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Abstract 

Inspired by the geometry of bamboo, this study proposes a novel bamboo-inspired body-

centered cubic (B-BCC) lattice structure consisting of tapered and hollow struts. Using 

representative volume elements applied with periodic boundary conditions, the mechanical 

properties and deformation behaviors of the B-BCC lattice structures are thoroughly evaluated by 

considering a large number of combinations of geometric parameters and volume fractions. Results 

reveal that the geometric parameters highly influence the deformation behavior of the B-BCC lattice 

structures under uniaxial compression (e.g, from bending- to stretching-dominated) but little under 

shear load. For this reason, tunable elastic modulus across a broad range can be realized via adjusting 

the geometric parameters and elastic isotropy can be obtained across all volume fractions. On this 

basis, a combination of artificial neural network and elastic isotropy optimization is proposed to 

obtain the isotropic B-BCC lattice structures with superior elastic modulus. The optimization results 

show that the elastic modulus of the isotropic B-BCC lattice structures increased by 271.24%-1335% 

and 17.72%-43.63%, as compared to the original BCC and isotropic hollow BCC lattice structures, 

respectively. Finally, the multi-layer simulation and compression experiments are applied to validate 

the optimization results. Good agreements are observed comparing the numerical and experimental 

results, demonstrating the effectiveness of the proposed bamboo-inspired design and optimization 

method for lightweight applications with desired properties. 

Keywords: Bio-inspiration, Lattice structures, Mechanical properties, Structural optimization, 

Additive manufacturing 

1. Introduction 

 Lattice structures are defined to be periodic cellular solids that consist of unit cells made up of 

three-dimensionally spatially architectured features [1]. For its unique architecture, lattice structures 

display unprecedented material properties. For their low density, lattice structures find applications 

as lightweight structural materials [2]. For their unique plateau deformation under compression, 

they also display excellent energy absorption properties [3, 4]. For their unique flow properties, they 

also function as sound absorbers [5] and thermal exchangers [6]. With the advent of additive 

manufacturing (AM), the fabrication of complex and custom-designed lattice structures with high 



performances for the associated design requirements are made feasible [7-9]. 

The mechanical response of lattice structures can be classified into two primary categories: 

stretching-dominated and bending-dominated [10, 11]. Under a load, a stretching-dominated 

structure undergoes tension and compression of the struts, while a bending-dominated structure 

experiences the bending of the struts. Therefore, stretch-dominated structures usually have a high 

stiffness-to-weight ratio, while bending-dominated structures display excellent energy absorption 

characteristics [12]. The body-centered cubic (BCC) lattice structure is a typical bending-dominated 

lattice structure that has been wildly investigated in previous literature. For example, Gümrük et al. 

[13, 14] studied the static mechanical responses of BCC lattice structures under different loading 

conditions and established the theoretical equations to predict their physical and mechanical 

properties. Yang et al. [15] investigated the mechanical and fatigue performances of BCC lattice 

structures and proposed a stress concentration assessment method to evaluate fatigue performance. 

Mines et al. [16] conducted the compression and the drop weight impact experiments on BCC lattice 

structures and found a favorable impact performance of BCC lattice structures compared to 

honeycomb structures. In addition, the effects of volume fraction [17], unit cell size [18, 19], strut 

diameter [18], and unit cell pose [20] on the mechanical properties and deformation behavior were 

also numerically and experimentally investigated. 

It should be noted that high stress concentrations are localized at the nodal regions of the BCC 

lattice structure owing to the bending of the struts [21]. This thus leads to poor mechanical properties, 

e.g., stiffness and strength, observed under the compression load. Therefore, many attempts have 

been made to optimize and improve the mechanical properties of BCC lattice structures. For 

example, fillets have been added to the nodal regions of BCC lattice structures to reduce stress 

concentration, and a 55% increase in stiffness is realized [22]. Similarly, nodal enforcements were 

also realized by adding spherical nodes [23] or smoothing the nodal regions by using minimal 

surfaces [24]. Furthermore, changing the shape of struts for the BCC lattice structure is another 

effective approach to improve the mechanical properties. The uniform struts of the BCC lattice 

structures were replaced by the ones with variable cross-sections, and the static and dynamic 

compression properties were increased due to the uniform stress distribution on tapered struts [21, 

25-27]. Moreover, the design approach of BCC lattice structures with curved struts was also 

proposed, and the compression tests demonstrated that the curved design reduced the stress 

concentration and improved the load-bearing capacity [28]. The elastic modulus and compressive 

strength of BCC lattice structures also can be enhanced by adjusting the three-dimensional posture 

and mirror arrays of unit cells [29]. In addition to the change in the geometry of the BCC lattice 

structure, the mechanical enhancement was also realized by adding the reinforcing component [30-

32]. For instance, Smith et al. [30] added a vertical strut to the BCC unit cell and designed the BCC-

Z lattice structure. The added struts changed the deformation behavior from bending- to stretching-

dominated and significantly enhanced the stiffness and strength [33]. Chapkin et al. [31] 

manufactured the composite BCC lattice structure by filling metallic BCC lattice structures with 

compressible foam. The compression tests demonstrated that the foam-infilled structure improved 

the volumetric energy dissipation and energy absorption efficiency by 19% and 12% compared to 

the unfilled one, respectively. 

Through evolution and natural selection, biological structures found in nature have realized 

excellent physical and mechanical properties. Therefore, in addition to the aforementioned 

enforcement approaches, mimicking the biological structure in nature provides an innovative 



alternative to the design of lattice structures with combined excellent mechanical properties and low 

density [34, 35]. Many researchers have recently leveraged the design concepts in nature and have 

worked on various novel lattice structures. For example, Pham et al. [36, 37] proposed damage-

tolerant lattice structures inspired by the hardening mechanisms of crystal microstructure. The 

results showed that the crystal-inspired approach controlled the shear-band propagation and 

enhanced the mechanical properties and damage tolerance. Kumar et al. [38] studied a closed lattice 

structure inspired by the sea urchin and found the bio-inspired lattice structure improved the stiffness 

by 25% compared to open-cell lattice structures. Yang et al. [39, 40] designed a bi-directionally 

corrugated panel inspired by the telson of mantis shrimp and further investigated the geometric 

effects on static and dynamic mechanical properties through experiments and simulations. 

Additionally, inspired by the multiscale configuration of the microstructure of cork [41] and bone 

[42], the multilayered lattice structures composed of soft and hard materials were designed to 

enhance the toughness, shape recoverability, and energy absorption performance. It should be noted 

that bamboo is one particular biological organism that displays an excellent combination of high 

strength and light weight [43]. For instance, despite having a very high aspect ratio, it is capable of 

withstanding high bending stresses under the force exerted by the wind [34]. The excellent 

mechanical properties of bamboo derive from its hollow and tapered structure [44]. The hollow 

structure increases the moment of inertia of struts and minimizes the bending stress. The tapered 

structure effectively reduces the stress increase by shifting the position of maximum bending stress 

generation toward the part with a thicker diameter. Thus far, researchers have worked on introducing 

the bamboo structure to improve the axial and lateral energy absorption performance of thin-walled 

tubes [45, 46]. Moreover, the bamboo-inspired lattice structure with hollow struts was also designed 

[47], and the anisotropy properties can be tailored by tuning the outer and inner diameters of hollow 

struts [47-49]. 

Most of the previous studies focused solely on mimicking the hollow structure of the bamboo 

but not its taper. The full potentials associated with the biomimicry of bamboo are hence not yet 

uncovered. Additionally, most of the previously reported bamboo-inspired lattice structures are 

highly directional and anisotropic. Therefore, in this study, inspired by all of the biological features 

of bamboo, the bamboo-inspired BCC (B-BCC) lattice structure with hollow and tapered struts was 

proposed. The strut geometry of the B-BCC lattice structure was determined by the degree of hollow 

and taper, and further influenced the mechanical properties of the B-BCC lattice structure. Using 

the homogenization method, the mechanical properties of B-BCC lattice structures with different 

geometric parameters and volume fractions were obtained. The effects of geometry on the elastic 

modulus, shear modulus, anisotropy, and deformation behavior of B-BCC lattice structures with 

different volume fractions were systematically investigated. Finally, a combination of artificial 

neural networks and elastic isotropy optimization was developed to obtain the isotropic B-BCC 

lattice structure with superior elastic modulus. The mechanical properties and failure behavior of 

the isotropic B-BCC lattice structure were investigated by compression experiments and the finite 

element method. 

2. Material and methods 

2.1 Lattice structures generation 

The structure of bamboo is a typical lightweight structure that has a low density and excellent 

mechanical properties. The geometric structure of the bamboo pole is a hollow and tapered pillar, 



as demonstrated in Fig. 1. Inspired by the geometry of the bamboo, the solid struts of BCC lattice 

structures were replaced by the hollow and tapered struts to improve the mechanical properties. 

Fig.1 illustrates the geometry of the novel bamboo-inspired BCC (B-BCC) lattice structure with 

hollow and tapered beams. A critical physical property of lattice structures is their volume fraction. 

We then proceed to derive the mathematical expression of the volume fraction of the B-BCC lattice 

structures. First, it is to note that the BCC lattice structure is obtained by the inner lattice structure 

subtracted from the outer one, as shown in Fig. 2(a). In this case, the volume fraction of the B-BCC 

lattice structure is simplified as: 

𝜌∗ = 𝜌𝑜𝑢𝑡𝑒𝑟
∗ − 𝜌𝑖𝑛𝑛𝑒𝑟

∗  (1) 

Then, the 𝜌𝑖𝑛𝑛𝑒𝑟
∗  was defined as a hollow parameter (𝛼) to control the size of inner struts. For 

example, 𝛼 = 0 represent the B-BCC lattice structure with solid struts. Fig. 2(a) shows detail of 

the actual geometry of the outer structure. This structure composes of sixteen 1/8 nodes and eight 

struts, and the geometry of the 1/8 node is composed of one hexagonal pyramid and three trigonal 

pyramids. Therefore, the volume of the outer structure can be given: 

𝑉𝑜𝑢𝑡𝑒𝑟 = 16√2𝑎
3 + 4√3(1 + 𝛽 + 𝛽2)𝑎2𝑙 (2) 

with 𝑙 =
√3

2
𝐿 − √6𝑎 

where 𝑎 is the side length of the equilateral hexagon base of the strut. 𝛽 is the taper parameter 

that controls the side length of the equilateral hexagonal cross-section at the center of the strut, as 

shown in Fig. 2(a). 𝑙 and 𝐿 is the length of the strut and unit cell, respectively. The side length of 

the equilateral hexagonal cross-section at the center of the strut is 𝑎𝛽. When 𝛽 = 1, the taper strut 

would degrade into the uniform strut. Then the volume fraction of the B-BCC lattice structure can 

be modified as: 

𝜌∗ =
𝑉𝑜𝑢𝑡𝑒𝑟
𝐿3

− 𝛼 = 6(1 + 𝛽 + 𝛽2) (
𝑎

𝐿
)
2

− 12√2(𝛽 + 𝛽2 −
1

3
) (
𝑎

𝐿
)
3

− 𝛼 (3) 

In this study, 𝛼 is explored within the range [0, 0.95 − 𝜌∗] with a step of 0.1, 𝛽 is explored 

within the range [0, 1] with a step of 0.1, and the 𝜌∗ is set within the range [0.05, 0.95] with a 

step of 0.05. The 𝜌∗ and 𝐿 were kept as constants, and different B-BCC lattice structures were 

generated by selecting different combinations of 𝑎 , 𝛼 , and 𝛽 . 800 combinations were 

automatically generated and meshed using a Matlab code [50]. The models of B-BCC lattice 

structures with different geometric parameters (𝛼 and 𝛽) at 𝜌∗ = 0.15 are demonstrated in Fig. 

2(b). 



 

Fig. 1 Design evolution from bamboo to the bamboo-inspired BCC lattice structure. 

 

Fig. 2 (a) The geometry definition for the B-BCC lattice structure. (b) 3D models of the B-BCC 

unit cells with different geometric parameters at 0.15 volume fraction. 

2.2 Homogenization procedure 

To evaluate the elastic properties of the B-BCC lattice structure, a unit cell of the lattice 

structure was selected as the representative volume element (RVE). Periodic boundary conditions 

(PBCs) were applied to consider the effect of the adjacent unit cells. According to the PBCs, the 

displacement of the two opposite parallel RVE boundary surfaces can be expressed as [21]: 

𝑢𝑖(𝐿𝑗) = 𝑢𝑖(0) + 𝐻𝑖𝑗𝐿𝑗 (4) 

𝐹𝑖(𝐿𝑗) = −𝐹𝑖(0) (5) 

where, 𝑢𝑖 is the displacement, 𝐹𝑖 is the force, 𝐻𝑖𝑗 is the displacement gradient, and 𝐿𝑗 is the 

periodic length. The PBCs were then realized by applying multi-point constraints between the 

corresponding node pairs in Abaqus. The finite element models of the RVE were meshed with ten-

node tetrahedral (C3D10) elements. Next, the homogenization method was used to calculate the 

equivalent elastic properties of lattice structures. The constitutive strain-stress relationship of lattice 

structures is denoted as 𝝈 = 𝑫𝜺 , where 𝝈 , 𝜺 , and, 𝑫  are macroscopic stress, strain, and 

equivalent elastic tensor, respectively. Because of the symmetry of the lattice unit cell, the 

constitutive relationship can be expressed as: 
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 (6) 

The independent elasticity constants of the effective elastic matrix can be obtained by two 

loading cases, including a uniaxial strain loading and a shear strain loading. 

Then, the elastic modulus (E), shear modulus (G), and Zener anisotropy index (A) are given: 

𝐸 =
𝐷1111
2 + 𝐷1111𝐷1122 − 2𝐷1122

2

𝐷1111 + 𝐷1122
 (7) 

𝐺 = 𝐷1212 (8) 

𝐴 =
2𝐷1212

𝐷1111 − 𝐷1122
 (9) 

The Zener anisotropy index is used to evaluate the elastic anisotropy, and 𝐴 = 1 represents 

the elastic isotropy. 

2.3 Isotropy optimization 

To obtain the elastically isotropic lattice structures with high elastic modulus, the optimization 

problem is defined by minimizing the negative value of elastic modulus under the constraints of 

Zener anisotropy index and volume fraction. The design parameters 𝛼 and 𝛽 are the variables. 

The isotropy optimization problem is defined as: 

{
 
 
 
 

 
 
 
 

𝑓𝑖𝑛𝑑 𝛼, 𝛽

𝑚𝑖𝑛 −𝐸 = −
𝐷1111
2 + 𝐷1111𝐷1122 − 2𝐷1122

2

𝐷1111 + 𝐷1122

𝑠. 𝑡.

{
 
 

 
 |𝐴 − 1| = |

2𝐷1212
𝐷1111 − 𝐷1122

− 1| ≤ 10−3

𝜌∗ ≤ 𝜌𝑐𝑜𝑛𝑠
𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥
𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥

 (10) 

where, 𝜌𝑐𝑜𝑛𝑠  is the constraint of volume fraction, 𝛼𝑚𝑖𝑛  and 𝛼𝑚𝑎𝑥  is the lower and upper 

boundary of variable 𝛼, respectively. Similarly, 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 is the lower and upper value for 

𝛽 . Because the optimization problem is a constrained nonlinear optimization problem with two 

variables, the sequence quadratic programing (SQP) algorithm is used to solve the problem [51]. 

The termination criterion is defined as the relative objective function change in consecutive 

iterations less than 10−5. 

2.4 Isotropic performance validation 

2.4.1 Multi-layer simulation 

To verify the isotropy of the B-BCC lattice structures, the elastic modulus in the [001] and [011] 

directions were compared using Abaqus. The [001] and [011] samples were composed of 5 × 5 × 5 

and 5 × 5√2 × 5√2 unit cells, respectively. The size of the unit cell is 5𝑚𝑚. The [011] samples 

can be obtained by rotating the [001] samples 45 degrees around the x-axis, as demonstrated in Fig. 

3(a). The lattice samples were meshed with C3D10 elements. The samples were subjected to a 

displacement at the top surface equivalent to 0.01 of the height of the sample, and the bottom surface 

was fixed in z-direction using the ZSYMM boundary condition [52], as shown in Fig. 3(b). The 

constituent material was assumed to be a linear isotropic elastic model with an elastic modulus of 

1993.4𝑀𝑃𝑎 and Poisson’s ratio of 0.3. 



 

Fig. 3 (a) Schematic of the unit cell for [001] and [011] orientations. (b) The boundary conditions 

for the multi-layer simulation. 

2.4.2 Sample fabrication 

 The optimized B-BCC lattice structures with 0.2 volume fractions were selected to be 

fabricated by digital light processing (DLP). The size of the samples was the same as that of the 

simulation models. Correspondingly, the isotropic BCC lattice structures with hollow struts (𝛽 = 1) 

and original BCC lattice structures (𝛼 = 0 and 𝛽 = 1) were also considered. A commercial DLP 

3D printer, Asiga Max X27, using the Nova3D photosensitive resin, was used to manufacture the 

samples. The key processing parameters include a layer thickness of 50µ𝑚, exposure time of 1.1𝑠, 

and light intensity of 5𝑚𝑊𝑐𝑚−2. Subsequently, the as-printed samples were then cured for 1ℎ in 

the Asiga Flash curing chamber. The fabricated samples are illustrated in Fig. 4. 



 

Fig. 4 The lattice samples fabricated by DLP. 

2.4.3 Compression test 

 A commercial universal mechanical testing machine (Shimadzu AG25-TB) was used for 

compression tests. Two duplications of each sample were tested. The upper load cell moved 

downwards at a speed of 2𝑚𝑚/𝑚𝑖𝑛. The load and displacement data were recorded and used to 

calculate the strain-stress curves. The stress (𝜎) was obtained by dividing the compressive force into 

the apparent cross-sectional area (length×width) of the samples, and the strain (𝜀) was defined as 

the ratio of displacement and initial height of the samples. 

3. Results and discussion 

3.1 Elastic properties 

The mechanical properties of B-BCC lattice structures obtained by the homogenization method 

are shown in Fig. 5. These values are also compared with the Hashin-Shtrikman (HS) upper bounds, 

which are the highest theoretically achievable mechanical properties for a porous structure [53]. It 

can be seen from Figs. 5(a) and (b) that the elastic modulus and shear modulus of B-BCC lattice 

structures gradually improved with the increase of the volume fraction. Although the values of all 

designs fall below the HS upper bound, designs that are very close to the HS upper bound can be 

found for all volume fractions. Therefore, the mechanical properties of B-BCC lattice structures can 

be optimized by adjusting the geometry parameters (𝛼  and 𝛽 ). The unit cells with the highest 

elastic modulus and shear modulus at different volume fractions in homogenization results are 

shown in Figs. 5(a) and (b), respectively. The results show that the design of hollow struts is 

beneficial to the improvement of elastic modulus, while the design of solid struts is beneficial to the 

shear modulus. In addition, the appropriate taper design can improve both the elastic modulus and 

the shear modulus. 

Fig. 5(c) shows the Zener anisotropy index (𝐴) of B-BCC lattice structures. 𝐴 = 1 represents 

an elastically isotropic structure. It can be found that the values of 𝐴 are close to 1 for B-BCC 



lattice structures with high volume fractions. This is because the structures with high volume 

fractions were like solid material with holes in them, and the topology configuration of lattice 

structures less influenced their anisotropy characteristic. A similar phenomenon was also observed 

in other lattice structures, such as octet and plate cubic [54]. As shown in Fig. 4(c), the 𝐴 = 1 is in 

the range of 𝐴 values of the samples for all volume fractions, which means that the elastically 

isotropic B-BCC lattice structures can be obtained by controlling the geometric parameters. Further 

analysis of the samples with a 0.2 volume fraction shows that the strongest direction of the original 

BCC lattice structure (𝛼 = 0, 𝛽 = 1) was the diagonal direction, and the uniaxial direction was the 

weakest. This is due to the arrangement of the struts that all struts are oriented in diagonal directions. 

Although the design of tapered struts can weaken the diagonal performance and improve the axial 

performance to reduce the anisotropy, it is still difficult to obtain elastic isotropy. However, the 𝛼 

effectively influenced the anisotropy property, and the strongest and weakest directions were 

reversed by increasing the 𝛼, leading to a relatively balanced stiffness at 𝛼 = 0.3. 

 

Fig. 5 The (a) elastic modulus, (b) shear modulus, and (c) anisotropy index for all B-BCC lattice 

structures obtained from numerical homogenization. 

To illustrate the influence of geometric parameters (𝛼 and 𝛽) on mechanical properties, the 

smoothened figures of the B-BCC at 0.1, 0.2, and 0.5 volume fractions are shown in Fig. 6. For the 

elastic modulus, the large 𝛼 significantly improved the elastic modulus of B-BCC lattice structures. 

Especially at the 0.1 volume fraction, the hollow design (𝛼 = 0.8 , 𝛽 = 1 ) increases the elastic 

modulus by more than 1900% when compared to the original one (𝛼 = 0, 𝛽 = 1). With regards to 

𝛽, the elastic modulus of the B-BCC lattice structures with small taper slightly increased with the 

decrease of 𝛽 . Although these two geometric parameters can improve the elastic modulus, the 

reasons are different. Principally, the 𝛼  changed the deformation behavior and the moment of 



inertia, while the 𝛽 only improved the stress distribution, which will be further discussed in Section 

3.2. In addition, as the volume fraction increased, the 𝛼 and 𝛽 showed less effects on the elastic 

modulus. For example, the ratio between the maximum and minimum elastic modulus (𝐸𝑚𝑎𝑥/𝐸𝑚𝑖𝑛) 

of B-BBC lattice structures with 0.1 and 0.5 volume fractions was 21.16 and 3.43, respectively. One 

may assign it to the fact that with the increase of the volume fraction, the structure more presents 

the properties of solid materials with holes, and thus the geometry exhibited little influence on the 

uniaxial response. 

 

Fig. 6 Contour plots of the elastic modulus, shear modulus, and anisotropy index of the B-BCC 

lattice structures with relative volume 0.1, 0.2, and 0.5, for varying geometric parameters. 

Under the shear load, the slight taper was beneficial, but the hollow design (𝛼 > 0) weakened 

the shear modulus, as shown in Fig. 6. Similarly, the ratio of the maximum to minimum shear 

modulus (𝐺𝑚𝑎𝑥/𝐺𝑚𝑖𝑛) gradually decreased with the increase of the volume fraction, but the values 

of the ratio for shear modulus were lower than that for elastic modulus at low volume fractions. For 

example, at 0.1 volume fraction, the 𝐺𝑚𝑎𝑥/𝐺𝑚𝑖𝑛 was only 5.77, while 𝐸𝑚𝑎𝑥/𝐸𝑚𝑖𝑛 was 21.16. 

This is because the geometric parameters changed the deformation behavior of B-BCC lattice 

structures under the uniaxial load but rarely influenced the deformation behavior under the shear 

load. The influence of the geometric parameters on shear modulus and deformation behaviors will 

be discussed in Section 3.2. 

The effect of the geometric parameters on anisotropy is shown in Fig. 6. It can be observed 

that the elastically isotropic B-BCC lattice structure (𝐴 = 1 ) can be obtained for all 𝛽  values, 

which means that the anisotropic property was mainly determined by changes of 𝛼. It is basically 

attributed to the fact that 𝛼 reversed the strongest and weakest directions, while 𝛽 only slightly 



strengthened the weakest directions and weakened the strongest directions, as shown in Fig. 5 (c).  

3.2 Deformation behavior 

Due to the complex internal configuration of the B-BCC unit cell, the deformation behavior 

(bending or stretching) was difficult to be characterized by the Maxwell stability criterion [11]. 

Therefore, the Gibson-Ashby model was introduced to evaluate the deformation behavior [10]. 

According to the Gibson-Ashby model, the relationship between relative mechanical properties and 

volume fractions can be expressed as: 

𝐸

𝐸𝑆
= 𝐶1(𝜌

∗)𝑛1 (11) 

𝐺

𝐸𝑆
= 𝐶2(𝜌

∗)𝑛2 (12) 

where, 𝐸𝑆  is the elastic modulus of the bulk material. The 𝐶1 , 𝐶2 , 𝑛1 , and 𝑛2  are fitted 

proportionality constants and exponents. The predicted exponent depends on whether the structure 

is bending- or stretch-dominated, i.e., the exponent value of ~2 for bending-dominated and ~1 for 

stretch-dominated. In this work, only the designs covered 0.05 – 0.3 volume fractions were 

considered for investigation. The fitted values of the exponents are shown in Fig. 7, and the 

coefficients of determination (𝑅2) of the fitted results are higher than 0.999. 

 It can be observed that increasing 𝛼  and decreasing the 𝛽  can gradually change the 

deformation behavior of B-BCC lattice structures from bending-dominated ( 𝑛1 = 2.64 ) to 

stretching-dominated (𝑛1 = ~1 ) under the uniaxial load. However, the change in geometric 

parameters had little effect on the values of 𝑛2 . The 𝑛2  varied in a small range of 0.91–1.34, 

indicating the deformation behavior of the B-BCC lattice structures mainly was stretching-

dominated under the shear load. This difference is attributed to the topology configuration of BCC, 

in that the struts were aligned in the diagonal directions. To further analyze the deformation behavior, 

the Mises stress distributions of the B-BCC unit cell with different geometric parameters under 

different loading conditions are demonstrated in Figs. 8(a) and (b). 

 

Fig. 7 Contour plots of the fitted exponents (a) 𝑛1 and (c) 𝑛2 of the B-BCC lattice structures 

with variation of geometric parameters. 

Under the uniaxial compression load, the original BCC lattice structure (𝛼 = 0 , 𝛽 = 1 ) 

belongs to bending-dominated (𝑛1 = 2.64), and the Misses stress mainly concentrated at the node 

region due to the bending of the struts, as shown in Fig. 8 (a). Then, the stress was gradually changed 

from the node region to the center of the struts by decreasing the 𝛽. Therefore, a slight taper is 

beneficial for elastic modulus, but a large taper will induce stress concentrations on the node and 

decrease the elastic modulus. To clearly demonstrate the geometric effects on deformation behavior, 



the principal stress distributions of RVE are demonstrated in Fig. 9(a). The red arrows represent the 

tensile stress and the blue ones represent the compressive stress. In general, the principle stress 

distribution in uniform and tapered struts was similar. The compressive and tensile stress was mainly 

displayed at the concave and convex of the struts, respectively, which is a typical deformation 

behavior of bending of the struts. However, when 𝛼 was increased, more stress at the node region 

was distributed in the presence of vertical plates (e.g. at 𝛼 = 0.4, 𝛽 = 1), and more compressive 

stresses were parallel to the load direction. For this reason, the deformation behavior gradually 

changed from bending-dominated to stretching-dominated, which is consistent with the fitting 

results in Fig. 7(a). Moreover, because the moment of inertia of the hollow struts (𝛼 > 0) is higher 

than that of solid struts (𝛼 = 0), the elastic modulus was significantly improved simultaneously. 

Compared to the methods that control deformation behaviors and improve stiffness under uniaxial 

compression load by changing the lattice topology [55, 56], adding additional struts [30], or 

combing different lattice structures [57], the B-BCC design provides a novel way to control the 

deformation behavior and stiffness without changing the topology configuration. 

Under the shear load, the original BCC lattice structure (𝛼 = 0, 𝛽 = 1) belongs to stretching-

dominated (𝑛2 = 1.22), and the Misses stress uniformly distributed on struts due to the tension or 

compression of the struts, as shown in Fig. 8(b) and Fig. 9(b). It is noteworthy that the Misses stress 

distribution of RVE changed little with the increase of 𝛼 , and the maximum stress gradually 

transferred from the node region to the center of the strut with the decrease of 𝛽. Meanwhile, the 

compressive and tensile stress was mainly parallel to the struts when 𝛼 and 𝛽 changed, as shown 

in Fig. 9(b). Thus, the deformation behavior of the B-BCC lattice structures was little influenced by 

𝛼 and 𝛽. However, as aforementioned, the shear modulus was more sensitive to the change of 𝛼 

than 𝛽. It can be observed that the tensile and compressive stresses were uniformly along the struts 

for the original BCC lattice structure. For this reason, the original BCC lattice structure has a 

superior shear modulus. It is clear from Fig. 9(c) that the principal stress distributions were less 

sensitive to the change of 𝛽  than 𝛼 . When the 𝛼  increased, the principal stress distributions 

became more complex, and each strut displayed a combination of tensile and compressive stresses. 

These findings explain the observation in Fig.6 that the shear modulus was largely reduced by 

increasing 𝛼 but less influenced by changing 𝛽. 

Interestingly, when 𝛼 = 0.4  and 𝛽 = 0.3 , the 𝑛1  and 𝑛2  values were both ~1, which 

means that the deformation behavior of this structure was stretching-dominated under the uniaxial 

compression load and shear load. However, the stretching-dominated deformation behavior might 

not be governed by the material's alignment in the loading direction but due to the geometry of the 

center of the struts. As shown in Fig. 8, the stress was more concentrated at the center of the struts, 

and the lattice structure might resist the uniaxial compression and shear load through the local 

tension and compression deformation at the center of the struts. Therefore, although this structure 

belongs to a stretching-dominated structure, its elastic modulus and shear modulus were relatively 

lower than many more bending-dominated B-BCC lattice structures, as shown in Fig. 6. 



 

Fig. 8 The geometric effects on Misses stress distribution of RVE with 0.2 volume fraction at (a) 

ε33 = 0.01 and (b) ε23 = 0.01.

 

Fig. 9 The Misses stress and principal stress distribution of RVE at (a) ε33 = 0.01 and (b) ε23 =

0.01 with a deformation scale factor ×20. 

 

3.3 Isotropy optimization 



As noticed, the elastic modulus of the B-BCC lattice structure can be adjusted by 𝛼 and 𝛽, 

and the elastic anisotropy was dependent on the combination of 𝛼 and 𝛽. In structural components, 

the elastically isotropic ensures the lattice structures effectively resist the complex load conditions. 

Therefore, an isotropy optimization approach was proposed to design the B-BCC lattice structures 

with elastic isotropy and high elastic modulus simultaneously. The flowchart of the optimization 

process is summarized in Fig. 10. 

 

Fig. 10 The flowchart of the elastic isotropy optimization process of B-BCC lattice structures. 

Firstly, the bamboo-inspired lattice structures with different geometric parameters and volume 

fractions were generated by Eq. (3). Secondly, to avoid the tedious homogenization calculation 

during the iterative process for optimization, the relationships between the geometric parameters (𝛼 

and 𝛽), volume fraction (𝜌∗), and the elasticity constants (𝐷𝑖𝑗𝑘𝑙) should be developed. Considering 

the complexity of the nonlinear relationships, a two-layer (1 hidden layer and 1 output layer) 

artificial neural network (ANN) was applied to establish the relationships, as illustrated in Fig. 11(a). 

The number of hidden neurons was 20 to ensure the 𝑅2 of the predicted results were higher than 

0.999. The data were randomly divided into training set (70%), validation set (15%), and testing set 

(15%). The Levenberg-Marquardt (LM) algorithm was adapted to train the ANN [58]. The predicted 

and simulated values of elasticity constants at 0.2 volume fraction are illustrated in Fig. 11(b). It can 

be observed that the predicted curved surfaces successfully went across the simulated data, 

indicating high accuracy of the predicted results. Thirdly, the optimization problem was established 

and solved by the SQP algorithm using Matlab code. Finally, the optimization results were validated 



by the multi-layer simulation and experiment. 

 

Fig. 11 (a) Diagram of ANN architecture and the high accuracy achievable from the trained 

network. (b) Predicted surfaces of the effective elastic constants for B-BCC lattice structures with 

0.2 volume fraction. 

Using the isotropy optimization approach, the elastically isotropic B-BCC lattice structures 

with 0.1, 0.2, and 0.3 volume fractions were obtained. The optimization iteration process is shown 

in Figs. 12(a-c), and the final results are listed in Table 1. Then, the results were compared with the 

elastic modulus of isotropic hollow BCC and the original BCC lattice structures under the uniaxial 

compression load ([001] direction), as demonstrated in Fig. 12(d). It is apparent that the elastic 

modulus of the optimized isotropic B-BCC lattice structure is the highest and closest to the HS 

upper bound. The elastic modulus increased by 271.24%-1335% compared with the original BCC 

lattice structures. It was of interest to compare the bamboo-inspired strategy in this study with other 

optimized designs of BCC lattice structures. For example, Chen et al. [29] used rotation and mirror 

operations to create a modified BCC lattice structure, and the elastic modulus of lattice structures 

was improved by 552%. Bai et al. [28] proposed a type of BCC lattice structure with curved struts 

and increased the elastic modulus by 213.7%. Maskery et al. [59] added a vertical strut to the BCC 

lattice unit cell and generate the BCC-Z lattice structures. The elastic modulus of BCC-Z lattice 

structures was 218% higher than that of original BCC lattice structures. Tancogne-Dejean et al. [25] 

designed the BCC lattice structures with taper struts, and the uniaxial compression tests 

demonstrated that the use of tapered struts increased the elastic modulus up to 70%. 

It should be noted that the optimized B-BCC lattice structure had high elastic modulus and 

elastic isotropy, which means this structure had high stiffness in all directions. Moreover, compared 

to the isotropic hollow BCC which mimics the hollow structure of bamboo, the optimized B-BCC 

which considers the hollow and taper structure of bamboo further improved the elastic modulus 

increased by 17.72%-43.63%. 

 

 



Table 1 The isotropy optimization results of B-BCC lattice structures. 

𝜌∗ 𝛼 𝛽 Elastic modulus (𝑴𝑷𝒂) Anisotropy index 

0.1 0.364 0.699 53.21 ~1 

0.2 0.308 0.730 129.84 ~1 

0.3 0.254 0.758 224.72 ~1 

 

Fig. 12 Iteration histories of optimization process at (a) 𝜌𝑐𝑜𝑛𝑠 = 0.1, (b) 𝜌𝑐𝑜𝑛𝑠 = 0.2, and (c) 

𝜌𝑐𝑜𝑛𝑠 = 0.3. (d) Normalized elastic modulus as a function of the relative density of different 

lattice structures. 

3.4 Isotropic performance validation 

The experimental strain-stress curves of the lattice samples are demonstrated in Fig. 13. Three 

distinct regions are observed in strain-stress curves, including the elastic-plastic stage, plateau stage, 

and densification stage. For original BCC samples, the difference between strain-stress curves at the 

elastic-plastic stage was large in the [100] and [110] directions. This was mainly caused by the 

elastic anisotropy of original BCC lattice structures. After the stress reached the initial stress peak, 

the load-bearing capability of the original BCC samples rapidly decreased. This is due to the shear 

failure observed in the inset images in Fig. 13(a), and the samples subsequently separated and slid 

with low load-bearing capability. The diagonal or V-shaped shear bands were also found in other 

types of strut-based lattice structures, such as FCC [28], F2BCC [60], and gyroid [61]. In addition, 

a similar phenomenon was also observed in BCC lattice structures made of different brittle materials, 

such as Ti-6Al-4V [20, 27, 28]. It should be noted that shear band failure is a common failure 

mechanism for bending-dominated lattice structures [62]. In contrast, a totally different failure 

behavior was observed for isotropic hollow BCC and isotropic B-BCC samples in Fig. 13(b) and 

(c). The samples exhibited an initial top layer collapse followed by a layer-by-layer failure. This 

distinct failure mechanism enables the samples to maintain relatively high load-bearing capacity 

after failure, which is beneficial for energy-absorbing applications. There are two likely causes for 



the distinct failure mechanism. Firstly, the hollow design increased the moment of inertia of struts, 

making a more stretching-dominated deformation behavior for isotropic hollow BCC and isotropic 

B-BCC samples. The layer-by-layer failure is a common failure mechanism for stretching-

dominated lattice structures [62]. Secondly, the tapered design improved the node region and 

weaken the region of the center of the strut. The tapered geometry of the strut changed the stress 

distribution, leading to a local collapse in the strut [21, 25, 26]. Interestingly, although the isotropic 

B-BCC lattice structure is elastically isotropic, the stress values of stress-strain curves at the plastic 

stage were almost the same in the [001] and [011] directions. Because the B-BCC lattice structures 

provide a variety of geometric parameters for elastically isotropic designs without changing the 

volume fraction, the lattice structures with elastic-plastic isotropy or even isotropic energy 

absorption capacity might be realized by adjusting the geometric parameters. 

 

Fig. 13 The strain-stress curves of the (a) original BCC, (b) isptropic hollow BCC, (c) isotropicB-

BCC lattice samples with 0.2 volume fraction in [001] and [011] directions. (c) The multi-layer 

simulation and experimental results. 

The elastic modulus of the lattice samples obtained from multi-layer simulation and experiment 

are summarized in Fig. 13(d). It can be found that the elastic modulus of original BCC samples 

greatly differed in the [001] and [011] directions, while the elastic modulus of isotropic hollow BCC 

and isotropic B-BCC samples was close in the [001] and [011] directions. Moreover, the isotropic 

B-BCC samples showed the highest elastic modulus, which is consistent with the optimization 

results. The predicted elastic modulus was in good agreement with the experiment results, with 

relative errors of 2.51%-16.67%. It is worth noting that for isotropic samples, the elastic modulus 

was slightly different in the [001] and [011] directions for both multi-layer simulation and 



experiment results. This is reasonable because the homogenization method assumes that the 

macroscale structure is sufficiently larger than the size of the lattice unit cell [21, 22], while the 

lattice samples used in the multi-layer simulation and experiment contained 5 × 5 × 5  and 

5 × 5√2 × 5√2 unit cells. Therefore, the different number of unit cells might influence the elastic 

modulus of lattice structures [22]. A similar phenomenon was also found in other studies of isotropic 

lattice structures [48]. In general, the isotropic B-BCC lattice structure showed the highest elastic 

modulus, and the deviation in different directions is less than 0.06%, and 3.01% for multi-layer 

simulation and experiment, respectively, which validates the effectiveness of the proposed elastic 

isotropy optimization approach. 

4. Conclusions 

 In this study, a novel class of bamboo-inspired BCC (B-BCC) lattice structures with tapered 

and hollow struts was proposed. The mechanical properties and deformation behavior of the B-BCC 

lattice structures with different geometry of hollow and tapered struts were investigated based on 

the representative volume element with periodic boundary conditions. Moreover, an artificial neural 

network was used to establish the relationship between geometric parameters (𝛼 and 𝛽), volume 

fraction (𝜌∗), and the elasticity constants (𝐷𝑖𝑗𝑘𝑙), and an elastic isotropy optimization approach was 

proposed to obtain the isotropic B-BCC lattice structures with high elastic modulus. Finally, the 

optimized samples were compared to the original BCC and isotropic hollow BCC lattice structures 

by multi-layer simulation and compression tests. The main conclusions of this study can be 

summarized as follows: 

(1) The elastic modulus and shear modulus of the B-BCC lattice structures can be widely controlled 

by geometric parameters (𝛼 and 𝛽), and the highest mechanical properties of B-BCC lattice 

structures were near the HS upper bounds. 

(2) The elastically isotropic B-BCC lattice structure can be obtained for all volume fractions. The 

anisotropy characteristic was mainly determined by 𝛼 , and the strongest and weakest 

directions were reversed when increasing 𝛼. 

(3) The geometric parameters significantly influenced the deformation behavior of B-BCC lattice 

structures (from bending- to stretching-dominated) under uniaxial compression load but rarely 

influenced the deformation behavior under shear load. 

(4) The isotropic B-BCC lattice structures with high elastic modulus were obtained through isotropy 

optimization. Compared with the original BCC and isotropic hollow BCC lattice structures 

with equal volume fractions, the elastic modulus increased by 271.24%-1335% and 17.72%-

43.63%, respectively. 

(5) The optimized results were confirmed through multi-layer simulation and compression 

experiments. The variations between the elastic modulus at the [100] and [110] directions were 

less than 3.01% for the isotropic B-BCC lattice structure. 

The proposed B-BCC lattice structures enable tunable mechanical properties and deformation 

behaviors by adjusting geometric parameters, which provides a novel bio-inspired strategy to design 

lightweight architectures with desired properties for engineering applications. In future work, the 

plastic characteristics of the B-BCC lattice structures will be investigated, and the optimization 

approach will consider the plastic properties to reduce the plastic anisotropy of B-BCC lattice 

structures. 
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