the above example we could decide on a “default” correlation

structure with variance 4, giving

R> u <- list(corr = Correlator$new(), sigma = 2)

• ranges: A list of ranges of the parameters. This is required for a variety of reasons,
not least because the Emulator object internally scales all points passed to it so that
they are in the range [−1, 1], as well as to determine the range for proposing points for
later waves. When provided to the Emulator, they should be in a named list where
each element is a pair of numerics, representing the lower and upper bounds of the
parameter.

R> range <- list(x = c(-1, 1), y = (2, 4))

There are a number of optional arguments than can be supplied to the Emulator object: a
data.frame named data if we wish to manually provide training runs to the emulator; a string
out_name which identifies the output we are emulating; a vector of booleans a_vars (of length
equal to the number of parameters) which determines which variables are active; and a list of
two numerics discrepancies(internal = ..., external = ...) which encode the model
discrepancies. All of these quantities can be provided with expert prior knowledge of the out-
put, though in many cases this is not possible; we instead rely on the emulator_from_data()
function described in Section 3.1 to supply these details for us.
As an R6 object, a constructed Emulator inherits the normal clone() function as well as
possessing a custom print() and plot() statement. It also has a number of functions which
allow the Bayes linear adjustment to be performed, and posterior predictions to be obtained.
The function adjust(data, out_name) performs the Bayes linear adjustment relative to
the data D provided in data; the functions get_exp(points) and get_cov(points, ...)
perform the duty of calculating the posterior expectation and covariance matrix for a collection
of parameter sets passed to them; implausibility(points, target) gives the implausibility
at a collection of points relative to an observational target value. In the normal course of
history matching it is unlikely that these functions need to be called directly; the more front-
facing usage that leverages these functions is demonstrated in Section 4.

48 hmer: Emulation and History Matching in R

Affiliation:
Andrew Iskauskas
Department of Mathematical Sciences
Mathematical Sciences & Computing Science Building
Durham University
Upper Mountjoy Campus, Stockton Road, Durham DH1 3LE
E-mail: andrew.iskauskas@durham.ac.uk

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/

May 2024, Volume 109, Issue 10 Submitted: 2022-09-12
doi:10.18637/jss.v109.i10 Accepted: 2023-12-18

mailto:andrew.iskauskas@durham.ac.uk
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v109.i10

	Introduction: Emulation and history matching
	Bayes linear emulation and history matching
	Emulation
	The implausibility measure and history matching

	Fundamentals
	A note on parameter sets
	Training emulators
	Validation of emulators
	Proposing new points

	Example: Application to an SIRS model
	Initial simulator runs and emulator training
	Validating the emulators
	Emulator and history matching visualization
	Proposing points and inspecting results
	Visualizing the simulator space

	Variance emulation and prototypical emulators
	Variance emulation
	``Prototyping'' emulation

	Conclusion and discussion
	Emulator and Correlator objects
	The Correlator object
	The Emulator object

