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Abstract

Freezing of Gait (FOG) is one of the most debilitating symptoms of Parkinson’s Disease

and is associated with falls and loss of independence. The patho-physiological mecha-

nisms underpinning FOG are currently poorly understood. In this thesis we combine time

series analysis and mathematical modelling to study the FOG phenomenon’s dynamics.

We focus on the transition from stepping in place into freezing and treat this phenomenon

in the context of an escape from an oscillatory attractor into an equilibrium attractor state.

We analyze the experimental data by two different approaches. In the first approach

we use a stochastic Hopf bifurcation normal form model to study the escape time from

oscillatory behavior to small-amplitude fluctuations. For the other approach we extract a

discrete-time discrete-space Markov chain from experimental data and divide its state

space into communicating classes to identify the transition into freezing. This allows us

to develop a methodology for computationally estimating the time to freezing as well

as the phase along the oscillatory (stepping) cycle of a patient experiencing Freezing

Episodes (FE). The developed methodology is general and could be applied to any time

series featuring transitions between different dynamic regimes including time series data

from forward walking in people with FOG.
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1. Introduction

People with Parkinson’s Disease (PD) will often walk with reduced gait speed and shorter

stride length. Spatial and temporal characteristics of Parkinsonian gait are also typically

more variable compared to age-matched controls [3, 4]. Furthermore, approximately

50% of people with advanced Parkinson’s will experience freezing of gait (FOG) [5].

Patients describe FOG as the sensation that their feet are glued to the floor, preventing

them from initiating a new step. Indeed, a greater variability in walking patterns has

been observed in Parkinson’s patients with FOG. This is characterised by increased step

coefficient of variation [6], asymmetry, rhythmicity [7] and difficulty coordinating [8],

compared to patients without freezing. These studies focus on descriptive statistics of the

walking and/or stepping time series. In this study, in addition to performing advanced

time series analysis we concentrate on revealing the dynamic (geometric) properties of

the transitions between stepping and freezing.

Dynamic modelling and analysis can help in understanding and characterising specific

features and properties of Parkinsonian gait. This in turn could inform future rehabilita-

tion and prevention interventions as well as strategies that people with Parkinson’s might

benefit from through informal use in daily life. A variety of mathematical modelling

and data analysis approaches have been applied in the context of Parkinson’s gait and
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motor control more generally as reviewed in [9]. Data-driven prediction and detection

of the FOG phenomenon have been extensively addressed in previous work, including

by us in the context of stepping in place force platform data [10], and others (see Table

1 in [11] for list of studies based on wearable sensors data [11]), and more recently

plantar pressure data [12, 13]. A stochastic model of gait consisting of a random walk

on a chain has been also proposed and applied to describe alterations in gait dynamics

from childhood to adulthood [14]. To our knowledge none of the studies to date have

combined mathematical modelling and data analysis to investigate dynamic properties of

the FOG phenomenon in Parkinson’s Disease, which is the main focus of our work.

Summary of results We analyse the transition between stepping and freezing observed

during stepping-in-place experiments performed by Nantel et al [7]. In our analysis,

after phase space embedding, stepping motion appears as large-amplitude oscillations

while freezing appears as an approximate equilibrium or irregular drifting. We explore

whether there exists a preferred phase at which the stepping trajectory escapes from

the regular periodic stepping behavior to transition into freezing. The first step toward

an answer to this question is to identify for each freezing event a location in phase

space (after embedding) at which the transition occurs. At first sight this appears to

depend strongly on the parameter choices in our data processing, such as, for example, a

threshold for freezing that we could define. To address this sensitivity we seek to develop

a recurrence-based method for identifying a unique phase and amplitude of the point

at which the transition occurs that does not depend on method parameter choices. Our

method consists of three steps. First, we apply a Hilbert Transform to reconstruct a

two-dimensional embedding from the scalar experimental times series data as a signal in

the complex plane. Second, we construct a Markov chain by discretizing the complex
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plane and counting the empirical transition probabilities of the Hilbert Transform output

between the boxes from the discretization. Over a large range of method parameters

the Markov chain has a clearly identifiable largest communicating class corresponding

to regular periodic stepping (the stepping class.) In the final step we determine which

boxes have a large transition probability out of the stepping class. We take the location

(phase and amplitude) of these boxes in the complex plane as the threshold for transition

to freezing. With the help of this naturally emerging threshold we obtain a mean escape

time characterising the transition from stepping to freezing. We can also investigate

if these transitions occur independent of phase or in some range of preferred phases

(angles) along the oscillatory cycle preceding the freezing episodes.

This thesis presents the method for identifying the transition’s phase and amplitude

for each event, demonstrates that it is robust with respect to choice of method parameters,

and tests it on the small patient data set that we have currently available. In principle,

pinpointing the transition will allow us to determine whether transitions occur preferably

at universal or patient-specific phase ranges, or whether they are uniformly distributed

(we treat the latter as the null hypothesis). This would help us to further understand the

underlying dynamics of FOG.

This thesis is organized as follows. This chapter presents the general motivation of

the research. From the next chapter (Chapter 2), detailed related works will be thor-

oughly surveyed. After describing the type of data we use for our method development

in Chapter 3 Section 3.1, we present our null model of the transition between stepping

and freezing in Chapter 3 Section 3.2. Chapter 5 then describes our method to construct

a Markov chain from the data and the analysis of the Markov chain’s properties we
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expect for our data. The new algorithm we develop is applied to patients’ stepping data

in Section 5.3 and our findings regarding phase dependence of the transition into freezing

are given in Chapter 5 Section 5.4. In Chapter 6 we study the robustness of the Markov

chain model we designed in Chapter 5. Chapter 7 follows with conclusions and outlook.
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2. Background on mathematical

techniques

In the literature there are several attempts at creating models for gait from first principles,

describing the neural system and its connection to body mechanics (reviewed in Chapter

1 ). An alternative approach to modelling is to use data and construct simple abstract

models that fit the data. These modeling techniques rely on reconstructing the state of

an abstract dynamical system from time series by embedding. This chapter introduces

embedding techniques(delay embedding, Hilbert Transform and Koopman operators)

and associated notation we will use later. We also describe the False-Nearest Neighbor

criterion, which helps decide if the dimension of the embedding space is large enough.

Since one of our target model classes are discrete-space Markov chains we also introduce

some basic concepts for Markov chains.

2.1 Embedding Methods

2.1.1 Delay Embedding

When modelling the gait of a patient (for example with ordinary differential equations),

a sensible model would contain state variables that account for the measurement outputs
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collected in the experiments. One technique for reconstructing a higher-dimensional

state from one or more measurements is delay embedding [15]. This method naturally

arises in the representation of the evolution of partially observed states in dynamical

systems. The Takens Embedding Theorem is a fundamental result in dynamical systems

theory that provides a theoretical basis for reconstructing the state space of a dynamical

system from time series data [16]. Assume that the underlying dynamical system

is governed by an autonomous ordinary differential equation (ODE) x′(t) = f (x(t))

with x(t) ∈ Rn of some dimension n, and that the measurement is some function of

the state y(t) = g(x(t)), where the dimension of y is lower than n. Let us assume

y(t) ∈ R1 for illustration. The state variable constructed by delay embedding is X(t) =

{y(t),y(t +τ),y(t +2τ), ...,y(t +(N−1)τ))}, where N is the embedding dimension and

τ is the delay time. In experiments data is often sampled at discrete times with time step

δt , resulting in a sequence yi of measurements taken at times ti = t0 + iδt . In this case a

delay embedding is of the form

Xi = (yi,yi+τ , . . . ,yi+(N−1)τ) (2.1)

where the embedding delay τ is an integer. In this case the real time delay is τδt .

Criterium for the delay time τ We demonstrate the effect of τ for the simple example

ODE x′′(t) = −ω2x(t) to show a possible criterion for choosing a delay time τ . We

choose as output y(t) = x(t), which is in R1. Figure 2.1 shows the trajectory X(t) =

(y(t),y(t − τ)) = (x(t),x(t − τ)) after delay embedding of x′′(t) = −
(

π

50

)2 x(t) in 2

dimensions for different values of τ . We can see that in this case the time delay embedding

with τ = T/4, where T is the period with T = 2π/ω , produces a nice circle instead of a

6



sharp ellipse.

In many applications (also in ours as Figure 3.1 shows) the output X(t) (or y(i)) is a

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 2.1: The trajectory after delay embedding of x′′(t) = −
(

π

50

)2 x(t) for delay time τ = 5
(blue), T/2 (red), T/4 (orange) respectively.

combination of oscillations with different amplitudes and frequencies. A good embedding

would be one where the most prominent part of the oscillations follows nearly a circle in

the phase space. This criterion can be made precise using the Fourier transform of the

time series.

2.1.2 Embedding based on the Hilbert Transform

Notation of Hilbert Transform and basic properties The Hilbert Transform (HT)

arose in Hilbert’s 1905 work on a problem Riemann posed concerning analytic functions

[17, 18] which has come to be known as the Riemann–Hilbert problem. Hilbert’s work

was mainly concerned with the Hilbert transform for functions defined on the circle

[19, 20]. The Hilbert transform has been extensively used to study phase demodulation
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in synchronization studies [21, 22]. It could be also used to perform a two-dimensional

embedding of an observed one dimensional signal. This embedding then is usually

treated as an analytic signal and the phase is extracted as the argument of the complex

state (or, more generally, as an angle of rotation with respect to some point on the

embedding plane). The Hilbert transform is an integral transformation (similar to the

Laplace and Fourier transforms), which is introduced by evaluating an integral under

special integral conditions in mathematics and physics:

H [x(t)] = x̃(t) = π
−1

∫
∞

−∞

x(τ)
t − τ

dτ (2.2)

We refer to the resulting trajectory (x(t), x̃(t)) in the plane as Hilbert embedding of x(t).

Note that we have to consider this integral as the Cauchy principal value [23], which

permits assigning a value to the integral despite the singularity at τ = t and τ =±∞.

From the mathematical definition alone, it is difficult to understand the physical meaning

of transformation. Physically, HT is equivalent to a special linear filter. All the spectral

amplitudes have not changed, but the phase is shifted −π

2 which is defined by convolution.

Hilbert Transform to complex signal Hilbert transform can be used to provide a signal

amplitude, instantaneous phase and frequency information for a (real) scalar oscillatory

time series. To estimate these characteristic attributes of a time series x(t) coming from

a measurement obtained over a finite period of time, we construct X(t) = x(t)+ ix̃(t),

where the real part is the original time series and the imaginary is the Hilbert Transform

of x(t), as defined in (2.2) [1]. In order to extract the original time series x(t) from the

complex signal X(t), one has to use a substitution x(t) = 0.5[X(t)+X∗(t)], where X∗(t)

is the complex conjugate signal of X(t).
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Figure 2.2: The signal in the complex plane after Hilbert Transform [1].

According to the analytic signal theory, a real oscillatory process x(t), measured by,

say, a transducer, is only one of the possible projections (the real part) of some analytic

signal X(t). Then the second projection of the same signal (the imaginary part) x̃(t) will

be conjugated according to the HT. An analytic signal has a geometrical representation in

the form of a phasor rotating in the complex plane [1], as shown in Figure 2.2. A phasor

can be viewed as a vector rooted at the origin of the complex plane with a length A(t) and

an angle ψ(t) (see Figure 2.2), which are the polar coordinates for X(t). The projection

on the real axis is the original real signal, recoverable from the polar coordinates by

x(t) = A(t)cosψ(t). The polar coordinates of the complex signal X(t),

X(t) = |X(t)| [cosψ(t)+ isinψ(t)] = Aeiψ(t),

construct an instantaneous amplitude (envelope, magnitude, modulus) for the original

9



signal x(t). The instantaneous amplitude of x(t) is

A(t) =±|X(t)|=±
√

x2(t)+ x̃2(t) =±eRe[lnX(t)],

and the instantaneous phase of x(t) is

ψ(t) = arctan
x̃(t)
x(t)

= Im [lnX(t)] .

The change of coordinates from rectangular (x, x̃) to polar (A,ψ) gives x(t)=A(t)cos(ψ),

x̃(t) = A(t)sin(ψ). For signals where an embedding dimension N = 2 is enough the

Hilbert transform automatically picks the optimal delay when using it for the example

(see Figure 2.1) we discussed in the delay embedding.
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2.2 The False Nearest Neighbour (FNN) criterion

Takens’ Delay Embedding Theorem [24] states that one can reconstruct trajectories

of a n-dimensional ODE ẋ(t) = f (x(t)) from the time series of an observation y(t) =

g(x(t))∈R and its delayed values. More precisely, there exists an invertible map between

the attractor A of the ODE and the set {g(x(t)),g(x(t − τ)), . . . ,g(x(t − (m− 1)τ)) :

t ∈ R,x(·) trajectories on attractor A }. For this to hold the dimension m should be

sufficiently large and g and τ have to satisfy some technical conditions. For example, if

the ODE consists of two uncoupled systems and the observation depends only one one

of the subsystems then the other subsystem’s state cannot be reconstructed [ref to Kantz

book]. This theoretical result motivates the development of methods for determining

the necessary dimension m from a time series of measurements when one suspects that

a model for the underlying dynamical system from which the measurements come can

be approximated by a low-dimensional ODE. One such method is the False Nearest

Neighbour method proposed by Kennel et al. [15]. This is a method to estimate the

necessary embedding dimension N (which is the minimum number of variables required

to accurately reconstruct the phase space of a dynamical system from its time series data)

for a scalar time series with the so-called False Nearest Neighbour (FNN) method to

minimise the number of variables required to accurately reconstruct the phase space of

a dynamical system. From a geometric point of view, a time series is the projection of

the trajectories into a one-dimensional space from a high-dimensional phase space. In

the process of projection, the trajectory will be distorted. When two points that are not

adjacent in the high-dimensional phase space are projected on a one-dimensional axis,

they may become two adjacent points, such that in the projection points may be close

to each other that were not close in the phase space. We call them ”false neighbours”.
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Reconstructing the phase space tries to recover the trajectory from the time series. As

the embedding dimension N increases, the trajectory of chaotic motion will gradually

unfold, and the false neighbours will also be gradually eliminated, so that the trajectory

will be restored.

In a N-dimensional phase space each phase point y(i) from ((2.1)) has a nearest point

ynbh(i) = {xnbh(i),xnbh(i+ τ), ...,xnbh(i+(N −1)τ)} within a certain distance:

RN(i) = ||y(i)−ynbh(i)|| (2.3)

The nearest neighbour relation is not necessarily symmetric. When the dimension of the

phase space increases from N dimension to N +1 dimension, the distance between these

two phase points will change to RN+1(i) which obeys the following rule [15]:

R2
N+1(i) = R2

N(i)+ ||x(i+Nτ)− xnbh(i+Nτ)||2 (2.4)

If RN+1(i) is much larger than RN(i), this contradicts the assumption that the evolution in

the phase space is uniquely determined by the current state. Thus, the increase from RN

to RN+1 is evidence that the two points that were non-adjacent in the original phase space

are adjacent when projected by the N-dimensional embedding of the output. The nearest

point ynbh(i) turned out to be a “false” nearest neighbour and the embedding dimension

N is too small. Let us define the ratio between new-point distance and nearest-neighbour

distance as

a(i,N) =
||x(i+Nτ)− xnbh(i+Nτ)||

RN(i)
. (2.5)
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We introduce a threshold Rξ and count ynbh(i) as FNN of y(i) if:

a(i,N)> Rξ . (2.6)

Kennel et al. [15] and Cao [25] suggest a value of threshold Rξ between [10,40].

The above method was designed assuming that the time series is the output of a

(possibly chaotic) low-dimensional deterministic map or ODE. If this map or ODE is

perturbed by noise and we have finite-length data of size M, we can also add the following

rule [15]:

if,RN+1(i)/RA ≥ 2, (2.7)

then ynbh(i) is the FNN of y(i), where

R2
A =

1
M

M

∑
i=1

[x(i)− x̄]2 , x̄ =
1
M

M

∑
i=1

x(i).
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2.3 Markov chains and communicating classes

In this section we consider a discrete-space Markov chain with N states. Transition

probabilities between states i and j are given in a transition matrix A in entry Ai, j. We let

ui be the ith unit row vector (ui j = 1 if i = j, 0 otherwise).

Definition 2.3.1 (accessible). A state j is said to be accessible from a state i (written

i → j) if there exists n ≥ 0 such that uiAnuT
j > 0 [26].

Definition 2.3.2 (Communicating class). A state i is said to communicate with state j

(written i ↔ j) if both i → j and j → i. The relation ↔ is an equivalence relation. A

communicating class is an equivalence class of ↔, so, it is a maximal set of states G

such that every pair of states in G communicates with each other [26].

Property 2.3.3 (Recurrent states of a Markov chain). Let f n
i denote the probability of

first return to state i at time n. Assuming we are in state i at time 0, let fi = ∑
∞
n=1 f n

i .

Then fi denotes the probability of eventual return to state i (starting in state i initially).

If fi < 1, then state i transient. If fi = 1, then we say state i is recurrent [27].

Property 2.3.4 (Positively recurrent states of a Markov chain). For recurrent states, the

mean return time is given by µi = ∑
∞
n=1 n f n

i . If µi < ∞, then state i is said to be positively

recurrent. If µi = ∞, then state i is called null recurrent [27].

Definition 2.3.2 uses that states communicating with each other (i ↔ j) is an equiva-

lence relation, which implies that one can partition the discrete state space into equiva-

lence classes (which are then called communicating classes). We will use the indicator

matrix to partition the states of a chain into communicating classes since we can learn

much about the long-time behavior of a Markov chain merely from the indicator matrix
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of its transition matrix. Let us illustrate the partition process with an example. Assume

that the Markov chain has 7 states and transition matrix A1:

A1 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1/9 8/9 0 0 0

0 0 1/4 1/2 1/8 1/8 0

0 0 0 0 4/5 1/10 1/10

0 0 0 0 3/10 7/10 0

0 0 0 0 0 0 1



The indicator matrix The indicator matrix of a transition matrix is constructed by

setting each positive element to 1 while the other elements remain 0. More formally,

given a transition matrix A, the elements of its indicator matrix Z are given by:

Zi j =


1 if Ai j > 0

0 otherwise.

Thus, while A is a real-valued matrix (with entries in the interval [0,1]), Z is a binary

matrix (with entries equal to 0 or 1). The transition diagram for the indicator matrix

includes a directed edge from state i to state j if and only if Zi j = 1. The indicator matrix
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Z1 of matrix A1 is:

Z1 =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 1 1 0

0 0 0 0 1 1 1

0 0 0 0 1 1 0

0 0 0 0 0 0 1


Definition 2.3.5 (Reachability). State i can reach state j if i = j or if there is a path of

any length from i to j in the transition diagram.

Figure 2.3: Transition diagram of matrix A1

Figure 2.3 shows the transition diagram of matrix A1. For simple cases, we can easily

determine reachability (shown by adjacency matrix of a directed graph calculated from

powers of Z) by inspection of the transition diagram. However, when the number of

states is large, matrix methods are more convenient. When raising the matrix A to the

power n for t ≥ 0 (using the convention A0 = I, the identity matrix), the entry An
i j gives

the number of paths of length n from i to j. To characterize the reachability relation

using matrix methods (powers of A), we may thus construct a binary reachability matrix
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Z∞,i j as

Z∞,i j =


1 if Zn

i j > 0 for some n ≥ 0

0 otherwise.

We observe we only need to check powers of n for Z that are less or equal to nmax, where

nmax is defined as the power where the number of non-zero entries in the matrix ∑
nmax
n=0 Zn

equals that of ∑
nmax+1
n=0 Zn. The Matlab function transclosure finds the reachability

matrix Z∞,i j for arbitrary transition matrices. For example, the reachability matrix Z∞1 of

matrix A1 is

Z∞1 =



1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 0 1



.

Communicating classes Since we can determine the reachability, we can now partition

the states of the Markov chain into communicating classes, assigning states i and j to the

same class if and only if each of these states can reach and be reached by the other. We

construct a binary bidirectional reachability matrix Zbi = min(Z∞,ZT
∞):

Zbi,i j =


1 if Z∞,i j = 1 and Z∞, ji = 1,

0 otherwise.
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If we draw the graph using Zbi,i j as adjacency matrix, the communicating classes would

appear as isolated groups (or clusters) that are themselves fully connected. That is, node

i can reach and be reach by node j if and only if i and j belong to the same group.

Consequently, if states i and j belong to the same communicating class, then

Zbi,ik = Zbi, jk for all k ∈ {1, ...,n} .

The binary bidirectional reachability matrix Zbi1 of matrix A1 is:

Zbi1 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1


To determine the membership of each communicating class, we may thus list the unique

rows of the matrix Zbi or Z∞. Each row of this matrix characterizes the membership of

a different communicating class. We label this unique communicating class indicator

matrix as matrix U ∈ {0,1}u×n in ascending order, the column number n corresponding

to the state number and the row number u are the total number of the communicating
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classes of matrix A. The unique matrix U1 of matrix A1 is

U1 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1


.

The matrix U1 indicates the communicating classes of matrix A1 are {1},{2},{3,4},{5,6},{7}.
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2.4 Koopman Operator

This section defines what the Koopman operator is and sketches the underlying idea very

briefly, but that we ended up not using the technique. However, later in Section 5 we

construct Markov chains based on empirical transition matrices, and the transpose of

such Markov-chain transition matrices are approximations of the Koopman operator.

Koopman-operator based data analysis The problem of identifying governing equa-

tions of dynamical systems from time-series data has attracted considerable interest in

many fields such as biology, engineering, and finance. It is also closely related to network

inference, which aims to reconstruct the interactions between different components of

a system, a problem of paramount importance in biomedical applications [28, 29]. In

many cases the identification problem is challenging due to the nonlinear nature of the

systems which need to deal with long, highly sampled time series or sparsely sampled

time series and provide a relationship between the system inputs and outputs.

Recently, there is growing interest in operator-theoretic approaches for the analysis

of dynamical systems. Operator-theoretic approaches are based on the Perron–Frobenius

operator or its adjoint, the Koopman operator (or composition operator) [30]. The core

concept of Koopman operator analysis is that the evolution of a nonlinear dynamical

system can be expressed using infinite-dimensional linear operators. This method was

first proposed by Koopman in 1931 [30], after 2004, Mezic and his collaborators [31, 32]

discussed the method, which was applied to reduce the order of stochastic or deterministic

models, and found that the spectral decomposition of Koopman operators is related to

the spatial mode of the dynamical system [33].
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Koopman operators for discrete-time dynamical systems Since we are concerned

with time series analysis, it is natural to consider the setting of discrete-time nonlinear

dynamical system:

xk+1 = Ft(xk) (2.8)

In Eq(2.8) x is the state variable. The subscript t is the sampling time step for the flow

map F.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observ-

able function g as:

Ktg = g◦Ft (2.9)

where ◦ is the composition operator, so that:

[Ktg](xk) = g(Ft (xk)) = g(xk+1) (2.10)

In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical

system that advances the observation gk = g(xk) of the state xk to the next timestep:

g(xk+1) = Ktg(xk). (2.11)

Since for any observable function g1,g2 and coefficient α,β , we have Kt(αg1+βg2)(x)=

αKtg1(x)+βKtg2(x), Kt is a linear operator. Hence, it makes sense to investigate the

spectrum of Kt , looking for special observables ϕ(x) such that

Ktϕ(x) = ϕ(Ft(x)) = λϕ(x) (2.12)
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where λ is the corresponding eigenvalue of Kt and ϕ(x) is the eigenfunction. Let us

assume that all the observables of the dynamical system lie in the linear span of such

Koopman eigenfunctions, that is:

g(x) =
∞

∑
i=1

ϕi(x)ci (2.13)

where the ci’s are coefficients of observable g in the eigenfunction expansion, called the

Koopman modes. Then we can describe the evolution of observables as:

Ktg(xk) =
∞

∑
i=1

Ktϕi(xk)ci

=
∞

∑
i=1

λiϕi(xk)ci (2.14)

because of expansion of g in the eigenbasis {φi} and the assumption that λi are eigenval-

ues of Kt for ϕi. But also

g(xk+1) =
∞

∑
i=1

λiϕi(xk)ci. (2.15)

Thus, if one can identify from data a set of eigenfunctions and eigenvalues of Kt that spans

a sufficiently large space of observables, then one may infer the evolution of an observable

g in this space from its coefficients with respect to the identified eigenfunctions.

The Koopman operator Kt is unitary, and forms a one-parameter family (in t) of

unitary transformations in the Hilbert space of square-integable observables. The Koop-

man operator is the dual, or left-adjoint, of the Perron-Frobenius operator, or trans-

fer operator [34]. The Perron-Frobenius operator T of a map g acts on a probability

distribution P by assigning T P as the probability distribution after applying g to P:

[T P](x ∈ A) = P(g(x) ∈ A), so [T P](A) = P(g−1(A)). In Section 5.2.6 we will explain
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what Perron-Frobenius and Koopman operator are for the simple case of a discrete-time

discrete space Markov chain.
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3. Description and Initial Analysis of

Experimental Data

We aim to investigate the FOG phenomenon in PD patients using stepping-in-place

experiments on force plates. The collected data is subsequently analyzed to identify

stepping and freezing episodes and delve into the underlying dynamics of FOG using

mathematical modelling.

The methods developed in the thesis will be tested on FOG data obtained by stepping-in-

place experiments by Nantel et al. [7]. Section 3.1 describes the experimental design

and data collection process followed by [7]. After presenting the stepping-in-place task,

we describe how the force data and time were non-dimensionalized for our analysis. In

the following Section 3.1 and Section 3.2, we introduce a null model based on the Hopf

bifurcation normal form with additive noise. This model represents the hypothesis that

stepping is a harmonic oscillation coming from a stable limit cycle in an autonomous

nonlinear oscillator, and the transition from stepping to freezing is due to uniformly

distributed random small disturbances pushing the oscillator out of the basin of attraction

of the limit cycle (toward an equilibrium). For this model we can investigate the dynamics

exhibited during these transitions, for example, the distribution of escape times.
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3.1 Stepping-in-place experiments

Nantel et al. [7] performed experiments recording freezing of gait using a repetitive

stepping-in-place task on force plates which could identify freezing episodes in subjects

with Parkinson’s Disease. The task consisted of alternatingly raising the legs at a self-

selected pace for 90 s per trial. Ground reaction forces were measured with a sampling

frequency of 100 Hz on two force plates. The series of experiments generated 6 trial data

sets of 90 s force time series for each of the 34 subjects. In figures and descriptions we

label data set j for subject k as STk j, where k ∈ {1, . . . ,34}, j ∈ {1, . . . ,6}. For example,
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Figure 3.1: Panel (a): Time series of the left foot vertical force (as a percentage of body weight) of
the subject numbered ST 31, data set 1, sampling time step δ t = 0.01; Panel (b): Power spectrum
(scaled to maximum equal to unit) with strong dominant peak at fstp ≈ 0.88Hz;

Figure 3.1(a) shows a typical time series generated by the data collection. Its title ST311

indicates that the time profile is from data set 1 of subject 31. The time series is the

left foot vertical force, given as a percentage of the body weight, of subject ST 31. The

sampling time step δ t equals 0.01 seconds. This results in 9000 discrete time steps

per trial. We observe several sudden transitions in the force magnitude from a large-

amplitude oscillatory behavior to small-amplitude irregular fluctuations and drifting at

approximately half the vertical force, which indicates that both feet are on the ground and
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the patient experiences a freezing episode. Episodes of standstill (involuntary freezing

or intentional) are uniquely identified by absence of zero-force periods for longer than

the identified stepping frequency shown in Figure 3.1(b). An expert manually identified

freezing episodes in the time series data during the experiment in order to distinguish

freezing episodes from episodes when the subject is intentionally standing still, as seen

at the start and end of many time series.

During our analysis we non-dimensionalize the time series Force(t) of force data

to the interval [−1,1], shifting the force at freezing to approximately the value 0, by

applying the transformation from Force(t) to Forcescal(t) with

Forcescal(t) =
Force(t)−mean(Force(t))

maxt |Force(t)−mean(Force(t))|
. (3.1)

We report time in multiples of the sampling time step δ t, such that all times t are

integers. When presenting experimental data in the paper we label subject number (ST),

data set and time interval (in multiples of δ t = 0.01). For example, Figure 3.1 shows

data from ST 31, data set 1, and the entire time interval {1, . . . ,9000} (corresponding to

the full 90 s). In the force measurements, stepping is seen as a regular periodic behavior

similar to a limit cycle oscillation, while freezing resembles an equilibrium or irregular

drifting.

Stepping in place has been used as a protocol because it is extremely challenging to

evaluate FOG using traditional force platforms, due to their limited size and the practical

difficulties of observing unpredictable FOG events when asking participants to walk over

them. For this reason, the approach of [7] has been to ask participants to step in place

when standing on two force platforms. This approach provides highly accurate dynamic

force information for each foot separately. Because these data relate to a protocol where
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patients have been denied the opportunity to walk forward, the temporal aspects of the

task are more prominent (spatial features such as stride length are absent). Therefore, we

focus our analysis on temporal features, i.e dynamical properties of scalar force data.

Full data sets and processing scripts are available at the following link https:

//figshare.com/s/a14be7360925639736ba.

3.2 Nullmodel: transitions independent of phase as es-

cape from limit cycle

Time profiles during regular stepping exhibit strong periodicity, as Figure 3.1(a) shows.

Figure 3.1(b) depicts the corresponding power spectrum characterized by a distinct

dominant peak, corresponding to the stepping frequency fstp of the subject during the

experiment (in this case fstp ≈ 0.88Hz, such that the angular stepping frequency is ωstp ≈

1.76π/s). The False Nearest Neighbour (FNN) criterion [35] for time delay embedding

with ∆t equal to a quarter of the dominant period, Tstp/4 = π/(2ωstp), demonstrates

(as seen in Figure 3.2(right)) that two dimensions predict 65% of the signal correctly

(that is, 35% of the predictions from nearest neighbours mismatch according to the

FNN criterion), while 10% is mismatched with three embedding dimensions. The third

embedding dimension plays a role after freezing events have occurred, as the time-delay

embedded phase portraits in panel (a) and (b) of Figure 3.2 illustrate.

A phenomenological model for the escaping-from-a-limit-cycle behavior visible in

Figure 3.2 is a (for example, two-dimensional) ODE, which is bistable with coexisting

stable periodic limit cycle, corresponding to periodic stepping, and stable equilibrium

state, corresponding to freezing, perturbed by small noise. Noisy fluctuations and/or
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Figure 3.2: Time delay embedding analysis of time profile shown in Figure 3.1: Panel (a) and
(b): Delay embedding in 3 dimensional space; Panel (c): False nearest neighbour percentage for
different embedding dimensions and time delay.

external inputs could drive transitions between these two stable states representing

transitions from stepping into freezing. The generalized Hopf bifurcation normal form

model [36] exhibits such dynamics and hence can be used for describing some aspects of

the behavior shown by the time-delay embedding of the data Figure 3.2.

3.2.1 Generalized Hopf Normal Form

The general minimal Hopf bifurcation model has the following form [36]:

ẏ1(t) = β1y1(t)− cy2(t)+β2y1(t)(y2
1(t)+ y2

2(t))− y1(t)(y2
1(t)+ y2

2(t))
2 (3.2a)

ẏ2(t) = cy1(t)+β1y2(t)+β2y2(t)(y2
1(t)+ y2

2(t))− y2(t)(y2
1(t)+ y2

2(t))
2 (3.2b)

where y = (y1,y2)
T ∈ R2,β ∈ R2. When transforming from Cartesian coordinates

(y1,y2) to polar coordinates, we may treat (y1,y2) ∈ R2 as a complex variable Z =

Reiθ = y1 + iy2. Then the form of (3.2) in polar coordinates is:

Ṙ = β1R+β2R3 −R5, R > 0 (3.3a)
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θ̇ = ct (3.3b)

The local bifurcation diagram in the parameter plane β1-β2 of the normal form is

presented in Figure 3.3. The different regions and bifurcations near the Bautin bifurcation

are the following. In region 3 (Bistability) the system has a stable fixed point and a

stable limit cycle coexisting due to the subcritical nature of the Hopf bifurcation. The

point β1 = 0 separates two types of the Hopf bifurcation curve: the half-line H− =

{(β1,β2) : β1 = 0,β2 < 0} corresponds to a supercritical bifurcation that generates a

stable limit cycle, while the half-line H+ = {(β1,β2) : β1 = 0,β2 > 0} corresponds to

a subcritical bifurcation that generates an unstable limit cycle. Two hyperbolic limit

cycles (one stable and one unstable) exist in the region between the line H+ and the

curve T = {(β1,β2) : β1 = −1
4β 2

2 ,β2 > 0}, at which two cycles collide and disappear

via a saddle-node bifurcation of periodic orbits [2]. We go around the origin in counter-

clockwise direction, β1 = Rcosφ ,β2 = Rsinφ , with R ≪ 1. If we start at φ =−π , the

system has a single stable equilibrium and no cycles. Crossing the Hopf bifurcation

boundary H− from region 1 to region 2 implies the appearance of a unique and stable

limit cycle, which survives when we enter region 3. Crossing the Hopf boundary H+

makes an extra unstable cycle show up which is inside the first one, while the equilibrium

regains its stability. The cycle near the equilibrium is unstable and the other cycle is

stable, this two cycles disappear at the curve T through a fold bifurcation that leaves

a single stable equilibrium. This phenomenon is also called the generalized Bautin

bifurcation [36].

We notice that the dynamics in region 3 is bistable: a stable limit cycle with radius and

a stable equilibrium coexist, as we proposed as phenomenological model for Figure 3.2.
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Figure 3.3: Bautin bifurcation diagram from http://www.scholarpedia.org/article/

File:Bautin.gif): In a Bautin bifurcation an equilibrium point changes stability in a Hopf bi-
furcation, with not just one but potentially multiple limit cycles reated or destroyed as parameters
β1, β2 change [2].

Thus, we expect that perturbing this dynamics with noise can generate the time series

shown in Figure 3.1 and Figure 3.2. We model gait as a limit cycle of radius 1 and

freezing as equilibrium at the origin. This matches how we normalized our experimental

data where oscillations have amplitude equal to 1. We parametrise our model to have a

stable limit cycle with radius equals to 1 as well, which implies that Ṙ = 0 for R = 1, such

that β2 = 1−β1. The angular frequency θ̇ should equal to 0.9667(2π) for consistency

with our normalization of the experimental data. Let c = 2πω , then(3.3) will have the

following form:

Ṙ = βR+(1−β )R3 −R5, R > 0 (3.4a)

θ̇ = 2πω. (3.4b)
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Thus, all periodic orbits of (3.2) are circles around the origin and their radius is the equi-

librium of (3.4a). The origin (R = 0) is a special case, corresponding to an equilibrium

(a circle with radius 0). The equation (3.4a) for Ṙ can be written in the form of a flow

following the (negative) gradient of a potential V ,

dR
dt

=−∂V (R)
∂R

(3.5)

where the potential function V is the integral of r.h.s of given by

V :=−β

2
R2 − 1−β

4
R4 +

R6

6
. (3.6)

The equilibrium points of the equation (3.5) are given by Ṙ = 0, such that

βR+(1−β )R3 −R5 = 0, R > 0 (3.7)

Apparently, R = 0 is one of the equilibrium points. The other equilibrium points are the

solutions of the following equation:

β +(1−β )R2 −R4 = 0, R > 0. (3.8)

Thus, (3.5) has 3 equilibria for β ∈ (−∞,0)\{−1}, which are:

R1 = 0,R2 =
√

−β ,R3 = 1.

For β = 0,−1, there are two equilibria:

R1 = 0,R3 = 1.
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For our stability analysis we consider the right-hand side of (3.4a),

f (R) = Ṙ = βR+(1−β )R3 −R5, (3.9)

and determine the derivative of f (R):

f ′(R) = β +3(1−β )R2 −5R4 (3.10)

We can now get f ′(R1) = β , f ′(R2) =−2β −2β 2, f ′(R3) =−2β −2.

For β > 0, R2 does not exist (is not real), f ′(R1)> 0, f ′(R3)< 0. Thus, R1 is unstable

and R3 is stable. Therefore in the full two-dimensional system (3.4), the only attractor

is a stable periodic orbit (R = 1) surrounding an unstable equilibrium at the origin.

This equilibrium becomes stable in a subcritical Hopf bifurcation at β = 0 and in the

regime −1 < β < 0 the system exhibits bistability with an attracting fixed point (origin,

f ′(R1)< 0) and an attracting limit cycle (radius R = R3 = 1, f ′(R3)< 0) separated by

an unstable limit cycle (R =
√

−β , f ′(R2) > 0). For β < −1, f ′(R1) < 0, f ′(R2) < 0,

f ′(R3) > 0, therefore R3 is the unstable state, and R1 and R3 are stable states. The

periodic orbits with R2 =
√

−β and R3 = 1 meet each other in a transcritical bifurcation

at β =−1, exchanging their stability (the periodic orbit with larger radius R is always

stable). The derivative of the phase (angle) θ is the frequency of the oscillations, which

we fix by setting ω = 0.9667. Figure 3.4 shows the bifurcation diagram of system (3.4),

where −2 < β < 1.
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Figure 3.4: Bifurcation diagram in Cartesian coordinate, purple circles represent the unstable
limit cycles, green lines represent the stable limit cycles, red line represents the stable equilibria
and the red dashed line represents the unstable equilibria.

Additive noise effects The deterministic model cannot describe the escapes from the

limit cycle, since in ODEs trajectories in the basin of attraction of a limit cycle will

converge to it for t →∞. So, we need to include random perturbations into our differential

equations. This is described mathematically by stochastic differential equations (SDEs),

which we explain here for the simple case of additive white noise.

An ODE initial value problem solution y(t) of y′ = f (y),y(0) = y0 is defined as

the unique fixed point of the fixed point equation y(t) = y0 +
∫ t

0 f (y(s))ds. A SDE

with additive noise for y(t) is written in the form dy(t) = f (y(t))dt + σdW (t) with

initial value y(0) = y0. The solution y(t) is defined as the unique fixed point of y(t) =

y0 +
∫ t

0 f (y(s))ds+σW (t), where W (t) is the standard Wiener process (random walk).

Since W (t) is random, y(t) is random as well. For any given realisation W (t) (which

one may generate independent of the SDE), one can treat the SDE as an ODE with the

forcing W (t). We model disturbances as a Gaussian white noise (the integral of which is
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W (t)). We expect the cumulative effect of the noise to cause random transitions from

walking to freezing. Hence, the model we consider is based on the generalized Hopf

normal form model with additive white noise and has the following form:

dy1(t) =
[
βy1 −2πωy2 +(1−β )y1(y2

1 + y2
2)− y1(y2

1 + y2
2)

2]dt +σdW1(t) (3.11a)

dy2(t) =
[
2πωy1 +βy2 +(1−β )y2(y2

1 + y2
2)− y2(y2

1 + y2
2)

2]dt +σdW2(t). (3.11b)

We set the initial condition as y1(0) = 1,y2(0) = 0, which is on the stable limit cycle

of the ODE (with σ = 0). The inhomogeneities Wj(t) are two independent standard

Wiener processes. Here σ is the noise amplitude, σ2 is the variance, where σ > 0 for the

stochastic case. Since our goal is modelling the transition from stepping to freezing in

the data, we assume that the unstable limit cycle is close to the stable limit cycle of the

deterministic part, namely,
√

−β is close to 1, but
√

−β < 1. Figure 3.5 demonstrates

the dynamics of (3.11), which is computed in MATLAB using the Euler-Maruyama

method for stochastic differential equations with the initial condition at y1 = 1,y2 = 0,

Euler-Maruyama step size h = 0.0003125 and radius R =
√

y2
1 + y2

2. The realization

trajectory spends some time near the stable limit cycle of the deterministic part (circling

counterclockwise at radius R = R3 = 1). Eventually it crosses the unstable limit cycle of

the deterministic part first, then it crosses the threshold R = 0.7 and never come back.

Finally the trajectory is attracted to the stable equilibrium, R = 0, which is the origin. The

time series shows this transition from an oscillatory regime, to small, noise dominated

fluctuations around the equilibrium state.
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Figure 3.5: An example realization of the noise-driven dynamics of (3.11). Both pictures show
the same realization in blue for β = −0.85 and σ = 0.05 in the phase space, for which the
deterministic part contains a stable equilibrium at the origin, an unstable limit cycle (black dotted
line), and stable limit cycle (solid line).
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4. Escape Times for the Stochastically

Perturbed Generalised Hopf

Bifurcation Normal Form Model

4.1 Systematic study of escape time distribution

We expect that trajectories of an SDE with a bistable deterministic behaviour for σ = 0

and small noise amplitude σ will spend most time in the vicinity of the deterministic

attractors. These attractors could be either stable steady states or periodic orbits, de-

pending on the system in question. Occasionally, the system may transition between

these attractors rapidly, a process driven by the perturbations from the small random

forcing. Any positive amplitude σ of this forcing is sufficient to induce escapes from

either the steady state or the periodic orbit, but the residence time near the deterministic

attractor is dictated by the properties of the attractor in the deterministic system, such as

linear stability and basin of attraction. The exit phenomenon, that is, escaping from a

bounded domain in state space, is caused by random forcing on the evolution of such

dynamical systems. In our case, the escape time tesc corresponds to the time it takes for

the realization trajectory to switch from being close to the stable limit cycle to being
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close to the origin. More precisely, when the amplitude R of the trajectory crosses the

lower threshold ξl, where ξl ∈ D1 = (0,R2), or crosses the upper threshold ξh, where

ξh ∈ D2 = (R3,∞), the first escape time starting at R(0) = R0 = 1 from a bounded domain

D is defined as

tesc := inf{t ≥ 0,R(t)< ξl or R(t)> ξh}, (4.1)

Note that tesc is a random variable that depends on the noise realization and reflects

the influence of the noise on the nonlinear dynamics. If the noise amplitude is small,

it does not matter where we start if we start anywhere safely in the basin of attraction.

Figure 4.1 demonstrates the distribution of 1000 first escape time under different noises

and different β values. We can see the histograms of first escape time from numerical

simulations show the distributions which is similar to exponentially distributions if we

cut off the last bin at t = 90s, which is what we expected distribution for using Guassian

white noise [37]. The first bin does not have the most entries in each panel of Figure 4.1.

Obviously, escaping immediately is not that likely. For larger noise amplitudes, the es-

cape happens faster, which causes the shape to be more similar to an exponential tail [38].
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Figure 4.1: Frequency Distributions of First Escape Times from 1000 numerical simulations
across various β values (with σ set to 0.4, 0.5, 0.7, and 0.9 in panels (a) (b) (c) and (d) respec-
tively). Each panel depicts distinct β values in same pattern: β =−0.8 in purple, β =−0.85 in
green, and β =−0.9 in blue.

For small enough noise the escape time has a cumulative distribution Q(t) = P{tesc <

t} with an exponential tail [38] and the mean escape time T (MET) W from the oscillatory

attractor to the origin is

T = E(tesc) =
∫

∞

0
tQ′(t)dt (4.2)

where Q′(t) is the density calculated by the derivative of Q(t).
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Differential equation for Mean First Escape Time To derive an expression for the

mean first escape time, we transform SDE (3.11) following [39] into polar coordinates

given by z(t) = R(t)exp[iθ(t)]:

dR =

[
βR+(1−β )R3 −R5 +

σ2

2R

]
dt +σdWR (4.3a)

dθ = 2πωdt +
σ

R
dWθ (4.3b)

where WR and Wθ are independent standard Wiener processes. The terms with
σ2

2R
and

σ

R
arise from Itô’s lemma. As the R equation is independent of θ we can consider the

escape problem as a one-dimensional potential problem for R(t). From equation (4.3),

we can get,

dR =−∂V
∂R

dt +σdWR (4.4)

where the potential function V is given by

V :=−β

2
R2 − 1−β

4
R4 +

R6

6
− σ2

2
lnR (4.5)

The mean escape time T (β ,σ) from (4.2) can be found by considering solutions R(t) of

the SDE (4.3) and defining the mean first escape time (MFET) from an interval (ξl,ξh)

when starting from R(0) = R0 inside the interval (ξl,ξh):

W (R0) := E(inf{t > 0 : R(t) = ξl or R(t) = ξh, given R(0) = R0}). (4.6)

In the following we take a fixed value of ξl = ξ = 0.7 < R(0) = 1 and set ξh > R(0)

sufficiently large. As the equilibrium with R = 1 is stable for the deterministic part,

with basin of attraction stretching to R → ∞, we do not expect the escape rate from
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(ξl,ξh) to depend on ξh, as long as ξh is large (we choose ξh = 2 for our computations).

By the Dynkin formula for Markov processes in [40], W (R0) satisfies the following

second-order differential equation:

σ2

2
d2

dR2W (R)−V ′(R)
d

dR
W (R) =−1 (4.7)

with boundary conditions W (ξl) = 0, W (ξh) = 0. In our example [ξl,ξh] = [0.7,2].

General solution formula for (4.7)

We observe that (4.7) is linear and depends only on
dW (R)

dR
, such that we can reduce the

second-order boundary value problem (4.7) to an integral. To this end, we first remove

the factor in front of the highest-order term in equation (4.7), to get

d2

dR2W (R)− 2V ′(R)
σ2

d
dR

W (R) =− 2
σ2 . (4.8)

Let U(R) =
d

dR
W (R), then we can recover W as the integral of U and U satisfies

d
dR

U(R)− 2V ′(R)
σ2 U(R) =− 2

σ2 (4.9)

The Integrating Factor of (4.9) is: exp
(∫

−2V ′(R)
σ2 dR

)
= exp

(
−2V (R)

σ2

)
such that we

have

d
dR

[
exp

(
−2V

σ2

)
U
]
=− 2

σ2 exp
(
−2V

σ2

)
(4.10)
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Intergrating eq (4.10) from ξl to R we get

[
exp

(
−2V

σ2

)
U
]R

ξl

=− 2
σ2

∫ R

ξl

exp
(
−2V (y)

σ2

)
dy, (4.11)

such that

exp
(
−2V (R)

σ2

)
U(R) = exp

(
−2V (ξl)

σ2

)
U(ξl)−

2
σ2

∫ R

ξl

exp
(
−2V (y)

σ2

)
dy. (4.12)

Using x as the argument of U (instead of R) the general solution U has the form

U(x) = exp
(
−2V (ξl)

σ2

)
U(ξl)exp

(
2V (x)

σ2

)
− 2

σ2 exp
(

2V (x)
σ2

)∫ x

ξl

exp
(
−2V (y)

σ2

)
dy.

Inserting now W (x) as the integral of U(x), we integrate (4.13) from ξl to R to get

[W (x)]R
ξl
=exp

(
−2V (ξl)

σ2

)
U(ξl)

∫ R

ξl

exp
(

2V (x)
σ2

)
dx

− 2
σ2

∫ R

ξl

∫ x

ξl

exp
[

2(V (x)−V (y))
σ2

]
dydx. (4.13)

Since the boundary condition at ξl is W (ξl) = 0, this simplifies to

W (R) = exp
(
−2V (ξl)

σ2

)
W ′(ξl)

∫ R

ξl

exp
(

2V (x)
σ2

)
dx

− 2
σ2

∫ R

ξl

∫ x

ξl

exp
[

2(V (x)−V (y))
σ2

]
dydx. (4.14)
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In this equation for W (R), the constant W ′(ξl) is still unknown. This constant is deter-

mined by the other boundary condition, at R = ξh : W (ξh) = 0.

0 =W (ξh) = exp
(
−2V (ξl)

σ2

)
W ′(ξl)

∫
ξh

ξl

exp
(

2V (x)
σ2

)
dx

− 2
σ2

∫
ξh

ξl

∫ x

ξl

exp
[

2(V (x)−V (y))
σ2

]
dydx. (4.15)

We can isolate W ′(ξl), such that

W ′(ξl) =

2
σ2

∫ ξh
ξl

∫ x
ξl

exp
[

2(V (x)−V (y))
σ2

]
dydx

exp
(
−2V (ξl)

σ2

)∫ ξh
ξl

exp
(

2V (x)
σ2

)
dx

. (4.16)

Let us abbreviate S(R) = exp
(

2V (R)
σ2

)
, where in our case V = −β

2
R2 − 1−β

4
R4 +

R6

6
− σ2

2
lnR. Then the general solution for equation (4.7) is

W (R) =
2

σ2

∫ ξh
ξl

∫ x
ξl

S(x)
S(y)

dydx∫ ξh
ξl

S(x)dx

∫ R

ξl

S(x)dx− 2
σ2

∫ R

ξl

∫ x

ξl

S(x)
S(y)

dydx. (4.17)

For our asymptotically polynomial potential (V (R)∼ R6/6 for large R), the expression

W (R) in (4.17) has a well-behaved finite limit for ξh → ∞, such that we may replace

the upper integral bound ξh with +∞ in (4.17). This would correspond to permitting

arbitrarily large excursions toward large R before escape.

Figure 4.2 shows the MFET simulated for the polar coordinate R for σ between 0.01

and 0.1 with different β values. We use MATLAB to numerically calculate the MFET

and set the ω to 0.9667 and the total time to 90 seconds, matching the experimental
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data. For small noise, σ = 0.01, sometimes 0.02, the MFET converge to 90s but we

are expecting a higher MFET, this can be reasonably explained by the total time we set

which is 90 seconds. We also expect an exponential tail for the MFET, and the position

of the unstable limit cycle R =
√

−β should be close to the stable limit cycle which is

R = 1, so next we particulary put our attention on β =−0.8,−0.85,−0.9.
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Figure 4.2: Mean first escape time in Polar coordinate for (4.3) 1000 Monte-Carlo simulations
with different β values (with β set to -0.3, -0.5, -0.6, -0.7, -0.8, -0.85 and -0.9) for σ between
0.01 and 0.1.

We use the MATLAB chebfun package [41] to solve (4.7) directly as a Dirichlet

boundary value problem, instead of evaluating the explicit integral (4.17). Figure 4.3

summaries the comparsion for MFET between the solution of (4.7) and the Monte-

Carlo simulations of (4.3)(3.11) with sample size N = 1000 and β =−0.8,−0.85,−0.9.

The mean escape time simulated from Polar coordinate for (3.11) agrees well with the

solution of (4.7). The MFET for the SDE in polar coordinates, (4.3), is slightly smaller
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than the estimate from simulations as we stop simulation at and count any realization

that does not escape before t = 90 as escaped at 90, which underestimates the MFET

especially for small σ values. However, in Figure 4.3 the simulation result of (3.11)

in Cartesian coordinates deviates strongly from the nearly exact value and the Monte-

Carlo simulations of (4.3) in polar coordinates. Figure 4.4 investigates the source of

the discrepancy of the escape statistics in simulations between polar and Cartesian

coordinates systematically.
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Figure 4.3: The green line and the purple line are the mean first escape time from numerical
simulations in Polar coordinate(4.3) and in Cartersian coordinate(3.11). The red line is the
analytical results for the mean first escape time. Panels (a) (b) and (c) show the MFET for Euler
Maruyama step size h = 0.0003125 under β =−0.8,−0.85 and −0.9 respectively.

Figure 4.4 shows the MFET in Polar coordinate and in Cartesian coordinate for

β = −0.85 for three time steps in the Euler-Maruyama stochastic integrator. As we

reduce the step size the results for the Cartesian coordinates approach the simulation

results for polar coordinates. Thus, we conclude that the discrepancy is due to the

discretization error caused by the positive step size in the Euler-Maruyama method.
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Figure 4.4: The green line and the purple line are the mean first escape time estimated from 1000
numerical simulations in polar coordinates (4.3) and in Cartesian coordinates (3.11). The red line
shows the solution of (4.7) using chebfun. Panels (a) (b) and (c) show the MFET for β =−0.85
under Euler Maruyama step size h= 0.000625, 0.0003125, and 0.000225 respectively.
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Figure 4.5: Mean first escape time from numerical simulations in Cartesian coordinate under
sample size =100(green line), 1000(purple line). The red line is the analytical results for the mean
first escape time. Euler Maruyama step size h = 0.0003125. Panels (a), (b), and (c) correspond to
β =−0.8, β =−0.85, and β =−0.9 respectively.

We also investigate if the sample size has an effect on the difference of MFET

distribution for different β values. Figure 4.5 demonstrates the MFET from numerical

simulations in Cartesian coordinate under sample size 100 and sample size 1000. We

can see that the sample size does not have a systematic influence on the MFETs. Figure

4.6 shows the uncertainty of the MFET estimate from numerical simulations for three
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values of β in Cartesian coordinates and in polar coordinates for sample size N = 1000.

The symmetric error bars show the empirical standard deviation of MFET. This standard

deviation is nearly independent of σ . The exception are small σ , for which many escapes

are recorded as occuring at t = 90, the maximal time. Thus the standard deviation is

small in the plot, not reflecting the true uncertainty.
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Figure 4.6: Error bar of mean first escape time from numerical simulations in Cartersian coor-
dinate and in Polar coordinate under sample size N = 1000, the deep green and purple line in
the middle is the mean first escape, shaded error bars generated by standard diviation which
are drawed symmetrically. Panels (a), (b), and (c) correspond to β = −0.8, β = −0.85, and
β =−0.9 respectively.

4.2 Conclusion for mean first-escape time from limit

cycle

In this chapter, we delved into the dynamics of Freezing of Gait (FOG) in Parkinson’s

Disease through a mathematical framework based on a SDE with a bistable deterministic

part and small-amplitude additive noise. In this SDE the transition from stepping to

freezing corresponds to a transition from fluctuations around a stable limit cycle of the

deterministic part to small fluctuations around the origin. The time it takes until this
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transition occurs is a typical escape time problem. Our SDE model is based on the

generalised Hopf bifurcation normal form model, which provided a stochastic approach

to modeling the transition from stepping to freezing. This model allowed us to account for

the inherent randomness associated with transition. We explored the escape time problem,

which focused on how the system deviates from the steady state under the influence

of random white noise. Moreover, we found that the accuracy of our simulations was

significantly affected by the step size of the numerical method employed.
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5. Time Series Analysis and Modelling

of the Freezing of Gait Phenomenon

In Chapter 3, we examined how a trajectory departures from the stable limit cycle in the

Hopf Normal Form equation (3.11) due to white noise for different parameter values

(β ,σ ). A notable assumption behind this theoretical model is that transition from the

stable limit cycle, or ”stepping,” to the stable equilibrium, or ”freezing” is random and

uniformly distributed around the circle. However, this uniform randomness may not be

consistent with experimental data for cases of gait freezing in Parkinson’s disease.

One question arising when treating stepping as oscillations (through delay embedding

or Hilbert transform) is whether there exists a unique or preferred angle at which the

trajectory approaches this stable equilibrium. Addressing this question will enhance our

understanding of the dynamics underpinning the experimental system and serve to refine

the model.

In this chapter, we direct our attention towards the stepping behaviour of Parkinson’s

patients. To that end, we apply the Hilbert Transform to construct a trajectory in a two-

dimensional phase space from Parkinson’s data, converting a one-dimensional signal into

a complex analytical signal. This allows us to propose a method for timing the transition

from stepping into gait freezing and identifying this transition within the constructed
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phase space.

The results in this chapter largely draws upon our published work, which can be

found at https://doi.org/10.1137/22M1484341. In addition to the material covered

in the article, this chapter includes detailed derivations of formulas and explores the

relationship between time series and transfer operators(Section 5.2.6).

5.1 Robust location of escape from oscillations

5.1.1 Hilbert Transform embedding of stepping data time series

The results of delay embedding in Figure 3.2(a,b) show nearly planar oscillatory behavior

during regular stepping in the stepping-in-place experimental data. This makes the

Hilbert Transform embedding a natural choice when expressing stepping as an oscillator.

Following [1], we extract for a real scalar signal x(t) on an interval of length T = 2π/ω

the Fourier coefficients xk. Then the Hilbert Transform x̃(t) has the Fourier coefficients

−ixk (below we use the overbar notation x̄k for the complex conjugate of xk):

x(t) = x0 +
∞

∑
k=1

[
xkekωti + x̄ke−kωti

]
, x̃(t) =

∞

∑
k=1

[
−ixkekωti + ixke−kωti

]
.

Then the two-dimensional embedding is the complex scalar signal

Xhilbert(t) = x(t)+ ix̃(t) ∈ C.

For discrete finite time series of stepping data the corresponding discrete Fourier Trans-

form (based on FFT) is used. The signal Xhilbert(t) oscillates around a non-zero mean
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with an amplitude that is determined by the dimensions of the force measurements. To

obtain non-dimensionalized quantities for further analysis we use the re-scaled signal

X(t):

X(t) =
Xhilbert(t)−mean(Xhilbert)

maxt |Xhilbert(t)−mean(Xhilbert)|
. (5.1)

Using the representation of the signal X(t) in its trigonometric or exponential form one

can determine its instantaneous amplitude R and phase ψ:

X(t) = |X(t)| [cosψ(t)+ i sinψ(t)] = R(t)eiψ(t).

In Figure 5.1(a) we show the Hilbert Transform embedding of the stepping time profiles in

the complex plane. The part of the approximate phase portrait following an approximate

ellipse corresponds to regular stepping episodes and the excursions toward the origin

correspond to freezing episodes. Figure 5.1(b) shows the instantaneous amplitude R(t)

and phase ψ(t) of X(t), and the original normalized data, respectively. The red dots in

the Figure 5.1(b) mark the force maxima (as determined by graph in the bottom panel) of

each oscillation also in time-amplitude and time-phase plots. We can see that these peaks

occur near ψ = 2π . They correspond to the phase at which the left foot of the subject (in

this case ST31) reaches the ground.

5.1.2 Selection of transition intervals for individual freezing events

As we aim to study transitions from stepping to freezing we identify, for each freezing

event k labelled by a domain expert, a transition interval [tstart,k, tend,k] that contains this

transition. Figure 5.2 highlights two examples (labelled k = {A,B}) from the time series
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Figure 5.1: Panel(a): Embedding with scaled Hilbert Transform applied to stepping data from
Figure 3.1 (see also right, bottom panel). Panel (b): Amplitude and Phase (ψ) of embedding. The
red dots are locally maximum forces and their corresponding amplitude and phase.

shown in Figure 3.1 (ST31, data set 1). The interval boundaries are chosen such that

[tstart,k, tend,k] contains at least 4 stepping oscillations and tend,k is inside the part of the

time series identified as freezing. For example, Figure 5.2 illustrates the highlighted

events A and B extracted from ST31 (data set 1). Their transition intervals contain

stepping and the beginning of the respective freezing episodes, in this case,

[tstart,A, tend,A] = [1300,1980], [tstart,B, tend,B] = [4800,5500].

As the choice of tstart,k and tend,k is arbitrary, we will for all results below determine how

they depend on the choice of tstart,k and tend,k for each event k.

Figure 5.3(a) shows the data with Hilbert Transform for a transition interval that

corresponds to freezing events extracted manually from the data (ST31, data set 1,

time interval [1300,1980]). Following our convention, each panel’s label shows the
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Figure 5.2: Sample events extracted from the original time series. Event A represents a portion of
time series from ST31, data set 1 in subscript and time interval [1300,1980]. Event B represents
another portion of time series from ST31, data set 1 in subscript and time interval [4800,5500].

subject number with subscript indicating the number of the data set (we note that each

subject has repeated the experiment several times and hence we have more than one data

recordings set for each participant), followed by the pair of transition interval boundaries

[tstart,k, tend,k]. As expected for transition intervals corresponding to a single freezing

episode, the embedded trajectories initially follow an ellipse during regular stepping

before they approach the area near the origin of the complex plane (only once, in contrast

to Figure 5.1(a), since each transition interval contains exactly one freezing episode and

respectively one transition).
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Figure 5.3: Embedded time series shown in different coordinate systems. Panel (a): embedded
trajectory with Hilbert Transform. Panel (b): x-axis is angle ψ in degrees, y-axis is amplitude.
Panel (c): x-axis is angle ψ in degrees, y-axis is scaled force.
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Figure 5.3(b) and Figure 5.3(c) show the same set of embedded trajectories in two

further coordinate systems, polar coordinates (x-axis is phase ψ in degrees, y-axis is

amplitude) in Figure 5.3(b), and Cartesian coordinates x-axis is angle ψ in degrees, y-axis

is scaled force: Forcescal given in (3.1)) in Figure 5.3(c).

The representative transition in Figure 5.3 appears at first sight well described by

the spontaneous transitions to the origin as they occur in the null model established

by the Hopf normal form (4.3), up to a coordinate transformation that maps the ellipse

followed during regular stepping onto the unit circle. However, we hypothesize a

breaking of rotational phase symmetry, which would be a qualitative and practically

relevant difference to the Hopf normal form. The following sections will describe a

method to identify the location of the transition in the embedded phase plane uniquely.

Then we will apply this method to all freezing transitions in the available data sets to

investigate our hypothesis provisionally.

5.1.3 Motivation for discrete-time discrete-space Markov chain

Figure 5.4 and Figure 5.5 show a survey of Hilbert embeddings for freezing transition

intervals from patient data. Figure 5.4 uses Cartesian coordinates X and Figure 5.5

uses polar coordinates (ψ,R). Especially Figure 5.5 highlights that fixing a threshold

(for, e.g., amplitude R in polar coordinates as Rth) and defining the time of transition

(for example) as the first crossing of this threshold (e.g., first time tth ∈ [tstart,k, tend,k]

when R(tth)≤ Rth) will introduce an extreme dependence of the timing tth and the angle

coordinate ψ(tth) on this threshold value. Furthermore, the threshold value will have

to be adjusted for different events (possibly even between events for the same subject

and data set), making the collection of generalizable statistics across subjects and events
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impossible and reinforcing the need for a subject-specific or personalized approach.

In contrast to the sensitivity of timing and angle of the transition to the threshold, the

detection of the presence of a freezing event with the help of thresholds is robust. As

mentioned in Figure 3.1, freezing is uniquely determined by the absence of zero-force

periods for longer than the identified stepping frequency.

Embedded time series for different subjects

Figure 5.4 shows the embedding of time series for different subjects with freezing events,

obtained by applying the Hilbert Transform. Figure 5.4 shows the same embedded

trajectories as Figure 5.5 in polar coordinates (ψ,R), where ψ is in degree and R is

scaled to [0,1] after Hilbert Transform.
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Figure 5.4: Embedded trajectories in C after scaling and Hilbert transform for 9 selected events
and transition intervals. Each panel title specifies subject number, subject trial data set and
sampling step numbers and resulting length of transition interval in seconds. See also step 1 of
Figure 5.11. Red crosses indicate the cartesian coordinates Xmin of boxes with minimal escape
time from transition set.
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Figure 5.5: Same embedded trajectories as Figure 5.4 in polar coordinates (ψ,R), where ψ is in
degree and R represents the amplitude. Red crosses indicate the polar coordinates (Rmin,ψmin) of
boxes with minimal escape time from transition set.

We exploit the unique identifiability of the presence of freezing by constructing

a discrete-time discrete-space Markov chain and its associated transition matrix for

the variable X obtained from the Hilbert Transform embedding. This Markov chain

divides the phase space into a transition set and an absorbing set (see below for precise

definitions). The starting time into the freezing event can then be uniquely defined as the

transition between these two subsets of the phase space. The red crosses in Figure 5.4

and Figure 5.5 show the transition points resulting from the procedure described below.

They are clearly not determined by an amplitude coordinate, but we will have to test how

strongly they depend on discretization parameters for our Markov chain (see Figure 1 in

Appendix) and independent of the selected transition interval [tstart,k, tend,k] (see Figure 2

in Appendix).
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5.1.4 Subdivision of the complex plane along polar coordinates

We subdivide the complex plane (the embedding space after Hilbert Transform) into

boxes that are rectangular in polar coordinates as illustrated in Figure 5.6. Thus, the box

boundaries are aligned with the radial direction and angular direction, respectively.

• By the scaling of our data the amplitude of X(t) is always in (0,1), such that we

subdivide in the radial direction into P annuli of equal radial thickness p = 1/P.

We enumerate starting from the origin.

• We subdivide in the angular direction anticlockwise, starting from positive x-axis

into Q cones of equal size q = 360◦/Q.

This results in P×Q discrete states in total, corresponding to the near rectangular boxes

described above. A box Bk,ℓ ⊂ C for (k, ℓ) ∈ {1, . . . ,P}×{1, . . . ,Q} is then

Bk,ℓ =

{
X ∈ C : R(X) ∈

(
k−1

P
,

k
P

]
,ψ(X) ∈

[
2π(ℓ−1)

Q
,
2πℓ

Q

)}
,

where we use R(X) ∈ (0,1] for the amplitude and ψ(X) ∈ [0,360◦) for the argument

of a point X ∈ C. We enumerate the boxes in angle-first order such that the box with

radius-angle index (k, ℓ) is at position i = ℓ+Q(k−1). The above subdivision defines

index maps indrad : C→{1, . . . ,P}, indang : C→{1, . . . ,Q} and ind : C→{1, . . . ,PQ}

as follows:

indrad(X) = ceil(R(X)P) (5.2)

indang(X) = floor(ψ(X)Q/(2π))+1 (5.3)

ind(X) = (indrad(X)−1)Q+ indang(X). (5.4)
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For box number i we may recover the corresponding annulus k and cone ℓ via

ℓ= i−Q(floor(i/Q)−1), k = floor(i/Q), (5.5)

such that

indang(X) = ind(X)−Q× (floor(ind(X)/Q)−1), indrad(X) = floor(ind(X)/Q)

for every X ∈ C.

��

�
��

�

��

��

� �
�

�

�

   q = 60°            p = 0.5 
Figure 5.6: Subdivision and discretization of the unit circle in the complex plane. The numbering
is anticlockwise and from the pole to the edge of the space with P = 2, Q = 6 and, hence, p = 0.5
and q = 60◦. Note that typical tested discretizations are much finer: Figure 1 tests the range
q ∈ {3◦,5◦,10◦,15◦,20◦,30◦}, p ∈ {0.05,0.1,0.15,0.2}.

In principle, we may consider the set {1, . . . ,PQ} as the state space of our discrete-

time discrete-space Markov chain. However, each box index corresponds to an approxi-

mate location inside the complex unit circle, given by its mid point with respect to radius

and angle:

Xc,i =
k−1/2

P
exp

(
2πi(ℓ−1/2)

Q

)
, (5.6)

where k and ℓ are related to i via (5.5). Thus, Xc is a vector in CPQ, and for each X ∈ C
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we can find the midpoint of the box in which X is located by

Xc(X) = Xc,ind(X), with coordinates

Rc(X) =
indrad(X)−1/2

P

ψc(X) =
2πi(indang(X)−1/2)

Q
.

We may use Xc as the state space of the discrete-space Markov chain instead of the index

in {1, . . . ,PQ}.

5.1.5 An empirical Markov chain transition matrix for a single tran-

sition interval

For the discrete state space Xc ∼ {1, . . . ,PQ}, defined in (5.6), we use the embedded tra-

jectory X(t) ∈C with t in a single transition interval [tstart, tend] to construct a provisional

transition matrix Ac for probability distributions Pprob : {1, . . . ,PQ}→ [0,1]:

Pn+1 = PnAc (5.7)

For a given embedded trajectory X(t) with t ∈ [tstart, tend] (recall that t were integers) we

define the transition count CT ∈ ZPQ×PQ as follows:

CTi j = |{t ∈ [tstart, tend −1] : ind(X(t)) = i and ind(X(t +1)) = j}| (5.8)
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for i, j ≤ PQ (we use the notation |S| for the number of elements in a set S in (5.8)). The

provisional transition matrix A generated by X(t) is then:

{Ac}i j =


CTi j

∑
PQ
k=1 CTik

if ∑
PQ
k=1 CTik > 0,

0 otherwise

(5.9)

The entry {Ac}i j is then the empirical probability (as determined by counting) that

X(t + 1) is in state j if X(t) is in state i. By construction the row sums of A satisfy

∑ j{Ac}i j = 1 or ∑ j{Ac}i j = 0. We call

Xemp = {Xc,i :
PQ

∑
k=1

CTik > 0} (in complex coordinates), (5.10)

Jemp = {i :
PQ

∑
k=1

CTik > 0} ⊆ {1, . . . ,PQ} (in integer coordinates), (5.11)

the state space with empirical support. We call its size

nemp = |Jemp|.

We construct an empirical transition matrix A which is restricted to Jemp. The

transition matrix A for state space Xemp allows us to either generate surrogate time series

by starting from a state Xemp,i at time 0 and then generating the state at time n+1 by per-

forming a multi-outcome Bernoulli trial with outcomes in Xemp and probabilities Ai,Jemp ,

and then changing the state at time n+1 to the outcome of the trial. Figure 5.7(b) depicts

such a surrogate time series. Figure 5.7(c) shows the same time series, superimposing

it onto the real component of the embedded trajectory, which is the coordinate of the
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Figure 5.7: Embedded trajectory and surrogate time series for ST31, data set 1, transition interval
[1300,1980] and discretization parameters (p,q) = (0.1,5◦). Panel (a) shows the embedded
trajectory X(t). Panel (b) demonstrates a single surrogate time series while Panel (c) shows the
projection onto the real part, the coordinate of the embedding corresponding to the scaled forced
data (blue: surrogate, red: data).

original signal.
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5.2 Properties of the constructed Markov chain

In section 5.1.3 we have proposed a general method to derive a Markov chain transition

matrix from time series data. In this section we will first classify the long-time behavior

of a Markov chain by constructing the zero-pattern matrix to partition the chains into

communicating classes as described in Section 2.3. Then we will divide the states into

Transition set (corresponding to stepping) and Absorbing set (corresponding to freezing).

Finally we will determine the mean escape time starting for each state in the Transition

set.

Our construction is valid for a general Markov transition matrix A = Ai j ∈ [0,1]n×n,

which has the following general properties given by G.Rudolph [42]:

• The eigenvalues of matrix A have modulus less or equal to 1.

• All its row sums are equal to 1, ∑ j ai j = 1, thus e = (1,1, ...1)T is the right

eigenvector corresponding to a unit eigenvalue.

• The entries are all non-negative.

We have πiA = λiπi, where πi are the left eigenvectors, and λi are the eigenvalues of

the Markov transition matrix A.

5.2.1 Partition of state space into classes

Markov chains as constructed from our data have transition matrices where most non-zero

diagonal entries, because the boxes Bk,ℓ are large in phase space compared the distance

covered during a single sampling time step. So, we expect each state to be accessible

from itself, even if we use n > 0 in the above definition. Later in Subsection 5.2.2 we
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make the specific assumptions (ergodicity and aperiodicity within each communicating

class) covering this issue.

Communicating classes only depend on the positivity of entries Ai j such that we may

introduce the indicator matrix Z and the reachability matrix Z∞:

Zi j =


1 if Ai j > 0,

0 otherwise,
, Z∞,i j =


1 if An

i j > 0 for some n > 0,

0 otherwise.

If we consider states i and j connected when Ai j > 0, then the transition matrix A induces

a graph, for which Z is the adjacency matrix. Thus, we may use graph theoretic methods

to determine the reachability matrix Z∞ (in Matlab the routine transclosure). From

Z∞ we may construct the bidirectional reachability matrix Zbi = min(Z∞,ZT
∞), that is,

Zbi,i j =


1 if Z∞,i j = 1 and Z∞, ji = 1,

0 otherwise.

Two states i and j are in the same communicating class if the rows Zbi,i,(·) and Zbi, j,(·)

are identical. Let the class indicator matrix Zcc ∈ {0,1}ncc×nemp be the matrix consisting

of the ncc unique rows of Zbi (typically ncc ≪ nemp), then each row of Zcc corresponds to

a communicating class of transition matrix A, and state i is in communicating class k for

A if Zcc,k,i = 1. Communicating classes are partially ordered: we write that class

k1 → k2

(with k1 ̸= k2) if states from class k2 are reachable from states in class k1 (if reachability

is true for one pair of states in classes k1 and k2 it is true for all pairs of states).
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5.2.2 Communicating classes of empirical transition matrices —

stepping class, transition set and absorbing set

The transition intervals [tstart, tend] in Section 5.1.2 are chosen such that the time series

x(t) starts in the stepping regime (large scaled force oscillations), stays there for most

of the time and ends in a freezing episode. Thus, we expect the states of the Markov

chain to fall into several communicating classes (see Figure 5.7(a)). Appendix A studies

systematically the dependence of the number of communicating classes, their ordering

and their geometric properties (e.g., phase angles ψc of the boxes where transition

between classes is most likely, see Section 5.4) on discretization parameters P and Q

and transition interval [tstart, tend]. Our results in Appendix A show that this dependence

is weak. Thus, communicating classes are a suitable object for studying the qualitative

properties of our time series data. We expect communicating classes of our data from

class indicator matrix Zcc of the following types and with the following properties.

• (Stepping) We expect one large communicating class corresponding to a row in

the class indicator matrix Zcc with almost all the values with empirical support

equal to 1. We denote this communicating class as the stepping class, naming it

Fstep and denoting its row index in Zcc by kstep.

• (Ergodicity) By definition of a communicating class, all states j in the stepping

class Fstep are positively recurrent. We also assume that they are aperiodic. This

is an assumption that the discretization box sizes in the Hilbert Transform plane

C should not be too small compared to the sampling time step: at least some

boxes from the discretization should contain several sampling time steps from the

sampled time series such that the empirical probability of staying in the box during

a time step is non-zero. With this aperiodicity assumption the stepping class is

63



ergodic when one considers the conditional transition probabilities Pstep,i, j under

the condition that the Markov chain stays in the stepping class, defined by

Pstep,i, j = P(Xn+1 = i |Xn = j and Xn+1 ∈ Fstep) for i, j ∈ Fstep. (5.12)

• (Ordering relative to stepping class) We also expect that all other classes can be

related to Fstep through the partial ordering (because Fstep is large). That is, each

class k satisfies k → kstep or kstep → k.

• (Transition set) We collect the states in all communicating classes k with k → kstep

(so coming before Fstep in the partial ordering) in the so-called initial set F0. The

transition set is the union of stepping class Fstep and initial set F0, F = F0 ∪Fstep.

• (Absorbing set) We collect all communicating classes k with kstep → k (so coming

after Fstep in the partial ordering) in the so-called absorbing set E. We expect the

absorbing set E to be non-empty.

Figure 5.8 shows transition set and absorbing set for the example transition matrix

generated from ST31, data set 1, transition interval [1300,1980], and discretization

parameters p = 0.1, q = 5◦. Panel (a) shows all boxes with empirical support in the form

of circles at their centers Xemp,i. The red circles are in boxes that belong to the absorbing

set E, and the blue circles are in boxes that belong to transition set F . We observe that

there is a unique state i in the absorbing set with Ai j > 0 for a state j in the transition set

and highlight this point with a black cross. Figure 5.8(b) and (c) show the time series

x(t) (scaled force measurements) and its embedding in the unit circle of the complex

plane. We color the points of the time series according to the class membership of the

box they are in: red marking indicates that ind(X(t)) is in the absorbing set E. Blue
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Figure 5.8: Panel (a): empirical support for Markov chain for time series ST31 and decomposition
into transition set F (blue circles) and absorbing set E (red circles) with discretization parameters
(p,q) = (0.1,5◦). The black cross is the “first” state, Xtr, in the absorbing set E (see Figure 5.2.4).
Panel (b): underlying time series for panel (a), color coding the sampling points according to
their location in transition set (blue) or absorbing set (red). Panel (c): same time series and color
coding in phase plane obtained by Hilbert Transform.

marking indicates that ind(X(t)) is in the transition set F .

5.2.3 Mean escape time from the transition set

Suppose we can decompose the Markov chain given by transition matrix A into a

Transition set F with m states and an Absorbing set E with k = n−m states. Let

s ∈ R1×m be an initial probability distribution for states in the transition set F . Let

pt
i denote the probability that the Markov chain is in state i at step t from the starting

distribution s. We denote the probability distribution at step t by pt

pt = (pt
1, pt

2, ..., pt
n).

Then the distribution pt satisfies:

p0 = s, pt = sAt
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We can extract the probability that the Markov chain is in the absorbing set at step t by

defining the indicator function (or vector)

ξ = (ξ1,ξ2, ...,ξn)
T

ξi =


1 i ∈ E

0 i ∈ F

Let Et denote the event that the Markov chain is in the Absorbing set at step t and F t

denote the event that the Markov chain is in Transition set at step t. Correspondingly,

P(Et) is the probability that the Markov chain is in the absorbing set at step t and P(F t)

is the probability that the Markov chain is in the transition set at step t. By applying the

indicator vector ξ, P(Et) can be calculated by:

P(Et) = sAtξ
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Figure 5.9: Venn diagram, a,b,c,d,e,f are the endpoints of the lines or arc which split the set. Left
diagram (a): Event F t is in the left part of line AB which means the Markov chain is in transition
set at step t, then then right part of line AB demonstrates event Et which means the Markov chain
is in absorbing set at step t. The area ABCD covered by red lines demonstrates event F t−1 so the
left area ACD is event Et−1. Right diagram (b): Area in blue shows the event FN and all other
areas demonstrate the same event as diagram (a).

Suppose the support of the initial distribution is in the Transition set (so, sℓ = 0 for

ℓ ∈ E P(F0) = 1, P(E0) = 0), we say the Markov chain has a first escape at step t when

the Markov chain is in the Absorbing set at step t and still in the Transition set at step

t −1. Venn diagram 5.9(a) illustrates the relations between the events involved, event F t

is to the left of line AB and event Et is to the right of line AB, with P(Et)+P(F t) = 1.

Regarding the event F t−1, if at step t, the Markov chain is in the Transition set, then

at step t − 1 Markov chain must be in the Transition set as well. The other situation

is at step t, the Markov chain is in the Absorbing set while it is in the Transition set

at step t − 1, then event F t−1 can be seen as the union of these two situations, shown

as the area with red vertical stripes in Figure 5.9(a). Event Et−1 is the left area of the

whole set. The probability of the Markov chain first escape at step t can be described

as P(Et \Et−1). We can see from the diagram (a) in Figure 5.9, Et−1 ⊆ Et , therefore
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P(Et \Et−1) = P(Et)−P(Et−1). Hence, the mean escape time from the transition set,

denoted MET(s), starting from initial distribution s equals

MET(s) =
∞

∑
t=1

tP(Et \Et−1) (5.13)

=
∞

∑
t=1

t
[
P(Et)−P(Et−1)

]
(5.14)

=
∞

∑
t=1

t
[
sAtξ− sAt−1ξ

]
(5.15)

= s
∞

∑
t=1

tAt−1 (A− I)ξ (5.16)

By applying Taylor series ∑
∞
t=1 tAt−1 = (I −A)−2, for regular I −A, equation (5.16) can

be simplified as:

MET(s) = s(A− I)−1 ξ (5.17)

However, since e = (1,1, ...1)T is the right eigenvector corresponding to a unit eigen-

value, Ae = e, we will get (A− I)e = 0 such that det(A− I) = 0. Hence, (A− I) is a

singular matrix and has no inverse matrix. To solve this problem, we need the following

preparatory work:

• For the convenience of presenting the derivation, change the order of all the

absorbing states, so the first k states are in the Absorbing set E, states in matrix B

68



are corresponding to the transition set F , then we will have:

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
... . . . ...

an1 an2 · · · ann


=



d11 · · · d1k 0 · · · 0
... . . . ...

... . . . ...

dk1 · · · dkk 0 · · · 0

c11 · · · c1k b11 · · · b1m

... . . . ...
... . . . ...

cm1 · · · cmk bm1 · · · bmm


=

D 0

C B



where matrix D is a Markov transition matrix as well, ∑i d ji = 1.

• To be consistent with the reordering of the sequence of the absorbing states, we

should also change the order of the starting distribution s, then the first k states are

in the Absorbing set. Since we are not starting from the Absorbing set, the first k

elements should be 0, we can say s = (0,s1).

• For the reordered sequence of states the indicator vector ξ = (ξ1,ξ2, ...,ξn)
T will

have the first k states in the Absorbing set. So, ξi = 1 when state i is in the

Absorbing set, such that

ξ = (ξ1,ξ2, ...,ξk,ξk+1, ...,ξn)
T

ξi =


1, i ≤ k

0, i > k

• Let ξ= e−ζ, where e = (1,1, ...,1)T which is the right eigenvector corresponding
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to the unit eigenvalue. Therefore

ζ = (ζ1,ζ2, ...,ζn)
T

ζi =


0, i ≤ k

1, i > k

is the indicator vector of the Transition set.

We can now express the mean escape time(MET) using the right-hand side (5.15):

MET(s) =
∞

∑
t=1

t
[
sAt (e−ζ)− sAt−1 (e−ζ)

]
(5.18)

=−
∞

∑
t=1

t
(
sAtζ− sAt−1ζ

)
(5.19)

=−s

 ∞

∑
t=1

t


Dt 0

C1 Bt

−

Dt−1 0

C2 Bt−1



ζ (5.20)

Ci,Di are matrices that do not matter, same later.

(5.21)

=−s

 ∞

∑
t=1

t

Dt −Dt−1 0

C1 −C2 Bt −Bt−1


ζ (5.22)

=−(0,s1)

D1 0

C3 (B− I)−1


0

1

 (5.23)
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MET(s) =−s1(B− I)−1


1
...

1

 (5.24)

=−s1(B− I)−1eT. (5.25)

Here B is a m×m matrix so that (1, ...,1)−1 is a m×1 matrix with all rows equal to 1.

We can also conclude from equation (5.25) that the MET is independent of the transition

probabilities in the absorbing set. Let us rename the transition matrix B, which is A

restricted to the transition set F by AF ∈ Rm×m. We can rewrite (5.27) as:

MET(s) =−s1(B− I)−1eT (5.26)

= s1 (I −AF)
−1 eT. (5.27)

5.2.4 Preferred transition states

Figure 5.10 shows the mean escape times for i ∈ F and initial distributions equaling unit

vectors,

METi = MET(u j) = u j(I −AF)
−1eT, where i is the jth element of F , (5.28)

and u j, j = 1 and u j,ℓ = 0 for ℓ ̸= j (u j ∈ R1×m). Thus, METi is the mean escape time

when we are starting from a known state i in the transition set F . Figure 5.10(b) shows

the top view and highlights the state imin with minimal METi and its complex coordinate
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Xmin:

imin = i such that such that METi is minimal, and (5.29)

Xmin = Xemp,imin , Rmin = R(Xemp,imin), ψmin = ψ(Xemp,imin). (5.30)

The center of the box Xmin is marked by a black ’+’ in Figure 5.10(b). The location of

Xmin is close to the (in this case unique) “first” state Xtr (with amplitude Rtr = R(Xtr),

phase ψtr = ψ(Xtr) and index itr ∈ E) in the absorbing set into which one may transition

from F , which is highlighted by a black cross in Figure 5.8(a). If itr is unique, then it

is its own communicating class such that it comes indeed first in the partial ordering

within E and follows directly in the partial ordering after F . The boxes Xtr and Xmin

are naturally close together whenever a unique itr ∈ E exists in the sense of our partial

ordering. While the mean transition times will clearly depend on the choice of boundaries

for the transition interval [tstart, tend], the transition set F , the absorbing set E and Xmin and

Xtr may not (or only weakly) depend in tstart or tend. Similarly, discretization parameters

P and Q may only weakly affect Xmin and Xtr. If these weak or non-dependences are

true then a systematic collection of Xmin (and ψmin) from subject data sets will be able

to determine whether the phase invariance implicitly assumed in the generalized Hopf

normal form model is a valid assumption, or if (subject dependent or general) phases

exist during which subjects are particularly vulnerable to freezing. Appendix A studied

the dependence of Xmin on all method parameters in details.
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Figure 5.10: Panel (a): mean escape times from each state in transition set F for ST31 data set 1,
time interval [1300,1980], discretization parameters (p,q) = (0.1,5◦). States marked by magenta
crosses have MET below METF given in (5.41). Panel (B): top view, where black ’+’ marks Xmin,
the state with minimal mean escape time.

5.2.5 Relationship between METi and the mean escape time from

transition set F

The largest eigenvalue λ1 (if there exist a largest in modulus eigenvalue) for the transition

matrix AF of the Transition set F is the escape rate (so, MET(s) = 1/(1− λ1) for a

particular distribution sF , corresponding to the left eigenvector of AF for λ1. This

distribution sF is the so-called stationary distribution of the transition set F , that is, sF is

the limiting distribution of distributions sN ,

sN = sAN
F/(sAN

F eT)→ sF for N → ∞,

after N steps under the condition that the Markov chain stays in the transition set F for

at least N steps. Therefore the probability of the Markov chain first escape from the

Transition set F at step t under the condition that the Markov chain stays in F for at least
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N steps can be concluded in the following formula (for t > N):

P(Et \Et−1|FN) =
P
((

Et \Et−1)∩FN)
P(FN)

=
P(Et)−P(Et−1)

1−P(EN)

Note since t − 1 ≥ N, we have F t−1 ⊆ FN , which implies Et \ Et−1 ⊆ FN . Thus,

P
((

Et \Et−1)∩FN) = P(Et \Et−1) = P(Et)−P(Et−1). So, the mean escape time

from F , assuming we have spent N steps in F , equals (comparing to (5.13)):

MET(s)F =
∞

∑
t=N+1

(t −N)
P(Et)−P(Et−1)

1−P(EN)
(5.31)

=
∑

∞
t=N+1(t −N)

[
sAtξ− sAt−1ξ

]
1− sANξ

(5.32)

=
∑

∞
t=N+1(t −N)

[
sAt (e−ζ)− sAt−1 (e−ζ)

]
1− sAN (e−ζ)

(5.33)

=
∑

∞
t=N+1−(t −N)

[
sAtζ− sAt−1ζ

]
sANζ

(5.34)

=
−s∑

∞
j=1

[
j
(
A j −A j−1)]ANζ

sANζ
(5.35)
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=

−s∑
∞
j=1 j

D2 0

C4 B j −A j−1
F


D3 0

C5 AN
F


0

e


s

D3 0

C5 AN
F


0

e


(5.36)

=

[0,s1]

D4 0

C6 (I −AF)
−1


D3 0

C5 AN
F


0

e


[0,s1]

 0

AN
F e


(5.37)

=
s1 (I −AF)

−1 AN
F e

s1AN
F e

(5.38)

(using 0 for appropriately sized zeros matrices). We know that all eigenvalues of AF have

modulus < 1. We assume that AF has one dominant eigenvalue λ1(λ1 > λ2 > ... > λm)

with left eigenvector π1 such that s1 = ∑i ciπi, so we can rewrite our the MET(s)F as:

MET(s)F =
∑i ci(1−λi)

−1λ N
i πi

∑i ciλ
N
i πi

(5.39)

=
c1(1−λ1)

−1λ N
1 π1+∑i̸=1 ci(1−λi)

−1λ N
i πi

c1λ N
1 π1+∑i ̸=1 ciλ

N
i πi

(5.40)

π1 is scaled such that π11 = 1. Here since the number of iterations N is large and

λ1 > |λ2| ≥ . . .≥> |λm|, we have that λ N
i ≪ λ n

1 for i ̸= 1. The eigenvalue λ1 is called
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the mean survival probability (per time step) for F . Equation (5.40) can be simplified as:

METF :=
1

1−λ1
= MET(sN)+O((λdec/λ1)

N), (5.41)

where λdec is the modulus of the second-largest eigenvalue of AF . The mean survival

time METF in the Markov chain’s stepping class is expected to be approximately equal

to the time from tstart (the start of the transition interval) to the transition. So, it should be

on the same order but slightly shorter than the length of the a-priori chosen transition

interval, tend − tstart. The modulus of the second eigenvalue, λdec, is associated to the

mixing time

MIXF :=
1

1−λdec
(5.42)

within the stepping class. This mixing time is related to the time it takes to “forget the

initial condition” while staying in the stepping class. We expect this time to be the time

it takes to perform several steps (large scale oscillations in the data time series), so, on

the order of several seconds.

The magenta crosses in Figure 5.10(a) highlight the boxes with center Xemp,i for which

METi are less than the overall mean METF = 1
1−λ1

. We observe that these magenta

crosses are not uniformly spread around the unit circle but are mostly concentrated in a

range of phases. We note that the escape time METF and its distribution sF is guaranteed

to exist due to the ergodicity of the stepping class Fstep:

sF,i = lim
N→∞

P(XN = Fi |X0 = k and XN ∈ F) for all k ∈ F (5.43)

(where we use the notation Fi to indicate the ith element of transition set F in the Markov
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chain state space Jemp). In particular, the stationary distribution is reachable from all

points in the transition set. Appendix C gives a simple example in which the Markov

chain has a dominant eigenvalue so that the largest eigenvalue λ1 for the transition matrix

AF of the Transition set F is the escape rate.

5.2.6 Time series analysis with transfer operators

The construction of the Markov chain after embedding with Hilbert Transform is a special

case of deriving approximate transfer operators from a scalar time series, especially

adapted by including knowledge about the underlying system.

• The Hilbert Transform reconstructs the approximate phase space (following de-

lay embedding and false-nearest neighbour analysis that suggest dimension 2 is

suitable for embedding time series dominated by regular oscillations).

• The subdivision into boxes chooses a basis of nemp piecewise constant indicator

functions on which a projection of the transfer operator is approximated.

• The empirical transition matrix A then encodes the approximate Kolmogorov

forward operator (or Fokker-Planck or Perron-Frobenius operator) as s 7→ sA for

discretized probability distributions s ∈ R1×nemp , and the Kolmogorov backward

operator (or Koopman operator) as rT 7→ ArTfor linear observables of the form

s 7→ srT with rT ∈ Rnemp×1 for probability distributions s.

Hence, our analysis is a special case of the general operator-theoretic approaches for

the data-driven analysis of dynamical systems, based on the Perron–Frobenius operator

or its adjoint, i.e., the Koopman operator (composition operator) [30]. Mezic and his
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collaborators [31, 32] used Koopman operators to reduce the order of stochastic or

deterministic models.

In Section 5.2.6 we show that in our case the eigenvector rT for the dominant

eigenvalue λ1 of the Koopman operator, restricted to the transition set (called AF above)

also encodes the escape times from F . This implies that other approaches to time series

analysis that approximate the dominant mode of the Koopman operator should also be

able to determine in which parts of the reconstructed phase space the system are most

susceptible to freezing (escape from stepping) [43].

Approximation of escape preferences by dominant eigenvector of Koopman operator

The key quantity for determining states in the transition set that are most susceptible to

transition is the vector of quantities MET(u j),

vMET =

(
MET(u1), . . . ,MET(um)

)T

= [I −AF ]
−1 eT (5.44)

(see (5.28)), the expected escape times from transition set F , when starting in the jth

state in F . Recall that u j, j = 1, u j,ℓ = 0 for ℓ ̸= j, u j ∈ R1×m, where m is the size of the

transition set F . More precisely, the relative sizes of the entries in vMET matter: the larger

vMET, j, the more likely one is to transition out of F from the jth state of F , compared to

others. Thus, we may consider the vector vMET in the scaling vMET/METF , considering

the escape times relative to the expected escape time METF (defined in (5.41)) starting

from the stationary density sF , given in (5.43).

If the transition set F is long-lived (that is, METF ≫ 1) and the rate of mixing within

the transition set F , 1− λdec, is large compared to the escape rate from F , 1− λ1 =

1/METF , then the vector of escape rates vMET is approximately equal (up to scaling)
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to the right eigenvector rTF of AF corresponding to λ1. Our precise assumptions are as

follows.

• (Transition set F is long-lived) We assume that

λ1 ≈ 1, more precisely, the mean escape time METF =
1

1−λ1
≫ 1.

We consider the spectral projection Πqst = rTFsF ∈ Rm×m for AF onto the right

eigenspace of AF corresponding to λ1.

• (Mixing is fast compared to escape) Denoting by Πdec ∈ Rm×m the spectral

projection for AF onto the complementary subspace characterised by a decay faster

than λ1, we assume that

∥∥∥(I −AFΠdec)
−1
∥∥∥≤ cdec

1−λdec
, where cdec = O(1), and (5.45)

MIXF =
1

1−λdec
≪ 1

1−λ1
= METF . (5.46)

As Πqst and Πdec are complementary spectral projections they satisfy AFΠqst = ΠqstAF ,

AFΠdec = ΠdecAF , ΠdecΠqst = ΠqstΠdec = 0. Splitting the vector vMET using the projec-

tions Πqst and Πdec, we observe that

vMET =
1

1−λ1
ΠqsteT+(I −AFΠdec)

−1
ΠdeceT, such that

vMET

METF
= rF +O

(
1−λ1

1−λdec

)
ΠdeceT = rF +O

(
MIXF

METF

)
ΠdeceT (5.47)

(noting that ΠqsteT = rF(sFeT) = rF ), where the term O(MIXF /METF) is small by

assumption (5.46). Expression (5.47) indicates the approximate relation between right
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eigenvector rT and the mean escape times.

5.2.7 Method summary

In summary, for each part of the empirically measured force time series where exper-

imenters (domain experts) have flagged a freezing event we proceed in the following

way:

1. Select a transition interval [tstart, tend] such that the data indicates stepping at tstart

but freezing at tend and such that several steps are included.

2. Embed the scalar time profile x(t) into the unit circle in the complex plane using

the Hilbert Transform and scaling (5.1) to obtain X(t) ∈ C for t ∈ [tstart, tend].

3. Subdivide the unit circle into P×Q boxes along polar coordinates (P radial annuli

of equal thickness, and Q cones, see Figure 5.6 for illustration).

4. Generate an empirical discrete-time discrete-space Markov chain transition matrix

A using (5.9). This transition matrix is typically supported only on a subset of

the PQ boxes. Define the centers of these boxes Xemp,i, with angle coordinate

ψemp,i = ψ(Xemp,i) for some i ∈ {1, . . . ,PQ}.

5. Identify the communicating classes for A and test if one can split them into a

transition set F (including a stepping class, containing most of the states) and an

absorbing set E.

6. Determine mean escape times METi from F into E when starting from any state i

in F . Define Xmin as the coordinates of the state imin ∈ F with minimal METi (the

angle coordinate is called ψmin = ψ(Xmin)).
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Appendix A investigates how robust (as far as we tested for the data available) our

results are with respect to the choice of [tstart, tend] and discretization parameters P and Q.

5.3 Illustration of the methodology

To illustrate the methodology of using METi estimates to find preferred transition phases,

we choose time series of two different patients. Figure 5.11 presents a graphical summary

of the proposed methodology.
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Figure 5.11: Illustration of the methodology for two subjects, ST18 and ST30. Step 1: choose the
transition interval [tstart, tend] for embedding. Step 2: discretize complex plane into boxes along
polar coordinate axes, obtain empirical transition probabilities and find communicating classes of
resulting Markov chain. Step 3: determine METi, the mean escape time, from transition set F for
each box.

The top panel starts with the time series from ST18, data set 1. In this case we

use [700,4250] as the transition interval, which amounts to a total of 35.50 s where
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the sampling time step is 0.01 s between sampling points. After Hilbert embedding

and discretization, all the points can be classified into transition set F or absorbing

set E. There are a total 3455 data points in boxes contained in the transition set F ,

which corresponds to a time interval of 34.55 s. Therefore the empirical transition

time in the data for this transition interval is 34.55 s. The mean escape time METF for

the resulting Markov chain is 34.4139 s (obtained via METF = 1/(1−λ1) following

equation (5.41)), so is roughly the same, as expected. The mixing time is 7.7675 s

(obtained via MIXF = 1/(1−λdec), following equation (5.42)). The preferred phase

given from ψmin is 122.5◦. The dominant eigenvalues for AF are λ1 = 0.9997 and (in

modulus) λdec = 0.9987 after rounding to four decimal places.

The bottom panel depicts time series from ST 30, data set 1. In this case we use

[600,4970] as the transition interval, which amounts to a total of 43.70s with time step of

0.01 s between sampling points. There are a total 4352 points in transition set F , which

correspond to 43.52 s, therefore for this transition interval the empirical transition time

in the data is METF = 43.52 s. The MET of the Markov chain is 43.1010 s (again, as

expected, very close). The mixing time MIXF is 5.8854 s. The preferred phase given

from ψmin is 172.5◦. λ1 = 0.9998 and λdec = 0.9983 after rounding to four decimal

places.

5.4 Transition phases for freezing events from stepping

data

Figure 5.12 shows the most likely transition phases ψmin derived based on eight events

in our data set (subject 31, data sets 1 and 2), shown in Appendix B. It is clear that the
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Figure 5.12: Panel (a) shows the state angle ψmin for preferred transition for all freezing events of
subject ST31 (in degree).
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Figure 5.13: Phase ψmin (preferred escape phase, in degree) of polar box i with minimal expected
escape time METi of all subjects showing distinct stepping and freezing episodes in the data set.
Number of events: 1 (ST17), 4 (ST18), 1 (ST20), 3 (ST22), 4 (ST30), 8 (ST31), 1 (ST33)

values of the preferred transition phases, ψmin for the different events are clustered in the

range 200◦–280◦. Figure 5.13 shows the preferred transition phases ψmin for all events

present in the experimental data. The x-axis denotes the patient number. We observe

that the values for ψmin corresponding to different subjects appear to be different. These

observations suggest that although there might be a preferred transition phase for an

individual subject it is not clear whether this holds true between subjects. Individual

characteristics influencing the phase angle may be height, weight and the length of legs,

etc. The limited number of repeating freezing episodes per subject in the data set does

not allow us to be conclusive and reject the null hypothesis of transitions to freezing
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Figure 5.14: Communicating classes and mean escape times from transition set when combining
all freezing episodes for subject ST31. Panel (a) shows the mean escape time calculated from each
starting state on transition set F , the states marked in magenta crosses have a MET value below
the overall expected MET given in (5.41). The preferred angle with minimal MET is marked
as green cross in Panel (c). Panel (b) shows the state space of the trajectory after discretization
and subdivision with (p,q) = (0.1,5◦). The red dots represents the states in absorbing set E, the
green cross represents the ψtr which is the first states that the Markov chain touches the absorbing
set E. The blue dots represents the states in transition set F .

occurring at uniformly distributed phase angles. Nevertheless, Figure 5.13 indicates a

non-uniform distribution of phases and hence the possibility of phase dependence of the

dynamics underlying the transitions from stepping into freezing we have hypothesized in

this paper. Figure 5.14 illustrates the proposed methodology applied to data combining

all events for patient #31. We observe that the preferred phase indicated by Figure 5.14 is

consistent with the phase angles calculated independently and presented in Figure 5.13.

5.5 Conclusion

In this chapter we propose a methodology for timing the transition into freezing (of gait)

and locating this transition in a reconstructed phase space. The methodology combines
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nonlinear time series analysis and mathematical modelling. We apply the developed

methodology to real patient data collected as part of stepping in place experiments.

Our approach is patient-specific and thus capable of studying properties of the FOG

phenomenon on an individual level basis and potentially applicable on an individual level

in the context of personalized interventions in the future [44]. Specifically, our analytical

estimate 1
1−λ1

(equation 5.41) for the time it takes a patient to transition into freezing

given a segment of stepping time series data immediately preceding a FE could be used

in future algorithms for online FE prediction that could be transformtive for the quality

of life of patients with Parkinson’s disease as it would enable early warning signals to be

calibrated (for each individual) and implemented in wearable devices and/or pressure

sensing shoe insoles. Although our data set does not contain information on the step

length, the use of insoles in [12, 13] allows the force generated during forward walking

to be measured. In this regard the temporal characteristics evaluated here should still

apply to forward walking. While measurements from wearable devices may be noisier

and hence less accurate than the stepping data from Nantel et al., in cases when the

ratio between signal and noise is sufficiently large, phase space reconstruction based on

embedding methods would be appropriate. The decomposability of the resulting state

space of the Markov chain into transition set and absorbing set will be a good a-posteriori

criterion whether the chosen embedding dimension is appropriate. This an interesting

prospect for future work.
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6. Test of Markov Chain Embedding

Using Synthetic Data Produced by

Normal Form

In Chapter 3, we studied a simple dynamical model for transition from periodic oscillation

to steady state as seen in the Parkinson’s Disease data of [7]. This was motivated by

phase space reconstruction obtained by delay-embedding and Hilbert transform from our

dataset. We built the stochastic model (3.11), which has a deterministic part equal to the

generalised Hopf bifurcation normal form with its parameters set in its bistable regime

(as described in Chapter 3). For this model we studied the probability of escape from the

vicinity of the stable periodic orbit and the mean escape time in Chapter 4 [39, 37, 38].

In Chapter 5, we developed a Markov chain model to study freezing of gait in

individuals suffering from Parkinson’s disease. The Markov chain model had distinct

absorbing sets in its state space, which correspond to freezing. This allowed us to

determine a time and phase for the onset of freezing that is largely independent of

thresholds and method parameters.

The Markov chain models we have constructed depend on each patient’s experimental

data. We claim to identify a preferred phase for freezing transition in this data using

86



our model. This makes it necessary to test our method on a “null model” where we

know that a preferred phase should not exist. The stochastically perturbed generalised

Hopf bifurcation normal form (3.11) in Chapter 3 is such a null model. By testing our

approach to determine a preferred phase for transition to freezing on the null model, we

can evaluate the robustness of our Markov chain-based method and further understand

its potential applicability in broader contexts. In this chapter, we first provide a detailed

description how we generate synthetic data, how we choose the transition interval, which

embedding methods we apply and where we introduce and control artificial bias.

While the trajectories of (3.11) have two components, the synthetic data sets for

our Markov chain-based method is only a one-dimensional (scalar) time series. This

implies that we have to choose a projection from R2 into R. This projection will break

the rotational symmetry of (3.11). We will explore the effect of varying this projection

on the preferred phase of escape and the effect of different embedding methods for the

data. Moreover, we study the effect of the projection angle on the preferred phase of

escape to find out how to improve the accuracy and reliability of phase estimation.

6.1 Generation of synthetic data y(t,Ω) ∈ R2

We consider again the stochastic differential equation to generate trajectories y(t) ∈ R2

that will serve as “synthetic data”:

dy1(t) =
[
βy1 −2πΩy2 +(1−β )y1(y2

1 + y2
2)− y1(y2

1 + y2
2)

2]dt +σdW1(t), (6.1a)

dy2(t) =
[
2πΩy1 +βy2 +(1−β )y2(y2

1 + y2
2)− y2(y2

1 + y2
2)

2]dt +σdW2(t), (6.1b)
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where we initially set the frequency Ω to a constant but later generalise it to a y-dependent

function Ω = ω(y), given in (6.3) below. System (6.1) has rotational symmetry if Ω

is constant or depends only on the amplitude R =
√

y2
1 + y2

2. This means that for each

trajectory (y1(t),y2(t)) and each rotation matrix M(θrot) by angle θrot, the trajectory

M(θrot)(y1(t),y2(t))T is also a trajectory for the correspondingly rotated initial condition

M(θrot)(y1(0),y2(0))T and realisation M(θrot)(W1(t),W2(t))T.

The transformation of this stochastic differential equation into polar coordinates

given by z(t) = R(t)exp[iθ(t)] is:

dR =

[
βR+(1−β )R3 −R5 +

σ2

2R

]
dt +σdWR, (6.2a)

dθ = 2πΩdt +
σ

R
dWθ . (6.2b)

where β = −0.8 determines attraction toward the origin, and σ = 0.05 is the noise

amplitude. For each parameter combination we generate N = 10,000 realizations. The

sampling time step δ t = 0.01. The step size h for the Euler-Maruyama method is 0.00025.

System (6.1) and system (6.2) identical to (3.11) and (4.3) in chapter 3, repeated here

for easier recall. It is wroth to mention here that for numerical solution for SDEs there

are different notions of convergence ”strong convergence”, ”weak convergence” (that is,

the mean converges), ”almost sure convergence” etc depending on the type of σ (noise),

in the system and the properties of the SDEs. Convergence refers to how well the

numerical solution approximates the true solution as the h(stepsize), becomes smaller.

For additive noise (with constant σ ) the Euler-Maruyama has strong convergence with

order h(stepsize). With factor σ/R (and assuming R > Rmin > 0), Euler-Maruyama has

strong convergence of order h1/2 (so, much worse, in other words we need 4 timers as

many steps to halve the error) and weak convergence of order h [45].
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Selection of β and σ In Chapter 3, Figure 4.2 illustrates the mean first escape time

simulated for various values of σ between 0.01 and 0.1, and different values of β . From

Figure 4.2, we observe how we have to choose β and σ in order to ensure that the mean

escape time (which is the solution of the mean first escape time equation (4.7)) falls

within the range of 20 to 30 seconds (equalling 2000 to 3000 time steps of ∆t = 0.01s).

A suitable choice of parameters are β =−0.8 and σ = 0.05. This selection of parameters

achieves a balance needed between the exponential distribution of the first escape time

and maintaining a mean first escape time within a desired range.

Selection of sample size N and step size h In the last section of Chapter 3, we have

thoroughly examined the effect of sample size N and step size h on the performance

of Euler’s method. As illustrated in Figure 4.4 and Figure 4.5, we can conclude that a

sample size of N = 10,000 is sufficiently large to distinguish differences between the

resulting distributions and a Euler-Maruyama step size of h = 2.5×10−4 is sufficiently

small to avoid numerical instability. These are reasonable choices to generate data similar

to the experiments and maintain a high level of accuracy in our numerical approximations,

while ensuring that the computational demands remain manageable.

Selection of δ t We sample every (δ t/h)th point of the Euler-Maruyama method’s

result to get δ t = 0.01 which is equal to the sampling steps in the experimental data sets

shown in Figure 3.1.

Introduction of state dependence of rotation frequency In chapter 3 we kept the

rotation frequency Ω fixed (approximating the typical stepping frequency in experiments).

However, when comparing time profiles of experimental data in Figure 3.1 (also Fig-

ure 6.1 below) and simulations of (3.11) (same as (6.1)) in Figure 3.5, we observe that
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the time profile of (6.1) shows visibly oscillatory decay all the way to the close vicinity

of the origin, while the experimental time profile does not. For this reason we introduce

Ω as a function of the state y, permitting us to manipulate rotation frequency in different

parts of the phase space:

Ω = ω(y) =
Ωfix · (1+ exp(−α ∗ (1−Rdrop)))

1+ exp(−α ∗ (R−Rdrop))
+∑

i
tanh

(
yipar · yi

)
· yibias (6.3)

where Ωfix is the rotation frequency near the deterministic limit cycle of radius R = 1, and

α is the logistic growth rate controlling the sharpness of the change of rotation frequency

when the oscillation amplitude drops at radius R = Rdrop. In the additional “bias term”,

yipar is the growth rate of the hyperbolic tanh function controlling the sharpness of

switching between yi,bias and its negative. A non-zero bias level yibias makes the rotation

frequency different in the half-planes {yi > 0} and {yi < 0}. Further, in (6.3) we used

R =
√

y2
1 + y2

2. The following subsections will discuss in detail the three combinations

of parameters in (6.3) that we will study to see how they affect the phase of transition as

determined by the Markov chain.

6.1.1 Case of constant rotation frequency Ω

If the rotation frequency is constant then the coefficient ω(y) is a constant parameter,

which we choose to be equal to the average frequency of stepping in our experimental

datasets as obtained by inverse Fourier Transform (see Section 3), let α = 0, yibias = 0:

ω(y) = Ωfix = 0.8667, (6.4)
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where the unit is s−1. Figure 6.2 Panel (a) presents an example time profile of system (6.1)

with ω(y) = 0.8667. The generated sample time series y1 for (6.1) fixed Ωfix = 0.8667

looks qualitatively similar to experimental data (example repeated in Figure 6.1) until the

transition. The time series y1 in Figure 6.2 Panel(a) shows oscillations until t ≈ 5,500,

when the amplitude of the oscillations quickly decreases until t ≈ 6,000. After t ≈ 6,000

the time series fluctuates in an approximately Gaussian stationary distribution around

y1 = 0, which is consistent with what is observed in the experimental data. Also, the

power spectrum distribution has one single peak, but overall, the general pattern remains

consistent. A noticeable qualitative difference between the time profiles in Figure 6.2

Panel(a) and the experimental data in Figure 6.1 are the gradually decaying oscillations

between t = 5500 and t = 6000 in Figure 6.2 Panel(a). These are not visible in the

experimental data in Figure 6.1.
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Figure 6.1: Panel (a): Time series of the left foot vertical force (as a percentage of body weight)
of the experimental subject numbered ST 31, data set 1, sampling time step δ t = 0.01; Panel
(b): Power spectrum (scaled to a maximum equal to unit) with a strong dominant peak at
fstp ≈ 0.88Hz.
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Figure 6.2: Panel(a) presents the generated measured time series y1 for fixed Ωfix = 0.8667.
Panel(b) presents the measured time series generated by logistic Ω function in (6.5). Panel(c)
and Panel(d) presents the measured time series generated by Ω function with y1bias and y2bias
respectively. Left side of each panel shows the corresponding power spectrum distribution and
the black text shows the coordinate of the dominant frequency.

6.1.2 Case of purely amplitude-dependent rotation frequency

In (6.2), the change of radius R depends solely on R (not on phase θ ). This reduction

is valid as long as ω(y) only depends on R (not on y1,y2 individually). When assuming

that ω depends on R and is no longer a constant, we expect the following effects:

• When R is within the range of 0.8 to 1.2, i.e. the trajectory rotates along the stable

limit cycle, ω should be around Ωfix = 0.8667. This value is the average frequency

ω observed in our experimental data during the stepping stage.

• As R begins to decrease below the radius of the unstable limit cycle, the frequency

should decrease sharply (controlled by parameter α). This captures the change in
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dynamics as the system transitions away from oscillations.

• When R small, the frequency should also be small, as ω(y)≪ 1.

When choosing yibias = 0, function ω will become the following purely amplitude-

dependent autonomous logistic rotation frequency function:

Ωlogi = ω(y) =
Ωfix · (1+ exp(−α · (1−Rdrop)))

1+ exp(−α · (R−Rdrop)
, (6.5)

where we set α = 25, Rdrop = 0.85. This logistic function possesses some inherent

properties that can help us understand its behavior. The left panel of Figure 6.3 displays

Ωlogi as a function of R. As R increases, the logistic function converges to its maximum

value, which in this case is 1. On the other hand, as R decreases from 1, it reaches the

midpoint of the logistic function at Rdrop, where α determines the steepness of the curve.

The value of α influences how quickly the function transitions from one extreme to the

other. When α is greater than 10, the steepness of the curve does not change significantly.

This is because, at higher values of α , the transition between the minimum and maximum

values of the function becomes increasingly rapid, and further increases in α result in

only marginal changes in the steepness.

Given our requirement for a high steepness between the two conditions (normal oscilla-

tion and escape), we set α = 25. This value ensures a rapid transition between the two

states, effectively capturing the desired system dynamics. Additionally, we want Rdrop to

be close to the unstable limit cycle, which represents the point at which the dynamical

system has already escaped. We set Rdrop = 0.85, as it is close to the unstable limit cycle,

given by
√

−β =
√

0.8 = 0.8944. The numerator of this equation ensures that as R

approaches 1, the frequency will be near Ωfix, which aligns with our experimental data.
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Figure 6.2 Panel (b) presents the Synthetic data y1(t,Ωlogi) generated by (6.1) with

the Ωlogi (6.5). We can see that once y1 does not oscillate, it rapidly decreases to 0, which

is a characteristic behavior observed in our experimental data. In addition to the dominant

frequency, there are few minor peaks present, which indicates that the time series is more

complex than a single oscillatory behavior and contains other, smaller-scale oscillations

or fluctuations. This reflects that this time series is more similar to our experimental data.

Figure 6.3: The left panel shows the curves for different values of α in the equation 1/(1+
exp(−α · (R−0.85))). The right panel shows the curves for different values of γ in the equation
tanh(γ · k).

6.1.3 Case of phase-dependent rotation frequency

Returning to our original objective, we aimed to test the validity of our methodology

using a different dataset, while still focusing on automatically identifying absorbing sets

that can be utilized to infer the stepping phase at which freezing events occur. To achieve

this, it is crucial that our dataset exhibits a distinctly preferred phase, which will enable a
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more intuitive evaluation of the accuracy and practicality of our method.

By adding bias to the components y1 or y2, which can break the rotation symmetry of

(6.1) to create a system with biases in the transition phase controllable by parameter yibias

and yipar

Ω
yi
bias = ω(y) =

Ωfix ∗ (1+ exp(−α · (1−Rdrop)))

1+ exp(−α · (R−Rdrop)
+∑

i
tanh

(
yipar · yi

)
· yibias. (6.6)

We consider the following two parameter combinations for yibias:
y1bias = 0.3, y2bias = 0

y1bias = 0, y2bias = 0.3,

where y1par = 20, y2par = 20. The right panel of Figure 6.3 illustrates the behavior of the

function k 7→ tanh(γ × k) for different values of slope γ . Similar to the logistic function,

the hyperbolic tangent (tanh) function also has an upper bound and a lower bound, in this

case, 1 and −1. The slope parameter γ represents the steepness of the curve. One notable

property of the tanh function is its oddness, which means that it is symmetric with respect

to the origin. This property ensures that, as long as the function is steep enough, the values

of tanh are mostly concentrated at the upper bound when the input variable is positive

and at the lower bound when the input variable is negative. If y2bias = 0,y1bias = 0.3,

in (6.1), as long as y1 is greater than 0, the bias tanh
(
y1par · y1

)
· y1bias is positive and

between (0,0.3], causing the rotation frequency to be larger. Conversely, when y1 is less

than 0, the bias is negative and between [−0.3,0), resulting in a reduction of rotation

frequency ω(y). This variation in rotation frequency between the half-planes permits us

to introduce a controllable bias in the observed phase of transitions.
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Panel (c) and Panel (d) in Figure 6.2 display the time series y1(t,Ω
y1
bias) and y1(t,Ω

y2
bias)

which are generated by (6.1), where the rotation frequency is as given in (6.6). These

panels demonstrate the effects of introducing bias into the y1 and y2 components of the

system. In Panel(c), we set y2bias = 0, which means that we only apply bias to the y1

component. This panel illustrates the behavior of y1bias when only one component is

biased, and we can observe how this modification impacts the dynamics of the system

later after applying our methodology. In Panel(d), we apply bias only to the y2 component

while leaving the y1 component unbiased. This panel provides a complementary view of

the y1bias behavior when the other component is biased. The introduction of bias to the Ω

function leads to a decrease in the dominant frequency and an increase in minor peaks of

the power spectrum distribution compared to the Ωfix and Ωlogi which are without bias,

as shown on the right-hand side of panels (c) and (d) of Figure 6.2.

6.2 Comparative Analysis of Preferred Phases Using

Synthetic Data

We have now generated four sets of synthetic data y(t,Ω) ∈R2 from the previous section

using (6.1) that can be used to apply our methodology. Each set of data contains 10,000

simulations, but the number of simulations that can be effectively used is approximately

5,000-6,000 per dataset (depending on the β and σ we choose in (6.1)). This is due to

two reasons:

• (No escape) Due to the random nature of the noise and the length of the time

series we set (10,000 time steps with dt = 0.01), the noise-induced escapes from

oscillatory attractors to steady states does not occur in each realisation.
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• (Escape too early) Since later we need to discretize our y1-y2 state space and

then construct a Markov chain transition matrix, which is a good representation

of escape, we also to ignore time series with an insufficient number of points at

oscillatory attractors.

To choose our transition interval ([tstart, tend]), we select the first point that hits amplitude

R = 0.5 (R =
√

y2
1 + y2

2) as tend, the 1999th point before tend as tstart, resulting in a total

length of [tstart, tend] of 2000 sampling points. These time series are used as models for

the experimenter-labelled escape from the oscillatory attractor to the steady state, and any

time series with R ≥ 0.5 for all times or without 1999 points before tend will be excluded.

Thus, each dataset will be filtered for the set of time series where escape exists.

Projection to scalar time series The experimental data is a scalar time series, while

(6.1) is a two-dimensional signal. To investigate the effect of the embedding method

used we first project the two-dimensional y(t) to a scalar time series using the Projection

Angle θr.

Projection Angle θr The Hilbert Transform, H(x(t)), identifies the position of x(t)

in the complex plane by reconstructing an imaginary part consistent with the harmonic

(cos and sin) components of periodic motion (see section 2.1.2 for complete description).

However, our observation of H(x(t)) contains only the information from x(t), or in our

case, a projection x(t) = y1(t), and it cannot recover all the information contained in the

y1-y2 plane. Given that our viewing angle is predetermined, with y1 as the x-axis, H(x(t))

might exhibit a predictable and systematic observation bias that breaks rotation symmetry.

To corroborate this hypothesis, we choose projections onto one-dimensional subspaces

different from {y ∈ R2 : y2 = 0,y1 arbitrary}. Possible projections are determined by the
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counterclockwise angle θr, θr ∈ [0,360) degree resulting in a projection x(t) = ynew[θr],

using the rotation formula:

ynew[θr] = y1 cos(θr)+ y2 sin(θr) (6.7)

We choose the scalar time profile y1(t) as our default measured time series x(t) for

t ∈ [tstart, tend] and following the steps of our method summarized in Section 5.2.7, we

will obtain a set of angular coordinates ψmin, which represents the escape phase for each

dataset, denoted as ΨEM
min(Ω,θr), where EM is the embedding method we choose and θr

represents the degree of projection for the default x(t) = y1(t).

Embedding Method (EM) We study the effects of two different embedding methods

and compare them to the full time series as benchmark:

• (Hilbert embedding) In Chapter 5 the scalar time profile x(t) is embedded into

the unit circle in the complex plane using the Hilbert Transform and scaling (5.1),

resulting in X(t) ∈ C for t ∈ [tstart, tend]. Subsequently, the complex plane can be

subdivided into boxes. The EM superscript for the resulting Ψ is “hilbert” for this

case, e.g., Ψhilbert
min (Ω,θr).

• (Benchmark: no projection and no embedding) In (6.1), when y1 and y2 are

positioned in the y1-y2 plane and scaled to [−1,1], that is,

X(t) = (y1(t),y2(t))/ max
t∈[tstart,tend]

(
√

y1(t)2 + y2(t)2),

we can also obtain the unit circle and then follow the subsequent steps to get

ψmin. Using y1 and y2 simultaneously allows us to fully utilize all the information
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contained in y(t,Ω). Furthermore, the trajectory in the y1-y2 plane is devoid

of errors. The EM superscript of Ψ is “(y1,y2)”, e.g., Ψ
(y1,y2)
min (Ω,θr), which is

independent of θr as no projection is performed in this case. This serves as a

benchmark to evaluate the efficacy and precision of the embedding process.

• (Delay embedding) To provide additional perspectives on the embedding process,

we also compare a 2-D delay embedding approach where the delay ∆t is set to

one-fourth of the oscillation period, with details available in chapter 3, X(t) is

calculated using Equation (2.1). EM is called as ”delay”.

Figure 6.4 illustrates the application of our methodology to a an example time series y1(t),

y2(t), adhering to the steps outlined in Section 5.2.7. Panels (a) and (b) show the time

series in the y1-y2 plane, generated by a realisation of (6.1), and on the respective scalar

time profiles, shown in green. The black portion represents our selected time interval

[tstart, tend] that encompasses the escape process, with the final point having a radius

of 0.5 and a total span of 2000 points. The scalar time profile y1(t) for t ∈ [tstart, tend]

is embedded in the unit circle using the Hilbert transform (H(y1)) and the 2D delay

embedding (delay(y1)), which is shown as the black trajectory in panels (c) and (e)

in the y1-y2 plane, respectively. The black trajectory in panel (d) is the original time

series, scaled to the unit circle in the y1-y2 plane, with y1(t) on the x axis and y2(t) for

t ∈ [tstart, tend] on the y axis. For ease of presentation, the subsequent appearances of

y1(t), y2(t) for t ∈ [tstart, tend] are abbreviated to y1, y2. The plane is divided into boxes

along the polar axis to obtain the empirical transition probabilities and to identify the

communication classes of the resulting Markov chain. In panels (c), (d), and (e), the

transition set F is denoted by blue dots and the absorbing set E by red dots. The transition

set F from each box determines ψmin, which is represented as a black cross in panels (c),
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(d), and (e).

Figure 6.4: This figure generally shows the steps when apply the methodology into one of
our measured time series y1(t,Ωlogi). Panels (a) and (b) show the measured time series in the
y1-y2 plane and on the respective scalar time profile in green. The black portion represents our
selected time interval [tstart, tend]. Panels (c), (d), and (e) present the 2D trajectory when we embed
x(t) = y1(t,Ωlogi) into the unit circle using the Hilbert transform, in the original (y1,y2) plane,
and using the delay embedding method respectively.

Figure 6.5 presents the probability histogram of Ψhilbert
min (Ωfix,0°), Ψ

(y1,y2)
min (Ωfix,0) and

Ψ
delay
min (Ωfix,0°) in Cartesian coordinates (Left) and Polar coordinates (Right) for the com-

plete ensemble of N = 10000 realisations. For constant frequency Ωfix, the histogram of

Ψ
(y1,y2)
min (Ωfix,0°) shows approximately uniform distribution which is expected because

of the rotational symmetry of (6.1). The projection introduces a breaking of rotational

symmetry. So, there will be an effect for both embedding methods (EM = hilbert,delay).

It shows that only the Ψ
delay
min (Ωfix,0°), for which x(t) is calculated through delay em-

bedding, manifests two pronounced peaks, shows two maxima (at Ψ around 100◦ and
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around 280◦) as depicted by the blue bars. This observation indicates that the delay

embedding projection destroys the rotational symmetry, an effect that can also be seen in

Panel (e) of Figure 6.4, which shows non-circular trajectories in black. We notice that

the symmetry breaking by the projection is too small to discern for N = 104 when using

Hilbert transform embedding (EM = hilbert) for constant Ω.

0 120 240 360
0

0.05

0.1

0.15

0.2

p
ro

b
a

b
ili

ty

0 120 240 360
0

0.05

0.1

0.15

0.2

Figure 6.5: Histograms of ΨEM
min(Ωfix,0°) in Cartesian coordinates (Left) and Polar coordinates

(Right) for Ψhilbert
min (Ωfix,0°),Ψ(y1,y2)

min (Ωfix,0°) and Ψ
delay
min (Ωfix,0°), where Ωfix = 0.8667, the pro-

jection degree θr for x(t) = y1(t) is 0°.

Figure 6.6 displays the histograms for the preferred transition phase for amplitude-

dependent rotation frequency (Ωlogi given in (6.5)) for all embedding methods and the

benchmark, Ψhilbert
min (Ωlogi,0°) in red, Ψ

(y1,y2)
min (Ωlogi,0°) in green and Ψ

delay
min (Ωlogi,0°) in

blue, using the same approach as for constant rotation frequency Ωfix in Figure 6.5.

We observe two symmetric peaks in the histogram of Ψhilbert
min (Ωlogi,0°), where x(t) is

calculated by the Hilbert Transform of y1(t), i.e H(y1(t)) at angles 180° apart. Despite

many unknowns regarding the Hilbert Transform, we will explore the effect of projection
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Figure 6.6: Histograms of ΨEM
min(Ωlogi,0°) in Cartesian coordinates (Left) and Polar coordinates

(Right) for Ψhilbert
min (Ωlogi,0°),Ψ(y1,y2)

min (Ωlogi,0°), and Ψ
delay
min (Ωlogi,0°). Ωlogi (6.5) is a logistic

function without bias, the projection degree θr for x(t) = y1(t) is 0°.

in the next section, or more importantly, determine whether this phenomenon follows

any discernable pattern or rule.

6.2.1 Effect of Projection Angle θr

Our experimental method reconstructs an oscillator from a scalar time series, which is

assumed to be a projection of the full phase space variables of the underlying oscillator.

In our synthetic data set we artificially perform a similar projection (6.7). The projec-

tion will affect the resulting escape angle Ψmin. This section analyses how the effect

plays out. Since the underlying oscillator is rotationally symmetric we expect the bias

observed in Figure 6.6 to depend on the projection angle θr in a rotationally invariant

manner: a projection to angle θr should shift the distribution of escape angles Ψmin by

θr. Figure 6.7 Panel(a) shows a heatmap of the two-dimensional frequency distribution
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of Ψ
(y1,y2)
min (Ωlogi,0°) and Ψhilbert

min (Ωlogi,0°), x-axis is Hilbert embedding after projection

with angles 0,30,60 degree, y-axis is the benchmark. The heatmap grid is arranged

in a matrix of 12×12 cells, with each cell corresponding to a 30-degree by 30-degree

region in the plane. The color in each cell represents the count of data points falling

within the corresponding 30-degree region. Darker colors indicate a higher frequency

while lighter colors indicate a lower frequency. The x-axis of panel(b) and Panel(c) are

the frequency distribution of Ψhilbert
min (Ωlogi,30°) and Ψhilbert

min (Ωlogi,60°) respectively. The

Hilbert Transform of ynew[θr] which has been rotated counterclockwise by θr degrees,

causes the original x− y axis to also rotate counterclockwise by θr degrees. As a result,

the calculated Ψmin in the new coordinate system should be θr degrees smaller than in

the original coordinate system. Each panel and horizontal and vertical axis used the same

noise realisations, just applied different projection before the embedding. Therefore, in

the heatmap, each original escape should consistently shift down by θr degrees. As can

be seen from the Figure 6.7, the high value boxes have a similar distribution across the x

direction and move down 30° and 60° respectively, which aligns with our expectations.

The phenomenon shows that the Hilbert transform also breaks symmetry and introduces

a bias in the reported transition phase. It shows phases close to 0° and 180° (for θr = 0)

and correspondingly rotated phases for other θr as more likely transition phases. This

is a bias artificially introduced by projecting and embedding. However, the bias is still

reflection symmetric (with two preferred angles 180 degree apart. When we applied the

method to the patient data we did not see clusters 180 degrees apart for any patient. This

suggests that our approach may be able to detect biases, however, only as a bias between

two entire half circles of phases.
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Figure 6.7: Panel(a): Heatmap which represents a two-dimensional frequency distribution of
Ψ

(y1,y2)
min (Ωlogi,0°) and Ψhilbert

min (Ωlogi,0°). Panel(b): Heatmap which represents a two-dimensional
frequency distribution of Ψ

(y1,y2)
min (Ωlogi,0°) and Ψhilbert

min (Ωlogi,30°). Panel(c): Heatmap which
represents a two-dimensional frequency distribution of Ψ

(y1,y2)
min (Ωlogi,0°) and Ψhilbert

min (Ωlogi,60°).

6.2.2 Distribution of threshold crossings after Hilbert Embedding

To further examine the bias in transition phases caused by projection and Hilbert Em-

bedding, we can perform the following analysis: for each trajectory of synthetic data

y(t,Ωfix), y(t,Ωlogi), y(t,Ωbias) ∈ R2 that makes a transition to the origin, we can iden-

tify the point where the trajectory first intersects R = Rlast (we will investigate several

Rlast ∈ [0.5,1]). We denote this point as Y EM
last (Ω)[Rlast] for each respective embedding

method EM. While phase at these threshold crossings may not be good measures for

the phase at which transition occurs (since the phase will strongly depend on Rlast) the

threshold crossings are a simple trajectory feature that shows how the Hilbert transform

of a scalar projection distorts a two-dimensional trajectory near its transition. Biases

that occur for all threshold crossings will also be present in any algorithm determining a

transition phase using a scalar time series and Hilbert embedding.

Figure 6.8 Panel (a) shows scatter plots of Y (y1,y2)
last (Ωlogi)[0.5] in green stars and

Y hilbert
last (Ωlogi)[0.5] in red circles. Panel(b) and Panel(c) display the datasets in the polar

coordinate system using the same color scheme, where all Rlast = 0.7 in Panel(b) and
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Figure 6.8: Panel(a)(b)(c) shows Y (y1,y2)
last (Ωlogi)[Rlast] in green stars and Y hilbert

last (Ωlogi)[Rlast] in red
circles where Rlast is 0.5, 0.7 and 0.8 respectively.

all Rlast = 0.8 in Panel(c). The trajectories are compressed towards the center from two

symmetric points. Thus, the Hilbert embedding from a scalar projection reduces rotation

symmetry to reflection symmetry of the transition phase. The transition threshold should

be close to the radius of the unstable limit cycle for the deterministic dynamical system at

around 0.7. As can be seen from Figure 6.8 Panel(b), more points are projected to around

180°and 360°, which is consistent with the distribution of Ψmin shown in Figure 6.6 and

Figure 6.7. Appendix D shows the distribution of Y EM
last (Ω)[Rlast] when we add bias to the

stochastic differential equation.

6.2.3 Ψmin after adding bias

After analyzing the bias caused Hilbert embedding of a projection of the dynamical

system, we will now demonstrate if Ψmin identifies preferred transition phases by intro-

ducing a bias through making the rotation frequency different in different half-planes

(see expression for Ωbias in (6.6)). Figure 6.9 Panels (a) and (b) display the distribu-

tion of ΨEM
min(Ω

y1
bias,0

°) and ΨEM
min(Ω

y2
bias,0

°) with Ω calculated using (6.6) under the y1-y2

plane and Hilbert complex plane respectively. In Panel (a), we observe a distinct peak
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for Ψ
(y1,y2)
min (Ωy1

bias,0
°) and Ψ

(y1,y2)
min (Ωy2

bias,0
°) in comparison to Ψ

(y1,y2)
min (Ωlogi,0°) which

has no added bias (shown in green bins). This indicates that (6.6) can produce an

expected preferred angle leading to escape. From Panel (b), it is evident that the previ-

ously symmetrical two peaks are no longer present due to the introduced bias, where

Ψhilbert
min (Ωlogi,0°) is shown in red bins. Panel (b) shows that phase preferences caused by

bias in component 2 are far easier to detect than those from biases in component 1. So,

the breaking of rotation symmetry by projection and Hilbert transform has only the effect

of showing an additional (potentially artificial) preferred transition phase at a secondary

angle. (see orange histograms). Appendix E shows the results for y1bias = 0.1,0.2 and

y2bias = 0.1,0.2.

Figure 6.9: Panel(a) shows the histogram of Ψ
(y1,y2)
min (Ωlogi,0°) (green bins), Ψ

(y1,y2)
min (Ωy1

bias,0°)
where y1bias = 0.3 (orange stairs) and Ψ

(y1,y2)
min (Ωy2

bias,0°) where y2bias = 0.3 (cyan stairs); Panel(b)
shows the histogram of Ψhilbert

min (Ωlogi,0°) (red bins), Ψhilbert
min (Ωy1

bias,0°) where y1bias = 0.3 (orange
stairs) and Ψhilbert

min (Ωy2
bias,0°) where y2bias = 0.3 (cyan stairs).
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6.3 Conclusion

To study how the preferred transition phase detected by the Markov chain model de-

signed in Section 5.2.7 behaves for a rotationally symmetric nullmodel, we tested it on

synthetic data y(t,Ω) ∈ R2, produced by stochastic differential equations (6.1), which

are a stochastic perturbation of the generalised Hopf normal form model introduced in

Chapter 3 Section 3.2. We modified the stochastic differential equation by making the

rotation frequency a function (Ω) that depends on the state y ∈ R2. Multiple parameters,

including the large-amplitude oscillation frequency, the Euler-Maruyama step size, and

the logistic growth rate, are carefully chosen to mimic the behavior observed in experi-

mental data.

To closely replicate the observed data, two different classes of the frequency function

(Ωfix and Ωlogi) are tested, one is a constant frequency and the other is a logistic function

of the amplitude R =
√

y2
1 + y2

2 (keeping the system rotationally symmetric). The latter

aims to mimic more closely the absence of gradually decaying oscillations in transitions

from stepping to freezing seen in the experimental data. Additionally, two further modifi-

cations of the frequency function (Ωy1
bias and Ω

y2
bias) have been tested. These modification

introduce a preferred transition phase such that we can test if this preference is visible in

artificial data compared to distortions and breaking of rotational symmetry by projection

and embedding.

To analyze the synthetic data, a transition interval is defined by the first point hitting

a radius of 0.5, and the 1999th point before that as the start of the interval. Only time

series where an escape from oscillatory attractor to the steady state exists are considered.

After filtering and defining the transition interval, the methodology outlined in Section 4

is applied to calculate the escape phase for each dataset.
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We test three embedding methods (EM) for further analysis:

• Hilbert Transform: where the measured scalar time profile x(t)= y1(t) is embedded

into the complex plane.

• Cartesian Coordinate (y1,y2): where both y1 and y2 variables are used in the unit

circle, taking full advantage of the information contained in the synthetic data.

• Delay: which offers a different perspective on the embedding process by introduc-

ing a 2-D delay embedding approach.

Probability histograms of the escape phase Ψmin are presented for each embedding

method, both for constant (Ωfix) and logistic (Ωlogi) frequency function. The histograms

indicate that the delay embedding method may be able to recover rotational symmetry

from a scalar projection of the signal. Furthermore, we observed two symmetric peaks in

the histogram of the Hilbert Transform using the logistic frequency function Ωlogi. To

further investigate this phenomenon, we examined the effect of the projection angle θr on

the resulting escape angle. By rotating the measured time series y1(t) counterclockwise

by different degrees, we observed that the Hilbert Transform of the rotated time series

resulted in a consistent shift in the preferred transition angle, leading to a breaking of the

rotational symmetry into a reflection symmetry, with two artificial modes of the transition

phase distribution 180° apart from each other.
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7. Summary and Conclusion

This thesis presented an in-depth exploration of the Freezing of Gait (FOG) phenomenon,

a debilitating symptom experienced by individuals with Parkinson’s Disease (PD). The

investigation was carried out using time series analysis, mathematical modelling, and

data collected from stepping-in-place experiments.

The study treated the dynamics underlying the transition from regular stepping to freezing

as stochastically driven. The stochastic nature was modelled initially with a generalised

Hopf normal form, perturbed by additive noise to a stochastic differential equation.

The deterministic part of the model has two stable states: a limit cycle (modelling the

stepping) and an equilibrium at the origin (modelling freezing). The transition from

stepping to freezing is a noise-induced escape from the region near the deterministic limit

cycle across an unstable limit cycle to the origin. We investigated the escape problem,

quantifying the distribution of escape times and comparing simulation results to theoreti-

cal predictions for the mean survival time before transition. Furthermore, our analysis

showed that the results are sensitive to (e.g.) stepsize of the numerical methodology

employed on the accuracy of the model’s predictions and simulations.

Through the combination of nonlinear time series analysis and mathematical modelling,

we developed a methodology based on communicating classes in Markov chains for tim-

ing the transition from stepping to freezing and locating this transition in a reconstructed
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phase space, especially its angle (phase). Our patient-specific approach has potential

applicability in the context of personalized interventions in the future, particularly for

early warning signals for freezing episodes that could be incorporated into wearable

devices or pressure-sensing shoe insoles.

In order to check how our Markov-chain based approach behaves on a nullmodel that had

originally no preferred phase, we generated synthetic data using a stochastic differential

equation to mimic the observed experimental stepping data, but was rotationally symmet-

ric (ensuring that all transition phases should have equal probability) . Our analysis of the

synthetic data tested different embedding methods for scalar projections of the nullmodel

trajectories. We found that the delay embedding broke the rotational symmetry of the

system (and the resulting uniform transition probability for all phases) severely even for

the standard generalised Hopf normal form model with constant rotation frequency Ωfix.

Embedding based on Hilbert transforms breaks the rotation symmetry into a reflection

symmetry if the rotation frequency depends strongly on the amplitude with two artifi-

cial modes in the resulting distribution of transition phases 180° apart. Despite these

symmetry-breaking effects genuine preferences in the transition phase should still be

detectable as histograms in Figure 6.9 and Appendix E show.

Overall, the research conducted in this thesis contributes to a more profound under-

standing of the complex dynamics involved in the FOG phenomenon, thereby providing

novel insights that may inform future intervention strategies for PD patients. Furthermore,

our results indicate promising directions for future research, particularly the implemen-

tation of our methodology in wearable technologies for real-time FOG prediction and

early warning systems, ultimately aiming to improve the quality of life of PD patients.
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Outlook Several hypothesis underlying the FOG phenomenon based on mechanistic

studies have been proposed in the literature [46]. These involve: a threshold mechanism

[47]; an inference mechanism [48]; a cognitive mechanism [49]; and a decoupling

mechanism [50]. In Chapter 3 Section 3.2 presenting a nullmodel, we hypothesise that

the transitions associated with spontaneous involuntary freezing episodes that are not

triggered by any apparent external stimuli (as was the case in the experiments producing

the data set we used) can be described as noise-induced escape in a bistable oscillator

setting. In this sense, our modelling approach is phenomenological and could be most

closely associated with the threshold model [47] mentioned above. This model does not

account for mechanisms driving freezing but rather the dynamical (geometric) properties

of the transition in to freezing. In fact, the analysis we have carried out and properties we

have defined could be equally applied to both, patients and healthy individuals, should

there be available data.

The quantity ψmin extracted from the data by our method identifies for each freezing

episode a unique threshold-independent time and stepping phase after which the subject

is committed to freezing in this particular episode. The definition of such a characteristic

quantity permits classification and clustering of freezing episodes and subjects according

to in-person-between-episode and between-person mean and variation of ψmin. A non-

uniform and possibly patient-specific distribution of preferred escape phases ψmin is still

compatible with the hypothesis of noise-induced escape from a limit cycle as proposed

as an underlying mechanism in Chapter 3 Section 3.2. A non-uniform distribution

would merely provide evidence against the rotation invariance present in nullmodel

(3.11). In this case one can explore whether this quantity ψmin is correlated with other

characteristics of freezing or the disease (e.g., severity or frequency of freezing events,

progression of the disease or effectiveness of therapies). If it is the case that there may be
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a preferred phase at which an individual patient enters into freezing is another interesting

result in terms of future model development that accounts for this transition. It could

lead to the development of intervention strategies such as early warnings of FE based

on patient-specific phase information. Therefore, a potentially very important direction

for future work is to systematically determine preferred transition phases by analysing

transitions into FE not just in stepping but also in the case of walking and freezing. In

principle the method permits one to construct an empirical transition matrix from several

time series by merging the box counts in (5.8). Then we can not necessarily expect a

single (unique) entrance state itr. There will still be a unique ψmin, however, several local

minima may make the transferred transition angle more uncertain.

Data availability

Full data sets and processing scripts are available at the following link https://

figshare.com/s/a14be7360925639736ba.
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8. Appendix

A Dependence on discretization parameters and length

of transition intervals

Figure 1, Figure 2 and Figure 3 present a sensitivity analysis of the results with respect to

various method parameters. Let us denote by ψmin the phase (or angle) that corresponds
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(a)
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Figure 1: Panel (a): phase ψmin(in degree), where MET is minimal for different box sises and tran-
sition intervals. The label on the x-axis shows box sizes (p,q) for p ∈ {0.05,0.1,0.15,0.2},q ∈
{3◦,5◦,10◦,15◦,20◦,30◦}. For each p, q increases within its range. Blue circles, red crosses and
green square markers correspond to transition interval lengths, as indicated in the legend. Panels
(b)–(d) show dependence of ψmin (blue circles) and ψtr (red crosses) on same box sizes (using
same x-axis as panel (a)) and transition interval.
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to the box with minimal survival time METi in transition set F (derived by (5.27)).

Figure 1(a) shows ψmin for different discretization box sizes q, p, as introduced in

Figure 5.1.4. The x-axis in Figure 1(a) shows all combinations of p and q while the color

and marker type encode different transition interval lengths (blue circles, red crosses and

green squares, respectively). The transition intervals tested are: [474,1980] (of length

15.06 s, containing more than four large-amplitude oscillations); [1300,1980] (of length

6.8 s, containing approximately four large-amplitude oscillations); and [1625,1980] (of

length 3.55 s, containing approximately two oscillations) respectively. Panels (b–d) in

Figure 1 compare for the same range of box sizes (p,q) and transition intervals the

sensitivity of ψmin (blue dots, the phase determined by minimal METi in the transition

set F) to the sensitvity of ψtr (red crosses, the phase determined by the first state

reachable in the absorbing set E). We observe that the phase ψmin is less sensitive to

box sizes and transition interval length than ψtr. Figure 2 summarizes the sensitivity for
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Figure 2: Boxplot for phase ψmin for same range of box sizes as in Figure 1 and interval lengths
for different subjects. The left boxplot (blue), middle boxplot (black) and right boxplot (magenta)
of each patient represent 3 different choices of transition interval: [tstart, tend] in the same time
series that correspond to the maximal possible transition interval, approximately four oscillations
and approximately two oscillations, respectively.

114



further freezing episodes and different subjects as box plots for the phase ψmin, varying

discretization box sizes over the same range as Figure 1 within each box plot. The left,

middle and the right box plot of each subject are for 3 different transition interval lengths

[tstart, tend]: the transition interval for the left box plot contains more than 4 stepping

periods (large-amplitude oscillations), the transition interval for the middle box plot

contains approximately 4 oscillations, and the transition interval for the right box plot

contains 2 oscillations, respectively. The distribution of extracted ψmin supports our

general observation that, if the stepping class contains sufficiently many oscillations

(approximately 4), the resulting transition phase ψmin is largely insensitive to our method

parameters.
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Figure 3: Panel (a) shows time series of freezing episode for subject ST20. Panel (b) shows the
embedding trajectories for different transition interval lengths (left: many oscillations, middle:
approximately 4 oscillations, right: approximately 2 oscillations) corresponding to the force data
shown in Panel (a). Panel (c) shows the transition phase ψmin for different box sizes p and q (see
Figure 1).

Figure 3 shows in more detail the transition phases ψmin for subject ST20 (Figure 2).

In panel (b), in the case of 2 oscillations, the data in the stepping class is not sufficient to

divide the state space into classes (transition set F and absorbing set E), as they are too
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sensitive to the transition interval length in this example. The above sensitivity analysis

indicates that ≈ 4 oscillations preceding a freezing episode in the transition interval are

recommended in order to obtain robust phase estimate in this data set. The Markov chain

also allows us to generate “surrogates”: time series Xmc(t) in the complex plane that

share properties with the embedded time series X(t) of the data shown in Figure 5.3(a)

for each freezing event and each subject.

B Examples of transition intervals for subject ST31

Figure 4 shows two data sets for subject ST31, containing 8 different freezing episodes.

The transition intervals selected for Markov chain analysis are highlighted in red. The

time profiles from these highlighted sections have been used to determine in the phase

ψmin with minimal mean escape time from transition set F in Figure 5.12.
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Figure 4: 8 transition intervals shown in red (in the form of time series) for ST31 with time step
δ t = 0.01.
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C Simple example to show Relationship between METi

and the mean escape time from transition set F

Now we present two simple examples, the Markov transition matrix A1 and A2 are given

by:

A1 =


2/3 1/3 0

1/4 1/2 1/4

0 0 1



A2 =



2/3 1/3 0 0

1/4 1/2 1/8 1/8

0 0 4/5 1/5

0 0 3/10 7/10
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1/4
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1/3
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1/8
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3/10

4/5
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7/10

Figure 5: left: transition matrix A1, state 1 and 2 are in the Transition set F , when the Markov
chain goes into state 3, it will never back to state 1 or 2, thus state 3 is the absorbing state also the
Absorbing set E. right: transition matrix A2, state 1 and 2 are in the Transition set F , we define
state 3 and 4 are the absorbing states since after t steps, state 3 and 4 are in the Absorbing set E.
For t → ∞, the Markov chain will only oscillate between state 3 and state 4.
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Using Matlab to calculate the MET, we show the results in table 1. From row 1 and

row 2 (or row 3 and row 4), MET calculated by the definition and the simplified equation

are consistent, supporting the validity of our equation. Since the starting state in the

Markov chain is a random event, so each MET calculated from a specific transition state

should be equally considered:

MET =
1
m ∑

i
MET(si) i ∈ m transition states (1)

Row 5 shows the MET calculated by equation(1), which considered the evenly weight

each of the starting state. The MET calculated for A1 and A2 are both 8.5s. Row 6 shows

MET calculated by equation (5.41), which is close to the MET calculated by equation

(1) and the expected MET. From this example and the equation(5.27), we can easily

conclude the MET only related to the matrix with states corresponding to the Transition

set F

A1 A2
s1 = (1,0,0) MET(eqn(5.15)) 10s 10s
s1 = (1,0,0) MET(s1) 10s 10s
s2 = (0,1,0) MET(eqn(5.15)) 7s 7s
s2 = (0,1,0) MET(s2) 7s 7s
mean(s1 + s2)) MET(eqn(1)) 8.5s 8.5s

MET(λ1) = 1
1−λ1

8.6056s 8.6056s

Table 1: MET for A1 and A2. The first row and the third row show the MET starting from state 1
and state 2 respectively, calculated by equation (5.15). The second row and the 4th row show the
MET starting from state 1 and state 2 respectively, calculated by equation (5.27). The 5th row
shows the mean value of the MET starting from each transition states. The 6th row shows the
MET calculated by equation (5.41).

118



D Distribution of Y EM
last (Ω)[Rlast] with bias
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Figure 6: Panel(a)(b)(c) shows Y (y1,y2)
last (Ωy1

bias)[Rlast] in green stars and Y hilbert
last (Ωlogi)[Rlast] in red

circles where Rlast is 0.5, 0.7 and 0.8 respectively.
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Figure 7: Panel(a)(b)(c) shows Y (y1,y2)
last (Ωy2

bias)[Rlast] in green stars and Y hilbert
last (Ωlogi)[Rlast] in red

circles where Rlast is 0.5, 0.7 and 0.8 respectively.

E Demonstration of probability distribution of Ψmin when

y1bias = 0.1,0.2 and y2bias = 0.1,0.2
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Figure 8: Panel(a) shows the histogram of Ψ
(y1,y2)
min (Ωlogi,0°) (green bins), Ψ

(y1,y2)
min (Ωy1

bias,0°) where
y1bias = 0.1 (orange stairs) and Ψ

(y1,y2)
min (Ωy2

bias,0°) where y2bias = 0.1 (cyan stairs); Panel(b) shows
the histogram of Ψhilbert

min (Ωlogi,0°) (red bins), Ψhilbert
min (Ωy1

bias,0°) where y1bias = 0.1 (orange stairs)
and Ψhilbert

min (Ωy2
bias,0°) where y2bias = 0.1 (cyan stairs).
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Figure 9: Panel(a) shows the histogram of Ψ
(y1,y2)
min (Ωlogi,0°) (green bins), Ψ

(y1,y2)
min (Ωy1

bias,0°) where
y1bias = 0.2 (orange stairs) and Ψ

(y1,y2)
min (Ωy2

bias,0°) where y2bias = 0.2 (cyan stairs); Panel(b) shows
the histogram of Ψhilbert

min (Ωlogi,0°) (red bins), Ψhilbert
min (Ωy1

bias,0°) where y1bias = 0.2 (orange stairs)
and Ψhilbert

min (Ωy2
bias,0°) where y2bias = 0.2 (cyan stairs).
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