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The high computational expense of peridynamic models remains a major limitation, hindering 
‘outer-loop’ applications that require a large number of simulations, for example, uncertainty 
quantification. This contribution presents a framework that makes such computations feasible. 
By employing a Multilevel Monte Carlo framework, where the majority of simulations are 
performed using a coarse mesh, and performing relatively few simulations using a fine mesh, 
a significant reduction in computational cost can be realised, and statistics of structural failure 
can be estimated. The maximum observed speed-up factor is 16 when compared to a standard 
Monte Carlo estimator, thus enabling the efficient forward propagation of uncertain parameters 
in a computationally expensive peridynamic model. Furthermore, the multilevel method provides 
an estimate of both the discretisation error and sampling error, thereby improving confidence in 
numerical predictions. The performance of the approach is demonstrated through an examination 
of the statistical size effect in quasi-brittle materials.

1. Introduction

The use of finite-element based models to address probabilistic problems in solid mechanics is well established, with many 
examples focused on understanding the failure behaviour of quasi-brittle materials. For example, Su et al. [1] used a non-linear finite 
element model with cohesive elements in combination with Monte Carlo simulation to obtain statistical information of structural 
load-carrying capacity. More recently, Wu et al. [2] employed a phase-field model within a finite element framework in combination 
with Monte Carlo simulation to estimate the probability distribution of the failure load. The reader is also referred to the work of 
Song and Kawai [3], who provide a comprehensive review of Monte Carlo methods in structural reliability analysis, along with 
references to many applied examples that employ finite element-based models.

Whilst finite element-based models that solve the governing equations of classical continuum mechanics have been very suc-

cessful, they are inherently limited when dealing with the complex and discrete nature of material failure. The governing partial 
differential equations, by definition, assume a spatially continuous and differentiable displacement field that is undefined along 
discontinuities, necessitating the implementation of various remedies to address these difficulties. Additionally, the classical theory 
assumes that all forces are contact forces that act across zero distance (local theory). However, fracture is a process in which non-
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locality is known to be important [4], and a fundamental feature of any model capable of correctly capturing the structural size effect 
is the presence of some form of length scale [5].

The peridynamic theory, an integral-type non-local theory of solid mechanics introduced by Silling [6], overcomes many of the 
inherent limitations of the classical continuum theory by eliminating the requirement of a spatially continuous and differentiable 
displacement field. As a result, the theory is capable of modelling the emergence of damage localisation and fracture without any 
additional assumptions or techniques. However, the high computational cost of peridynamic simulations remains a major limitation, 
and as a consequence, the study of problems with a probabilistic/uncertain component is prohibitively expensive due to the large 
number of repeat simulations typically required by conventional Monte Carlo (MC) methods. Although techniques exist to reduce 
the number of required samples, the use of a computationally expensive fine mesh is necessary to control the discretisation error. 
Given that the computational cost of a peridynamic model is (𝑁2), where 𝑁 is the number of particles, it is prudent to avoid 
running many simulations using a fine mesh. Hence, the use of multilevel methods, where the majority of samples are taken using 
a coarse and computationally cheap mesh becomes imperative. This study aims to establish the feasibility of forward uncertainty 
quantification for costly peridynamic simulations through the utilisation of multilevel methods. To the best of the authors knowledge, 
there is no work within the peridynamic literature that examines the forward propagation of uncertain parameters.

In this work, we employ the multilevel Monte Carlo (MLMC) method. The aim of MLMC is attain the same solution error as MC 
but at a significantly reduced computational cost. The standard MC estimator is computationally expensive as all samples must be 
computed using a fine mesh that guarantees a small discretisation error. A significant reduction in computational cost can be realised 
by taking the majority of samples on a coarse mesh (low accuracy but computationally cheap), and taking relatively few samples on 
a fine mesh (high accuracy but computationally expensive). This is made possible by isolating the error sources in the estimator: (1) 
sampling error (variance) and (2) discretisation error (deterministic error). The sampling error is controlled by using a low accuracy 
but computationally cheap model to take a large number of samples, and the discretisation error is reduced to a defined tolerance by 
employing a sufficiently fine mesh.

Multilevel techniques were first introduced by Heinrich and Sindambiwe [7] and Heinrich [8], and later popularised by Giles [9]

for option pricing in computational finance. The first application of multilevel methods in the field of engineering was the study 
of uncertainty in groundwater flows [10]. Since Cliffe et al. [10] recognised the potential of multilevel methods, there has been a 
wide range of applications in engineering and scientific fields (primarily for the solution of partial differential equations (PDEs)). 
For example, Elfverson et al. [11] explored the efficient estimation of failure probabilities using multilevel methods, Dodwell and 
et al. [12] computed the failure probability of composite structures, and Hamdia and Ghasemi [13] computed the failure probability 
of linear elastic materials. Further applications include the study of the travel time of particles through random heterogeneous porous 
media [14], and assessing the risk of coastal flooding [15]. For a detailed review of multilevel Monte Carlo methods, the reader is 
referred to the work of Giles [16].

We have chosen to demonstrate the framework through an application to the study of the structural size effect in quasi-brittle 
materials. We focus on quasi-brittle materials because the range of experimental data is greater than that of any other material and 
quasi-brittle materials exhibit a significant size effect, where large elements fail at lower stresses than small-scale elements with 
identical geometry. Accurately capturing and understanding this behaviour is essential for safe and robust predictions. As stated in 
[4], the correct modelling of the size effect on material strength should be adopted as the basic criterion of acceptability of any 
model.

The statistical variability in material properties is a major contributing factor to the size effect on structural strength and numerical 
models provide an excellent tool for studying the magnitude of this contribution. Hobbs et al. [17] previously examined the size effect 
in quasi-brittle materials using a deterministic bond-based model. The numerical results were generally in good agreement with 
experimental data but it was not possible to examine the statistical component due the high computational expense of peridynamic 
simulations. Through the multilevel framework, peridynamic models could yield deeper insights into the mechanisms that govern 
the structural size effect. It is important to clarify that this study does not aim to provide a detailed examination of the statistical size 
effect, and the primary focus of the case studies is to explore potential computational savings.

The aims of this paper are: (1) demonstrate that forward uncertainty quantification for expensive peridynamic simulations is 
feasible by employing the MLMC method, (2) quantify the computational savings, and (3) demonstrate the importance of forward 
UQ by selecting examples where a deeper understanding of the physical behaviour can be gained through the consideration of 
uncertainty. A secondary aim is to provide new insights into the convergence behaviour of peridynamic models under a probabilistic 
setting. Both the convergence of the discretisation error and the predicted failure load are explored.

The paper is organised as follows: Section 2 introduces the peridynamic theory and the numerical model (a bond-based peridy-

namic model). Section 3 details the standard and multilevel Monte Carlo methodology. Section 4 presents two carefully selected case 
studies. Section 5 further discusses the results before the paper is concluded in Section 6.

2. The bond-based peridynamic model

There are two main formulations of the peridynamic theory: the bond-based formulation [6] and the state-based formulation 
[18]. In this work, we employ a bond-based model due to its lower computational expense and proven predictive capabilities. The 
138

bond-based theory is also conceptually simpler and more accessible to a broader range of readers.
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Fig. 1. Peridynamic continuum and kinematics of particle pair and bond-based pairwise force function.

2.1. Peridynamic continuum model

This section briefly introduces the bond-based peridynamic theory. However, the intention is not to provide a thorough explana-

tion of the theory, and readers are directed to [6,19,20] for a more comprehensive understanding. Alternatively, Bobaru et al. [21]

provides a less rigorous but more mechanically intuitive method for deriving the governing equations.

Let  denote the spatial region occupied by a material body, where x denotes a material point (interchangeably referred to as 
a particle) and u represents the displacement vector of a given material point x (see Fig. 1). Material points separated by a finite 
distance less than or equal to 𝛿 in the undeformed material body are assumed to interact through a pairwise force function f. The 
pairwise force function for a particle pair at any given time 𝑡 can be described as follows

f = f(x,x′,u(x, 𝑡),u(x′, 𝑡), 𝑡), x′ ∈ ∶ ||x′ − x||2 ⩽ 𝛿 (1)

Therefore, employing Newton’s second law, the peridynamic equation of motion for a material point x at time 𝑡 reads as

𝜌ü(x, 𝑡) = ∫
x

f(u(x′, 𝑡) − u(x, 𝑡),x′ − x)𝑑𝑉x′ + b(x, 𝑡) (2)

where 𝜌 denotes mass density, ü denotes particle acceleration, b denotes body force per unit volume and x (Eq. (3)) denotes the 
neighbourhood of material point x. The size of the neighbourhood is defined by the horizon length 𝛿. Note that for a 3D problem, 
the material point neighbourhood will be a sphere, and for a 2D problem, the neighbourhood will be circular.

x =x(x, 𝛿) = {x′ ∈ ∶ ||x′ − x||2 ⩽ 𝛿} (3)

The pairwise force function f represents the force that particle x′ exerts on particle x and contains all the constitutive information 
of the material under analysis. This interaction is also known as the peridynamic bond force. Particles separated by a distance greater 
than the horizon length 𝛿 in the undeformed (reference) state do not interact. The pairwise force function is defined as follows

f(𝜼,𝝃) = 𝑓 (|𝝃 + 𝜼|,𝝃) 𝝃 + 𝜼|𝝃 + 𝜼| (4)

where 𝝃 = x′ − x denotes the initial relative position vector of a pair of particles, 𝜼 = u′ − u denotes the relative displacement vector 
and the current relative position vector is given by 𝝃 + 𝜼. Note that in a bond-based model, the force vector f is parallel to the 
deformed bond and the scalar bond force 𝑓 (vector magnitude) is proportional to the bond stretch 𝑠.

To differentiate the peridynamic theory from other non-local theories, it is important to note that many non-local theories average 
some measure of strain within the horizon of a material particle. The peridynamic theory does not rely on the concept of strain, which 
by its definition, necessitates calculating partial derivatives of displacement [19].

2.2. Non-locality

The peridynamic theory is a non-local theory in which material points interact with each other directly over finite distances. This 
is in contrast to the classical theory of solid mechanics, where it is assumed that all forces are contact forces that act across zero 
distance (local theory). Physical justification of non-locality was provided by Bažant [4], and further discussion on the origins of 
non-locality (with a focus on the peridynamic theory), can be found in Chapter 1 of [21] and Hobbs [22].

At the macroscale, the peridynamic horizon 𝛿 is a numerical constant with no physical meaning. This differentiates the peridy-
139

namic model from many numerical approaches, and the use of an ambiguous characteristic length parameter is avoided. For a given 
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Fig. 2. Non-linear damage model (𝑓 -𝑠). The force-stretch relationship is described by an exponentially decaying model with a linear term that forces the curve to 
intersect with the horizontal axis at 𝑠𝑐 .

value of 𝛿, the parameters in a peridynamic model can be chosen to match a given set of physically measurable material properties. 
Therefore, an optimum value of 𝛿 must be chosen that provides high accuracy whilst balancing computational expense. Section 2.3.2

discusses the selection of an optimum value of 𝛿.

The reader should note the distinction between the non-local length scale in the peridynamic model (horizon 𝛿), and the non-local 
length scale in a spatially correlated random field (correlation length 𝑙𝑐 ). The correlation length 𝑙𝑐 is generally considered to be a 
material parameter reflecting the internal length scale of the microstructure. This will be discussed throughout the paper.

2.3. Numerical model

To illustrate the framework, we employ a two-dimensional bond-based peridynamic model, but the reader should note that 
the presented framework is not limited solely to bond-based models, and more complex models could be employed without any 
modification. The primary aim of this work is to demonstrate the multilevel framework and a detailed treatment of the numerical 
model is not provided. All the results presented in this paper were obtained using the explicit scheme outlined in Figure 4.14 of 
[22], and readers can find implementation details in the same reference. The main distinction of the model used in this work is the 
existence of two length scales: (1) the peridynamic horizon 𝛿 and (2) the correlation length 𝑙𝑐 in the random field.

2.3.1. Constitutive model

Generally, it is assumed that the force-stretch (𝑓 -𝑠) relationship of a peridynamic bond should align with the macroscopic material 
response. The stress-strain response of quasi-brittle materials is characterised by strain-softening behaviour in the post-peak stage, 
and hence we employ the non-linear softening law, illustrated in Fig. 2, first proposed in [22]. To simulate material damage, a 
failure mechanism is incorporated into the model by eliminating the interaction between pairs of particles if the stretch of the bond 
connecting them exceeds a critical value.

2.3.2. Numerical convergence

The accuracy and convergence behaviour of a peridynamic model is complicated by the presence of a length scale. To determine 
an optimum value of 𝛿, an additional parameter 𝑚 must be introduced. 𝑚 is the ratio between the horizon radius and grid resolution 
(𝑚 = 𝛿∕Δ𝑥). Bobaru and et al. [23] and Ha and Bobaru [24] define and discuss two fundamental types of convergence: (1) 𝑚-

convergence: 𝛿 is fixed and 𝑚 →∞. This can also be stated as 𝛿 is fixed and Δ𝑥 → 0. (2) 𝛿-convergence: 𝑚 is fixed and 𝛿 → 0. This 
can also be stated as 𝑚 is fixed and Δ𝑥 → 0. See Fig. 3 for a graphical representation of the types of convergence. A third type of 
convergence can be defined: 𝛿𝑚-convergence. This is a combination of 𝛿- and 𝑚-convergence. See [23] for details.

In this work, we consider 𝛿-convergence, as it is generally agreed that 𝑚 should be close to 3. Madenci and Oterkus [25] inves-

tigated the choice of 𝑚 for macroscale problems and it was found that values of 𝑚 = 1 and 𝑚 = 3 achieved the highest accuracy 
when compared to the classical analytical solution for the displacement of a one-dimensional bar subjected to a defined initial strain. 
Values of 𝑚 much larger than 3 lead to excessive wave dispersion and become extremely computationally expensive. When fracture 
behaviour is also considered, values of 𝑚 less than 3 lead to grid dependence on crack propagation [25,26]. Hu et al. [27] and 
Seleson [28] examined the 𝑚-convergence behaviour for two-dimensional models and [22] examined the 𝑚-convergence behaviour 
for three-dimensional models. Higher values of 𝑚 improve the spatial integration accuracy but 𝑚 ≈ 3 provides an acceptable approxi-

mation. A value of 𝑚 = 𝜋 is generally recommended for macroscale problems and is found extensively throughout the literature. The 
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𝑚-ratio is set to 𝜋 for all problems in this paper.
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Fig. 3. Graphical representation of the two fundamental types of convergence: 𝑚-convergence and 𝛿-convergence.

3. Multilevel Monte Carlo methodology

To explain the standard and multilevel Monte Carlo method, let us assume that we have a numerical model of a brittle/quasi-

brittle structure that is subject to some uncertainty in the material properties. The accuracy and computational cost of the model is 
proportional to the number of degrees of freedom (𝑀) and thus to the resolution of the mesh. Generally, we are interested in some 
scalar quantity of interest (QoI) 𝑄 =𝑄(x, 𝑡, 𝝎), for example, the failure load or the displacement at a particular point, where x and 𝑡
are the spatial and temporal coordinates and 𝝎 represents a vector of random variables that takes values in ℝ𝑀 . 𝝎 represents sources 
of uncertainty in the problem, in this case, the material properties. Note that the quantity of interest (𝑄) could be a function, for 
instance, the load-deflection response of a structure. For the presented case studies, the quantity of interest is the failure load, and 
the objective is to compute the expected value of 𝑄, denoted 𝔼[𝑄], with a quantified level of uncertainty. However, for many real 
world applications, the probability distribution of 𝑄 is of more interest. Methods for obtaining the probability distribution of 𝑄 will 
be discussed.

3.1. Standard Monte Carlo simulation

In a standard Monte Carlo (MC) simulation, a large number (𝑁) of independent random realisations (or samples) of the parameters 
are generated. For every sample, the solution is computed using a numerical solver (finite element model, particle model etc). The 
accuracy of the solution is directly proportional to the resolution of the discretisation, and it is assumed that 𝑄𝑀 →𝑄 as 𝑀 →∞, 
therefore 𝔼[𝑄𝑀 ] → 𝔼[𝑄] for 𝑀 →∞. The required accuracy and computational budget govern the selection of 𝑀 . The standard 
Monte Carlo estimator for the expected value 𝔼[𝑄𝑀 ] of 𝑄𝑀 , based on 𝑁 samples, is given by Eq. (5), where 𝑄(𝑗)

𝑀
is the quantity of 

interest of the 𝑗𝑡ℎ sample.

𝑄̂𝑀𝐶
𝑀,𝑁

= 1
𝑁

𝑁∑
𝑗=1

𝑄
(𝑗)
𝑀

(5)

Note that 𝑄̂𝑀𝐶
𝑀,𝑁

is an unbiased estimator of 𝔼[𝑄𝑀 ], meaning that 𝔼[𝑄̂𝑀𝐶
𝑀,𝑁

] = 𝔼[𝑄𝑀 ]. An estimator is unbiased if its expectation 
is the quantify of interest that we wish to estimate. The accuracy of the estimator (𝑄̂𝑀𝐶

𝑀,𝑁
) can be quantified using the root mean 

square error (RMSE):

𝑒(𝑄̂𝑀𝐶
𝑀,𝑁

) =
√

𝔼[(𝑄̂𝑀𝐶
𝑀,𝑁

− 𝔼[𝑄])2] (6)

An advantage of quantifying the accuracy of the estimator in this way is that the mean square error can be expanded and two 
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distinct sources of error can be isolated: (1) the bias error and (2) the sampling error.
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Fig. 4. Example of a hierarchy of uniformly refined meshes employed in the MLMC method. Each mesh corresponds to a level 0 ≤ 𝓁 ≤ 𝐿 in the multilevel method 
with 𝑀0 <⋯ <𝑀𝓁 <⋯ <𝑀𝐿 degrees of freedom. We restrict ourselves to the case of uniform mesh refinement where the node spacing (Δ𝑥) is halved every time.

𝑒(𝑄̂𝑀𝐶
𝑀,𝑁

)2 =
(
𝔼[𝑄𝑀 −𝑄]

)2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑏𝑖𝑎𝑠 𝑒𝑟𝑟𝑜𝑟

+
𝕍 [𝑄𝑀 ]

𝑁
⏟⏟⏟

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟

(7)

The first term in Eq. (7) is the bias error (sometimes referred to as the discretisation or numerical error). This arises as we are 
actually interested in the expected value 𝔼[𝑄] of 𝑄, the unobtainable random variable corresponding to the exact solution without 
any numerical error. If we assume that the numerical model converges to the exact solution as the mesh is refined, 𝔼[𝑄𝑀 ] → 𝔼[𝑄]
as 𝑀 →∞, then we can state the following

𝔼[𝑄𝑀 −𝑄] ≃𝑀−𝛼, as 𝑀 →∞ (8)

where 𝛼 is the order of convergence and 𝛼 > 0.1 The value of 𝛼 is problem dependent and depends on numerous factors, such 
as, the chosen numerical model, the material model and the smoothness of the random field. By making 𝑀 sufficiently large, the 
discretisation error can be reduced to any tolerance value 𝜖𝑏.

The second term in Eq. (7) is the sampling error and represents the variance of the estimator and decays inversely with the number 
of samples 𝑁 . To ensure that the sampling error is less than a defined tolerance 𝜖𝑠, it is reasonable to determine the number of 
samples 𝑁 using Eq. (9).

𝜖2𝑠 ≈
𝕍 [𝑄𝑀 ]

𝑁
∴𝑁 ≈ 𝕍 [𝑄]

𝜖2𝑠
(9)

To reduce the total error to a defined tolerance, the number of degrees of freedom 𝑀 and the number of samples 𝑁 must both 
be increased. This can be prohibitively computationally expensive when the cost to compute each sample to the required level of 
accuracy is high. The cost 𝐶𝑀 to compute a single sample of 𝑄𝑀 is dependent on the computational complexity of the solver. The 
computational cost will grow as follows

𝐶𝑀

≃𝑀𝛾 (10)

for some 𝛾 ≥ 1. The rate at which the computational cost grows (𝛾) is dependent on a number of factors, such as, the dimension of 
the problem and the chosen solver (explicit/implicit).

Standard MC estimators are proven to be robust and accurate for many problems, however the slow convergence rate limits 
applications to problems where the QoI can be computed cheaply. For problems that require the solution of computationally expen-

sive models it is not possible to achieve reasonable estimations in an acceptable time. Different strategies have been examined to 
accelerate MC estimators, and all are based on the idea of reducing the sampling error.

3.2. Multilevel Monte Carlo simulation

The standard MC estimator is too costly as the quantity of interest for every sample must be computed to the level of accuracy 
required to ensure that the discretisation error is less than a defined tolerance. The key idea of MLMC is to compute a sequence of 
estimates of the quantity of interest using a hierarchy of nested meshes, as illustrated in Fig. 4. A significant reduction in computa-

tional cost can be realised by taking the majority of samples on a coarse mesh (low accuracy but computationally cheap), and taking 
relatively few samples on a fine mesh (high accuracy but computationally expensive).

Because of the linearity of the expectation operator, the expected value of 𝑄 on the finest mesh (𝔼[𝑄𝑀𝐿
]) can be expressed as a 

telescopic sum of the expectation of 𝑄 on the coarsest mesh plus a sum of correction terms that account for the difference between 
evaluations on consecutive mesh levels.

1 The notation 𝑎𝑛 ≃𝑛−𝛼 denotes that the sequence {𝑎1, 𝑎2 , 𝑎3, ..., 𝑎𝑛} decreases with a rate of −𝛼 as 𝑛 →∞, and the lower bound of the sequence is 𝑐1𝑛−𝛼 and the 
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upper bound is 𝐶1𝑛
−𝛼 (𝑐1𝑛

−𝛼 ≤ 𝑎𝑛 ≤ 𝐶1𝑛
−𝛼 ), where 𝑐1 and 𝐶1 are positive constants independent of 𝑛 (0 < 𝑐1 ≤ 𝐶1).
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Fig. 5. This figure illustrates the same sample 𝜔(𝑖) of a spatially correlated random field on three mesh levels. Note that the resolution of the coarsest level Δ𝑥0 must 
be smaller than the correlation length 𝑙𝑐 in the random field. Cliffe et al. [10] states that the optimal choice for the resolution of the coarsest mesh is such that Δ𝑥0 is 
slightly smaller than 𝑙𝑐 .

𝔼[𝑄𝑀𝐿
] = 𝔼[𝑄𝑀0

] +
𝐿∑

𝓁=1
𝔼[𝑌𝓁] (11)

where 𝑌𝓁 is the discrepancy between the QoI at successive mesh resolutions and is defined as follows

𝑌𝓁 =

{
𝑄𝑀0

if 𝓁 = 0
𝑄𝑀𝓁

−𝑄𝑀𝓁−1
if 0 < 𝓁 ≤𝐿

(12)

The multilevel estimator for 𝔼[𝑄] is given by Eq. (13).

𝑄̂𝑀𝐿
𝑀

= 𝑄̂𝑀𝐶
𝑀0 ,𝑁0

+
𝐿∑

𝓁=1
𝑌 𝑀𝐶
𝓁,𝑁𝓁

(13)

The number of samples 𝑁𝓁 on each level is determined such that the total computational cost of the estimator is minimised for a 
defined sampling error (see Eq. (23)). It is important to highlight that the same random sample 𝜔(𝑖) is used to compute the quantity 
𝑄

(𝑖)
𝑀𝓁

−𝑄
(𝑖)
𝑀𝓁−1

, i.e. a coarsened version of the random sample used to compute 𝑄(𝑖)
𝑀𝓁

is used to compute 𝑄(𝑖)
𝑀𝓁−1

(refer to Fig. 5 for 
clarification).

As all the expectations 𝔼[𝑌𝓁] are estimated independently, the variance of the multilevel estimator is 𝕍 [𝑄̂𝑀𝐿
𝑀

] =
∑𝐿

𝓁=0𝑁
−1
𝓁 𝕍 [𝑌𝓁], 

where 𝕍 [𝑌0] = 𝕍 [𝑄𝑀0
]. The accuracy of the estimator can be quantified by considering the mean square error.

𝑒(𝑄̂𝑀𝐿
𝑀

)2 =
(
𝔼[𝑄𝑀 −𝑄]

)2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑏𝑖𝑎𝑠 𝑒𝑟𝑟𝑜𝑟

+
𝐿∑
𝑙=0

𝕍 [𝑌𝓁]
𝑁𝓁

⏟⏞⏞⏟⏞⏞⏟
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟

(14)

Much like the standard MC estimator, the mean square error is composed of two terms, the bias error and the sampling error. The 
bias error is exactly the same as in the MC estimator (see Eq. (7)), and the number of degrees of freedom on the finest level (𝑀𝐿) 
must be sufficiently large to satisfy Eq. (8), and thus ensuring that the bias error is less than 𝜖𝑏.

The multilevel estimator is cheaper than the standard MC estimator as the number of samples 𝑁𝓁 on every level can be chosen 
to ensure that the sampling error is less than 𝜖𝑠, whilst minimising the total computational cost of the estimator. The computational 
cost of the multilevel Monte Carlo estimator is given by the following

𝐶(𝑄̂𝑀𝐿
𝑀

) =
𝐿∑

𝓁=0
𝑁𝓁𝐶𝓁 (15)

where 𝐶𝓁 is the cost to compute a single sample of 𝑌𝓁 on level 𝓁 ≥ 1 or 𝑄𝑀0
on level 0. Note that taking a sample of 𝑌𝓁 requires the 

numerical approximation of 𝑄 on two consecutive mesh levels (both 𝑄(𝑖)
𝑀𝓁

and 𝑄(𝑖)
𝑀𝓁−1

must be computed). The determination of the 
optimal sample allocation is detailed in Section 3.2.2.

To achieve a RMSE of 𝜖, it can be asserted that the multilevel estimator is computationally cheaper than the standard MC estimator 
due to the significant reduction in variance [10]. As the MLMC estimator is unbiased, the variance of the estimator is equal to

̂𝑀𝐿
𝐿∑ 𝕍 [𝑌𝓁]
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𝕍 [𝑄
𝑀

] =
𝓁=0 𝑁𝓁

(16)
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The variance of the multilevel estimator is reduced as both numerical approximations 𝑄𝑀𝓁
and 𝑄𝑀𝓁−1

converge to 𝑄 and 
consequently

𝕍 [𝑌𝓁] = 𝕍 [𝑄𝑀𝓁
−𝑄𝑀𝓁−1

]→ 0 as 𝑀𝓁 →∞ (17)

It is assumed that there exists a 𝛽 > 0, where 𝛽 is the order of convergence of the sampling error, such that

𝕍 [𝑄𝑀𝓁
−𝑄𝑀𝓁−1

] ≃𝑀−𝛽
𝓁 (18)

3.2.1. Error estimation

The aim is to estimate 𝔼[𝑄] such that the RMSE is below a defined tolerance 𝜖, whilst minimising the total computational cost of 
the estimator 𝐶(𝑄̂𝑀𝐿

𝑀
). The RMSE, defined by Eq. (14), is comprised of two parts: (1) the bias error and (2) the sampling error. To 

ensure that the RMSE is less than 𝜖, it is sufficient to bound each term by 𝜖2∕2. To estimate the bias error, it is assumed that 𝑀𝓁 is 
sufficiently large so that the decay in |||𝔼[𝑄𝑀𝓁

−𝑄]||| is in the asymptotic region and satisfies the following

|||𝔼[𝑄𝑀𝓁
−𝑄]||| ≃𝑀−𝛼 (19)

Following the derivation presented in [12], for uniform mesh refinement, where the number of degrees of freedom on level 𝓁 is 
given by 𝑀𝓁 ≈𝑚𝓁𝑀0, the bias error on level 𝓁 can be over-estimated as follows

𝜀 ∶= |||𝔼[𝑄𝑀𝓁
−𝑄]||| ≤ 1

𝑟𝑚𝛼 − 1
𝑌 𝑀𝐶
𝓁,𝑁𝓁

(20)

where 𝑟 is set to 1. This is equivalent to the assumption that 𝑀𝓁 is sufficiently large so that the decay in |||𝔼[𝑄𝑀𝓁
−𝑄]||| is in the 

asymptotic region. The user may wish to select a more conservative values for 𝑟, for example 0.7 or 0.9. If the bias error is greater 
than the tolerance, then 𝑀𝐿 must be increased.

To ensure that the sampling error is less than or equal to the sample tolerance 𝜖𝑠, the following constraint is enforced

𝐿∑
𝓁=0

𝕍 [𝑌𝓁]
𝑁𝓁

≤ 𝜖2𝑠 (21)

As the number of samples increases, the variance of the sample mean decreases and hence precision increases. The sample 
variance is estimated as follows

𝑠2𝓁 =

(
1
𝑁𝓁

𝑁𝓁∑
𝑛=1

(𝑌 𝑛
𝓁 )

2

)
−
(
𝑌 𝑀𝐶
𝓁,𝑁𝓁

)2
≈ 𝑉𝓁 (22)

3.2.2. Sample allocation

The optimal sample allocation (number of samples per level 𝑁𝓁) is determined by solving a constrained optimisation problem 
that minimises 𝐶(𝑄̂𝑀𝐿

𝑀
) with respect to 𝑁𝓁 , subject to the constraint that the sampling error of the multilevel estimator is less than 

or equal to the defined tolerance 𝜖𝑠.

𝑁𝓁 = 𝜖−2𝑠

(
𝐿∑

𝓁=0

√
𝑉𝓁𝐶𝓁

)√
𝑉𝓁

𝐶𝓁
(23)

The computational cost of the MLMC estimator grows as follows

𝐶(𝑄̂𝑀𝐿
𝑀

) = 𝜖−2

(
𝐿∑

𝓁=0

√
𝑉𝓁𝐶𝓁

)2

≃𝜖−2−𝑚𝑎𝑥(0, (𝛾−𝛽)∕𝛼) as 𝜖 → 0 (24)

The rate at which the computational cost grows with respect to the number of degrees of freedom 𝑀 is given by Eq. (25), for 
some 𝛾 ≥ 1.

𝐶𝓁

≃𝑀𝛾

𝓁 (25)

The reader is referred to Cliffe et al. [10] and [16] for a full proof of the MLMC computational complexity theorem with bounds 
on the RMSE.

3.2.3. MLMC implementation

Pseudo-code for the adaptive MLMC method is outlined in Algorithm 1. Optimal values of 𝐿, 𝑀𝓁 and 𝑁𝓁 are computed on the fly

from the sample averages and the sample variances of 𝑌𝓁 . We set the number of warm-up samples 𝑁⋆ to be 100. As each sample is 
independent and there are no shared memory requirements, Algorithm 1 can be trivially parallelised across an unlimited number of 
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independent compute nodes.
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Algorithm 1 Multilevel Monte Carlo algorithm.

1: Set 𝐿 = 0, 𝑁𝓁 =𝑁⋆ , converged == false

2: while converged == false do

3: Take 𝑁⋆ warm-up samples on level 𝐿
4: Estimate the sample variance 𝕍 [𝑌𝓁] on all levels using Eq. (22)

5: Estimate the optimal number of samples 𝑁̂𝓁 on each level using Eq. (23)

6: Compute 𝑁̂𝓁 −𝑁⋆ additional samples on each level

7: Estimate bias error 𝜖𝑏 on level 𝐿 using Eq. (20)

8: if 𝜖𝑏 < 𝜖𝑏 then

9: converged == True

10: else

11: 𝐿 =𝐿 + 1
12: end if

13: end while

4. Case studies

Two case studies are presented to demonstrate the power of employing the MLMC framework in combination with a peridynamic 
model. The case studies are selected as examples where uncertainty must be considered to gain a deeper understanding of the physical 
behaviour. We focus on quasi-brittle materials because the range of experimental data is greater than that of any other material and 
quasi-brittle materials exhibit a significant size effect. A stochastic model is required for a complete examination of the mechanisms 
that govern the structural size effect. The first case study examines the structural size effect in a notched beam (Type 2 problem), 
and the second case study examines the structural size effect in an unnotched beam (Type 1 problem).

The following subsection briefly discusses the structural size effect. For a detailed review of the structural size effect, the reader 
is referred to Bažant and Planas [29] and Bažant [30].

4.1. Structural size effect

According to the theory of strength-of-materials, when the maximum stress in a structure surpasses an upper limit, as determined 
by small-scale tests on representative material samples, structural failure is expected to occur. Basic tests such as uniaxial tension, 
uniaxial compression, and flexural tests are employed to establish this limit for various loading conditions. However, this approach is 
inadequate for quasi-brittle materials [31], as quasi-brittle materials display a size effect, meaning that larger elements fail at lower 
stresses than smaller-scale elements with identical geometry.

In brittle and quasi-brittle materials, there are two primary factors that contribute to the size effect on structural strength [29,30]: 
(1) the release of stored energy (deterministic size effect), and (2) the statistical variability in material properties, which is generally 
of lesser significance (statistical size effect). The deterministic size effect is governed by the size of the fracture process zone (the 
area where energy is dissipated during fracture), relative to the size of the structure. The statistical size effect is a consequence of the 
random distribution of material properties and defects. As the size of the specimen increases, the likelihood that it contains a defect 
that will lead to failure also increases. As there is minimal experimental data on the response of very large structures and the safety 
implications are often much greater, correctly predicting the influence of the statistical size effect is of utmost importance.

Two types of size effect law are defined: Type 1 applies to structures with no notches or pre-existing cracks (fracture initiates 
from a smooth surface), and Type 2 applies to structures with a notch (high-stress concentrations). The influence of the size effect 
on the mean strength of Type 1 and 2 structures is markedly different [32]. For Type 1 structures, the size effect has a significant 
statistical component, whereas for Type 2 structures, the statistical component is minimal.

The size effect in quasi-brittle materials has previously been examined using a deterministic bond-based peridynamic model [17]. 
The model did not consider the spatial variability in material properties and the magnitude of the statistical size effect remains 
to be established. Due to the high computational expense of peridynamic simulations, examining the statistical size effect was 
impracticable but the presented framework allows us to overcome the aforementioned issues. The deterministic model employed in 
[17] was validated against the complete set of experimental results published by Grégoire et al. [33]. This work only considers two 
members from the test series as the aim of this study is to demonstrate the possible computational savings that can be realised using 
the MLMC framework, and to demonstrate the importance of examining uncertainty. Future work will use the MLMC framework to 
examine the full series of tests and provide a comprehensive study of the statistical size effect.

4.2. Material strength distribution and spatial correlation

The efficient and accurate generation of random fields that capture the variability and spatial correlation of material properties 
is an import element of the numerical framework. In this contribution, Karhunen-Loève expansion (KL expansion) is employed 
because of its practical simplicity and relatively low computational cost. The correlation between material points is captured using 
an exponential covariance function, and the distance over which the correlation exists is determined by a length scale 𝑙𝑐 . For quasi-

brittle materials, Grassl and Bažant [34] suggested that the correlation length must, at a minimum, be as large as the fracture process 
zone (FPZ). For concrete, the size of the FPZ is approximately two to three times the maximum aggregate size [35].

The material strength distribution significantly influences the predicted results and the convergence of the model. In the litera-
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ture, various distributions, including normal (Gaussian), log-normal, Gauss-Weibull and Weibull, have been employed for modelling 
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Fig. 6. Schematic of the experimental setup (adapted from [33]).

Table 1

Mesh level 𝓁, corresponding mesh resolution Δ𝑥 and corresponding 
number of nodes 𝑀 . The number of nodes (degrees of freedom) on 
level 𝓁 is given by 𝑀𝓁 =𝑚𝓁𝑀0 , where 𝑚 = 4.

Level 𝓁 0 1 2 3 4

Δ𝑥 (mm) 10 5 2.5 1.25 0.625

no. nodes 𝑀 350 1,400 5,600 22,400 89,600

quasi-brittle materials. We examined the applicability of normal, log-normal and Weibull distributions and found that the Weibull 
distribution demonstrated the best agreement with experimental data while enhancing the rate of convergence for discretisation 
errors. These findings are discussed further in Section 5.4.

To easily generate a random field, where the probability distribution function of a material parameter at a given location is a 
univariate Weibull distribution, we follow the approach of Rappel et al. [36] and Rappel et al. [37]. In a Gaussian random field, 
the probability density function of a material parameter at a given location is a univariate Gaussian distribution. Using the copula 
theorem and Gaussian fields, different types of univariate marginal distributions can be produced but with the same correlation 
structure as Gaussian fields. Keeping the Gaussian correlation structure is advantageous as it allows us to draw samples from a 
Gaussian field and transform the samples into a random field with the desired distribution.

4.3. Case study 1: statistical size effect in quasi-brittle materials (Type 2)

The first problem that we consider is a notched concrete beam in three-point bending, tested experimentally in [33]. A schematic 
diagram of the experimental setup is illustrated in Fig. 6. The chosen beam (Specimen 3) has the following dimensions: length 𝑙 =
350 mm; depth 𝑑 = 100 mm; and thickness 𝑏 = 50 mm. The span of the member is 250 mm and the depth of the notch is 𝜆 = 0.5 
(half-notched). The properties of the concrete mixture are as follows: mean compressive strength 𝑓𝑐𝑚,𝑐𝑦𝑙 = 42.3 MPa, density 𝜌 =
2346 kg/m3 and the maximum aggregate diameter is 10 mm.

The compressive strength 𝑓𝑐 is represented as a random field and all other properties are calculated using deterministic relations 
to 𝑓𝑐 . Empirical formulas (derived from experimental data) published in fib Model Code 2010 [38] are used to determine the Young’s 
modulus 𝐸, tensile strength 𝑓𝑡 and fracture energy 𝐺𝐹 . The correlation length 𝑙𝑐 is set to 20 mm, and the Weibull modulus 𝑚 is set to 
3. The Weibull modulus 𝑚 is an uncertain parameter with high sensitivity and a wide range of values can be found in the literature. 
According to the Weibull theory, the modulus 𝑚 is a material property that is independent of the geometry and scale of the structure, 
however Syroka-Korol et al. [39] found that the Weibull modulus 𝑚 does depend on the size of the structure and length scale 𝑙𝑐 .

All the presented results have been obtained using a constant peridynamic horizon 𝛿 = 3.14Δ𝑥 and regular grid spacing. Table 1

details the mesh resolution (Δ𝑥) and number of nodes (𝑀) for every mesh level (𝓁). The non-linear softening model was calibrated 
to fit the experimental results for the smallest unnotched specimen (𝑑 = 50 mm). 𝑘 (the rate of decay) is set to 25 and 𝛼 (the position 
of the transition from exponential to linear decay) is set to 0.25. These parameters (𝑘 and 𝛼) are fixed for all test cases.

4.3.1. Results

We start by taking 100 samples on all levels and estimate 𝛼, 𝛽 and 𝛾 . The first step is to estimate how the computational cost 
scales as 𝑀𝓁 increases. The time to compute each sample is recorded and it is determined that the computational costs grow linearly. 
The computational cost is given by Eq. (26), where 𝛾 = 1. Note that the performance of PeriPy scales linearly with the number of 
nodes ∴𝛾 = 1 [40].

𝐶𝓁

≃𝑀1
𝓁 (26)

The next step is to estimate the parameters 𝛼 and 𝛽 for the QoI, which is taken to be the peak load. Fig. 7 illustrates the log-log 
plots of the estimated means and variances of 𝑄𝓁 and 𝑌𝓁 = 𝑄𝓁 − 𝑄𝓁−1, for 𝓁 = 0, ..., 4, with respect to the number of degrees of 
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freedom 𝑀𝓁 on each level. The rate of convergence of the discretisation error is given by Eq. (27), where 𝛼 is approximately 0.528.
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Fig. 7. Expectation (left) and variance (right) of 𝑄𝓁 and 𝑌𝓁 = 𝑄𝓁 −𝑄𝓁−1 against degrees of freedom 𝑀𝓁 for problem 1. Taking 100 samples on every level, 𝛼 is 
estimated to be 0.528 and 𝛽 is estimated to be 0.817.

Fig. 8. Computational cost (in minutes) against 𝜖 for the multilevel estimator (cost ≃𝜖−2.35) and the standard MC estimator (cost ≃𝜖−3.89).

Table 2

Specimen 3 (𝜆 = 0.5) - Sample allocation for different sam-

pling tolerances 𝜖𝑠 . The sampling tolerance 𝜖𝑠 is given in 
Newtons (N). 𝑁𝓁 is computed using Eq. (23) and 𝑁 is 
computed using Eq. (9). The bias error is approximately 
0.75 N.

𝜖𝑠 (N) no. samples 𝑁𝓁 𝑁a

0 1 2 3 4

100 21 5 2 0 0 9

50 86 22 8 2 0 38

10 2,152 567 204 67 18 955

a Number of samples required when using the standard 
Monte Carlo estimator. Note that all samples are com-

puted on level 4 (𝓁 = 4).

𝔼[𝑌𝓁]

≃𝑀−0.528
𝓁 (27)

The rate of convergence of the sampling error is given by Eq. (28), where 𝛽 is approximately 0.817.

𝕍 [𝑌𝓁]

≃𝑀−0.817
𝓁 (28)

Using the estimated values of 𝛼, 𝛽 and 𝛾 , Eq. (24) predicts that the cost of the MLMC simulations will grow proportionally to 
𝜖−2.35, whilst the cost of the standard MC simulations will grow proportionally to 𝜖−3.89. Fig. 8 illustrates the computational cost (in 
minutes) of the multilevel estimator and the standard MC estimator against relative error 𝜖. Table 2 presents the optimal number of 
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samples 𝑁𝓁 across the 5 mesh levels for different values of sampling tolerance (𝜖𝑠 = 10, 50 and 100 N), plus the number of samples 
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Table 3

Specimen 3 (𝜆 = 0.5) - Computational cost (in 
minutes) for the multilevel estimator and the 
standard Monte Carlo estimator.

𝜖𝑠 (N) Cost (min) Speed-up

MLMC MC

100 8 125 16

50 38 529 14

10 1,265 13,290 10.5

required when using the standard MC estimator (𝑁). In Table 3, the computational cost in minutes for the optimal number of sample 
is presented. Furthermore, using Eq. (20), the bias error is found to be relatively small at approximately 0.75 N.

Whilst the main aim of this work has been to demonstrate the computational savings of the MLMC framework, we have purposely 
selected examples where a deeper understanding of the physical behaviour can be gained by considering uncertainty. For Type 2 
problems, the difference between the deterministic strength and the mean stochastic strength is expected to be small, as the influence 
of the variability in material properties is lessened due to the large stress concentrations that occur at the notch tip. This was observed 
numerically by Eliáš et al. [41] who found that considering spatial variability in material properties does not significantly influence 
the mean failure load, but does lead to an increase in the variance of the structural response. Using the finest mesh (𝓁 = 4), the 
deterministic model presented in [17] predicts that the specimen will fail at approximately 1800 N. Setting the sampling tolerance 
𝜖𝑠 to 10 N, the mean stochastic strength is predicted to be approximately 1790 N. Note that the bias error is approximately 0.75 N. 
The observed results are in agreement with theory, which predicts that the difference between the deterministic strength and mean 
stochastic strength will be small [32,42]. Note that the experimental failure load ranged between 1580 N and 1710 N.

4.4. Case study 2: statistical size effect in quasi-brittle materials (Type 1)

The second problem that we consider is an unnotched concrete beam in three-point bending, tested experimentally in [33]. We 
consider Specimen 3 (illustrated in Fig. 6) again but with no notch (𝜆 = 0). Beyond demonstrating the computational savings that 
can be achieved using the MLMC framework, the presented example provides insight into the following areas:

Statistical size effect - It was demonstrated in [17] that a deterministic bond-based model accurately captures the structural size 
effect for Type 2 (notched) problems, but fails to capture the correct response for Type 1 (unnotched) problems. This was expected 
as it is well known that the randomness of material properties has a significant effect on the structural strength of Type 1 problems 
[43,44]. In Type 1 problems, the volume of highly stressed material is much larger than that observed in Type 2 problems, and the 
probability that a defect is present in the stressed region is consequently higher. In Type 2 problems, the presence of a notch results 
in a localised region of highly stressed material, and the influence of randomness in material properties is consequently lessened. It is 
expected that the inclusion of statistical variability in the material properties will improve the predictive accuracy of the peridynamic 
model.

Convergence - It was demonstrated in [22] that a deterministic bond-based model fails to converge for Type 1 problems (the 
predicted strength is coupled with the mesh resolution). It was hypothesised that accounting for randomness in the material properties 
is required to initiate the localisation of damage and improve convergence.

4.4.1. Results

Again we start by taking 100 samples on all levels and estimate 𝛼, 𝛽 and 𝛾 . As per the previous example, the computational cost 
grows linearly (𝛾 = 1). Taking 100 samples on every level, 𝛼 is estimated to be 0.337 and 𝛽 is estimated to be 0.682 (refer to Fig. 9). 
The rate of convergence of the discretisation error and sampling error is slower than that observed in problem 1 (Type 2).

Using the estimated values of 𝛼, 𝛽 and 𝛾 , Eq. (24) predicts that the cost of the MLMC simulations will grow proportionally to 
𝜖−2.94, whilst the cost of the standard MC simulations will grow proportionally to 𝜖−4.97. Table 4 presents the optimal number of 
samples 𝑁𝓁 across the mesh levels for different values of sampling tolerance (𝜖𝑠 = 10, 50 and 100 N), plus the number of samples 
required when using the standard MC estimator (𝑁). In Table 5, the computational cost in minutes for the optimal number of sample 
is presented. Due to the higher variance of the estimator, the number of samples required is considerably higher than that required 
for the Type 2 problem. Type 1 problems are subject to a high degree of natural variability and consequently the computational cost 
is higher as significantly more samples are required.

By including uncertainty in the material properties, the bond-based model converges for Type 1 problems (𝛼 ≈ 0.337). This is the 
first time that this behaviour has been demonstrated, but the convergence behaviour is significantly worse than that observed for 
Type 2 problems (𝛼 ≈ 0.528) and the bias error remains large. Using Eq. (20), the bias error is estimated to be approximately 200 N.

Initial results using a normal distribution found that the model failed to converge for Type 1 problems. It was established that 
extreme values in the left-tail of the material strength distribution are required to initiate the localisation of damage and eliminate 
problems of mesh dependence. If there are no imperfections in the highly stressed region then the damage fails to localise correctly 
and the results exhibit a strong mesh dependency. Even when using a Weibull distribution, there will be a small number of samples 
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where the damage fails to localise and this has a detrimental impact on the estimated convergence rate 𝛼. The convergence rate 𝛼
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Fig. 9. Expectation (left) and variance (right) of 𝑄𝓁 and 𝑌𝓁 = 𝑄𝓁 −𝑄𝓁−1 against degrees of freedom 𝑀𝓁 for problem 2. Taking 100 samples on every level, 𝛼 is 
estimated to be 0.337 and 𝛽 is estimated to be 0.682.

Table 4

Specimen 3 (𝜆 = 0) - Sample allocation for different sampling tolerances 
𝜖𝑠 . The sampling tolerance 𝜖𝑠 is given in Newtons (N). 𝑁𝓁 is computed 
using Eq. (23) and 𝑁 is computed using Eq. (9). Due to the higher vari-

ance of the estimator, the number of samples required is considerably 
higher than that required for the Type 2 problem (refer to Table 2).

𝜖𝑠 (N) no. samples 𝑁𝓁 𝑁a

0 1 2 3 4

100 406 119 57 15 5 193

50 1,624 479 230 63 22 775

10 40,624 11,982 5,765 1,586 551 19,388

a Number of samples required when using the standard Monte Carlo 
estimator. Note that all samples are computed on level 4 (𝓁 = 4).

Table 5

Specimen 3 (𝜆 = 0) - Computational cost (in 
minutes) for the multilevel estimator and the 
standard Monte Carlo estimator. The compu-

tational cost of the multilevel estimator grows 
proportionally to 𝜖−2.94 and the cost of standard 
Monte Carlo estimator grows proportionally to 
𝜖−4.97 .

𝜖𝑠 (N) Cost (min) Speed-up

MLMC MC

100 290 2,686 9.3

50 1,197 10,785 9

10 29,998 269,816 9

can be improved by employing a material strength distribution that is skewed towards the left (e.g. Weibull distribution with a low 
Weibull modulus) but this might not be physically realistic for the considered problem.

As the size of a structure increases, so does the probability that a defect will be present from which a fracture will initiate. Syroka-

Korol et al. [43] determined numerically that the deterministic and mean stochastic strength start to diverge when the beam depth is 
greater than 50-60 mm. Specimen 3 is 100 mm deep and the magnitude of the statistical size effect is expected to be non-negligible. 
Setting the sampling tolerance 𝜖𝑠 to 50 N, the mean stochastic strength is estimated to be approximately 6250 N. Note that the 
bias error is approximately 200 N. Using the finest mesh (𝓁 = 4), the deterministic model predicts that the specimen will fail at 
approximately 9200 N. The experimental failure load ranged between 7620 N and 8770 N. The numerical results are consistent with 
the theory, i.e., the difference between the deterministic strength and mean stochastic strength is much larger than that observed 
for Type 2 problems. However, the deterministic model does not converge for Type 1 problems and the prediction of strength is 
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therefore unreliable, and a rigorous comparison is not possible.
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Fig. 10. The cumulative distribution function of strength (load capacity) for the Type 2 problem (left) and the Type 1 problem (right). The empirical CDF is plotted 
in black and the fitted Weibull CDF is plotted in blue. The 𝑦-axis represents the percentage of the population that will fail at a load less than or equal to 𝑥.

4.5. Estimating failure probabilities

The objective of the multilevel framework is to estimate the expectation of an output variable, in this case, the peak load. 
However, for many industrial applications, engineers are more concerned with the cumulative distribution function (CDF) of the 
output variable. For example, an engineer might be interested in the probability that an output variable exceeds a specific value, or 
as demonstrated here, the probability that a structure will fail at a load less than or equal to a specific value. Computing the CDF is 
complicated as the multilevel method provides relatively few values on the finest mesh. Gregory and Cotter [45] recently outlined a 
method that makes it possible to obtain the CDF using samples obtained on multiple mesh levels and we follow the same approach. 
The reader is also referred to Clare et al. [15] for further information.

The inverse transform sampling method is used to determine an approximation of the inverse CDF 𝐹−1(𝑢), where 𝑢 ∼ (0, 1). 
If the CDF 𝐹 of a random variable 𝑋 is strictly increasing and absolutely continuous, then there exists a unique value 𝑥 ≡ 𝐹−1(𝑢)
for which 𝐹 (𝑥) = 𝑢. By sorting the samples {𝑋𝑖}𝑖=1,...,𝑁 ∼ 𝐹 in ascending order such that 𝑋1 < 𝑋2 <⋯ < 𝑋𝑁 , a simple consistent 
estimate for an evaluation to the quantile function of the distribution with CDF 𝐹 is

𝐹−1(𝑢) =𝑋[𝑁×𝑢]

This is a consistent estimate because it converges in probability to 𝐹−1(𝑢) as 𝑁 →∞. The inverse CDF for the multilevel approx-

imation is then given by

𝐹−1
𝐿

(𝑢) =𝑅(𝑋)[𝑁0×𝑢]
0 +

𝐿∑
𝑖=1

(
𝑅(𝑋)[𝑁𝓁×𝑢]

𝓁 −𝑅(𝑋)[𝑁𝓁−1×𝑢]
𝓁−1

)
where 𝑅(𝑋)𝑖𝓁 is the 𝑖th ordered statistic of 𝑋𝓁 on level 𝓁. The CDF of the multilevel approximation is then given by

𝐹 (𝑥) = 1
𝑁

𝑁∑
𝑖=1
1𝑋𝑖≤𝑥

where 1 is the indicator function. For a detailed description of this method we refer the reader to [45].

The empirical CDF and fitted Weibull CDF for the Type 1 and Type 2 problem is illustrated in Fig. 10. The 𝑦-axis represents the 
percentage of the population that will fail at a load less than or equal to 𝑥. The purpose of this figure is to demonstrate that is possible 
to use the multilevel framework to obtain the CDF and a discussion of the results is beyond the scope of this paper. The reader is 
referred to Bažant and Le [46] for further information on the computation of CDFs of structural strength and fatigue lifetime. Ideally 
we would include the CDF obtained using standard MC but this was not possible due to the high computational cost of obtaining 
samples on the finest level.

5. Further discussion

Beyond demonstrating the computational savings that can be achieved using the multilevel framework, the results presented in 
this paper are of interest for further reasons as discussed in this section.

5.1. Statistical size effect

A key aim of this study was to select case studies where uncertainty must be considered to gain a comprehensive understanding 
of the physical behaviour. We focused our studies on the structural size effect in quasi-brittle materials. Bažant [4] stated that the 
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correct modelling of the size effect on material strength should be adopted as the basic criterion of acceptability of any model. The 
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results demonstrate that a bond-based peridynamic model can be used to examine both the statistical and deterministic component 
of the structural size effect. The intention of this study was never to provide a detailed examination of the statistical size effect, and 
further studies on a wider range of problems are required to improve confidence in the models predictive capabilities.

By employing the presented MLMC framework, studying the statistical component of the structural size effect using a peridynamic 
model becomes computationally feasible. Future work aims to employ the presented MLMC framework to study the full series of tests 
published in [33] and provide a detailed examination of influential factors, such as the shape of the material strength distribution 
and the correlation length 𝑙𝑐 . It is stated in [34] that the ratio of the correlation length 𝑙𝑐 to the size of the fracture process zone 
(FPZ) is the main parameter that influences the statistical size effect.

5.2. Convergence

This work provides new insights into the convergence behaviour of bond-based peridynamic models. It is a fundamental test of the 
adequacy of any numerical model that the predictions are independent of the mesh resolution. Comprehensive convergence studies 
of the predicted structural response are missing from the peridynamics literature, with existing investigations primarily focusing on 
static elastic problems [47]. Niazi et al. [48] did perform a convergence study that examined the entire structural response, but this 
study is limited as Type 1 problems were not considered.

To the best of the authors knowledge, [22] provides the first study on the effect of mesh refinement (𝛿-convergence) on the 
predicted peak load and load-deflection response for Type 1 and 2 problems. The deterministic bond-based peridynamic model failed 
to converge for Type 1 problems, and it was hypothesised that a source of randomness must be introduced to trigger the localisation 
of damage in Type 1 specimens, and eliminate problems of mesh dependence.

The results in this study confirm that by introducing a source of randomness, problems of mesh dependence are eliminated for 
Type 1 specimens. It was previously reported in [48] that the convergence behaviour is improved by randomly deleting 1% of all 
bonds, as first suggested by Chen et al. [49]. While this method is computationally cheap and does improve convergence behaviour, it 
is an oversimplified heuristic approach that lacks a robust theoretical basis, and does not consider the spatial correlation of material 
properties. Jones et al. [50] note that these heuristic methods are generally used to avoid problems related to symmetry, and they do 
not attempt to capture the true material behaviour by implementing an experimentally measured probability distribution of material 
properties.

5.3. Length scales

The correlation length 𝑙𝑐 was set to be 20 mm for all considered problems. This value was selected after running a number of 
preliminary simulations. However, the aim of this contribution was not to identify the parameters that describe the spatial fields. It 
is important to note that a theoretically grounded probabilistic framework based on Bayesian inference (see [36,37,51]) is essential 
to identify the parameters of the spatial fields (e.g. length scale 𝑙𝑐 ) rigorously.

Furthermore, the interaction between the two length scales (peridynamic horizon 𝛿 and the correlation length 𝑙𝑐 in the random 
field) requires further examination. It remains uncertain how the ratio of the two length scales influences the predictive accuracy of 
the model.

5.4. Material strength distribution

The material strength distribution plays an important role in the predicted results and convergence of the model. Three distri-

butions were considered (normal, log-normal and Weibull) and it was determined that the Weibull distribution provides the best 
predictions of mean strength for quasi-brittle materials. This was expected and has been extensively discussed in the literature. A 
more novel observation is that the selected probability distribution influences the convergence rate of the bias error. Extreme values 
in the left-tail are required to initiate the localisation of damage and eliminate problems of mesh dependence. Note that the model 
failed to converge for Type 1 problems when using a normal distribution.

5.5. Model calibration

Many of the model parameters are impossible to determine exactly and are subject to significant uncertainties, for example: the 
length scale 𝑙𝑐 and the Weibull modulus (shape parameter). Future work will examine the integration of the multilevel method with 
experimental data in a Bayesian setting to quantify modelling uncertainties as proposed by Dodwell et al. [52,53]. This will be an 
important step in the validation of peridynamic models, enabling the identification of model discrepancy and measurement bias, and 
providing better estimates of model parameters.

6. Conclusions

Peridynamic models are computationally expensive, preventing the use of standard Monte Carlo methods for the assessment of 
uncertainties in model outputs propagated from uncertain inputs. The aim of this study was to demonstrate the possible computa-
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tional savings that can be realised using a multilevel framework. The maximum observed speed-up factor is 16 when compared to 
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a standard Monte Carlo estimator, thus enabling the efficient forward propagation of uncertain parameters in a computationally ex-

pensive peridynamic model. Beyond demonstrating the computational savings that can be achieved using the multilevel framework, 
the results presented in this paper are of interest for two further reasons:

1. Deterministic bond-based models suffer from a strong mesh dependency when simulating Type 1 problems. It has been demon-

strated that by including uncertainty in the material properties, the bond-based peridynamic model converges for both Type 
1 and Type 2 problems. The need to consider uncertainty is essential for robust and accurate predictions. Furthermore, the 
multilevel method provides an estimate of the discretisation error, thus improving the interpretability of numerical predictions.

2. A secondary aim was to select case studies where uncertainty must be considered to gain a comprehensive understanding of 
the physical behaviour. We examined the structural size effect in quasi-brittle materials as the random variability of material 
properties is known to play an important role. The correct modelling of the size effect on material strength should be adopted 
as the basic criterion of acceptability of any model. The results demonstrate that a bond-based peridynamic model can be used 
to study the statistical size effect but further studies on a wider range of problems are required to improve confidence in the 
models predictive capabilities.

Peridynamic models have many advantages for modelling complex failure problems, but due to their high computational cost, 
addressing probabilistic problems has been prohibitively expensive. This work has demonstrated a multilevel framework that makes 
such computations feasible and opens the door to tackling other probabilistic problems. We motivated the use of the presented 
framework by studying the statistical size effect in quasi-brittle materials, but forward uncertainty quantification is equally important 
for cases where a high degree of reliability is required, as is common in many aerospace and power generation applications.
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