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Agile Cache Replacement in Edge Computing via
Offline-Online Deep Reinforcement Learning

Zhe Wang, Jia Hu, Geyong Min, Zhiwei Zhao, Zi Wang

Abstract—One fundamental problem of content caching in
edge computing is how to replace contents in edge servers
with limited capacities to meet the dynamic requirements of
users without knowing their preferences in advance. Recently,
online deep reinforcement learning (DRL)-based caching methods
have been developed to address this problem by learning an
edge cache replacement policy using samples collected from
continuous interactions (trial and error) with the environment.
However, in practice, the online data collection phase is often
expensive and time-consuming, thus hindering the practical
deployment of online DRL-based methods. To bridge this gap,
we propose a novel Agile edge Cache replacement method based
on Offline-online deep Reinforcement learNing (ACORN), which
can efficiently learn an edge cache replacement policy offline
from a training dataset collected by a behavior policy (e.g., Least
Recently Used) and then improve it with fast online fine-tuning.
We also design a specific convolutional neural network structure
with multiple branches to effectively extract content popularity
knowledge from the dataset. Experimental results show that the
offline policy generated by ACORN outperforms the behavior
policy by up to 38%. Through online fine-tuning, ACORN also
achieves the number of cache hits as good as that of several
advanced DRL-based methods while significantly reducing the
number of training epochs by up to 40%.

Index Terms—Deep reinforcement learning, cache replace-
ment, offline training, convolutional neural network, edge com-
puting

I. INTRODUCTION

With the ever-increasing number of mobile users and rapid
advance of smart devices, mobile data traffic has been growing
dramatically. It is estimated that mobile data traffic will
generate approximately a 4.2x increase from 2021 to 2027
[1]. The explosive growth of mobile data traffic poses a huge
burden on the backhaul networks, causing severe issues such
as network congestion and server overload, which inevitably
introduce high service latency and further impact users’ quality
of experience (QoE). These issues also hinder the deployment
of delay-sensitive and data-intensive applications including
augmented reality, cloud gaming, etc.

Content caching in edge computing (i.e., edge caching)
is a promising approach to solve the above issues. It stores
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contents required by users to a cache-equipped edge server
close to them, so that the content access latency for users
and the backhaul traffic is greatly reduced [2]. Due to the
limited cache capacity of the edge servers, they need to store
the most popular contents to maximize the number of cache
hits and therefore minimize the cache misses that lead to
frequent fetching of contents from the remote cloud. However,
the popularity of contents is usually unknown in advance and
varies with time, thus edge servers should continuously decide
how to replace the cached contents to best meet the dynamic
requirements of mobile users at the network edge, which is
usually a NP-hard problem [3].

To tackle this problem, many studies were devoted to
designing an effective edge cache replacement policy that
determines which content to be stored and which one to
be replaced over time. Heuristic-based methods [4], [5] can
capture and use some features of the environment to guide
the cache replacement decisions, but these features are often
obtained by domain experts. Moreover, these heuristic-based
methods usually work well in specific cases but cannot well
adapt to dynamic environments of the network edge. To
overcome the above weaknesses, deep reinforcement learning
(DRL) has emerged as an attractive approach. DRL is a
deft combination of reinforcement learning (RL) and deep
neural network (DNN), where RL can effectively solve se-
quential decision-making problems and continuously adapt to
the changes in the environment without expert knowledge,
while DNN can effectively handle large state/action spaces
of complex edge caching systems. The existing works [6]–[8]
are mainly developed based on online DRL which needs to
continuously interact with the edge caching system to train an
optimal cache replacement policy.

However, applying online DRL directly to an edge caching
environment carries risks due to the exploration nature of
online DRL. To find an optimal cache replacement policy,
the online DRL agent needs to constantly try various content
replacement decisions during training, even if some of these
decisions may be poor. Such trial and error can lead to severe
cache performance degradation during training. In addition,
learning an optimal policy often requires a large number of
interactions with the environment, which is both expensive
and time-consuming. These drawbacks of online interactions
would harm the revenue of network operators and the QoE of
users. Furthermore, online DRL can only self-adapt to small
shifts in the environmental dynamics. When the environmental
dynamics change drastically, the performance of an optimal
policy may drop dramatically, thus requiring to retrain a new
optimal policy by online DRL. This implies the presence of
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frequent retraining processes of the online DRL-based cache
replacement methods, which further amplifies the issue of trial
and error in online DRL for dynamic edge caching.

To address the above key challenges, this paper proposes a
novel Agile edge Cache replacement method based on Offline-
online deep Reinforcement learNing (ACORN). The main idea
is that some static dataset (e.g., logs of caching records) on
edge servers contains key information about the environmental
dynamics, thus we can directly extract the information from
the dataset to learn a useful policy offline. Afterwards, we
can supplement more information about the environmental
dynamics to the offline policy by fine-tuning, which includes
only a few online interactions with the environment, thus
achieving an optimal policy in a cost-efficient way.

The main contributions of this paper can be summarized as
follows:
• To the best of our knowledge, we are the first to investi-

gate how to develop an agile, deployable learning-based
edge caching scheme using advanced offline-online DRL
techniques. Our method ACORN has a two-stage work-
flow including offline training and online fine-tuning,
which can learn an optimal policy while greatly reducing
the expensive interactions with the environment.

• We formulate the problem of real-time edge cache re-
placement without knowing user preferences as an op-
timization framework to maximize the number of cache
hits. To alleviate the performance deterioration caused by
frequent content replacement, the delayed hits mechanism
is explicitly considered in the problem formulation.

• We design a special Convolutional Neural Network
(CNN) with multiple branches to efficiently extract the
temporary correlations from historical data with the aim
of speeding up the training process and improving cache
performance. A mask layer is introduced in the tailored
CNN to filter out inefficient content replacement deci-
sions, thus improving the performance of the learned
policy.

• Extensive experiments were conducted by using a real-
world dataset to simulate the environmental dynamics.
The results show that the offline policy learned from
the static dataset outperforms the default behavior policy,
and is improved by fine tuning to achieve competitive
performance using fewer online interactions, compared
to the policies learned by advanced DRL-based methods.

The rest of this paper is organized as follows: The related
work on the edge cache replacement problem is reviewed in
Section II. Section III presents the problem formulation of
mobile edge caching with delayed hits. The details of ACORN
are shown in Section IV. Section V describes the experimental
setting and gives a detailed analysis of the experimental
results. Finally, the conclusion of this paper is presented in
Section VI.

II. RELATED WORK

The edge cache replacement problem has attracted many
researchers to find the optimal cache replacement policy.
Heuristic-based methods are widely used to search for an

optimal or near-optimal cache replacement policy. A simple
heuristic caching method is proposed in [9] to minimize the
average download time, but this work assumed that the content
popularity was known in advance. Xia et al. [10] formulated
the edge cache replacement problem under limited storage
resources as a constrained optimization problem with the aim
of reducing the data retrieval delay of users. They subsequently
employed integer programming techniques to determine the
optimal cache replacement policy. A proactive retention-aware
caching and request routing problem was studied in [5] and
formulated as a nonlinear, nonconvex, mixed-integer program.
To solve this problem, a low complexity heuristic approach
was developed to find a feasible cache replacement policy.
[11] formulated the caching problem from the app vendor’s
perspective without requiring future information about re-
quests, and proposed an online approach to solve it over time.
Although heuristic-based methods can find optimal or near-
optimal policies, they usually require expert knowledge to
formulate the cache replacement problem as an optimization
problem and then spend much time and human resources
to design the corresponding heuristic algorithm. Additionally,
if the edge caching environment changes dramatically, the
problem needs to be reformulated, and the corresponding
algorithm needs to be redesigned.

By interacting with the edge caching environment, DRL-
based methods can automatically find the optimal cache
replacement policy without expert knowledge. [12] solved
the cache replacement problem in a basic wireless caching
network with the objective of improving the cache hit ratio.
This work improved the decision-making ability of an agent
that is trained with deep Q-learning (DQN) algorithm by using
a long short-term neural network and an external memory. A
latency-optimized problem for fog radio access networks was
proposed in [13], and Q-learning algorithm was then utilized
to solve the problem by jointly caching proper contents and
allocating a substantial quantity of power resources according
to users’ demands. To jointly minimize content access delay
and bandwidth resource costs in a multi-edge caching envi-
ronment, [14] leveraged a multi-agent DRL to adaptively learn
the best policy for each edge to achieve intelligent caching.
However, all the DRL-based methods described above train
agents by constantly interacting with the environment, which
introduces expensive and risky data collection that inevitably
compromises the performance of edge caching and the QoE
for users during the training process. The work most similar
to this paper is [15], which first used deep learning (DL) with
a static dataset to initialize the DNNs. After that, it leveraged
Deep Deterministic Policy Gradient algorithm to update the
DNNs with online interactions to obtain the optimal cache
replacement policy. Nevertheless, this work does not test the
performance and convergence speed of the policy learned by
DL.

III. PROBLEM FORMULATION: EDGE CACHING WITH
DELAYED HITS

A basic cache-aided mobile edge computing (MEC) net-
work is shown in Fig. 1, which consists of a remote cloud,
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Fig. 1. Architecture of the edge caching environment.

several base stations (BSs), and multiple mobile users as-
sociated with the BSs, where the users communicate with
their associated BSs via wireless fronthaul links, and the
BSs connects to the remote cloud through wired backhaul
links. To achieve agile edge caching, the cache replacement
policy on each BS utilizes the request information of the users
associated that particular BS. Similar to the approach taken
in [16], we avoid exchanging information between BSs in
order to maintain the efficiency of decision-making for cache
replacement.

It is assumed that the remote cloud has a content library F
containing all the contents requested by users with different
indexes, where F = {1, 2, ...j, ...,K}. The size of content j
is denoted as lj . Similar to some previous studies [17], [18],
we assume that all contents have the same size, where lj = 1
unit. We can readily generalize this assumption to contents
of varying sizes by dividing them into units. However, for
the sake of illustration and without loss of generality, we
consider the case where all contents have the same size in
this paper. The cache-equipped BSs can store contents to serve
their associated users. Without loss of generality, we consider
that the cache size of a particular BS is denoted by M , where
M << K means that just a tiny fraction of the contents can
be stored on the BSs. In our studied scenario, the service
process of the cache-aided MEC network during a finite long-
term is divided equally into multiple timeslots, denoted as
T = {1, 2, ..., t, ..., T}. The division method can be extended
to an infinite-time service process with a terminal state, where
T represents the timeslot at which the service process reaches
its terminal state. For the selected BS, it receives some requests
Dt = {dt1,1, dt1,2, ..., dti,j , ..., dtN,K} from N users for various
contents at the beginning of each timeslot t without knowing
the content popularity, where dti,j ∈ {0, 1}. dti,j = 1 denotes
that the user i demand for the content j in the timeslot
t; Otherwise, dti,j = 0. In this paper, we assume that the
request size is much smaller than the content size, so the time
consumption of sending requests is negligible.

Let C t denote the cache strategy that specifies which
contents are stored on the selected BS during timeslot t.
Specifically, if content j is stored on the BS in timeslot t,
then j ∈ C t; otherwise, if it is not stored on the BS, then
j /∈ C t and it is missed. Note that the total size of the
contents stored on the BS never exceeds its cache capacity,
i.e.,

∑
j∈C t lj ≤ M . When new requests arrive at the BS, if

their required contents are stored on the BS (regarded as cache

Fig. 2. Example of edge caching with/without delayed hits. Steps 1-3 are the
same for both. Opaque step 4 with a solid outline is the process using the
delayed hits mechanism, while transparent steps 4-6 with a dashed outline do
not use this mechanism.

hits), the BS can deliver contents to users immediately. If the
contents are missed on the BS (regarded as cache misses),
the BS needs to spend more time fetching the missed contents
from the remote cloud and subsequently delivering them to the
users in future timeslots. Meanwhile, at the end of the timeslot
t, the BS updates the cache strategy C t with the newly fetched
contents At by following a cache replacement policy π. We
simplify the cache replacement problem by directly selecting
the contents to be stored on the BS from the union of C t

and At, rather than evicting contents from C t and selecting
the same number of contents from At to cache. Thus, the
updated cache strategy in timeslot t+ 1 can be expressed as:

C t+1 = π(C t ∪ At), (1)

where π denotes the cache replacement policy. When t = 1,
C t does not contain any contents and is an empty set. To
be more specific, since the newly fetched contents At are the
missed contents of C t, we have C t∩At = ∅. If content j is in
both C t+1 and At, then one cached content in C t is replaced
by the newly fetched content j. On the other hand, if content
j′ is in C t but not in C t+1, it means that j′ is evicted from
the BS. As evident from the above, our simplified method can
accurately represent the cache replacement process.

When the timeslot is small enough, the cache replace-
ment execution can be considered real-time. However, this
also poses more computational resource overhead on the BS
because of the increased frequency of replacement decision-
making. When no new content arrives at the end of a timeslot,
the BS has no optional content to update the cache strategy.
In this way, the BS only needs to replace the cached contents
when new contents arrive instead of doing so at the end of
each timeslot, thus reducing the computational overhead of
the BS.

In traditional edge caching scenarios, the fetches triggered
by different users are usually independent. It means that even
if two users require the same content simultaneously, two
independent fetches are triggered when the content is cache-
missed, resulting in a waste of backhaul link resources and
frequent but meaningless cache replacement processes. Here
is a simple example illustrated in Fig. 2. Suppose two requests,
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dA,C and dB,C from different users A and B, require content
C of size 1 unit. They arrive at the BS at the beginning of the
timeslot t and t + 1/2L, respectively. Since content C is not
stored on the BS at the beginning of the timeslot t, when some
users require it, C needs to be fetched from the cloud via a
backhaul link with a bandwidth of L units per timeslot. In the
traditional scenario, dA,C and dB,C trigger two independent
fetches for the same content C at the beginning of the timeslot
t and t+ 1/2L. Due to competition between the two fetches
for the backhaul link, they are eventually finished at the end
of the timeslot t+3/2L and t+2/L, with a service delay of
3/2L. Then, two cache replacements with the same content
are executed at the end of the timeslot t+3/2L and t+2/L,
respectively. When numerous requests arrive at the BS in a
short period, it may trigger too many content fetches even if
most of the requests ask for the same content. In this case, the
BS may frequently replace old cached contents with newly
fetched contents before old contents work, thus significantly
degrading the performance of the edge caching.

The delayed hits mechanism can reduce such competition
for backhaul links by using a fetch to serve all requests for the
same missed content before this content missing is resolved.
When a request triggers a new fetch, all subsequent requests
to the same content wait for the fetch to complete instead
of triggering new fetches. When the fetch is finished, the BS
simultaneously delivers the fetched content to all users in the
environment who need that content. These subsequent requests
are regarded as “delayed hits” [19]. Reducing repeated fetches
for the same content avoids frequent evictions and caching of
that content in a short period, thus mitigating the deterioration
of the cache performance. When the scenario in Fig. 2 uses
the delayed hits mechanism, request dB,C waits for an existing
fetch triggered by dA.C to complete. When the BS receives
content C at the end of the timeslot t+1/L, it simultaneously
delivers content C to users A and B. In this way, the service
delays of dA,C and dB,C are reduced to 1/L and 1/2L. The
frequency of the cache replacement is also reduced to one.

Here, we explicitly consider the impact of delayed hits on
our studied scenario by only recording single fetch for each
content at each timeslot. Let f t

′

j denote the remaining size of
content j that still needs to be fetched at the beginning of the
timeslot t, while f tj is the remaining size at the end of the
timeslot t. f t

′

j can be determined according to two different
cases: In timeslot t, (1) the content j is cache-missed and
triggers a new fetch; (2) No new fetch for the content j is
triggered. For cases (1), when a fetch for the content j does not
exsit and the content j is not stored on the BS, new requests
for the missed content j will trigger a new fetch, and f t

′

j can
be determined:

f t
′

j (new) = lj× I(f t−1j == 0)× I(
∑
i

dti,j > 0)× I(j /∈ C t),

(2)
where I(·) = 1 if and only if the condition · within parentheses
is true; Otherwise, it is 0.

If case (1) is not satisfied, case (2) needs to be discussed and
it can be further divided into three cases: (i) There is no new
request for the content j; (ii) There are some new requests for

TABLE I
SUMMARY OF MAIN NOTATIONS

Notation Description

I(·) The value is 1 if the condition · within parentheses is
true; Otherwise the value is 0.

K The total number of content types.
M The cache storage size of a particular BS.
C t The set of cached contents in timeslot t.
Dt The set of requests arriving in timeslot t.

At The set of contents fetched from the remote cloud at the
end of the timeslot t.

f tj
The remaining size of content j to be fetched at the end
of the timeslot t.

f t
′

j
The remaining size of content j to be fetched at the
beginning of the timeslot t.

π The decision-making policy for replacing cached contents.

the content j, and j is already stored on the BS; (iii) There are
some new requests for the content j, and a fetch for j already
exists. In the three cases, f t

′

j can be directly determined using
the remaining size of content j at the end of the timeslot t−1,
f t−1j :

f t
′

j (nonew) = f t−1j . (3)

We combine the cases above to conclude:

f t
′

j = max{f t
′

j (nonew), f
t′

j (new)}. (4)

f tj can be calculated by subtracting the transmission size of
content j during the timeslot t from f t

′

j :

f tj = max{f t
′

j −
L× I(f t′j > 0)

max{
∑K
n=1 I(f t

′
n > 0), 1}

, 0}, (5)

where L is the bandwidth of the backhaul link equally shared
by all existing fetches in the environment in each timeslot.∑K
n=1 I(f t

′

n > 0) is the number of fetches at the beginning
of the timeslot t. Because there could be no fetches in the
environment, we use a max operation in the denominator to
avoid the case where the denominator is zero. While the max
operation for the whole right part of Eq. 5 ensures that the
remaining size is not a negative number. When a entire content
j is fetched to the BS at the end of the timeslot t, we have
f t
′

j > 0 and f tj == 0. Then, the set of newly fetched contents
during the timeslot t, At, can be determined:

At =
j∈F⋃

ft
′
j >0 and ftj==0

{j}, (6)

where j ∈ F means that the types of fetched contents should
belong to the existing types in the content library. Combining
Formula 1, we can deduce that the types of cached contents on
the BS should also belong to the existing types in the content
library. Therefore, users will not require content types that do
not exist in the content library during the service.

The goal of this paper is to develop a cache replacement
policy that enables each BS to dynamically store the most
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popular contents to maximize cache performance. As the
number of cache hits directly reflects the popularity of the
content, we choose the total number of cache hits as our
optimization objective. In this context, we can safely ignore the
delivery phase from the BSs to the mobile users since it does
not affect the number of cache hits. The cache replacement
problem, which is generic to all BSs, is formulated as an
optimization problem as follows:

min
π

∑
t

∑
i

∑
j

dti,jI(j ∈ π(C t−1 ∪ At−1)),

s.t. C1 : C t ∩ At = ∅,∀t,
C2 : |C t| ≤M, ∀t,
C3 :

∑
j d

t
i,j ≤ 1,∀i, t,

(7)

where constraint C1 guarantees that the newly fetched contents
are not currently stored on the BS. Constraint C2 enforces that
the amount of stored contents never exceeds the cache size of
the BS. Constraint C3 ensures that there is a maximum of one
request per user at any given timeslot. The main notations of
this model are presented in Table I.

IV. ACORN: AN AGILE EDGE CACHE REPLACEMENT
METHOD BASED ON OFFLINE-ONLINE DRL

This section details the proposed novel agile edge cache
replacement method based on offline-online DRL named
ACORN. First, we present the background of DRL. Next, we
outline the ACORN system framework and explain its work-
flow. Then, the MDP modeling of the edge cache replacement
problem is described. After that, we will show the structure
of the policy neural network. Finally, the offline training and
online fine-tuning algorithms are presented.

A. Background: Deep Reinforcement Learning

RL has attained great success across a wide range of fields,
such as video games [20], robotics [21], task offloading [22],
service placement [23], and so on. The problem of RL is
usually formulated as a Markov Decision Process (MDP) with
a 5-tuple definition < S,A, T,R, γ >. S is the state space,
A is the action space, T : S × A → S is the state transition
probability matrix, R : S×A→ R is the reward function, and
γ ∈ (0, 1) is a discount factor. At each discrete time step t, the
RL agent receives an immediate reward rt(st, at) for executing
an action at for a given state st, then arriving at the next state
st+1 in accordance with the state transition probability matrix
T (st+1|st, at). The agent aims to maximize γ-discounted
cumulative rewards in a long term Rt =

∑
k=0 γ

krt+k.
Suppose the agent selects actions following a policy π :

S → A that indicates the probability of selecting an action
a for a given state s. The policy’s Q-function Qπ(st, at) =
Eπ[Rt|st, at] is the expected return when all subsequent
actions are selected under the guidance of the policy π after
executing the action at for the state st. To calculate the
Q-function of the policy π(st, at), Bellman Operator Bπ
is introduced to update a Q-function from any initial point
iteratively:

Fig. 3. ACORN System Framework. The workflow consists of four steps: 1.
Collect data with the existing behavior policy on a particular BS; 2. Learn a
policy offline based on the static dataset; 3. Deploy the well-trained offline
policy into the selected BS; 4. Fine-tune the offline policy through online
interactions with the environment

BπQ
π(st, at) = Est+1 [rt + γQπ(st+1, π(at+1|st+1))]. (8)

This operator converges to a unique fixed point Qπ(st, at)
for γ ∈ (0, 1). An optimal Q-function can be obtained
by Q∗(st, at) = maxπ Q

π(st, at), then the optimal policy
π∗ is determined by selecting greedy actions π∗(at|st) =
argmaxaQ

∗(st, a). DNN is used to approximate the Q-
function due to its powerful representation capability. By
adjusting the connection weights across all layers, DNN can
implement a diverse range of functions, allowing for effec-
tively representing the complex mapping relationship between
the states and estimated Q-values. The optimal Q-function,
being the one with the highest value estimations, assigns an
estimated value to the current state-action pair that equals the
sum of the reward and the highest estimated value of the next
state-action pair. Consequently, we can iteratively update the
parameters θ using Eq. 9 to directly approximate the optimal
Q-function.

θ−1

2
5θ|Qθ(st, at)−Est+1

[rt+γmaxQθ(st+1, at+1)]|2, (9)

where 5θ is the gradient calculation for the parameters θ.
Once the optimal Q-function is determined, the corresponding
optimal policy can be obtained by selecting the greedy actions:

π(at+1|st+1) = argmax
a

Qθ(st+1, a). (10)

B. ACORN System Framework

The ACORN system consists of three components, a sam-
pling component, a training component, and a tuning compo-
nent, as shown in Fig. 3. The sampling component utilizes
behavior policies on BSs to separately collect a static dataset
for each BS by constantly interacting with the environment.
If a large amount of log data exists in the environment,
the sampling component can also be omitted. The training
component only uses the static dataset collected from the
sampling component to learn an offline policy for each BS
until the policy is well-trained. In this way, the training of
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the offline policy does not influence the operations of the
behavior policy, which means that even if the offline policy
explores undesirable actions during the training process, the
cache performance is not degraded. It should be noticed that
the dataset is collected only once and not altered during the
training process [24]. After the offline policy is well-trained, it
is applied to the tuning component, which is further improved
with a small number of new interactions.

C. The MDP Model for Edge Caching

To resolve the edge cache replacement problem on a partic-
ular BS with offline-online DRL, we should first model it as
an MDP. The state space, action space, and reward function
should be designed carefully, as they significantly impact the
training speed and the cache performance. In addition, the
behavior policy can be derived from DRL-based, heuristic-
based, or even rule-based methods (e.g., Least Recently Used -
LRU, Least Frequently Used - LFU, First In First Out - FIFO),
which means that the structure of collected log data may
not directly indicate the states, actions, or rewards. Therefore,
we should carefully devise the state/action spaces and reward
function for extracting them from the raw log efficiently. The
following are their definitions while considering the above
requirements:
• State Space: The content replacement decisions mainly

depend on content popularity. The past requested con-
tent history reflects the content popularity to a certain
extent, so we use them as part of the state inputs
(xt

1,x
t
2, ...,x

t
M), where xt

M is a vector that records the
requested history in the past n timeslots of content cached
in the M th location when the current timeslot is t,
xt
M = (xtM , x

t−1
M , ..., xt−nM ). Besides, the information of

newly fetched contents in the current timeslot t, xt
ADD,

is also included in the state inputs.
• Action Space: In each timeslot t, several missed contents
At are fetched intact to the BS. If At + C t ≤ M ,
the missed contents can be directly cached into the BS.
If At + C t > M , the BS needs to choose a part of
the contents from C t to evict and choose the same
number of contents from At to cache to meet the dynamic
requests from users. The eviction and cache phases can
be simplified to select M contents from At∪C t and then
store them on the BS. Under this design, the action space
size is a combination number C

|At|+|C t|
M . However, the

number of the fetched contents is not fixed, which makes
the action space size dynamic. We extend the candidates
to all contents to solve this problem, indicating that the
BS selects M contents from F . In this way, the action
space size is fixed as CK

M , where |At| + |C t| ≤ K.
Unfortunately, this method may introduce some illegal
actions because usually, not all the contents in F will
arrive at the BS from the cloud in the same timeslot.
Therefore, we use a mask layer introduced later to filter
the illegal actions of selecting the contents not in At∪C t

to cache.
• Reward Function: The optimization problem to be

solved aims to maximize the total number of cache hits.

Fig. 4. Structure of the Q-function neural network.

Therefore, we can define the number of cache hits per
timeslot as the reward function:

rt(st, at) =
∑
i

∑
j

dt+1
i,j I(j ∈ C t+1); (11)

D. ACORN Neural Network Structure

According to the MDP model, we find two problems to
be solved in ACORN: (1) To make good content replacement
decisions, the learned policy needs a solid understanding of
content popularity and its changing trends. How to efficiently
learn the relevant knowledge from given states is urgently
needed. (2) Part of the content selections from F may be
illegal and cannot be executed since some contents are not
included in At ∪C t, which raises the consideration of action
legality guarantee.

To address the above problems, we use CNN, which has
been proven to extract the temporary correlation knowledge
from time series data efficiently [25], [26], to learn the
knowledge about content popularity from history. A mask
layer is also developed to filter legal actions. Specifically, we
will use 1-D CNN, defined as fcnn, to extract the temporary
correlation from the history of contents cached in the BS. The
history of one cached content corresponds to the input of a
fcnn’s channel. The output of CNN, etcnn, can be obtained
by:

etcnn = fcnn(x
t
1,x

t
2, ...,x

t
M). (12)

In addition to the content popularity of the cached contents,
the information about newly fetched contents also affects the
content replacement decisions. To make better decisions, we
should also extract features of these contents and combine
them with etcnn to provide sufficient knowledge. Due to the
differences in the data structure between the information about
the fetched contents xt

ADD and the history of the cached
contents (xt

1,x
t
2, ...,x

t
M), xt

ADD cannot be used as the input
of a fcnn’s channel. To effectively extract the knowledge
about the newly fetched contents, we introduce an additional
embedding fully connected neural network (FCNN), defined as
fenc, to embed xt

ADD into a high-dimensional feature vector
etenc:

etenc = fenc(x
t
ADD). (13)
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Then, we concatenate the outputs of the two branches, 1-
D CNN and the embedding FCNN, into a single vector as
the input of a two-layer FCNN, which is defined as fout, to
produce the Q-value estimation of all actions, qt:

qt = fout([e
t
cnn, e

t
enc]). (14)

Given the Q-value estimation qt, the action can be obtained
according to Eq. 10. However, illegal actions are sometimes
estimated with high Q-values, causing the policy to select
actions that cannot be executed as outputs. To avoid such a
case, we develop a mask layer, defined as fmask, to reduce the
Q-value estimation of illegal actions to −inf while leaving the
Q-value estimation of legal actions unchanged. For any action
in the action space at ∈ UCKM

, its Q-value can be updated:

qt
′

at = fmask(q
t
at) =

{
qtat , if at ∈ U

C
|At|+|Ct|
M

;

−inf, otherwise.
(15)

The probability of each action to be selected can be com-
puted by using a softmax layer:

prob(at) =
exp(qt

′

at)∑
ât∈U

CK
M

exp(qt
′

ât)
. (16)

The probability of illegal actions is exp(−inf) = 0, thus
preventing the selection of such actions.

E. Offline-Online DRL Algorithm

In general, by using Eq. 8, the Q-function will correct its Q-
value estimates for state-action pairs < st, at > with the help
of the ground truth rewards from new interactions. However,
it is impractical in offline RL because only a static dataset,
denoted as D, can be used for training. The dataset is pre-
collected using a behavior policy, which may not be optimal,
and may not contain the best action to be taken at every state.
As the offline policy is updated to search for better actions,
it will deviate from the dataset and explore unseen state-
action pairs outside the dataset. Due to the lack of the ground
truth rewards of these unseen state-action pairs, estimating and
correcting their Q-values becomes challenging. As a result, the
offline policy may make suboptimal decisions and degrade
the cache performance. This shift between the state access
distribution of an offline policy and that of a static dataset,
caused by the updates to the offline policy, is commonly
known as distribution shift. It is considered one of the central
challenges of offline RL. This paper utilizes an advanced
offline training algorithm improved from Conservative Q-
Learning (CQL) [27] to address the distribution shift. To be
specific, the working concept of Double DQN (DDQN) [28] is
incorporated into CQL to enhance the effect of CQL further.
The loss function of the improved CQL is shown as follows:

LCQL = α(̇Est∼TD,at∼π(at|st)[Qθ(st, at)]
− Est,at∼TD [Qθ(st, at)]) + LDDQN (θ, θ−),

(17)

Algorithm 1 Offline training
1: Collect a dataset D with a behavior policy πβ .
2: Create a Q-function neural network Q with randomly

generated initial values θ.
3: Create a target Q-function neural network Q̂ with values
θ− = θ.

4: for step t = 1, 2, 3, ..., N do
5: Randomly sample a minibatch of interactions from D

to update Qθ using gradient steps with Eq. 17:
θt ← θt−1 − η5θ LCQL.

6: Every P steps reset Q̂θ− = Qθ.
7: end for

where TD is the access distribution of the static dataset, and
LDDQN (θ, θ−) is the loss function of DDQN, which consists
of a Q-function Qθ and a target Q-function Q̂θ− :

LDDQN (θ, θ−) =
1

2
Est,at,rt,st+1∼TD [(Qθ(st, at)

− (rt + γQ̂θ−(st+1, argmax
a

Qθ(st+1, a))))
2].

(18)
Compared with DQN, DDQN uses the maximum Q-values

estimated by the Q-function network to select the state-action
pair, then leverages its Q-value estimated by the target Q-
function network to calculate the loss. Because the Q-function
is usually updated several times before the target Q-function
is updated, its estimated Q-values are smaller or closer to the
Q-values estimated by the target Q-function. Compared with
the target Q-function, the Q-values estimated by Q-function
are closer to the true Q-values for the state-action pairs within
the dataset and more conservative for the state-action pairs
outside the dataset. In this way, the conservative estimation
of CQL is further strengthened. Then, the optimal Q-function
can be found by minimizing the loss function of CQL:

Q∗θ ← argmin
Qθ

LCQL. (19)

The first part of LCQL ensures that all state-action pairs
estimated by the learned policy have low Q-values. The second
part encourages the policy to assign high Q-values to these
state-action pairs in the dataset. In combination with the first
part, actions in the dataset are estimated with higher Q-values,
while actions outside the dataset are conservatively estimated
with lower Q-values. The third part corrects the estimated Q-
values using the ground truth rewards in the dataset according
to the Bellman equation. In this way, the selection of actions
available in the dataset is encouraged, and unseen actions are
avoided whenever possible. α is a tradeoff factor used to adjust
the weight of the conservative estimate part.

The details of the offline training process is shown in Alog-
ithm 1. It should be noticed that θ are the parameters of the Q-
function neural network. A static dataset is collected using an
existing behavior policy generated by a rule-based, heuristic-
based, or DRL-based method at first. Then, we calculate the
update gradients using only the static dataset according to Eq.
17 to update the Q-function neural network. This process will
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Algorithm 2 Online fine-tuning
1: Initialize replay memory buffer B.
2: Load the offline trained Q-function neural network θ.
3: Load the offline trained target Q-function neural network
θ−.

4: for episode = 1, 2, 3, ..., P do
5: Initialize environment.
6: for step t = 1, 2, 3, ..., N do
7: Obeserve a state st.
8: Select at = maxaQθ(st, a) with ε-greedy method.
9: Execute deicision at, and obtain a reward rt and the

next state st+1 from the environment.
10: Store the new online interaction (st, at, rt, st+1) in

B.
11: Randomly sample a minibatch of interactions from

B to update Qθ according to :
θt ← θt−1 − η5θ LCQL.

12: Every P steps reset Q̂θ− = Qθ.
13: end for
14: end for

repeat multiple times until the Q-function converges. During
this process, the target Q-function will be updated every P
steps according to the parameters of the Q-function.

Unfortunately, the offline training algorithm can only learn
a sub-optimal policy since the static dataset usually contains
partial information about the state transition probability, even
if the sub-optimal outperforms the behavior policy. To further
improve it, an online fine-tuning algorithm is developed to
supplement the missing knowledge about the transition proba-
bility by collecting new interactions from the environment and
correcting the estimated Q-values. The details of the online
fine-tuning process are presented in Algorithm 2, similar to the
training process of DDQN. Unlike DDQN, the parameters of
Q-function neural networks are loaded with the offline trained
neural network parameters instead of random values, and the
gradients are calculated using the loss function of CQL instead
of that of DDQN.

V. EXPERIMENTS

We present the experimental setting of ACORN and give a
detailed analysis of its experimental results in this section. The
parameter settings of ACORN and the simulation environment
are introduced at first. Then, we test the performance of
ACORN by comparing it with some rule-based and DRL-
based methods. We also evaluate the offline training conver-
gence of ACORN with a DL-based method and an online off-
policy DRL-based method, and compare the online interaction
reduction of ACORN with several DRL-based methods.

A. Simulation Environment

The simulation environment is a MEC network including a
remote cloud and two BSs, where the BSs communicate with
the cloud via a wired backhaul network. Referring to [29],
[30], we choose similar parameters. The number of types of
all contents in the network K is set to 10, the content size is

TABLE II
THE PARAMETERS OF NEURAL NETWORK, TRAINING AND TUNING

Parameter Value

Offline Training

Learning rate 3× 10−6

Target Q-function update Interval 2000
Batch Size 32
Optimization Method Adam

Online Tuning

Learning rate 5× 10−6

Q-function update Interval 1
Target Q-function update Interval 2000
Batch Size 128
Optimization Method Adam

Neural Network

CNN Kernel Size 2
CNN Input Channels 3
CNN Output Channels 64
MaxPool Padding Size 2
Encoding FCNN layers 1
Encoding FCNN neurons 64
Output FCNN layers 2
Output FCNN neurons 64
Activation Function ReLU

set to 1 GB, and the cache size of all BSs is set to 3 GB. To
simulate the long latency of the content fetching process, we
set the number of the backhaul links to 10 and their bandwidth
to 512 MB/s.

To simulate the request arrivals and the content popularity,
we use a real-world dataset, Movielens [31], by assuming that
each movie corresponds to one content and each movie rating
item corresponds to a request (which is similar to [32]). Thus,
a user’s rating of a movie at a specific time corresponds to
a user’s request for content with the same ID arriving at the
same time. To simulate the explosion of user requests in the
MEC network, We divide the time into multiple timeslots of
one hour in duration, and use the requests of one timeslot to
simulate the requests of one second in the MEC network.

To validate that ACORN can effectively cope with various
user preferences without human interventions, we evaluate the
cache performance of ACORN on the two BSs with different
distributions of content popularity. We selected requests for
10 movies from two different periods, then calculated the
proportion of the request number for each movie to the
total request number for all movies to obtain their content
popularity distribution, as shown in Fig. 5. Compared with
the distribution of content popularity 2, the content popularity
of all contents in distribution 1 is relatively close. On the
contrary, distribution 2 shows a very different user preference,
with users preferring content 7 and 10 over other contents.

B. Parameters

ACORN is based on a PyTorch implementation. The 1-D
CNN of the Q-function neural network is set to have 3 input
channels (equal to the cache size), 2 kernel sizes, and 64 output
channels, followed by a 1-D MaxPool layer with padding
size 2. The encoding FCNN for processing the information
of the newly fetched contents is set as a one-layer network
with 64 neurons, and the output FCNN has two layers with
64 neurons in each layer. ReLU is selected as the activation
function considering its fast updating speed.
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Fig. 5. The comparision between two distributions of content popularity.

For the offline training parameter setting of ACORN, the
learning rate is set to 3 × 10−6. The update interval of the
target Q-function is set to 2000, and the sampled batch size is
32. The parameters of the Q-function are optimized via Adam
[33].

For the online fine-tuning parameter setting of ACORN,
the learning rate is set to 5 × 10−6. The update interval
of Q-function and target Q-function is set to 1 and 2000,
respectively. The sampled batch size is 128. The parameters
of the Q-function are also optimized via Adam. Overall, the
parameter setting of ACORN is summarized in Table II. It is
worth noting that the neural network parameters for both BSs
are identical.

C. Performance Evaluation

We test the cache performance of the policies learned by
ACORN on two BSs associated with users with different user
preferences. We also compare the performance of ACORN
based on different training methods with the performance of
several rule-based and learning-based methods. The learning-
based methods are shown as follows:

• DL: The mapping relations between states and actions are
learned using only the states as inputs and the actions as
outputs. The loss function is the MSE loss between the
given and output actions. Different from the DRL-based
methods, DL does not leverage the rewards in the dataset.

• DDQN (online): DDQN stores the collected online in-
teractions in a replay buffer and then randomly samples
a minibatch of interactions from the buffer to update
the neural network parameters with Eq. 18. This process
repeats multiple times until the Q-function converges or
the number of training epochs exceeds a preset value.

• DLDDQN: DLDDQN is modified from [15]. It uses an
offline policy learned by DL as the initial training point
for the online DDQN. The training phase of DDQN is
then used to improve the offline policy further.

Different training methods of ACORN are introduced as
follows:

• ACORN (offline): Only use the static dataset sampled by
a behavior policy to learn a policy. The policy is trained
by the offline training algorithm of ACORN.

• ACORN (online): Learn a policy from scratch using the
online fine-tuning algorithm of ACORN. The parameters
of Q-function neural networks are loaded with random
values at first.

• ACORN: The offline policy learned by the offline training
algorithm of ACORN is used to collect new interactions.
After that, the parameters of the offline policy are fine-
tuned with these new interactions via the online fine-
tuning algorithm.

The rule-based methods are decribed as follows:

• LRU: The most recent used time of each cached content is
recorded. When new contents are fetched from the cloud
to the BS, it will replace the least recent used contents
with new ones if the BS is full.

• LFU: The number of requests for each cached content is
recorded. When newly fetched contents arrive at the BS,
it will replace the least requested contents with new ones
if the BS is full.

• FIFO: The cached time of each cached content is required
to be tracked. When newly fetched contents arrive at the
BS, it will evict the earliest cached contents and store
new ones if the BS is full.

• Belady: Belady has a view of future requests. It records
the most recent future requests of each cached content.
When newly fetched contents arrive at the BS, it will re-
place the least recent contents in the future with new ones
if the BS is full. Although Belady cannot be realized in
the real-world as it is not possible to obtain the perfectly
accurate information of future requests in reality, Belady
can be used as the upper bound of the rule-based methods
to evaluate the performance of ACORN.

We use LRU as the behavior policy to sample a static
dataset. The length of the future view for Belady is set as
48 seconds.

The results are shown in Fig. 6. We can find that offline
ACORN works with about 38% higher performance than LRU
on the BS with the content popularity distribution 1, and about
23% higher than LRU on the BS with the content popularity
distribution 2. It indicates that offline ACORN can learn a
competitive or even better policy from a static dataset sampled
by the behavior policy. The results also show that all DRL-
based methods, including ACORN, have better performance
and are capable of handling different user preferences, com-
pared to the rule-based methods. This proves that DRL is
a promising way to solve the cache replacement problem.
Moreover, we see that the performance of offline ACORN
is not much worse than online DDQN, with a degradation
factor of 6% on the BS with the distribution 1 and only 2%
on the BS with the distribution 2, respectively. Compared with
the performance gap between offline ACORN and rule-based
methods, the gap between offline ACORN and the DRL-based
methods trained online is much smaller. It means that the
policy learned by offline ACORN can be directly applied to the
edge caching environment without any tuning in the case of a
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Fig. 6. Comparison of cache performance of policies generated from ACORN
and other rule-based and learning-based methods. Offline ACORN learns
a better policy from the dataset in two distributions of content popularity.
The performance gap between offline ACORN and online DDQN is tiny. (a)
Content Popularity Distribution 1. (b) Content Popularity Distribution 2.

computationally overloaded edge server. In addition, although
Belady owns a view of future requests, it still follows a simple
rule to replace contents, which makes it perform less well than
the online DRL-based methods.

D. Convergence of Offline Training

We test the offline training convergence of ACORN and
compare it to an offline DRL-based method modified from
DDQN:
• DDQN (offline): We can easily change online DDQN to

offline DDQN by eliminating the data collection phase
and replacing the replay buffer with a static dataset.

We plot the learning curves for the different methods in
Fig. 7. It can be found that ACORN successfully converges
at epoch 3 on the BS with distribution 1 and epoch 2 on
the BS with distribution 2. The learned policy performs better
than the behavior policy LRU in both distributions. Since the
loss function of DL is the MSE loss between given actions
in the dataset and the output actions, Fig. 7 only shows its
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Fig. 7. Comparing the learning curves of the policy generated from ACORN
with those from learning-based methods and the behavior policy. ACORN
converges successfully, and its learned policy performs better than others. (a)
Content Popularity Distribution 1. (b) Content Popularity Distribution 2.

performance curve but not its learning curve. The curve of
DL fluctuates around the curve of the behavior policy, which
implies that DL successfully learns the state-action mapping
relations of the dataset. Due to the lack of new samples to
correct the estimated Q-values and the unconstrained explo-
ration, offline DDQN cannot learn a better policy and even
cannot converge.

E. Reduction of Online Interactions

The reason why the offline policy learned by ACORN does
not perform as well as the policies learned by the DRL-based
methods trained online is that the static dataset only contains
partial information about environmental dynamics. It is chal-
lenging for ACORN to learn an optimal policy using only
this limited information. Fortunately, the missing information
about environmental dynamics can be supplemented with a
small number of online interactions. In this part, we want
to test how many interactions can be reduced by fine-tuning
the offline policy using ACORN to achieve a similar number
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Fig. 8. Learning curves comparing the policies generated from ACORN based
on different training methods with those from DDQN and DLDDQN. Even
though all learned policies achieve similar performance, ACORN requires
fewer online interactions than DLDDQN, online ACORN, and online DDQN.
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of cache hits compared to training from scratch using the
advanced DRL-based methods.

We plot the tuning curves for these methods in Fig. 8, where
each training epoch contains 2000 online interactions. We find
that all methods learn an excellent policy by executing the
online training/tuning phase, demonstrating that ACORN can
compete with DDQN even in the online setting. Although all
learned policies have similar cache performance finally, they
require different numbers of interactions to reach convergence.
ACORN requires fewer interactions than other methods be-
cause offline ACORN provides a better initial point for fine-
tuning. On the BS with the distribution 1, ACORN converges
at epoch 3. It reduces the number of online interactions
by 40% compared to DLDDQN and online ACORN that
converge at epoch 5, and by 50% compared to online DDQN
that converges at epoch 6. For the BS with the distribution
2, ACORN that converges at epoch 2 reduces the number
of online interactions by 33%, 50%, and 60% compared to
DLDDQN that converges at epoch 3, online ACORN that

converges at epoch 4, and online DDQN that converges at
epoch 5, respectively. We can find that under different user
preferences, ACORN can effectively reduce the number of
online interactions while achieving a similar number of cache
hits compared to the advanced DRL-based methods. It means
that ACORN is quite applicable to edge networks with time-
varying user preferences where frequent retraining processes
occur. Although DLDDQN also improves the policy from the
initial point obtained by DL, it still requires more interactions
than ACORN to achieve similar cache performance, which
proves the superiority of ACORN again.

VI. CONCLUSION

A novel dynamic edge cache replacement method, named
ACORN, is proposed to meet the dynamic requirements of
mobile users in a MEC network. To the best of our knowledge,
it is the first work to apply the offline-online DRL to solve
the edge cache replacement problem. Distinguishing from the
existing work, ACORN can learn a competitive or even better
policy from a static dataset sampled by a behavior policy. It
can further improve the learned policy within a small number
of online interactions via fine-tuning. A CNN is used to
efficiently extract the knowledge about content popularity from
the request history, and an FCNN is used to further improve
the performance by encoding the additional information about
newly fetched contents and combing it with the extracted con-
tent popularity knowledge. We conduct extensive simulations
in our designed edge caching environment with two different
user preferences from three aspects, cache performance, offline
training convergence, and online interaction reduction. The ex-
perimental results demonstrate that ACORN can successfully
learn an offline policy by only interacting with a static dataset,
and the offline policy outperforms the behavior policy. The
results also show that ACORN can fine-tune the offline policy
to achieve a number of cache hits as good as that learned by
the advanced DRL-based methods while using fewer online
interactions.
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