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Abstract 

This study develops understanding of vegetation change and water, sediment and 

carbon dynamics in semi-arid environments. Objectives were addressed using an 

integrated ecohydrological and biogeochemical approach. Fieldwork, over two 

contrasting grass-woody transitions at the Sevilleta National Wildlife Refuge, New 

Mexico, USA; quantified vegetation structure, soil structure and the spatial 

distribution of soil carbon resources. Over both transitions; woody sites showed a 

lower percentage vegetation cover and a greater heterogeneity in vegetation pattern, 

soil properties and soil carbon. Soil organic carbon differed in both quantity and 

source across the sites; with levels higher under vegetation, particularly at the woody 

sites. Biogeochemical analysis revealed soil organic carbon to be predominantly 

sourced from grass at the grassland sites. In contrast, at the woody sites soil organic 

carbon under vegetation patches was predominantly sourced from woody 

vegetation, whilst inter-patch areas exhibited a strong grass signature. 

Investigation of function focussed on the hydrological response to intense rainfall 

events. Rainfall-runoff monitoring showed woody sites to exhibit greater; runoff 

coefficients, event discharge, eroded sediment and event carbon yields. In contrast 

to grass sites, biogeochemical analysis showed the loss of organic carbon from 

woody sites to exhibit a mixed source signal, reflecting the loss of carbon originating 

from both patch and interpatch areas. To examine the linkages between vegetation 

structure and hydrological function, a flow length metric was developed to quantify 

hydrological connectivity; with woody sites shown to have longer mean flow 

pathways. Furthermore, in addition to rainfall event characteristics, flow pathway 

lengths were shown to be a significant variable for explaining the variance within 

fluxes of water, sediment and carbon. 

Results demonstrating increased event fluxes of sediment and carbon from woody 

sites have important implications for the quality of semi-arid landscapes and other 

degrading ecosystems globally. It is thus necessary to translate the understanding of 

carbon dynamics developed within this study to the landscape scale, so changing 

fluvial carbon fluxes can be incorporated into carbon budgets, research frameworks 

and land management strategies at policy-relevant scales.  
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