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Abstract—In the context of real-world applications like medical
imaging systems, tracking, astronomical imaging, navigation, and
remote sensing (RS), there is a pressing need to enhance or
upscale images with minimal errors. This is particularly critical
for tasks such as target detection, image classification, and
land use mapping. However, remote sensing images often suffer
from limitations in spatial, spectral, radiometric, and temporal
resolution due to complex atmospheric conditions and sensor
constraints. Additionally, acquiring these images can be expensive
and time-consuming. In this study, we propose a Single Image
Super-Resolution (SISR) method to address these challenges by
upscaling low-quality remote sensing images to higher resolution,
enabling a better understanding of these images. We also discuss
the specific challenges in remote sensing super-resolution tech-
niques and review various upscaling approaches, while analyzing
the impact of other factors like weather conditions, image capture
time, and different scene types on the technique’s effectiveness.

Index Terms—Image enhancement, remote sensing, super-
resolution (SR), convolutional neural networks (CNNs)

I. INTRODUCTION

Remote sensing provides details about the objects that are
closer to the earth’s surface and atmosphere based on the
emitted or reflected radiation from them. These details are
collected from a certain distance from the land in the form
of images, and videos. It helps to automatically analyze the
properties of the object, land cover from local to global
scales using traditional and deep learning approaches [1]. The
government and private sector continuously use these data for
weather reporting, traffic monitoring, drought management,
floods, pollution, climate change, etc. With the advancement
in this space, there is a possibility of having a large number
of geographical images across the earth’s surface [2], [3].
However, these remote sensing images are often distorted
due to the limitation of weather, sensors, optical aberration,
and noise captured along with in the imaging system. These
disturbances lead to difficulties in feature extraction, finding
targets, updating the maps, etc. [4].

The motivation of this paper is to learn from remote sensing
images which poses many challenges to the industries and
stakeholders trying to learn patterns from remote sensing
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data. Many research organisations and companies applied
earth intelligence and analytics, using openly available remote
sensing data. The purpose is to transform geospatial data
into actionable insights about the earth through the delivery
of innovative data solutions. Remote sensing industries and
researchers face many common challenges of high-quality
upscaling of RS images, which may serve multiple purposes
like biodiversity monitoring, surveillance for natural disasters,
land cover mapping, forest fire detection etc.

In this study, single-image super-resolution (SISR) con-
structs a high-resolution image with a single low-resolution
image. For example, if an image of size 256x256 is fed to
the deep learning algorithm, it should be able to double the
image size to 512x512 and double even more to 4 times which
is 1024x1024 sized image. The optimization target for the
super-resolved image is the minimization of mean squared
error (MSE) between the generated images. When the MSE is
reduced it increases the PSNR, a standard metric that is used
to quantify the noise [5].

II. THE RESEARCH CONTEXT

Researching super-resolution techniques brings one basic
method in which the feature vectors of the low-resolution im-
ages are expressed as a weighted combination of its k-nearest
neighbors. In the assumption that low-resolution image em-
bedding is preserved in correspondence to the high-resolution
feature vectors [6]. The rise of deep learning techniques has
been fast in the computer vision related tasks in the last
decade with significant improvement in speed and accuracy.
Super-resolution can be performed from neural networks such
as multilayer perceptrons (MLPs), Deep Neural Networks
(DNNs), and Convolutional Neural Networks (CNNs). DNNs
with several hidden layers able to super-resolved images [7]
the CNNSs are effective in several tasks such as image learning,
object detection, image sharpening, RS imagery enhancement,
and image super-resolution [8].

In CNN the model architecture becomes deeper and com-
plex which leads to the vanishing gradient problem. At the
end of the network, the gradient information reaches with
minimal value [9]. An effective workaround for this problem
is to add skip layers or bypass connections which allows



signals to flow between layers. This method was proposed
in the highway network and ResNet Network. In the case
of DenseNet, it connects different layers within the network,
enabling connected layers to accept inputs from the previous
layer. This is same with the ResNet network in which it defines
the residual function to the layer as the reference input [10],

[11].
III. AiMS AND OBJECTIVES

The present research has multiple objectives to produce the
desired results. Based on the research and discussion with the
remote sensing industries and researchers the following are the
key points to be addressed in this paper:

e To create a SSIR model using the deep CNNs.

o The model trained and developed should be able to
upscale images by a factor of 2x upscale and 4x upscale
size from the low-resolution input image.

o Further, the model has to be generalized across various
land-covers (water, buildings, beach, etc), time (day,
night), and weather conditions (clear, cloud, snow) [12].

o Design multiple error metrics (SSIM, PSNR, NRMSE) to
evaluate the super-resolved images with the ground truth
data available [13], [14].

o Testing various hypothesis on model performance using
statistical metrics.

IV. EXPERIMENT DESIGNM MATERIALS AND METHODS
A. Dataset Description

The data is collected from an open-source image database
CVonline [5] which provides a collection of images from
unmanned aerial vehicles (UAVs) and its respective satellite
images. These images are from 13 different places in Asia
and Europe, such as Birmingham, Coventry, Suzhou, Renens,
Le Bourget Airport (Paris), and others. The considered dataset
has images that are equal in size (960x720). Our dataset has 10
different scenes (agriculture, airport, beach, buildings, forest,
land, parking, playground, road, water), 2 different times (day,
and night), and 3 weather conditions (clear, cloud, snow) when
the images were observed.

B. Data Pre-processing

There are 1934 images in total in the dataset of size 960x720
and are treated as the target images. So the input to the model
were the rescaled and blurred version of the target images.
For the given scaling factor, the input image were cropped,
downscaled to create low-resolution images, and converted
to imagenet_norm format. The dataset was split with 1720
samples for training and 214 for testing.

C. Workflow and Deep Learning Principles

Approach I: Initially, we use a Deep CNN for 2x upscaling
with kernel size of 3, 8 convolution layers, and 32 filters. The
activation unit was rectified linear unit (ReLU) with a final
deconvolution layer. Model performance was under par which
faced the vanishing gradient problem.

Approach 2: To address the vanishing gradient problem,
skip connections, PreLU activation and residual blocks were
incorporated into the network. This modification significantly
improved the performance. However, when applying the same
setup for 4x upscaling, performance remained subpar.

Approach 3: Through multiple iterations, we refined the
number of layers, kernel and filter sizes, and activation units.
We introduced batch normalization for data normalization
and leveraged residual blocks, greatly boosting the model
performance. This approach was proved to be effective for
both 2x and 4x upscaling, finalizing the architecture design.

D. CNN Architectural Design

The network consists of multiple components with the initial
layer being the convolution layer (size 64), kernel (size 9), and
parametric rectified linear unit (PReLU) as the activation unit.
Then there are 16 residual blocks present in the model. Each
block consists of 2 convolution layers with PReLLU activation
and two batch norm layers given to the skip connection.
Finally, sub-pixel convolution or deconvolution blocks are
placed to upscale the images from the layers [15].

1) Comnvolution Layer: In a convolution layer, weights are
multiplied with inputs through a linear operation, a process
repeated multiple times. This layer analyzes the influence of
nearby pixels using filters, typically smaller than the input,
which are applied as dot products to image patches, resulting
in a single scalar value [16]. We employ 64 filters and a kernel
size of 9 in the initial convolution layer, while the residual
block utilizes 64 filters with a kernel size of 3.

2) Batch Norm: Training deep neural networks is complex
due to changing input distributions across layers, slowing
down training and causing internal covariance shifts. Batch
normalization addresses this by introducing a network layer
that controls the first two moments (mean and variance) of
these distributions, stabilizing them during training. This en-
ables more predictable gradients, allowing for larger learning
rates and faster convergence. Typically placed between hidden
layers, batch norm takes the output from the preceding layer,
normalizes it using two sets of parameters (learnable beta
and gamma, and non-learnable mean and variance moving
averages) [17].

3) PReLU: The ReLU is a one-sided activation function
that sets negative neuron values to zero, but it suffers from
the problem of “neuronal death” when many neurons become
negative, rendering their values to be ineffective. To address
this issue, the Parametric Rectified Linear Unit (PReLU) is
employed, introducing a learnable parameter that responds to
negative values, preventing neuronal death. Essentially, it’s a
ReLU activation with adjustable parameters [18].

V. RESULTS

To assess the model performance, various general error and
image quality metrics are applied, facilitating the evaluation of
super-resolved image quality comparing with the ground truth
images. Additionally, multiple graphs, charts, and hypotheses
are utilized to evaluate results under different conditions.
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Fig. 2. SISR 4x model error distribution violin plots.
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A. Image Comparison Metrics

Structural Similarities (SSIM): The human visual perception
is highly capable of identifying the structural information
from a scene and finding the difference in the referenced
image. SSIM works by extracting the image properties such
as structure, contrast, and luminance of the two images. It
performs better on tasks that involve differentiating between
two images as in our case [19], given by:
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(1)

Peak Signal to Noise Ratio (PSNR): Mean square error is
used to calculate the PSNR as shown in equation (2) and
indicates the ratio of maximum pixel intensity to the power
of distortion. PSNR value reaches infinity when the MSE
approaches zero. Hence, higher PSNR value means a higher
similarity between two images [20]. The PSNR is given by:

2
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Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE): A pre-trained model containing a database of
images with no noise and hence it fails to detect the distortion
which is unseen. Subjective quality scores come with the
training data as it is opinion-aware [21].

Fig. 4. a) Ground truth, b) predicted image, c) difference in pixel between

ground truth and predicted 4x upscaling.

Image scene |Average of SSIM|Average of PSNR Image scene |Average of SSIM|Average of PSNR
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Fig. 3. a) Ground truth, b) predicted image, c) difference in pixel between
ground truth and predicted 2x upscaling.

Fig. 5. SISR model average SSIM and PSNR a) 2x upscaling b) 4x upscaling.

Natural Image Quality Evaluator (NIQE): It is also a pre-
trained model on a collection of pristine images. It has the
capability of measuring the arbitrary distortion of the image.
It does not use a subjective quality score and it is opinion-
aware [22].

Perception-based Image Quality Evaluator (PIQE): It does
not require a trained model since it is an unsupervised method.
It can measure the arbitrary distortion of the image and it is
an opinion-unaware algorithm [23] given by:
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The above error metrics along with normalized root mean
squared error (NRMSE), Pearson’s correlation coefficient in
equation (3), Spearman correlation coefficient in equation (4),
and the coefficient of determination (R2?) in equation (5)
are used to evaluate the SISR 2x and 4x model using the
residual/total sum of square (RSS/TSS):
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The results are plotted in the form of a violin plot as shown
in Fig. 1 and Fig. 2 for the training and testing set.

1) SISR 2x Model: The mean SSIM for the model in the
testing-set is 84% and training-set is 87% which means that the
images are highly structurally similar. The violin plot in Fig. 1
shows the results. The bulk of the PSNR values are distributed
around 30 dB for both groups and hence there is minimal noise
in the reconstructed images. Both the correlation metrics and
R? are mostly over 0.95 which shows the similarity of the
images. BRISQUE, PIQUE, and NIQE are calculated by the
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Fig. 6. Row 1 has ground truth, 2x up-scaled, and 4x up-scaled image. Row
2 shows the pixel histogram plot for the same ground truth, 2x up-scaled, and
4x up-scaled image.

difference in the predicted image error and test data error.
Hence, it’s expected to be closer to zero as shown in the plots.

2) SISR 4x Model: From the graph in Fig. 2 it is seen
that the SSIM, PSNR values have dropped slightly. Yet the
overall SSIM in the test-set is closer to 70% and PSNR is
around 28dB. The normalised RMSE has also increased. The
correlations are distributed over 0.9. BRISQUE, PIQUE, and
NIQE show some differences in noise level but the image
retrieved is still of high quality in terms of visual similarity
to human eyes.

B. Difference Between Ground Truth and Super-resolved

1) SISR 2x Model: Fig. 3 displays a 2x super-resolved
beach scene, where the disparity between the original image
and the model’s output is scarcely noticeable. The pixel
difference map also reveals minimal discrepancies, primarily
along the borders, such as the road, beach, and buildings. This
consistency is reflected in Fig. 1, where beach images exhibit
the highest SSIM score of 0.92.

2) SISR 4x Model: In Fig. 4, a notable level of granularity
is evident in the airport scene. However, the predicted image
closely resembles the expected image to human eyes. The pixel
difference map highlights variances along building borders,
aircraft, and the floor texture. Lower SSIM and PSNR scores
for airport images in the dataset are attributed to variations in
the surface patterns.

C. Pixel Distribution

The graph depicted in Fig. 6 illustrates the pixel distribu-
tion histogram for a single image, comparing ground truth
and super-resolved versions. In this representation, ’high-
resolution’ refers to the ground truth image, while ’super-
resolution’ corresponds to the output of the SISR 2x or 4x
model. Notably, the last two histograms exhibit overlapping
regions, indicating similarities between the two images.

1) SISR 2x Model: Fig. 6b is the 2x model result where
the performance for an agriculture scene is compared. The
reproduced image shows very minimal noise and looks very
close to the expected image. Hence the pixels in both the
high/low resolution (HR/SR) have almost similar distribution.

TABLE I
WEATHER HYPOTHESIS STATISTICS

Model Name Df Sum—Sq Mean—Sq F —wvalue pr(>F)
2x upscale ‘Weather 2 0.026 0.0129 2.5680 0.0769
Residuals 1931 9.6790 0.0050
4x upscale  Weather 2 0.35 0.1748 8.525 0.0002
Residuals 1931 39.60 0.0205

2) SISR 4x Model: Visual comparison of Fig. 6¢ shows
some noise in the 4x result. The input image of size 240x180
is converted into 960x720 with some inevitable noise. The
histogram shows that SR image pixels are around the center
whereas HR pixels are widely distributed with heavy tail. This
variation shows the difference in pixels of the two images.

D. Inferential Statistics

To evaluate the performance further for the two SISR
models 2x and 4x two hypotheses are considered. The most
common image similarity error metric SSIM is used for this
purpose. The confidence level is checked and set to the
acceptable standard of 95%.

1) Weather Hypothesis:

Null: The SSIM error mean for weather conditions clear,
cloudy, and snowy do not differ from the group mean.

Alternate: The SSIM error mean for weather conditions
clear, cloudy, and snowy do differ from the group mean.

In Table I, the statistical results for the 2x model are pre-
sented, yielding a p-value of 0.0769, exceeding the predefined
significance level of 0.05. Therefore, the alternate hypothesis
can be rejected, indicating that, statistically, weather conditions
do not impact the 2x image super-resolution model.

In Table I, the statistical analysis for the 4x model reveals
a p-value of 0.000206, which is below the 0.05 threshold.
Consequently, we can reject the null hypothesis, demonstrating
that the 4x model predictions are statistically influenced by
varying weather conditions in the images.

2) Time Hypothesis:

Null: The SSIM error means for images taken during the
day and night do not differ from the group mean.

Alternate: The SSIM error means for images taken during
the day and night do differ from the group mean.

In Table II, the p-value for the 2x model is 0.0879, sur-
passing the predetermined cutoff, leading to the rejection of
the alternate hypothesis. Statistically, the time of day when
the image was taken (day or night) does not significantly
impact the quality of the 2x super-resolution image. Likewise,
in Table II, the p-value for the 4x model is 0.118, exceeding
the confidence threshold, allowing us to reject the alternate
hypothesis.

VI. DISCUSSIONS

A. Main Findings and Comparison of Results

In this section, we perform a comparison between the newly
developed SISR model and existing transfer learning models.
We assess their performance using multiple error metrics,



TABLE II
TIME HYPOTHESIS STATISTICS

Model Name Df Sum —Sq Mean—Sq F —wvalue pr(>F)
2x upscaling Time 1 0.015 0.0146 2916 0.0879
Residuals 1932 9.690 0.0050
4x upscaling Time 1 0.05 0.504 2.441 0.118
Residuals 1932 39.90 0.0206

SISk EDSR Lapsan
(0.824/ 26.12db) (0822/ 25.24db) (0.828/ 25.54db) (0816/ 25.13db)

2x upscaling: Ground truth, SISR, EDSR, LapSRN, and FSRCNN.

EDSR LapsAN
(0.540/ 22.65db) (0514/ 22.42db)

sis
(0.649/ 22.29db)

Fig. 8. 4x upscaling: Ground truth, SISR, EDSR, LapSRN, and FSRCNN.

including SSIM, PSNR, normalized RMSE, Pearson’s corre-
lation coefficient, and R2. Specifically, we evaluate models
such as the Enhanced Deep Residual Network (EDSR), Fast
Super-Resolution Convolutional Neural Network (FSRCNN),
and Laplacian Super-Resolution Network (LapSRN) using a
test-set comprising of 214 images. For the 2x model, the input
image size is 480x360, while for the 4x model, it is 240x180.
The ground truth image size and the expected output image
sizes are 960x180.

1) EDSR: The EDSR network architecture consists of both
a single-scale design, catering to a specific super-resolution
scale, and a multi-scale architecture that can handle various
levels of high-resolution. Within the EDSR residual block,
batch norm layers are omitted to eliminate range flexibility
and reduce GPU memory usage [24]. However, a drawback
of this model is that it takes more time to make predictions,
as compared to the FSRCNN.

2) FSRCNN: This method represents an accelerated version
of the SRCNN model, employing a compact hourglass-shaped
CNN structure to enhance both speed and model performance.
It involves three key steps: adding a deconvolution layer at
the network’s end to map learning from the LR image, transi-
tioning to smaller filter sizes with more mapping layers, and
shrinking the input features [25]. It delivers faster processing
speeds at the cost of a slight reduction in image quality.

3) LapSRN: The primary task of the LapSRN model is to
reconstruct sub-band residuals for high-resolution (HR) im-
ages. At various pyramid levels, it leverages coarse-resolution
data as input, employs transposed convolutions, and generates
high-frequency residuals to enhance the image quality. Train-

TABLE III
AVERAGE ERROR METRICS WITH UPSCALING FACTORS 2X AND 4X.

Upscale ~ Models ~ SSIM  PSNR NRMSE  Pearson's — correlation ~ R?

2x SISR model  0.84098  29.7897  0.0952 0.9590 0.9539
EDSR 08335 30.0897  0.0916 0.9591 0.9593

LapSRN  0.8287  29.9039  0.0934 0.9574 0.9583

FSRCNN 08377 30.1546  0.0905 0.9596 0.9591

4x SISR model ~ 0.6845  27.0929  (0.1348 0.9214 0.9414
EDSR 0.6507  26.8456  0.1369 09131 0.9444

LapSRN 06273 265504  0.1413 0.9072 0.9423

FSRCNN  0.6242 264633 0.1428 0.9056 0.9421

ing the LapSRN model utilizes a Charbonnier loss function.
In terms of prediction speed, this model outperforms EDSR
but may introduce some noise [26].

4) 2x Upscaling: : Table III provides the quantitative re-
sults. These results are divided into two categories: 2x and
4x upscaling. The performance of the developed SISR model
surpasses others, with an average SSIM of 0.84, indicating
a high similarity between the high-resolution and predicted
images. A Pearson’s correlation coefficient of 0.95 signifies
strong image correlation. From Fig. 7, (2x predictions from
all four models), SISR and EDSR exhibit similar performance,
with both models closely matching the ground truth, especially
in the selected image area. Notably, SISR offers a speed
advantage over EDSR and proves effective for remote sensing
data, as compared to the FSRCNN and LapSRN.

5) 4x Upscaling: : In Table III, the developed SISR model
outperforms the others by a significant margin. With an aver-
age SSIM of 0.684, it surpasses the faster FSRCNN at 0.624.
It’s worth noting that model performance tends to decline as
the resolution doubles, a trend consistent across various super-
resolution techniques. This reduction in the results is expected
for a high super-resolution model. When examining Fig. 8§,
the SISR model demonstrates superior SSIM and PSNR, as
compared to other competitors. By comparing two selected
areas, indicated by red/blue boxes in the ground truth image,
it’s evident that the image quality decreases from left to right.

B. Limitations and Further Improvements

Our dataset, comprising of less than 2000 images, is con-
sidered minimal for effective learning by computer vision
algorithms. Therefore, expanding the dataset and training on
more data is essential for further generalization of the model.
Notably, the agricultural scene’s average metrics are notably
lower than the overall average for both models, indicating an
area for improvement. Addressing the imbalance in images
across different weather and time conditions is crucial, and
it can be resolved by collecting more images from such
conditions. To enhance the 4x model’s performance, addi-
tional residual and convolution layers may be considered.
Alternatively, a more advanced option involves implementing
a Generative Adversarial Network (GAN) architecture. GAN
combines a generator and discriminator network to create
high-quality images. The generator produces super-resolution
images, while the discriminator distinguishes high-resolution
images and backpropagates the GAN loss to train both [27].



C. Future Applications

The demand for Super-Resolution techniques is expanding
across various scientific fields, extending beyond remote sens-
ing images to encompass applications involving photos and
videos. In the fields like surveillance and forensics, the ability
to magnify objects or images from closed circuit television
(CCTV) cameras can aid in identifying people and reading
text. Moreover, in the realm of video super-resolution, there’s
a need to convert high-definition television (HDTV) data
from standard definition television (SDTV) data with minimal
artifacts [28]. The developed SISR model holds promise for
application in all these domains. While direct predictions
might not always be optimal, the model could be effectively
utilized through transfer learning or retraining with the specific
data of interest. Thus, the research discussed here has the
potential to benefit a wide range of industrial applications.

VII. CONCLUSION

In this paper, we successfully trained and developed a
Deep Convolutional Single Image Super-Resolution model,
equipped with residual blocks, convolutional blocks, and batch
normalization. This model effectively upscaled images to 2x
and 4x of their original size, closely resembling the ground
truth images. The model’s potential applications extend to
geospatial intelligence industries and other stakeholders, re-
quiring remote sensing image super-resolution. We presented
exploratory data analysis demonstrating the model’s ability to
perform image super-resolution effectively. We also examined
the model’s response to different scene types, weather condi-
tions, and the time when the images were taken. Our analysis
of training and testing error metrics revealed that the model
is well-generalized, avoiding issues of overfitting or underfit-
ting. Furthermore, in comparison with established models like
EDSR, FSRCNN, and LapSRN, our model demonstrated supe-
rior performance on the testing set. In summary, we throughly
experiment, analyse, discuss, validate the effectiveness of the
proposed Single Image Super-Resolution CNN model.
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