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Abstract

Logic-based Benders’ decomposition (LBBD) is a solution method that integrates

mixed-integer programming (MIP) and constraint programming (CP). LBBD solu-

tion scheme is a finite iterative algorithm, the central element of which are Benders’

cuts. It is crucial for the convergence of the algorithm to strengthen the gener-

ated Benders’ cuts. This thesis aims to improve cut generation algorithms for the

acceleration of LBBD.

The cut generation algorithms are the steps of the LBBD solution scheme

that can include cut-strengthening techniques and subproblem separation. As

the initial step, this thesis provides an extensive computational evaluation of

cut-strengthening techniques in LBBD. The evaluation also includes subproblem

separation and its influence on the effectiveness cut-strengthening techniques and

the overall acceleration of LBBD. The computational experiments solve cumulative

facility scheduling, single-facility scheduling, and vehicle routing problems, which

are representative of LBBD problems and are routinely solved with benchmark

datasets available. The results of this study indicate that cut-strengthening tech-

niques can benefit from variable sorting. Another observation from this study is

that cut-strengthening techniques and subproblem separation can be used inter-

changeably. Three heuristics based on variable sorting are proposed to improve

efficiency of cut-strengthening techniques. The main features of the proposed

heuristics are simplicity and no additional computational cost. The computational

results show that improved cut-strengthening techniques lead to reduction in over-

all solution time of the LBBD solution scheme. A novel way of separating the

subproblem is developed in this thesis. The subproblem separation is based on

the connected components algorithm and can be applied to subproblems that do

not separate naturally. The computational results solving vehicle routing problem

with local congestion show that substantial acceleration is achieved by subproblem

separation.
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This thesis shows that improvements to cut generation algorithm can signi-

ficantly accelerate LBBD. The proposed improvements can be implemented as a

part of general LBBD framework.
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Chapter 1

Introduction

Optimisation problems abound in everyday life. The practical applications of

optimisation include operational research problems like resource management,

facility location, machine scheduling, and airline planning. The applications in

science include statistics, physics, mathematics, and cryptography (Jünger et al.,

2009; Winston, 2004; Wolsey & Nemhauser, 1999). Due to the rapid development

of computational resources and increased data availability, there is high demand

for optimisation methods that can take advantage of this growth.

Although every optimisation problem requires individual attention, there are

problem-solving methods that can be developed into general solution schemes.

One class of solution schemes are decomposition methods. Decomposition

strategies take advantage of the structure of problems by separating them into

more tractable subproblems. Classical Benders’ decomposition (BD) proposed

by Benders (1962) is one of the most successful decomposition strategies. It is

generally applied to problems that become linear programs when the values of

some of the variables are fixed.

Logic-based Benders’ decomposition (LBBD) introduced by Hooker (2000)

and Hooker and Ottosson (2003) is an extension of classical BD. Both LBBD and

BD separate a given problem into a master problem and one or more subproblems.

Both BD and LBBD use cut generation algorithms to generate Benders’ cuts

and gradually reduce the solution space of the master problem. Classical BD

generates Benders’ cuts by using linear programming duals of the subproblems.

Whereas, LBBD generates Benders’ cuts by using inference duals extracted from

subproblem solutions. An inference dual can be defined for any optimisation

problem, therefore the subproblem does not need to take a specific form. When

subproblem is a linear program, the inference dual is reduced to the linear dual. In
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this light, classical BD can be seen as a special case of LBBD (Hooker & Ottosson,

2003).

The LBBD solution scheme is an algorithm that converges to optimality after

finitely many steps. In its standard form, the generated Benders’ cuts are no-

good cuts that are fully dense and only eliminate one solution from the solution

space. This leads to the slow convergence of the scheme. It is therefore crucial

to strengthen cuts to accelerate LBBD. Cut-strengthening techniques strengthen

fully dense Benders’ cuts by reducing their size and generating sparse cuts, which

attempt to eliminate multiple solutions. This thesis proposes improvements to

cut generation algorithms, including cut-strengthening techniques, to accelerate

LBBD.

1.1 Aim of thesis

LBBD is a solution scheme, which is often implemented as an iterative algorithm.

In each iteration, Benders’ cuts are generated by solving the subproblem paramet-

rised by the master problem solution. The convergence of the solution scheme

is strongly influenced by the strength of the generated Benders’ cuts. The main

interest of this thesis are cut generation algorithms. We consider such algorithms

to be the steps of the LBBD solution scheme after the master problem solution

is obtained until the generated cuts are added to the master problem. Once a

master problem solution is obtained, various cut generation algorithms can be

applied within the solution scheme to generate Benders’ cuts. The acceleration of

the solution scheme leads to the reduced overall number of iterations, reduction

in time required for each iteration, and therefore reduction in overall solution time.

The aim of this thesis is to improve cut generation algorithms in order to accelerate

the LBBD solution scheme.

As mentioned earlier, a fully dense Benders’ cut eliminating a single solution is

generated in the standard form of LBBD. However, only a subset of variables having

certain values causes the infeasibility or suboptimality of a solution. Moreover,
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there are other solutions which will also be either infeasible or suboptimal because

they contain such variable values. Eliminating all such solutions by generating a

Benders’ cut only containing a subset of variables is expected to accelerate the

solution process.

A cut generation algorithm for the LBBD solution scheme can involve ap-

plication of cut-strengthening techniques, subprolem separation, or both. Cut-

strengthening techniques studied in this thesis strengthen the cuts by identifying a

subset of variables causing infeasibility or suboptimality of the solutions. Every cut-

strengthening technique employs a different search strategy for identifying such

subset. One of the foci of this thesis is to improve cut-strengthening techniques by

introducing novel search strategies.

Subproblem separation allows generating a Benders’ cut per each separated

subproblem. Therefore, it can be used to generate multiple sparse cuts instead of

one fully dense cut. Karlsson and Rönnberg (2021) demonstrate the importance

of subproblem separation in their study on strengthening of feasibility cuts in LBBD.

However, not all subproblems separate naturally. This thesis proposes a novel way

to separate subproblems that are not inherently separable.

1.2 Overview of study

There is no restriction on the type of problem LBBD can be applied to. However,

in the literature it is mostly implemented as a hybrid method to combine mixed-

integer programming (MIP) and constraint programming (CP). The modelling

approaches and the main concepts of MIP and CP are discussed in Chapter 2. Cut-

strengthening techniques considered in this thesis are based on filtering algorithms

for identifying infeasible or irreducible infeasible subsets (IIS) of variables. A brief

overview of research on IIS and the definition of filtering algorithms are presented

in Chapter 2.

Classical Benders’ decomposition is discussed in detail in Chapter 2 to demon-
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strate the main ideas of Benders-like algorithms. The focus of this thesis and the

solution method employed throughout the work is logic-based Benders’ decom-

position, which is presented in Chapter 2.

The first step in improving cut-strengthening techniques is their evaluation. A

detailed overview of cut-strengthening techniques studied in this thesis is presen-

ted in Chapter 3. The cut-strengthening techniques presented in Chapter 3 are

the greedy algorithm, deletion filter, additive method, additive/deletion filter, and

depth-first binary search (DFBS). The LBBD solution schemes and Benders’ cuts

for three problem formulations with various objective functions are then presented

in Chapter 3. The problem formulations include cumulative facility scheduling

with fixed costs, single-facility scheduling with a segmented timeline, and vehicle

routing with local congestion.

The main contribution of Chapter 3 is the first evaluation of cut-strengthening

techniques for both feasibility and optimality Benders’ cuts. Computational ex-

periments include separate experiments for different cut generation algorithms:

applying no cut strengthening, applying cut-strengthening techniques only, ap-

plying subproblem separation only, and applying subproblem separation and

cut-strengthening techniques together. Computational results in Chapter 3 showed

that cut-strengthening techniques that generate irreducible cuts outperform the

greedy algorithm and no application of cut strengthening. The results also demon-

strate that deletion filter and DFBS have the highest computational effectiveness

for all problem types. Chapter 3 highlights that cut-strengthening techniques and

subproblem separation can be used interchangeably for the acceleration of LBBD.

Chapter 3 showed that the efficiency of cut-strengthening techniques can

be affected by the random order of the variables. An investigation into possible

variable orderings is performed in Chapter 4. Based on this investigation, Chapter 4

proposes three new heuristics for variable sorting in order to improve efficiency of

cut-strengthening techniques. As one of the best-performing techniques, the new

heuristics have been proposed for DFBS. The new heuristics are applied to solve
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the cumulative scheduling problem that minimises total tardiness, which is found

to be one of the most difficult problems in Chapter 3. The computational results in

Chapter 4 show that applying variable sorting increases the efficiency of DFBS

and leads to lower subproblem solution time, and consequently, the lower overall

solution time.

Chapter 5 proposes a novel way of subproblem separation on the example of

vehicle routing problem with local congestion, for which the standard formulation

is not inherently separable. Subproblem separation proposed in Chapter 5 is

based on the connected components algorithm. New types of Benders’ cuts for

cut generation with the separated subproblem are introduced in Chapter 5. The

results in Chapter 5 show that subproblem separation significantly accelerates the

solution scheme. Importantly, the results also show that the type of generated

Benders’ cuts affects the acceleration of LBBD.

Chapter 6 will discuss conclusions from each of the previous chapters and

detail the key contributions. The limitations of the proposed improvements are

discussed in this chapter. The conclusions will demonstrate how the improvements

to the cut generation algorithms developed in this thesis accelerate the LBBD

solution scheme.
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Chapter 2

Background

Logic-based Benders’ decomposition (LBBD) is a hybrid method that integrates

mixed-integer programming (MIP) and constraint programming (CP) in one solu-

tion scheme. Although they are different disciplines, MIP and CP share common

problem-solving strategies. The main advantage of LBBD, however, is to bring

together the relative strengths of MIP and CP. While MIP is known for its robust

models, strong relaxation techniques, and concepts of duality, constraint pro-

gramming brings powerful propagation methods, global modelling approach, and

inference.

The focus of this chapter is to introduce mathematical underpinnings that

are crucial for solving problems using LBBD. Sections 2.1.1 and 2.1.2 introduce

problem formulations and the main concepts in MIP and CP, respectively. The

problem formulations do not only demonstrate how the problem structure influences

the solution process, but they are also crucial for demonstrating the range of

practical applications. A comparison of MIP and CP approaches is presented in

Section 2.1.3. The concepts of irreducible infeasible subsets (IIS) and filtering

algorithms are presented in Section 2.1.4.

LBBD can be seen as an extension of classical Benders’ decomposition

(BD)—a widely used MIP problem-solving method. The classical BD and the

solution scheme are given in Section 2.2.1. LBBD is then formally presented in

Section 2.2.2.

In order to keep the individual chapters mostly self-contained, I will allow some

redundancies and occasionally reintroduce some of these concepts.
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2.1 Foundations

2.1.1 Mixed-integer programming

A rich variety of problems are solved as mixed-integer programs on a regular basis.

The areas of application include management of resources, logistics, planning,

portfolio analysis, network design, combinatorics, logic, data analysis, and many

other problems.

Mixed-integer programming emerged as an optimisation discipline in the late

1950’s. Markowitz and Manne (1957) and Dantzig (1957) showed benefits of

modelling practical applications as linear programming problems, with some of the

variables constrained to be integer. The term ”program” used for mathematical pro-

grams is different in meaning from computer programs. Optimisation problems are

called programs because of George Dantzig’s application of linear programming

to ”programming” (planning) in the military.

MIPs are optimisation problems of the form

min c⊺x+h⊺y,

s.t. Ax+Gy≥ b,

x ∈ Zn
+,

y ∈ Rp
+,

(2.1)

where x=(x1, . . . ,xn) and y=(y1, . . . ,yp) are the variables, and Zn
+ is a n-dimensional

vector, Rp
+ is a p-dimensional vector. Sets Zn

+ and Rp
+ are the domains of variables

x and y, respectively. The inequalities Ax+Gy≥ b are the linear constraints. An

instance of the problem is specified by vectors c ∈ Rn, h ∈ Rp, b ∈ Rm, matrices

A ∈Rn×m and G ∈Rp×m, which represent the problem data. Problem (2.1) is called

mixed-integer because of the presence of both integer and continuous variables.

The set S= {x∈Zn
+,y∈R

p
+, | Ax+Gy≥ b} is called the set of feasible solutions,

or the feasible set. An instance is said to be feasible if the feasible set S is non-
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empty. The function

z = c⊺x+h⊺y

is called the objective function. The variables, the set of constraints, and the

objective function must be defined to exactly characterize the given problem,

therefore the formulation of practical problems as MIPs is not trivial.

A feasible solution (x∗,y∗) is called an optimal solution of problem (2.1) if it

results in the smallest possible value of the objective function, that is

c⊺x∗+h⊺y∗ ≤ c⊺x+h⊺y, ∀(x,y),(x∗,y∗) ∈ S.

If (x∗,y∗) is an optimal solution, c⊺x∗+ h⊺y∗ is called the optimal value of the

problem.

If a feasible instance of MIP does not have an optimal solution, it is unbounded.

An instance is unbounded, if for any u∈R1 there is an (x,y)∈ S such that c⊺x+h⊺y<

u. The notation z =−∞ denotes an unbounded instance.

Throughout this thesis I assume that all of the data sets are rational. Using

this assumption, every feasible instance of an MIP either has an optimal solution

or is unbounded (Wolsey & Nemhauser, 1999). Thus, to solve a MIP instance

means to find an optimal solution, or to show the instance is either infeasible or

unbounded.

Many approaches for solving MIPs, including Benders’ decomposition, are

based on the fundamental concepts of relaxation and duality. A relaxation of

an optimisation problem is a problem obtained by enlarging the feasible set S

and/or decreasing the value of the objective function over S. A linear relaxation of

problem (2.1) is a linear program (LP) obtained by removing integer restrictions on

variables x.
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A general linear program is a problem of the form

min c⊺x,

s.t. Ax≥ b,

x ∈ Rn
+,

(2.2)

where A ∈ Rn×m is a matrix, and c ∈ Rn, b ∈ Rm are vectors. Theoretically and

common in practice, LPs are much easier problems to solve than MIPs, and the

theory and the solution methods for solving LPs are more developed. Generally,

LP algorithms are often used as subroutines in MIP algorithms to obtain lower

bounds on the optimal value.

Every LP is associated with another LP — its dual. The dual LP of prob-

lem (2.2), which is the primal LP, is the following problem

max u⊺b,

s.t. u⊺A≤ c,

u ∈ Rm
+.

(2.3)

The dual is formulated to find a conic combination of all constraints of the primal

LP, such that the combination is a maximal underestimator of the primal objective.

Each constraint in the primal LP corresponds to a variable in the dual LP, and each

variable in the primal LP becomes a constraint in the dual LP. One can note that

the dual of problem (2.3) is the primal LP (2.2). The relationship between the two

LPs can be described based on the following theorems.

Theorem 1 Weak duality theorem. If x∗ is a feasible solution of problem (2.2) and

u∗ is a feasible solution of problem (2.3), then

u∗⊺b≤ c⊺x∗.

By Theorem (1), if the dual problem has an unbounded optimal value, the primal
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problem is infeasible.

Theorem 2 Strong duality theorem. If problem (2.2) has a finite optimal value c⊺x∗

or problem (2.3) has a finite optimal value u∗⊺b, then both problems have a finite

optimal value and

c⊺x∗ = u∗⊺b.

Theorem (2) is considered one of the most important and influential theorems in

optimisation. By the strong duality theorem, the primal problem has a finite optimal

value if and only if the dual problem has a finite optimal value. Moreover, there are

four possibilities for the primal and dual problems:

• both problems have finite optimal values that are equal,

• the primal problem is unbounded and the dual is infeasible,

• the dual problem is unbounded and the primal is infeasible,

• both dual and primal problems are infeasible.

The duality theory is a crucial result for the classical Benders’ decomposition,

which uses the linear duality to generate Benders’ cuts. Logic-based Benders’

decomposition is based on the concept of inference duality, for which the linear

duality can be considered a special case.

2.1.2 Constraint programming

Constraint programming takes roots in the area of logic programming and artificial

intelligence. One of the early works on logic programming is by Kowalski (1974).

Kowalski (1974) introduces predicate logic as a programming language with the

idea of formalising the properties of rational human thought in man-to-machine

communication. Based on Kowalski’s work, Colmerauer et al. (1972) introduced

one of the first logic programming languages PROLOG. PROLOG has been used

for theorem proving, automated planning, and language processing.
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The constraint logic programming paradigm emerged in the works by Jaffar

and Lassez (1987), Dincbas, Simonis and Van Hentenryck (1988), and Colmerauer

(1990) when logic programming was integrated with constraint solving. Eventually,

the term constraint programming emerged. The classic sources in this area are

Marriott and Stuckey (1998), Van Hentenryck (1989), Tsang (1993). Some of the

practical applications of constraint programming include scheduling, verification,

planning, vehicle routing, and resource allocation.

A constraint program can be modelled as

min f (x),

s.t. C(x),

x ∈ Dx,

(2.4)

where x = (x1, . . . ,xn) are decision variables. Each variable x j can take a value v j

from a finite set D j, which is called the domain of x j. Dx = D1× . . .×Dn is the set

of domains of variables. C = {C1, . . . ,Cm} is the constraint set, where a constraint

Ci ∈ C is a relation Ri ⊂ Dx defined on a subset of variables. A constraint Ci is

satisfied if (v1, . . . ,vn) ∈ Ri. f : Dx 7→ R is an objective function that can take any

form.

A constraint program is feasible or satisfiable if there exists a tuple v1, . . . ,vn

that satisfies all constraints in C. If such a tuple does not exist, the program is

unsatisfiable or infeasible. If a satisfiable solution v = (v1, . . . ,vn) results in the

smallest possible value of the objective function, that is,

f (v)≤ f (x), ∀x ∈ Dx,

then v is the optimal solution and f (v) is the optimal value.

A feasibility version of problem (2.4), i.e., a version with no objective function

is called a constraint satisfaction problem (CSP). The problem is to find a solution

x ∈ Dx satisfying C(x), or to prove that no such solution exists. No distinction
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between problem-solving methods for CP and CSP is maintained in this thesis.

The main algorithm to solve constraint programs is the domain reduction

algorithm. The original problem is usually split into subproblem by variables’ do-

mains. The domains of each subproblem are then reduced until a feasible solution

is found. For each subproblem, domain reductions are inferred from constraints,

implications of one constraint are then propagated to other constraints. If a vari-

able domain is found to be empty, the corresponding subproblem is abandoned

and different subproblem is solved. CP solvers usually have a library of specific

propagators for different constraint types.

Constraints in constraint programming can be in general defined by any rela-

tion R⊂ D1× . . .×Dn. This includes linear or nonlinear equations and inequalities,

which are often referred to as arithmetic constraints. However, an important feature

of constraint programming is that it offers a variety of other constraints, referred

to as symbolic constraints (Bockmayr & Hooker, 2005). Symbolic constraints

obtained by grouping together a number of simple constraints, each involving a

number of variables, into a single constraint involving all of these variables are

called global constraints. Global constraints are a fundamental concept of con-

straint programming. All of the problems considered in this thesis feature global

constraints. The following is an example of a global scheduling constraint.

Consider the following general problem. Multiple tasks must be scheduled to

be processed on a facility, which can process jobs simultaneously. A cumulative

scheduling constraint requires the tasks to be scheduled on a facility so that the

total rate of resource consumption does not exceed a given limit at any point of

time. The constraint is written as

CUMULATIVE(x, p,r,C),

where x = (x1, . . . ,xn) is a tuple of real-valued variables representing the start

times of tasks. The parameter p = (p1, . . . , pn) is a tuple of processing times for

each task, r = (r1, . . . ,rn) are resource consumption rates of the tasks, and C is
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the resource capacity of the facility. The constraint requires that the total rate of

resource consumption of the tasks to not exceed the capacity C at any time. The

mathematical representation of the cumulative constraint is the following

∑
j∈T

r j ≤C, ∀t, T = { j|x j ≤ t ≤ x j + p j}. (2.5)

If only one task can be processed at a facility at any time, the cumulative scheduling

constraint becomes a disjunctive scheduling constraint.

Disjunctive scheduling is the problem of scheduling tasks one a single facility,

where only one task at a time can be processed. The disjunctive scheduling

constraint is written as

DISJUNCTIVE(x, p),

where x = (x1, . . . ,xn) is a tuple of real-valued variables indicating the start

times of tasks, and the parameter p = (p1, . . . , pn) is a tuple of processing times for

each task. The constraint enforces the disjunction

(xi + pi ≤ x j)∨ (x j + p j ≤ xi) (2.6)

for all i, j with i ̸= j.

This examples of global constraints show the expressive power of CP lan-

guage. Instead of defining all of the inequalities (2.5) or (2.6), a single constraint

can be defined. More importantly, a global constraint automatically invokes a

powerful solution procedure that exploits the structure of the constraint.

2.1.3 MIP and CP: comparison of approaches

Although MIP and CP are different disciplines, they solve similar problems. Both

disciplines share the idea of implicitly enumerating all potential solutions in order

to find a feasible one. This implies solving numerous subproblems. MIP and CP

approaches differ in the way they process these subproblems.
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Most of the subproblems solved in a MIP solution process are linear programs.

That allows MIP to address subproblems as a whole, and utilise LP algorithms.

Constraint programming cannot take a similar approach because individual con-

straints do not communicate with each other. The only shared data between

constraints are the variable domains. Nevertheless, using more specific con-

straints allows CP methods to obtain valuable implications during the solution

process. Since MIPs often rely on linear relaxations, they lack this kind of structure,

but strong implications can still be made by studying the polyhedral structure. Both

CP and MIP apply various inference methods to obtain these implications.

One particular form of inference, which occurs in both CP and MIP, is genera-

tion of no-goods. Both in CP and MIP, no-goods or no-good cuts are generated

when a solution of a problem is found to be infeasible or suboptimal. The no-goods

eliminate the solution from the search. No-goods are widely used in LBBD when a

solution is infeasible or suboptimal.

Generally, the difference between MIP and CP starts with the language used

at the problem formulation stage. The programming language used to formulate

MIPs is declarative. The declarative nature of the language means that the model

does not specify how it should be solved. Whereas CPs are formulated more

expressively: constraints used in problem formulations imply specific procedures

that will be used in solution. This is the main idea of constraint programming. This

comes from the computer science background of CP, where every statement is

associated with a procedure (Hooker, 2000). The more direct formulation allows

constraint programming to exploit the structure of subsets of constraints. Whereas

most MIP methods require the whole problem to exhibit a structure.

Despite the differences, MIP and CP can be used simultaneously. One of the

ways to combine MIP and CP and exploit their advantages is to use logic-based

Benders’ decomposition (LBBD). Basics of LBBD are discussed in Section 2.2.2

of this chapter.
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2.1.4 Irreducible infeasible subset and filtering algorithms

As mentioned previously, it is not trivial to model mixed-integer programs. The

same can be said about constraint programs, despite the expressive power of their

global constraints. The problem formulations in both disciplines, especially large

models, may turn out to be infeasible due to an infeasible subset of constraints.

This can occur, for example, when integrating several smaller models into a larger

one, or when modifying an existing large model. These models are referred to as

over-constrained in CP. In the remainder of this section, the term ”model” implies

both MIP and CP models, unless stated otherwise.

When a problem is infeasible, it is important to know the subset of constraints

causing infeasibility in order to proceed repairing the model. Alternatively, a

modeller can be interested in a subset of constraints that have a solution. This

information gives insight into the structure of the problem. However, obtaining

such information can be more difficult than solving the problem. This is because

analysing infeasible models requires solving numerous variations of the original

model (Guieu & Chinneck, 1999). Therefore, the search for such subsets needs to

be assisted by an efficient algorithm.

The issue of identifying infeasible subsets of constraint in LP inspired an

early work by Van Loon (1981). Van Loon (1981) introduced the term ”irreducibly

inconsistent system” and proposed a simplex-like algorithm to identify such sys-

tems in LP. However, the proposed search is undirected, and therefore it is not

computationally viable. The term introduced by van Loon was transformed into

”irreducible infeasible subset” applicable to all types of optimisation problems.

Definition 1 An infeasible subset (IS) is a subset of constraints of a problem, for

which there is no solution.

Definition 2 An infeasible subset of constraints C is said to be an irreducible

infeasible subset (IIS) if any proper subset of C is feasible.
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In other words, IIS is an IS, which becomes feasible if any of its constraints is

removed.

Van Loon’s work on identifying in LPs was followed by Gleeson and Ryan

(1990), Chinneck and Dravnieks (1991), and Greenberg and Murphy (1991). Guieu

and Chinneck (1999) then proposed filtering algorithms to identify IIS in MIPs.

Most of the cut-strengthening techniques evaluated in this thesis are based on

filtering algorithms proposed by Guieu and Chinneck (1999).

Definition 3 (Chinneck & Dravnieks, 1991) An algorithm is called filtering if it

gradually eliminates constraints (or variables) from the original set until the remain-

ing subset constitutes an irreducible infeasible subset.

The filtering algorithms in this thesis are adapted to identify an irreducible

infeasible subset of variables. An IIS of variables is defined in a similar way to an

IIS of constraints.

Definition 4 An infeasible subset of variables S is said to be an irreducible infeas-

ible subset (IIS) if any proper subset of S is feasible.

One of the filtering algorithms first proposed by Chinneck and Dravnieks

(1991), and then modified by Guieu and Chinneck (1999), is deletion filter. A

simple deletion filter for an infeasible problem is described in Algorithm 1. The

main idea of the algorithm is to iteratively remove each constraint, and check if

it belongs to an IIS. If once the constraint is removed, the remaining problem

becomes feasible, the constraint is returned to the original set. If the remaining

problem is infeasible, the constraint is permanently removed. The algorithm

guarantees to identify an IIS. Various cut-strengthening techniques based on

filtering algorithms, including the deletion filter cut-strengthening technique, are

presented in detail and evaluated in Chapter 3.

It is important to note that, all of the research on infeasibility of LPs and MIPs

inspired the studies on finding the infeasible set in CP problems and satisfiability
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Algorithm 1 The deletion filter
Input: an infeasible set of constraints
Output: a single IIS

1: for each constrain in the set do
2: Temporarily drop the constraint from the set.
3: Test the feasibility of the reduced set
4: if feasible then
5: return the dropped constraint to the set
6: else
7: drop the constraint permanently
8: end if
9: end for

(SAT) problems. Numerous methods have been proposed to identify the Minimal

Unsatisfiable Subformula/Core (MUS/MUC) in CP and SAT instances. The terms

IIS, MUS, and MUC are often used interchangeably, and the methods developed

in one discipline can be adapted to other disciplines.

2.2 Benders’ decomposition

One of the MIP problem-solving strategies that employs the concepts of duality

and relaxation is Benders’ decomposition. This section first presents the classical

Benders’ decomposition and its solution scheme. The extension of Benders’

decomposition — logic-based Benders’ decomposition is then presented.

2.2.1 Classical Benders’ decomposition

Classical Benders’ decomposition (BD) is a widely used mixed-integer program-

ming method that can be applied to exploit the problem structure of a program.

Benders’ decomposition was first proposed by Benders (1962) to solve mixed-

integer programs with a bordered block-diagonal structure. This structure can

arise from real-life applications that include facility location, network design, airline

planning, chemical process design, where the Benders’ decomposition is the best

technique to handle the large scale of the problems.
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Let us consider MIP of the form

min c⊺x+h⊺y, (2.7)

s. t. Ax≥ b, (2.8)

Bx+Gy≥ d, (2.9)

x ∈ Dx ⊆ Zn
+, (2.10)

y ∈ Dy ⊆ Rp
+, (2.11)

where variables x and y are integer and continuous variables, respectively. Vectors

c∈Rn, h∈Rp, b∈Rm, d ∈Rk and matrices A∈Rn×m, B∈Rn×k, G∈Rp×k are given.

The matrices A and B constitute a linking block, or a border. In this light, the integer

variables x can be viewed as complicating variables. The complicating variables,

when temporarily fixed, render the remaining optimisation problem comprising only

the block of variables G considerably more tractable. Constraints (2.8) only contain

variables x. Constraints (2.9) provide the link between variables x and y. The

block-diagonal structure of Constraints (2.8)–(2.9) makes problem (2.7)–(2.11)

suitable for Benders’ decomposition.

Fixing the integer variables x to the trial values x̄ in problem (2.7)–(2.11)

results in the following decomposition:

min c⊺x+ f (x),

s.t. Ax≥ b,

x ∈ Dx ⊆ Zn
+,

(2.12)

where
f (x̄) = min h⊺y,

s.t. Gy≥ d−Bx̄,

y ∈ Dy ⊆ Rp
+,

(2.13)
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is a linear program parametrised by x̄, and its dual is

max u⊺(d−Bx̄),

s.t. u⊺G≤ h,

u ∈ Rm
+.

(2.14)

Based on the strong duality theorem, we can indicate if subproblem (2.13) is

infeasible, unbounded, or has a bounded optimal value by using the solution to

the dual subproblem (2.14). The feasible region F = {u ∈ Rm
+| π⊺G≤ h} does not

depend on values of trial variables x̄. Therefore, if F is not empty, subproblem (2.14)

is either unbounded or feasible for any choice of x̄.

Let Q and E be the sets of extreme rays and extreme points of subproblem

(2.14), respectively. If subproblem (2.14) is unbounded, an extreme ray vr with

v⊺r (d−Bx̄) > 0 is obtained. The direction of ray vr must be avoided, because it

indicates infeasibility of problem (2.13). The following constraint is then added to

problem (2.12)

v⊺r (d−Bx)≤ 0, vr ∈ Q.

If subproblem (2.14) has a feasible solution, the solution is one of the extreme

points ue. The following constraint is added to problem (2.12)

u⊺e (d−Bx̄)≤ f (x̄), ue ∈ E,

to restrict the direction of suboptimality u⊺e (d−Bx̄)> f (x̄).

Problem (2.12) can be linearised using a continuous variable η ∈ R1, to give

the master problem (MP)

min
x

c⊺x+η , (2.15)

s.t. Ax≥ b, (2.16)

u⊺e (d−Bx)≤ η , e ∈ E, (2.17)

v⊺r (d−Bx)≤ 0, r ∈ Q, (2.18)
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x ∈ Dx ⊆ Zn
+. (2.19)

Constraints (2.17)–(2.18) are referred to as optimality cuts and feasibility cuts,

respectively. Since the sets Q and E are exponential in size, problem (2.15) has an

exponential number of constraints. Therefore, a natural approach is to consider a

relaxation of the problem. In this case, a relaxation is obtained by generating only

those constraints corresponding to a small number of extreme points and extreme

rays. The Benders’ decomposition algorithm, described below (see Algorithm 2) is

an algorithm based on such relaxation.

Algorithm 2 Iterative Benders’ Decomposition Algorithm
1: Initialize master problem variables x, subproblem variables y, and tolerance ε ;
2: while True do
3: Solve the master problem to obtain trial values x̄ and the LB=c⊺x̄+η∗;
4: if the master problem is infeasible then
5: stop, the original problem is infeasible;
6: end if
7: Solve the subproblem (2.13) with fixed master problem variables;
8: if (2.13) is infeasible then
9: A feasibility cut v⊺r (d−Bx)≤ 0 is added to the master problem;

10: UB← ∞;
11: else if (2.13) is feasible and f (x̄)> η∗ then
12: An optimality cut u⊺e (d−Bx)≤ η is added to the master problem;
13: UB← c⊺x̄+ f (x̄);
14: else if (2.13) is feasible and f (x̄)≤ η∗ then
15: UB← c⊺x̄+ f (x̄);
16: stop, the algorithm terminates;
17: else if |UB-LB| ≤ ε then
18: stop, the algorithm terminates;
19: end if
20: end while

The traditional implementation of BD is an iterative algorithm. The two main

steps of the algorithm are solving the master problem to obtain trial values x̄ and

solving the subproblem to generate Benders’ cuts. In each iteration of Benders’

algorithm, the master problem is first solved to obtain trial values x̄ and a lower

bound on the optimal objective value of problem (2.7)–(2.11), given by LB =

c⊺x̄+η∗. The objective function of the master problem gives a valid lower bound

on the optimal objective value of the original problem, because it is a relaxation of
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the original problem. The solution of the master problem (x̄,η∗) is then verified by

solving the subproblem (2.13), see Algorithm 2. If the solution x̄ yields a feasible

subproblem, then the sum of c⊺x̄ and the objective value of the subproblem f (x̄)

provides a valid upper bound UB= c⊺x+ f (x̄) on the original problem. If an iteration

of the algorithm does not generate a cut, or the difference between the lower and

upper bounds is within the given tolerance ε , the algorithm terminates. The optimal

solution for the original problem (2.7)–(2.11) is (x̄, ȳ(x̄)), where ȳ(x̄) is found by

solving (2.13) as input. The optimal objective value of the original problem is

c⊺x̄+ f (x̄). Note that Benders’ algorithm is an exact method that guarantees

optimality theoretically. But the optimality is not always achievable in practice.

Therefore, when the difference between upper and lower bounds becomes small

enough, it suggests that the algorithm has converged to a near-optimal solution.

The choice of tolerance depends on the problem’s characteristics, the precision

required, and the available computational resources.

The presented implementation is the most straightforward, and easy to under-

stand. This implementation is also similar to the general LBBD algorithm. However,

in practice, problems can also be solved by the alternative branch-and-cut imple-

mentation.

2.2.2 Logic-based Benders’ decomposition

One of the drawbacks of classical Benders’ decomposition is that one can not

always obtain a linear program subproblem. Logic-based Benders’ decomposition

was introduced as an extension to the classical BD method, with the advantage

of not restricting the subproblem type. Logic-based Benders decomposition was

introduced by Hooker and Yan (1995) in the context of logic circuit verification.

The idea was then formally developed by Hooker (2000), and applied to 0-1

programming by Hooker and Ottosson (2003).

Similar to the classical BD, LBBD decomposes the original problem into

master problem and one or many subproblems. Then, the subproblem (or its dual)
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is iteratively solved to generate cuts and gradually reduce the feasible set of the

master problem. However, the dual of the subproblem is not a linear dual, but

an ’inference dual’. The name comes from logic inference: the tightest bound on

the master problem is inferred from the current solution and the constraints of the

subproblem.

LBBD can be applied to problems of the form

min f (x,y),

s.t. A(x),

C(x,y),

x ∈ Dx,

y ∈ Dy,

(2.20)

where function f (x,y) can be any arbitrary mapping f : (Dx,Dy) 7→ R. Constraint

set A(x) only contains variables x, Constraints C(x,y) are the linking constraints

containing variables x and y. Fixing x to x̄ defines the subproblem

min f (x̄,y),

s.t. C(x̄,y),

y ∈ Dy.

(2.21)

The inference dual of the subproblem is

max v

s. t. C(x̄,y) P
=⇒ f (x̄,y)≥ v,

v ∈ R,

P ∈P,

(2.22)

where P is a family of proofs, and C(x̄,y) P
=⇒ f (x̄,y) ≥ v indicates that proof P

deduces bound f (x̄,y) ≥ v from C(x̄,y). The solution of the inference dual is the

proof P. An infeasible inference dual is assumed to have an optimal value of ∞.
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Therefore, the strong duality holds: the optimal value of inference dual is equal to

the optimal value of the original problem.

Although, LBBD can be applied to any kind of optimisation problem, the

original problem is often decomposed into a MIP master problem and a CP sub-

problem. This allows LBBD to integrate the two approaches. The master problem

and the subproblem are solved separately, but it is crucial for the effectiveness of

the solution scheme to establish strong communication between them through the

Benders’ cuts.

The exact implementation of LBBD varies for different problems, but the main

idea is the same. The general LBBD algorithm is as follows, see the pseudo-code

in Algorithm 3. Let v∗ be the optimal value of subproblem (2.21), and let P be

the solution of the inference dual (2.22) deducing the bound f (x̄,y)≥ v∗ for x̄. By

applying the same logical deductions that are used to obtain the bound v∗, it is

possible to deduce valid bounds for values of x other than x̄. The bound v∗ can be

expressed through a bounding function Bx̄(x), in particular Bx̄(x̄) = v∗. We denote

the objective value of problem (2.20) by z. A Benders’ cut z ≥ Bx̄(x) is derived

by identifying a bound that proof P∗ yields for a given x. The cut is added to the

master problem, which in iteration k of LBBD algorithm takes the form

min z,

s.t. A(x),

z≥ Bxi(x), i = 1, . . . ,k−1,

x ∈ Dx,

(2.23)

where xi, i = 1, . . . ,k−1 are previously obtained trial values of x. In each iteration,

the optimal value z∗ of the master problem provides a lower bound on the optimal

value of the original problem (2.20), and the optimal value v∗k of the subproblem

provides an upper bound. The optimal values z∗ increase monotonically, while

the subproblem values v∗k can increase or decrease. The algorithm terminates

when the optimal value of the master problem equals to the optimal value of the
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subproblem. Specifically, it terminates when z∗ = min{v∗i | i = 1, . . . ,k}, or when the

problem is infeasible with z∗ = ∞.

Algorithm 3 Logic-Based Benders’ Decomposition Algorithm
1: Initialize master problem variables x, subproblem variables y, and vmin
2: while True do
3: Solve the master problem to obtain trial values xk and the optimal value z∗;
4: if the master problem is infeasible then
5: stop, the original problem is infeasible;
6: end if
7: Solve the subproblem (2.21) with fixed master problem variables
8: if (2.21) is unbounded then
9: stop, the original problem is unbounded;

10: end if
11: let vk be the optimal value of (2.21), where vk = ∞ if (2.21) is infeasible;
12: generate a Benders cut z≥ Bxk(x) such that Bxk(xk) = vk;
13: if vk < ∞ then
14: let yk be the optimal solution of (2.21);
15: if vk < vmin then
16: vmin← vk, ybest ← yk

17: end if
18: end if
19: if z∗ = vmin then
20: stop, the algorithm terminates
21: end if
22: end while

The practical implementation of LBBD depends on the inference method used

to prove optimality when solving the subproblem. Compared to classical BD, there

is no standard way of generating cuts within LBBD. The cuts must be tailored for the

given problem, which allows LBBD to exploit the structure of the problem. When

the subproblem (2.21) is a linear programming problem, the inference method is

the nonnegative linear combination of inequalities, and the inference dual is the

linear programming dual. In this light, classical Benders’ decomposition can be

viewed as a special case of logic-based Benders’ decomposition.

2.3 Summary

LBBD is a solution method that integrates mixed-integer programming and con-

straint programming. The two approaches differ in the problem formulation lan-
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guages, in the solution methods and procedures, and to a certain extent practical

applications. However, both MIP and CP share the idea of implicitly enumerating

the possible solutions. The concept of irreducible infeasible subsets is also an

important overlap between the disciplines. Identifying IS or IIS of variables is the

main idea of cut-strengthening techniques in LBBD. The computational evaluation

of these techniques is given in Chapter 3.

While Benders’ decomposition can be a powerful solution method, it is limited

due to the restricted type of the subproblem. LBBD extends the classical Benders’

decomposition by extending the concept of linear duality to inference duality. This

allows LBBD to be applied to any kind of optimisation problem. All of the problems

studied in Chapters 3, 4, and 5 are solved by applying LBBD.
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Chapter 3

Computational evaluation of
cut-strengthening techniques in
Logic-Based Benders’
decomposition

3.1 Introduction

Logic-based Benders’ decomposition (LBBD) is a generalisation of classical Bend-

ers’ decomposition. Removing the requirement of linear programming subproblems

in classical Benders’ decomposition, LBBD extends this popular mathematical

programming approach to be applied to problems where the subproblem is an

optimisation problem of any form. First proposed by Hooker and Ottosson (2003),

LBBD handles this generalisation by making use of logical deductions from sub-

problem solutions to generate Benders’ cuts. This is particularly useful when

integrating mathematical optimisation and constraint programming. Logical deduc-

tions from solving a constraint program can be used to generate cuts in the form of

no-good inequalities for addition to a mathematical optimisation problem. While no-

good inequalities are general in their application, they are typically weak—causing

slow convergence of the LBBD scheme. Numerous cut-strengthening techniques

have been proposed to address this limitation of the LBBD scheme (Coban &

Hooker, 2013; Hooker, 2007; Lam et al., 2020). However, no systematic investiga-

tion into the effectiveness of cut-strengthening techniques for both feasibility and

optimality no-good Benders’ cuts has previously been performed.

The computational effectiveness of the LBBD is strongly dependent on the

cuts generated during the search procedure. The number of cuts and their quality
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has an impact on the solution times for the master problem and the number of

LBBD iterations (Ciré, Çoban & Hooker, 2016). Numerous works have shown that

the use of cut-strengthening techniques significantly improves the computational

effectiveness of the LBBD scheme. A systematic analysis performed by Karlsson

and Rönnberg (2021)—covering a selection of cut-strengthening techniques and

application areas—highlighted the computational benefits to the LBBD scheme

when applying cut strengthening to feasibility cuts. An important result from

Karlsson and Rönnberg (2021) is that there is no single best technique for all

problem types. However, the greedy cut-strengthening approach was typically

outperformed by most of the other considered techniques.

This chapter aims to act as the first step in improving cut-strengthening

techniques. To this end, the main contributions are:

• An in-depth discussion and evaluation of cut-strengthening techniques ap-

plied to both feasibility and optimality cuts.

• An investigation into the computational effectiveness of five cut-strengthening

techniques commonly used to enhance the LBBD scheme. In particular, the

greedy algorithm, deletion filter, additive method, additive/deletion filter, and

the depth-first binary search will be evaluated.

• Detailed computational experiments covering three different problem types—

cumulative facility scheduling with fixed costs, single-facility scheduling with

a segmented timeline, and vehicle routing with location congestion—will

provide a broad overview of the cut-strengthening techniques. These prob-

lems can be naturally decomposed using LBBD, and they are routinely solved

in the LBBD literature (see Table 3.1).

• The first systematic investigation into how the efficacy of cut-strengthening

techniques is strongly correlated to the problem type.

• The code related to the LBBD schemes for each of the problem types and
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the cut-strengthening techniques is freely available.

This chapter is structured as follows: An overview of the literature related

to the strengthening of feasibility and optimality cuts in LBBD will be presented

in Section 3.2. Section 3.3 presents a brief introduction to LBBD and describes

the cut-strengthening techniques investigated and evaluated in this paper. The

problem types under investigation will be presented in Section 3.4. In addition

to no-good optimality cuts, Analytic Benders’ cuts are also generated for the

considered problem types. A brief derivation of the Analytic Benders’ cuts is

presented in Section 3.5. The main contributions of this chapter are the results

from computational experiments. Section 3.6 demonstrates the effectiveness of

the cut-strengthening techniques by evaluating the solution run times and the

average size of the generated cuts. Finally, concluding comments are given in

Section 3.7.

3.2 Literature background

Cut strengthening is one of the most common acceleration techniques for Benders-

like algorithms (Rahmaniani et al., 2017). The benefit of applying cut strength-

ening in an LBBD scheme has been demonstrated in works by Karlsson and

Rönnberg (2021), Karlsson and Rönnberg (2022), Lam et al. (2020), Lindh, Ols-

son and Rönnberg (2022), Hooker (2007) and Hooker (2019), Riedler and Raidl

(2018), Benini et al. (2008), Sadykov (2008). The literature shows that applying

cut strengthening reduces the computational time of the solution process.

Both feasibility and optimality cuts can be generated in an LBBD scheme.

Strengthening feasibility cuts in the context of LBBD can be described as finding a

subset of master variables that cause infeasibility of the subproblem in the current

solution. Strengthening optimality cuts within LBBD means finding a subset of

variables that contribute to the optimal value of the subproblem.

A greedy approach to strengthen feasibility cuts is used by Hooker (2007), Ben-
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ini et al. (2008), and Coban and Hooker (2013). Hooker (2007) solves a cumulative

facility scheduling problem, where the master problem assigns jobs to facilities

and the subproblem schedules them. A single facility scheduling problem with a

segmented timeline is solved in the work by Coban and Hooker (2013), where the

master problem assigns jobs to time segments and the subproblem schedules

them. This chapter evaluates the greedy algorithm, solving both problems from

works by Coban and Hooker (2013) and Hooker (2007) for different objective types.

While fast and easy to implement, computational experiments in this chapter will

show that the greedy approach is often outperformed by other cut-strengthening

techniques.

Riedler and Raidl (2018) and Lam et al. (2020) apply a cut-strengthening

algorithm that has the same structure as a deletion filter. Riedler and Raidl (2018)

solve a selective dial-a-ride problem and suggest using the cut-strengthening

algorithm twice, the second time in reverse order, in an effort to increase chances

of obtaining a strengthened feasibility cut of smaller cardinality. Lam et al. (2020)

present results from applying the deletion filter algorithm to strengthen feasibility

cuts to a range of problems, including planning and scheduling, vehicle routing

with location congestion, and facility location. The vehicle routing with location

congestion problem is used for the computational study in this chapter, where it is

shown that deletion filter is one of the best-performing techniques.

Lindh, Olsson and Rönnberg (2022) apply cut strengthening in their LBBD

scheme to solve a short-term scheduling problem for a mining application. The

paper presents two algorithms for finding irreducible feasibility cuts and both of

them rely on first using a greedy strategy for finding a strengthened cut, and

thereafter applying a deletion filter to obtain an irreducible cut. In the first algorithm,

the greedy strategy is inspired by an additive/deletion filter. In the second algorithm,

the greedy strategy is problem-specific and designed to quickly find a rather strong

cut that can then be further strengthened.

Karlsson and Rönnberg (2022) use the depth-first binary search (DFBS) to
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strengthen feasibility cuts. The authors propose a new acceleration technique

for an LBBD scheme to solve an avionic scheduling problem. The acceleration

technique extends the use of DFBS to aid the heuristic search for feasible solutions.

The output of the cut-strengthening technique is an irreducible cut containing the

variables that cause infeasibility. This information is used to select the subsets

of variables that were not included in the strengthened cut and can be part of a

feasible solution. The computational evaluation in this thesis demonstrates that

the DFBS algorithm is one of the best-performing cut-strengthening algorithms.

Cambazard et al. (2004) use the iterative conflict detection algorithm QUICK-

XPLAIN (Junker, 2001) to strengthen feasibility cuts. QUICKXPLAIN first identifies

an irreducible set of constraints, from which the set of variables needed to form a

no-good cut is extracted. QUICKXPLAIN has limited use when the infeasibility of the

subproblem is caused by a global constraint. If a global constraint is in the obtained

irreducible set of the constraints, all variables connected to a global constraint are

included in the no-good cut, making the strengthened cut less effective.

Sadykov (2008) proposes a branch-and-bound-type algorithm to strengthen

no-good cuts. The proposed algorithm is a modified version of the Carlier al-

gorithm (Carlier, 1982). The algorithm is implemented within a hybrid branch-and-

check (Thorsteinsson, 2001) scheme to solve a scheduling problem to minimise

the weighted number of late jobs on a single machine. The limitation of the modi-

fied Carlier algorithm is that the feasibility checks used by the algorithm are only

valid for the single-machine scheduling problem. The study in this chapter is

focused on general cut-strengthening techniques, therefore the modified Carlier

algorithm is not within the scope of this thesis.

In the conference paper (Karlsson & Rönnberg, 2021), Karlsson and Rönnberg

evaluate various cut-strengthening techniques on feasibility cuts within an LBBD

scheme. The authors provide computational results based on three different prob-

lem formulations, including cumulative facility scheduling with fixed costs, single

machine scheduling with sequence-dependent setup times and multiple time win-
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dows, and vehicle routing with location congestion. The DFBS, deletion filter, and

the greedy algorithms are evaluated. The computational results, based on over

2000 instances, show that applying the DFBS algorithm and the deletion filter

algorithm achieves the best computational time for the chosen applications. This

chapter extends the contribution in (Karlsson & Rönnberg, 2021) by including the

strengthening of optimality cuts and considering additional problem formulations.

The table summarising the literature review is provided in Table 3.1.

3.3 Logic-based Benders’ scheme and cut strength-

ening

The cut-strengthening techniques evaluated in this thesis can be applied to a

variety of LBBD schemes. To facilitate the general discussion of cut-strengthening

techniques a generic problem formulation and decision scheme are presented.

Further, this formulation will be used in the mathematical description of applications,

highlighting the general nature of the evaluated approaches.

3.3.1 Logic-based Benders’ decomposition

LBBD can be applied to problems of the form

[P] min f (x,y),

s. t. A(x),

H(y),

C(x,y),

x ∈ Dx,

y ∈ Dy.

(3.1)

The feasible set of the problem is given by constraint sets A(x), H(y), and C(x,y)

and the domains of the variables x and y, given by Dx and Dy, respectively. An

important characteristic of problem (3.1) is that upon fixing the values of x, the
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remaining problem, which is only with respect to y, becomes ‘easy’ to solve. The

resulting problem, denoted by [SP(x̄)], is termed the subproblem, where x̄ is a

fixed solution for x.

The subproblem takes the form

[SP(x̄)] min f (x̄,y),

s. t. C(x̄,y),

H(y),

y ∈ Dy.

To obtain a bound on f (x̄,y) an inference dual of the subproblem is defined

and solved. The inference dual is the problem of obtaining the tightest possible

lower bound on f (x̄,y) from C(x̄,y),H(y), and Dy:

max v

s. t.

C(x̄,y),

H(y),

y ∈ Dy,


P

=⇒ f (x̄,y)≥ v,

v ∈ R,

P ∈P,

where A P
=⇒ B means that proof P deduces B from A, and P is a family of proofs.

The solution of the dual is a proof P, that gives the tightest possible bound v̄ on

f (x,y) when x = x̄, for details see (Hooker, 2007). Since there are no restrictions on

the type of the constraints C(x,y) and H(y), and the function f (x,y), the inference

dual can be obtained for any kind of optimisation problem. When the function

f (x,y) is restricted to depend only on the variables x, the objective function f (x̄,y)

of the subproblem [SP(x̄)] becomes a constant, making the subproblem a feasibility

problem. When function f (x,y) depends on both variables x and y, the subproblem

is an optimisation problem.
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A lower bound on f (x,y) can be provided by a bounding function Bx̄(x), that is

defined using a proof P. The main idea of LBBD is to apply the reasoning used

for obtaining the value v̄ to deduce the bounding function Bx̄(x) on f (x,y) for any

values of x. The subscript x̄ indicates the solution used to obtain the bounding

function. The bounding function Bx̄(x) has two properties (Hooker, 2007):

Property 1 Bx̄(x) provides a valid lower bound on f (x,y) for any given x ∈Dx. That

is, f (x,y)≥ Bx̄(x) for any feasible (x,y) in problem (3.1).

Property 2 Bx̄(x̄) = v̄.

It is convenient to regard v̄ as an infinite value if the subproblem [SP(x̄)] is

infeasible. Using this assumption, a strong duality property holds for the dual:

the optimal value of the subproblem is always equal to the optimal value of its

inference dual (Hooker & Ottosson, 2003).

3.3.1.1 Solution procedure

The solution procedure iterates between solving the master problem and the

subproblem. The master problem is solved to obtain trial values of x, and the

subproblem is solved to give feedback in the form of cuts. Let z∗ and v̄k be the

optimal objective values of the master problem and the subproblem, respectively,

in iteration k. In any iteration of the solution procedure, z∗ provides a lower bound

on the objective value of (3.1), and v̄ = min{v̄1, ..., v̄k−1} provides an upper bound.

The value of z∗ increases monotonically for each iteration, while values v̄k can

increase or decrease. The algorithm repeats until z∗ is equal to v̄.
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The master problem in iteration k of the solution procedure is

[MPk] min z,

s. t. A(x),

z≥ Bxi(x), i = 1, ...,k−1,

[Valid inequalities],

x ∈ Dx,

z ∈ R,

where x1, ...,xk−1 are the solutions of the master problems in iterations 1, ...,k−1.

The inequalities z ≥ Bxi(x) are Benders’ cuts added to the master problem in

iterations i = 1, ...,k−1. The inclusion of [Valid inequalities] in [MPk] highlights that

it may be possible to strengthen the master problem with appropriate inequalities.

In the applications considered in this chapter, the [Valid inequalities] include

relaxations of constraints present in the subproblems, but also auxiliary variables

and constraints.

3.3.1.2 Problem structure

The cut-strengthening techniques investigated in this thesis assume a problem

structure where (i) the master problem variables are binary and (ii) only the

variable values x j = 1, j ∈J = { j|x j = 1} enforce constraints C(x,y) on variables

y. Constraints C(x,y) then take the form

x j = 1→C j(y), j ∈J ,

meaning that a value x j = 1 enforces constraints C j(y) on variables y. This allows

to obtain a relaxation of the subproblem by changing the value of an x j to 0.

Therefore, the constraints facilitate cut-strengthening techniques based on the

evaluation of subproblem relaxations obtained by iteratively changing variable

values x j = 1, j ∈J = { j|x j = 1} to x j = 0. When constraints C j(y) are connected

through master variables only, the subproblem can be separated.
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To simplify notation, we use the objective function formulation given by

f (x,y) = h(x)+ v(y).

The formulation allows to separate the objective functions of the master problem

and the subproblem.

3.3.1.3 Cut generation

Let xk be the master problem solution in iteration k. Based on the subproblem

solution, Benders’ cuts are generated for both infeasible and feasible subproblems.

If the subproblem is infeasible, the assignment xk is eliminated by the following

disjunction:

∨ j∈J (xk)x
k
j ̸= 1.

This disjunction can be formulated as a Benders’ feasibility cut in the form of a

linear inequality, also commonly referred to as a no-good cut

∑
j∈J (xk)

(1− x j)≥ 1, (3.2)

where J (xk) is a subset of J , such that J (xk) = { j ∈J |xk
j = 1}.

If the subproblem has an optimal solution, the optimality cuts, referred to as

value cuts, can also be formulated analogous to no-good cuts. Let v∗= h(xk)+v(y∗),

be the optimal value of the subproblem in iteration k, where y∗ is the optimal solution

to the subproblem for xk. Then, a value cut z≥ Bxk(x) must bound f (x,y) for any

solution x by the value Bxk(xk) = v∗. The no-good formulation of this cut is given by

z≥ v∗
(

1− ∑
j∈J (xk)

(1− x j)
)
. (3.3)

The right-hand side of the inequality (3) is a bounding function Bxk(x). The func-

tion Bxk(x) satisfies Property 1 because for any feasible solution (x,y) it provides a

valid lower bound on f (x,y) (Hooker, 2007; Hooker & Ottosson, 2003). The lower
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bound is valid only because the optimal solution f (x,y) is positive. The function

Bxk(x) satisfies Property 2 because Bxk(xk) = v∗. Any feasible solution (x,y) of the

problem then satisfies f (x,y) ≥ Bxk(x). The inequality (3) provides the tightest

bound when all the values of x j for j ∈J (xk) are equal to 1.

3.3.1.4 Subproblem separation

Subproblem separation is a common strategy used to accelerate the LBBD scheme.

Separation is possible when problem exhibits a bordered block diagonal structure,

such that the master variables define the border. Fixing variables x to trial values

makes blocks separable. The subproblem [SP(xk)] then decouples into a separate

problem [SPi(xk)] for each such block i:

[SPi(xk)] min f (xk,y),

s. t. C j(y), { j ∈Ji|x ji = 1},

y ∈ Dy.

Solving subproblem i generates cuts that only include variables from Ji. It has

been highlighted in (Karlsson & Rönnberg, 2021) and (Ciré, Çoban & Hooker,

2016) that separating the subproblem significantly improves the runtime of the

LBBD scheme. Not all of the problems considered in this chapter are separable.

3.3.2 Cut-strengthening techniques

The cut-strengthening algorithms presented in this section attempt to strengthen

feasibility and optimality cuts by reducing the number of variables included in the

corresponding constraint. The main idea behind all of the algorithms is to find

a subset of J (x̄), denoted by J (x̂), where the corresponding variables induce

a subproblem with an optimal objective equal to v̄. The set J (x̂) is identified

by systematically solving subproblem [SP(x̄)] with trial values corresponding to

different subsets of J (x̄). Different trial values lead to different relaxations of

subproblem [SP(x̄)]. The problem structure described in Section 3.3.1 allows to

obtain a relaxation of the subproblem by changing trial values of decision variables
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to 0. Since setting variables to zero obtains a relaxation of the subproblem, the

objective value of the subproblem is expected to decrease (in case of feasibility

subproblems, the feasible region is expected to increase). The choice of trial

values depends on the cut-strengthening algorithm.

Cut-strengthening techniques can be divided into two groups by the types of

the cuts that they provide, irreducible or not. The cuts are categorised using the

following definition (Karlsson & Rönnberg, 2021).

Definition 5 Let v̄ be the optimal value of subproblem [SP(x̄)]. A subset J (x̂) of

J (x̄) is irreducible if subproblem [SP(x̂)] has an optimal value v̂, such that v̂ = v̄,

and if for each x̃ such that J (x̃)⊂J (x̂), it holds that [SP(x̃)] has an optimal value

ṽ < v̂.

Note that there can be multiple sets J (x̂) meeting the irreducibility criteria,

and the sets often share overlapping subsets J (x̃). Hence, the number of

variables in an irreducible cut does not need to be of smallest cardinality, and it

is typically possible to derive more than one irreducible cut from a single master

problem solution.

In the following, we present the greedy algorithm, deletion filter, additive

method, additive/deletion filter, and the DFBS cut-strengthening algorithms. The

deletion filter, additive method, additive/deletion filter, and the DFBS algorithm will

ensure that the strengthened cut is irreducible, while the greedy algorithm will not.

The cut-strengthening algorithms are described for the strengthening of value cuts.

The same search principle can be applied to strengthening feasibility cuts. The

special case of feasibility cuts is treated in (Karlsson & Rönnberg, 2021).

Note that most cut-strengthening algorithms can be tailored to a specific

problem by specifying the order in which the variables (x̄ j) j∈J (x̄) get selected to

form subsets. To maintain generality in this study,this possibility is not exploited

and a random order is used.
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3.3.2.1 Greedy algorithm

The greedy algorithm searches for a subset of variables by evaluating a single

index at a time until the objective value of the relaxed subproblem becomes less

than v̄, and the search stops. An index j ∈J (x̄) is selected in each iteration, and

the assignment x̄ j = 0 is made, for the indices that have not been selected the

assignments remain equal to 1. The subproblem is then solved. If the optimal

objective value of the relaxed subproblem is equal to v̄, the assignment x̄ j = 0

becomes permanent, and the next iteration is performed. Otherwise, if the optimal

objective value is less than v̄, the value of x j is restored to 1 and the greedy

algorithm terminates. Thereafter, the resulting cut is returned. The resulting cut is

not guaranteed to be irreducible since the algorithm does not evaluate all of the

indices. The pseudo-code for the greedy algorithm is given in Algorithm 4.

Algorithm 4 The greedy cut-strengthening algorithm
Input: A set J (x̄)
Output: A subset J (x̂)

1: let vk be the optimal value of [SP(x̄)], where vk = ∞ if [SP(x̄)] is infeasible
2: while True do
3: Select an index j ∈J (x̄)
4: x̄ j← 0
5: let v′k be the new optimal value of [SP(x̄)]
6: if v′k ̸= vk then
7: x̄ j← 1
8: J (x̂) = { j ∈J (x̄)|x̄ j = 1}
9: return J (x̂)

10: end if
11: end while

3.3.2.2 Deletion filter

The deletion filter is a cut-strengthening algorithm that returns an irreducible

cut. The algorithm is based on the deletion filter for finding an IIS in linear

programs (Chinneck & Dravnieks, 1991). There is one iteration for each j ∈J (x̄)

where the subproblem with the assignment x̄ j = 0 is evaluated. If the optimal value

of the subproblem is equal to v̄, the assignment x̄ j = 0 is made permanent in the

remaining iterations and in the final subset. If the optimal value of the subproblem
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is not equal to v̄, the assignment is permanently changed to x̄ j = 1, both in the

remaining iterations and in the final subset. Since there can be more than one

irreducible subset, the order in which the assignments are evaluated determines

the resulting subset (Chinneck & Dravnieks, 1991). Note that the deletion filter is

the only cut-strengthening technique that is guaranteed to evaluate a subproblem

relaxation for each j ∈J . A pseudo-code for the deletion filter algorithm that finds

an irreducible value cut is given in Algorithm 5.

Algorithm 5 The deletion filter algorithm
Input: A set J (x̄)
Output: An irreducible subset J (x̂)

1: let vk be the optimal value of [SP(x̄)], where vk = ∞ if [SP(x̄)] is infeasible
2: for j ∈J (x̄) do
3: x̄ j← 0
4: let v′k be the new optimal value of [SP(x̄)]
5: if v′k ̸= vk then
6: x̄ j← 1
7: end if
8: end for
9: J (x̂) = { j ∈J (x̄)|x j = 1}

10: return J (x̂)

3.3.2.3 Additive method

The additive method was introduced for detecting IIS in linear programming

by Tamiz, Mardle and Jones (1996). Chinneck (1997) provided a simplified version

of the algorithm that can be applied to a general set of constraints.

The search starts with three sets. An empty set I is introduced to store

variables that are identified to belong to an IIS. An initially empty set T is a test

set that comprises the set I and the candidate variables in each iteration. The

set S is equal to the set of all variables at the start of the search. Then, in each

iteration, one variable x̄ j = 1, j ∈ S is added to the set T and subproblem [SP(T )] is

evaluated, where [SP(T )] is a subproblem relaxation corresponding to assignments

x̄ j = 1, j ∈ T . If the optimal value of subproblem is less than v̄, the variable is

added to the set T and the next iteration starts. Otherwise, the variable is added to

the set I and removed from the set S. Subproblem [SP(I)] is then evaluated. If the
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optimal value of subproblem [SP(I)] is equal to v̄, the search terminates with an

irreducible subset of variables I, otherwise, the next iteration starts with T equal to

the set I. A pseudo-code for the additive method that finds an irreducible value cut

is given in Algorithm 6.

Algorithm 6 The additive method algorithm
Input: A set J (x̄)
Output: An irreducible subset J (x̂)

1: S←J (x̄);T ←∅; I←∅
2: let vk be the optimal value of [SP(x̄)], where vk = ∞ if [SP(x̄)] is infeasible
3: x̄ j← 0, j ∈ S
4: x′j← 0, j ∈ S
5: while True do
6: for j ∈ S do
7: T ← T ∪ j
8: x̄i← 1, i ∈ T
9: let v′k be the new optimal value of [SP(x̄)]

10: if v′k = vk then
11: I← I∪ j
12: S← S\ j
13: T ← I
14: x′i← 1, i ∈ I
15: let v′k be the optimal value of [SP(x′)]
16: if v′k = vk then
17: J (x̂)=I
18: return J (x̂)
19: end if
20: end if
21: end for
22: end while

3.3.2.4 Additive/Deletion filter

The additive/deletion filter is a hybrid method based on an additive method and a

deletion filter. The algorithm returns an irreducible cut. The additive/deletion filter

can be considered as a way of removing a large set of assignments before applying

a deletion filter. The first step of the additive part of the algorithm is to make the

assignment x̄ j = 0 for all j ∈J (x̄). Then, in each iteration, the assignment x̄ j = 1

is made for one index j until the optimal value of the subproblem is equal to v̄.

Thus, some of the assignments not contributing to the optimal value are removed.

The resulting subset is denoted as x̄′. The deletion filter is then applied to x̄′. A
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pseudo-code for the additive/deletion algorithm is presented in Algorithm 7.

Algorithm 7 The additive/deletion algorithm
Input: A set J (x̄)
Output: An irreducible subset J (x̂)

1: let vk be the optimal value of [SP(x̄)], where vk = ∞ if [SP(x̄)] is infeasible
2: let x̄ j← 0, j ∈J
3: for j ∈J (x̄) do
4: x̄ j← 1
5: let v′k be the new optimal value of [SP(x̄)]
6: if v′k = vk then
7: J (x̄′) = { j ∈J (x̄)|x j = 1}
8: return (Deletion filter (J (x̄′))
9: end if

10: end for

3.3.2.5 Depth-first binary search (DFBS)

The DFBS cut-strengthening algorithm is similar to the deletion filter algorithm, but

instead of evaluating only a single index at a time, subsets of indices are evaluated.

The output from the search is an irreducible subset of variables I that defines

an irreducible cut. The search starts with the set I being empty. Let vk be the

optimal value of the subproblem in iteration k. The set of variables that are the

current candidates for being included in I is denoted by T and initially T = J (x̄).

The variables that are not among the current candidates are stored in an auxiliary

set S. Initially S is an empty set. In each iteration, the goal is to identify a single

index to add to set I by reducing set T until it contains only one index. Set T is split

into sets T1 and T2 in each iteration. The algorithm then evaluates [SP(T1∪ I∪S)],

if the optimal value is equal to the original value, the indices that belong to set T2

are not considered in the subsequent iterations and the update T = T1 is made.

Otherwise, T is set to be equal T2, S stores T1. Whenever an index is added to I,

[SP(I)] is evaluated and if the optimal value of [SP(I)] is equal to vk the algorithm

terminates. Otherwise, the next iteration is performed.

The final subset is guaranteed to be irreducible. By exploring a subset of

variables at a time there is a possibility to decrease the number of subproblems

that need to be solved. Note that the way T is split into two subsets is not specified
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by the algorithm. Defining the strategy of splitting the set can influence the practical

performance of the algorithm. The pseudo-code for DFBS is given in Algorithm 8

and it is based on the presentation in (Atlihan & Schrage, 2008) for finding an IIS

for a mathematical program. This type of algorithm is one of the components of

the infeasibility analyser QUICKXPLAIN, described in (Junker, 2004), and is used

to strengthen cuts in (Cambazard et al., 2004).

Algorithm 8 The DFBS cut-strengthening algorithm
Input: A set J (x̄)
Output: An irreducible subset J (x̂)

1: T ←J (x̄);S←∅; x̄ j← 0, j ∈J (x̄)
2: let vk be the optimal value of [SP(x̄)], where vk = ∞ if [SP(x̄)] is infeasible
3: while True do
4: if |T | ≤ 1 then
5: I← I +T
6: x̄ j← 1, j ∈ I
7: let v′k be the new optimal value of [SP(x̄)]
8: if v′k = vk then
9: J (x̂) = I

10: return J (x̂)
11: end if
12: T ← S;S←∅
13: if |T | ≥ 2 then go to Line 4
14: end if
15: T2← T ;T1←∅
16: else
17: Split T into T1 and T2
18: end if
19: x̄ j← 1, j ∈ S∪T1∪ I
20: let v′k be the new optimal value of [SP(x̄)]
21: if v′k = vk then
22: T ← T1
23: else
24: S← S+T1; T ← T2
25: end if
26: x̄ j← 0, j ∈J (x̄)
27: end while

Example 1 The example presented in Figure 3.1 illustrates DFBS applied to

the set J = {1,2,3,4,5,6,7,8}. Let v be the objective value of [SP(J )]. Set

T is initially equal to J , and sets S and I are empty. Set T is randomly split

into T1 = {3,4,5,6} and T2 = {1,2,7,8}. First, we evaluate the objective value v′

of [SP(T1 ∪ I ∪ S)]. Since v′ is equal to the original objective v, set T1 is stored
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as the new set T and set T2 is not considered in the following iterations. Next,

T = {3,4,5,6} is again randomly split into T1 = {3,4} and T2 = {5,6}. The objective

value v′ of [SP(T1∪ I∪S)] is not equal to v, therefore set T1 is stored as set S, and

set T2 is the new set T . Next, set T = {5,6} is split into T1 = {5} and T2 = {6}. The

objective value of [SP(T1∪ I∪S)] = [SP(3,4,5)] is equal to v, therefore T1 is stored

as a new set T = {5}. In the following iteration, since T = only contains a single

index, the index is permanently added to I = {5}. The objective value of [SP(I)] is

not equal to v, hence the search continues. The values of S = {3,4} are first stored

in T , then set S is emptied. Set T = {3,4} is then split into T1{3} and T2 = {4},

and the objective value of [SP(T1∪ I∪S)] is evaluated and is equal to v. Therefore,

set T now stores T1 = {3}. In the next iteration, set T containing a single index is

permanently added to I. The objective value of [SP(I)] = [SP({3,5})] is equal to v,

hence the irreducible subset is found. The search is complete with I = {3,5}.

i=1: 3 4 5 6 1 2 7 8 v′ = v
i=2: 3 4 5 6 1 2 7 8 v′ ̸= v
i=3: 3 4 5 6 1 2 7 8 v′ = v
i=4: 3 4 5 6 1 2 7 8 v′ = v
i=5: 3 4 5 6 1 2 7 8 v′ = v

Figure 3.1: DFBS example: T1= ■, T2=■, S=■, I=■

3.4 Problems and modelling

The cut-strengthening techniques are evaluated using problems arising from

manufacturing and supply chain management contexts. Specifically, we consider

the cumulative facility scheduling, single facility (disjunctive) scheduling, and

vehicle routing problems. An important feature of these problems is that they can

be separated into assignment and scheduling components. LBBD is well suited for

these kinds of problems since the assignment problem, which is routinely solved as

a MIP, forms the master problem, and the scheduling problem, which is particularly

amenable to CP, forms the subproblem.
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3.4.1 Cumulative facility scheduling with fixed costs

An LBBD scheme for cumulative facility scheduling with fixed costs was introduced

in (Hooker, 2007). The problem is to first allocate a set of jobs J = {1, ...,n} to

a set of facilities F where the jobs are then scheduled for processing. Each job

j ∈J is assigned to exactly one facility f ∈F . It takes processing time p j f to

finish job j at facility f and uses resources at the rate c j f . The scheduled jobs

can run simultaneously within one facility, but their total resource consumption at

facility f cannot exceed capacity C f at any time. Each job can only be scheduled

to start after its release time r j and the job must be finished before its deadline d j.

Let the variable x j f take the value 1 if job j is assigned to facility f , and 0

otherwise. Let y j f be the start time of job j at facility f . The cumulative facility

scheduling problem, in the form of problem (3.1), is given by

min h(x)+ v(y), (3.4)

s. t. ∑
f∈F

x j f = 1, j ∈J , (3.5)

CUMULATIVE((y j f | j ∈J ),(p j f | j ∈J ),(c j f | j ∈J ),C f ), f ∈F , (3.6)

x j f → r j ≤ y j f ≤ d j− p j f , j ∈J , f ∈F , (3.7)

x j f ∈ {0,1}, j ∈J , f ∈F , (3.8)

y j f ∈ [r j,d j], j ∈J , f ∈F . (3.9)

Constraints (3.5), corresponding to A(x) in problem (3.1), ensure that each job

is assigned to exactly one facility. Constraints (3.6) correspond to H(y) and

Constraints (3.7) correspond to C(x,y). Constraints (3.6) control the resource

consumption and Constraints (3.7) ensure that the jobs are processed within a

specified time window (see the definition in Section 2.1.2). The domain Dx is given

by Constraints (3.8) and domain Dy is given by Constraints (3.9).
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The master problem in iteration k is given by the following assignment problem

min z,

s. t. ∑
f∈F

x j f = 1, j ∈J ,

z≥ Bxi(x), i = 1, ...,k−1,

[Valid inequalities],

x j f ∈ {0,1}, j ∈J , f ∈F .

(3.10)

Let xk
j f be the solution of the master problem in iteraiton k. The subproblem is then

given by a scheduling problem

min v(y),

s. t. CUMULATIVE((y j f | j ∈J ),(p j f | j ∈J ),(c j f | j ∈J ),C f ), f ∈F ,

xk
j f = 1→ r j ≤ y j f ≤ d j− p j f , j ∈J , f ∈F ,

(3.11)

which can be separated into a scheduling problem for each facility f ∈F .

Different objective functions are considered for the cumulative scheduling

problem by defining the two components h(x) and v(y) of the objective function

(3.4): minimising the total cost of production, minimising the makespan of jobs,

and minimising total tardiness of jobs. In the case where the objective function

comprises only master variables, the subproblem is a feasibility problem, otherwise

it is solved as an optimisation problem.

3.4.1.1 Minimising the total cost.

Assigning job j to facility f incurs cost Fj f . The total cost in the context of a

cumulative scheduling problem is the cost of assigning all of the jobs j to facilities.

The objective function that minimises the total cost is given by the two components

h(x) = ∑
j∈J

∑
f∈F

Fj f x j f and v(y) = 0.
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The objective function is present only in the master problem and the subproblem

checks the feasibility of the assignments with respect to the facility capacity and

time window constraints.

Hooker (2007) shows that it is important to include a relaxation of the subprob-

lem (3.11) in the formulation of the master problem (3.10). In this case, the [Valid

inequalities] in problem (3.10) contain a relaxation of constraints (3.6)–(3.7) as

follows. Let J (t1, t2) =
{

j ∈J |t1 ≤ r j,d j ≤ t2
}

be a set of jobs with time windows

that fit in a given time interval (t1, t2). Since the capacity of facility f per time

unit is C f , the total amount of resource available at facility f in the interval (t1, t2)

is C f (t2− t1). Therefore, the total resource consumption ∑ j∈J (t1,t2) p j f c j f of jobs

assigned to facility f cannot exceed C f (t2− t1). This can be formulated as

1
C f

∑
j∈J (t1,t2)

p j f c j f x j f ≤ t2− t1. (3.12)

Only feasibility Benders’ cuts are generated for this problem formulation, which

are constructed as follows. Let xk be the master problem solution in iteration k, if

subproblem (3.11) is feasible, then (xk,yk) is the optimal solution to the original

problem. Otherwise, let Jk f = { j|xk
j f = 1} be the set of jobs assigned to facility f

in iteration k and define a Benders’ cut in the form of a nogood inequality (3.2) as

∑
j∈Jk f

(1− x j f )≥ 1.

3.4.1.2 Minimising makespan.

In the cumulative scheduling problem the makespan is defined as the time the last

job ends across all facilities. The objective function for minimising makespan is

given by the components

h(x) = 0 and v(y) = max
j∈J

(y j f + p j f ).
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The objective function v(y) is linearised by introducing auxilary variables M and

M f , that denote the makespan over all facilities and makespan of each facility f ,

respectively. The master problem minimises the makespan M. Each subproblem

minimises M f , and constraints

M f ≥ y j f + p j f , j ∈J f

are enforced. The variables M f provide a bound on the variable M through

inequalities M ≥M f , f ∈F added to the master problem.

The master problem is strengthened by [Valid inequalities] that provide a

lower bound on the makespan M based on the total resource consumption of jobs

assigned to facility f . These are given by

M ≥ 1
C f

∑
j∈J

c j f p j f x j f , f ∈F .

Since the objective function contains subproblem variables, the subproblem is

an optimisation problem. As such, the subproblem generates two types of Benders’

cuts. If the subproblem for facility f is infeasible, a feasibility cut in the form of

nogood inequality (3.2) is generated. Otherwise, if the subproblem is feasible and

has an optimal makespan M∗k f , an optimality cut

M ≥M∗k f

(
1− ∑

j∈Jk f

(1− x j f )
)

(3.13)

is generated. The cut (3.13) provides the tightest bound on M when all of the jobs

in Jk f are assigned to facility f .

3.4.1.3 Minimising total tardiness

Tardiness is defined as the time by which a job overruns its deadline. The ob-

jective function that defines the total tardiness of all jobs is given by the objective
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components

h(x) = 0 and v(y) = ∑
j∈J

max{y j f + p j f −d j,0}.

The objective function can be linearised by introducing auxiliary variables T and

Tf that denote the total tardiness across all facilities and tardiness of each facility

f , respectively. The total tardiness is minimised in the master problem with the

following constraint enforced

T ≥ ∑
f∈F

Tf .

The master problem can be strengthened by [Valid inequalities]. For each job

i ∈J , let J (0,di) be the set of jobs that finish before its deadline di. Based on

the resource consumption of the jobs, the total tardiness Tf of jobs j ∈J (0,di)

assigned to facility f is bounded below by

max

{
1
C f

∑
j∈J (0,di)

p j f c j f −di,0

}
, i ∈J . (3.14)

[Valid inequalities] can be derived from the bound (3.14). These are given by

Tf ≥
1
C f

∑
j∈J (0,di)

p j f c j f x j f −di, f ∈F , i ∈J ,

Tf ≥ 0, f ∈F ,

where the variable T is the total tardiness over all facilities.

[Valid inequalities] can also include a second relaxation of the subproblem

given by

T ≥ ∑
f∈F

∑
i∈J

Tf i,

Tf i ≥
1
C f

∑
j∈J

pπ f ( j) f cπ f ( j) f x j f −di− (1− x f i)U f i, f ∈F , i ∈J ,

U f i =
1
C f

∑
j∈J

pπ f ( j) f cπ f ( j) f −di,

where Tf i is a tardiness of job i on facility f and U f i is the big-M term. These

inequalities provide a valid bound only when the jobs are indexed in the order
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of increasing deadlines d1 ≤ ...≤ dn, and π is the permutation of indices so that

pπ(1) ≤ ...≤ pπ(n), see details in (Hooker, 2007).

Generation of optimality cuts is based on the same principle as the cuts given

by inequality (3.13). Let T ∗f k be the minimum tardiness on facility f in iteration k

when the jobs in J f k are assigned to it. Then the Benders’ cut in iteration k is

given by

Tf ≥ T ∗k f

1− ∑
j∈Jk f

(1− x j f )

 , Tf ≥ 0.

A Benders’ cut can be generated for each facility f ∈F and added to the master

problem.

3.4.2 Single-facility scheduling with a segmented timeline

A single-facility scheduling problem is a problem of assigning start times y j to a

set of jobs J to run at a single facility. Each job j ∈J has a processing time

p j and must be processed within its time window defined by a release time r j

and a deadline d j. This problem does not decompose naturally. Therefore, the

time horizon is divided into segments to decompose the problem into assignment

and scheduling components. We study a variation of a single-facility scheduling

problem with a segmented timeline that is presented in (Coban & Hooker, 2013).

The main difference to the formulation in (Coban & Hooker, 2013) is that not all

of the jobs have to be scheduled. First, the jobs are assigned to the segments,

then scheduled within each segment. The time horizon is divided into m segments

with the start and end times [as,as+1] for s ∈S = {1, ...,m}. Let x js take the value

1 if job j is assigned to segment s and 0 otherwise, and let y j be the start time

of job j. Note that there is a penalty for not processing a job. Since the problem

is to minimise an objective function, if a job j ∈J is not processed, a term 2p j

with the corresponding processing time is added to the objective. We introduce an

auxiliary variable u j, which takes value 1 if job is not processed and 0 otherwise.

The single-facility scheduling problem can be formulated in a form corres-
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ponding to (3.1) as

min h(x)+ v(y)+2 ∑
j∈J

p ju j, (3.15)

s. t. ∑
s∈S

x js +u j = 1, j ∈J , (3.16)

DISJUNCTIVE((y j| j ∈J ),(p j| j ∈J )), (3.17)

x js→ r j ≤ y j ≤ d j− p j, s ∈S , j ∈J , (3.18)

x js→ as ≤ y j ≤ as+1− p j, s ∈S \m, j ∈J , (3.19)

x js ∈ {0,1}, j ∈J ,s ∈S , (3.20)

u j ∈ {0,1}, j ∈J , (3.21)

y j ∈ [r j,d j], j ∈J ,s ∈S . (3.22)

Constraints (3.16) correspond to A(x) and ensure that all jobs are assigned to

no more than one segment. Constraint (3.17) corresponds to H(y) and ensures

that jobs do not overlap and run sequentially (see the definition in Section 2.1.2).

Constraints (3.18)–(3.19) correspond to C(x,y). Constraints (3.18) ensure the time

windows of jobs are observed. Constraints (3.19) ensure jobs are processed within

the time segments. The domains Dx and Dy are given by Constraints (3.20) and

(3.22) respectively.

The master problem in iteration k is given by

min z+2 ∑
j∈J

p ju j,

s. t. ∑
s∈S

x js +u j = 1, j ∈J ,

z≥ Bxi(x), i = 1, ...,k−1,

[Valid inequalities] ,

x js ∈ {0,1}, j ∈J ,s ∈S ,

u j ∈ {0,1}, j ∈J .

(3.23)

The master problem is augmented by [Valid inequalities] that contain the relaxation
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described in (Coban & Hooker, 2013). The relaxation ensures that jobs running in

time interval [t1, t2] have a total processing time of no more than t2− t1. For each

segment s ∈S , it is sufficient to enumerate all distinct intervals [r j,di] with r j < di

for i, j ∈J . In order to obtain a tight inequality we consider effective bounds of

the intervals within a time segment. If the given release time r j is in the interval

[as,as+1], the effective release time is equal to the given release time. If r j < as ,

the effective release time is as. Otherwise, if r j > as+1, the effective release time is

as+1. The effective deadline is defined by a similar logic. The effective bounds of

interval [r j,di] on segment s are given by

r̃s j = max{min{r j,as+1},as} and d̃si = min{max{di,as},as+1}.

The [Valid inequalities] are then defined as follows

∑
l∈J (r j,di)

plxls ≤ d̃si− r̃s j, s ∈S , ∀ distinct [r j,di], (3.24)

where J (r j,di) is the set of jobs whose time windows fall within time interval

[r j,di].

The subproblem decomposes into a scheduling problem for each segment:

min v(y)

s. t. DISJUNCTIVE((y j|i ∈J ),(p j|i ∈J )),

x js→ r j ≤ y j ≤ d j− p j, s ∈S , j ∈J ,

x js→ as ≤ y j ≤ as+1− p j, s ∈S \m, j ∈J .

(3.25)

Depending on the objective function h(x)+v(y), the subproblem is either solved as

an optimisation problem or a feasibility problem. The study in this chapter includes

finding a feasible schedule, minimising makespan, and minimising tardiness.
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3.4.2.1 Finding a feasible schedule

The problem to find a feasible schedule results in master and subproblems that are

both feasibility problems. Since unassigned jobs are penalised, the objective func-

tion h(x)+ v(y) is replaced by the penalty term 2∑ j∈J p ju j. Similar to cumulative

facility scheduling (3.4.1), the master problem is an assignment problem.

Let xk be the master problem solution in iteration k. If the subproblem has

a solution yk, then the pair (xk,yk) is the solution to problem defined by equa-

tions (3.15)–(3.22). Otherwise, feasibility cuts are generated for each segment s.

Let Jks = { j|xk
js = 1} be the set of jobs that are assigned to segment s in iteration

k. The feasibility cuts are given by

∑
j∈Jks

(1− x js)≥ 1, s ∈S . (3.26)

3.4.2.2 Minimising makespan

The objective function to minimise makespan, similar to the one presented for

cumulative scheduling, is given by the components

h(x) = 0 and v(y) = max
j∈J

(y j + p j),

and the penalty term 2∑ j∈J p ju j. The penalty term adds 2p j to the objective

value for each unassigned job j. To linearise the objective function, we introduce

auxiliary variables Ms, which denote the makespan for each segment s, and

auxiliary variable M, which denotes the makespan over all segments.

In addition to [Valid inequalities] (3.24), the master problem for the minimising

makespan can be strengthened by the following bound for each distinct r j and

each segment s

M ≥ r̃s j + ∑
l∈J (r j,∞)

plxls, s ∈S , j ∈J .
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The subproblem can be separated into an optimisation problem for each

segment s. If the subproblem is infeasible, feasibility cuts in the form of (3.26) are

generated. If the subproblem in iteration k has a solution and M∗ks is the minimum

makespan for segment s, an optimality cut is given by

M ≥M∗ks

(
1− ∑

j∈Jks

(1− x js)
)
.

The cut indicates that the makespan M cannot be lower than M∗ks unless at least

one job is removed from Jks.

3.4.2.3 Minimising total tardiness

The objective function to minimise tardiness is given by the components

h(x) = 0 and v(y) = ∑
j∈J

max{y j + p j−d j,0},

and the penalty term 2∑ j∈J p ju j. We introduce auxiliary variables Ts to linearise

the objective function. Variables Ts denote the total tardiness for each segment s,

and the total tardiness over all segments T = ∑s∈S Ts is minimised in the master

problem.

Since the deadlines are now due dates, the time window constraints (3.18)

are modified to

x js→ r j ≤ y j, s ∈S , j ∈J .

The [Valid inequalities] in the master problem (3.23) contain a modified version

of the relaxation (3.24), where the effective deadline is replaced by the end of

a segment. Let r̃s j be the effective release time of job j on segment s, and let

J (r j,∞) be the set of jobs with time windows after release time r j of job j. The

[Valid inequalities] require the total processing time of jobs j ∈J (r j,∞) that are
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assigned to segment s to not exceed as+1− r̃s j. The inequalities are given by

∑
l∈J (r j,∞)

plxsl ≤ as+1− r̃s j, s ∈S , j ∈J .

The master problem can also be strengthened by the following bound for tardiness

T ≥ ∑
s∈S

(
as + p jx js−d j− (1− x js)(as−d j)

)
.

Since the subproblem is an optimisation problem, either a feasibility cut in the

form of (3.26) or an optimality cut is generated. If the subproblem has an optimal

solution in iteration k, let T ∗ks be the minimum tardiness on segment s. If T ∗ks > 0, we

have the following optimality cut

T ≥ T ∗ks

(
1− ∑

j∈Jks

(1− x js)
)
.

3.4.3 Vehicle routing problem with location congestion

The problem is to deliver goods from a central depot to various locations using a

set of vehicles subject to vehicle capacity and location congestion constraints. The

vehicle routing problem with location congestion was introduced in (Lam, Pardalos

& Hentenryck, 2016) and a LBBD scheme for solving it was derived in (Lam et al.,

2020).

Let R be the set of requests for goods and let L be the set of locations. Each

request i ∈ R is to be delivered to one location li ∈L within a time window defined

by a release time and a deadline, denoted by ri and di, respectively. The set

Rl = {i ∈ R|li = l} is the set of all requests at location l ∈L . Each request i ∈ R

has weight qi, and the maximum weight a vehicle can carry is Q. Each vehicle

requires the use of one piece of equipment for processing time pi to unload the

goods. Each location has a fixed set of equipment, the total number is denoted by

Cl. As such, there is a limited capacity at each of the locations.
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This vehicle routing problem decomposes into routing and scheduling com-

ponents. A graph G = (N ,A ) is defined to model the routing component of the

problem. The set of nodes N = R∪{O−,O+} includes the central depot and the

set of requests with the location information, where O− and O+ respectively denote

the artificial start and end nodes that correspond to the central depot. All vehicles

must return to the central depot before time T . The set A = {(i, j) ∈N ×N |i ̸= j}

denotes the arcs connecting the nodes. The master problem identifies a set of

vehicle routes that satisfy all delivery requests. The variables xi j equal 1 if a vehicle

travels along arc (i, j), and 0 otherwise. Traversing arc (i, j) takes ci j time units.

There are two continuous subproblem variables at each node i∈N . The variables

ystart
i and yweight

i are equal to the time a vehicle starts unloading goods and the

total accumulated weight of delivered goods, respectively.

The vehicle routing problem with location congestion formulation is given by

min h(x)+ v(y), (3.27)

s. t. ∑
i:(i, j)∈A

xi j = 1, j ∈ R, (3.28)

∑
j:(i, j)∈A

xi j = 1, i ∈ R, (3.29)

CUMULATIVE((ystart
i |i ∈ Rl),(pi|i ∈ Rl),(1|i ∈ Rl),Cl), l ∈L , (3.30)

xi j→ yweight
i +q j ≤ yweight

j , (i, j) ∈A , (3.31)

xi j→ ystart
i + pi + ci j ≤ ystart

j , (i, j) ∈A , (3.32)

xi j ∈ {0,1}, (i, j) ∈A , (3.33)

ystart
i ∈ [ri,di], i ∈N , (3.34)

yweight
i ∈ [qi,Q], i ∈N . (3.35)

Constraints (3.28)–(3.29), which correspond to A(x) in problem (3.1), ensure that

each request is assigned to exactly one vehicle. The Cumulative Constraints (3.30)

correspond to H(y) and enforce capacity limit at each location. Constraints (3.31)–

(3.32) correspond to C(x,y) in problem (3.1). The vehicle weight limits are enforced
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by constraints (3.31). Constraints (3.32) ensure that vehicles start unloading goods

within arrival time windows corresponding to each request. Since all of the vehicles

are identical and each node has exactly one incoming and outgoing arc, there is

no need to represent the vehicles explicitly. The number of the arcs outgoing from

(or incoming to) the central depot gives the number of vehicles used in a solution.

The master problem in iteration k is given by

min z

s. t. ∑
i:(i, j)∈A

xi j = 1, j ∈ R,

∑
j:(i, j)∈A

xi j = 1, i ∈ R,

z≥ Bxi(x), i = 1, ...,k−1,

[Valid inequalities].

The [Valid inequalities] comprise constraints (3.31)–(3.32). They state that for

a vehicle that travels along arc (i, j) the accumulated weight of goods delivered

after request j cannot be smaller than the accumulated weight after request i.

Similarly, unloading at node j cannot start before unloading at node i. Note that

[Valid inequalities] are added to the master problem regardless of the type of the

objective function.

Let xk be the master problem solution in iteration k, then the subproblem is

given by

min v(y)

s. t. CUMULATIVE((ystart
i |i ∈ Rl),(pi|i ∈ Rl),(1|i ∈ Rl),Cl), l ∈L ,

xk
i j = 1→ yweight

i +q j ≤ yweight
j , (i, j) ∈A ,

xk
i j = 1→ ystart

i + pi + ci j ≤ ystart
j , (i, j) ∈A .
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3.4.3.1 Minimising total travel time

The goal is to minimise the total time all of the vehicles use to deliver goods and

return to the central depot. The objective function is given by the components

h(x) = ∑
(i, j)∈A

ci jxi j and v(y) = 0.

Since the objective function does not depend on the subproblem variables, the

subproblem is solved as a feasibility problem. Therefore, only feasibility cuts are

generated. Let Jk = {(i, j) ∈A |xk
i j = 1} be the set of arcs that were selected in

the master problem solution in iteration k. A feasibility cut is given by

∑
(i, j)∈Jk

(1− xi j)≥ 1. (3.36)

3.4.3.2 Minimising makespan

The goal is to minimise the time the last vehicle delivers goods and returns to the

central depot. The objective function is given by

h(x) = 0 and v(y) = max
i
(yi + pi).

The objective function can be linearised by introducing the auxiliary variable M

that denotes makespan, which is minimised in the master problem.

Using the solution to the subproblem, either an optimality or feasibility cut is

generated. If the subproblem is infeasible, a feasibility cut in the form of inequality

(3.36) is generated. If the subproblem has an optimal solution with objective value

M∗k in iteration k, an optimality cut similar to inequality (3.13) is generated. This cut

is given by

M ≥M∗k
(

1− ∑
(i, j)∈Jk

(1− xi j)
)
.
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3.4.3.3 Minimising total tardiness

The tardiness of a request is defined as the time by which the delivery overruns

its deadline, and the total tardiness is the total time by which all of the requests

overrun their delivery deadlines. Since the requests are allowed to be delivered

past their deadlines, the deadlines are replaced by due dates. The objective

function to minimise the total tardiness is given by the components

h(x) = 0 and v(y) = ∑
i∈R

max{yi + pi−di,0}.

An auxiliary variable T , which denotes the total tardiness is introduced to linearise

the objective function. The variable T is minimised in the master problem.

Using the solution to the subproblem either an optimality or feasibility cut is

generated. If the subproblem is infeasible, the feasibility cut (3.36) is generated.

Otherwise, if the subproblem has an optimal solution with objective value T ∗k in

iteration k, an optimality cut similar to the one for minimising the makespan is

generated. This optimality cut is given by

T ≥ T ∗k
(

1− ∑
(i, j)∈Jk

(1− xi j)
)
, T ≥ 0.

The optimality cut provides a tight bound T ∗k on the total tardiness T when all of

the arcs (i, j) ∈Jk are added to the route.

3.5 Analytic Benders’ cuts

It is possible to generate a type of Benders’ cut that is based on the subproblem

structure, termed analytic Benders’ cuts. The aim of analytic Benders’ cuts is to

address the limitation of optimality cuts of form (3.3), where a tight bound is only

given when each variable in J has the value 1. In contrast, analytic Benders’

cuts improve the bound when some of the decision variables change their values

from 1 to 0. The analytic cuts can be generated by analysing how changing the
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values of the decision variables affects the objective value. These cuts can be

used along with the optimality cuts of type (3.3), or as an alternative. The analytic

cuts can also be strengthened using the cut-strengthening techniques described in

Section 3.3.2. Necessary assumptions to use analytic Bender’s cuts are given in

the following. All of the analytic cuts used in this study are based on the derivation

given in (Hooker, 2007).

Cumulative scheduling

Let J f k be the set of tasks assigned to facility f in iteration k, and M∗f k be the

corresponding minimum makespan. In the derivation of these cuts, it is assumed

that all of the release times are equal to 0 and that the deadlines have different

values. If one or more job assignments are removed from facility f , the resulting

minimum makespan M f is bounded by

M f ≥M∗f k− ∑
j∈J f k

p j f (1− x j f )− max
j∈J f k

{d j}+ min
j∈J f k

{d j}. (3.37)

The bound complies with the properties of the bounding function outlined in

Section 3.3.1. When the supbroblem has an optimal solution with the minimum

makespan M∗f k, an analytic Benders’ cut of form (3.37) can be generated instead

of, or alongside an optimality cut of form (3.13).

Analytic Bender’s cuts for the minimum tardiness problem are derived based

on the same principle as the analytic cuts (3.37) for the minimising makespan

problem. Let T ∗f k be the minimum tardiness corresponding to J f k. An analytic cut

that bounds the total tardiness T over all facilities is given by

T ≥ ∑
f∈F

T ∗f k− ∑
i∈J f k

max
{

∑
j∈J f k

p j f −di,0
}
(1− xi f )

 . (3.38)
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Disjunctive scheduling

Let Jsk be the set of jobs assigned to segment s in iteration k and let M∗sk be the

corresponding minimal makespan. Define J̃sk = { j ∈Jsk|r j ≤ as} as the set of

jobs in Jsk with release times before segment s. If one or more jobs from J̃sk are

no longer assigned to segment s in the subsequent iterations, a lower bound on

the resulting makespan Ms is provided by an analytic cut

Ms ≥M∗sk− ∑
j∈J̃sk

p js(1− x js)− max
j∈J̃sk

{d j}

+ min
j∈J̃sk

{d j}−M∗sk ∑
j∈Jsk\J̃sk

(1− x js).

(3.39)

The second sum in the left-hand side takes care of the case when jobs from

Jsk\J̃sk are removed from segment s, see details in (Coban & Hooker, 2013).

For the minimising tardiness problem. Let

rmax
s = max

{
max{r j| j ∈Js},as

}

be the last release time of jobs assigned to segment s, or the start time of the

segment as, whichever is greater. Note that, if all the jobs assigned after the

greatest release time are processed before the next segment, i.e., if

rmax
s + ∑

j∈Js

p js ≤ as+1 (3.40)

holds, the problem is feasible. Based on inequality (3.40), the analytic Benders’

cut for minimising tardiness on segment s is

Ts ≥


(

T ∗sk−∑i∈Jsk

(
rmax

s +∑ j∈Jsk
p js−di

)+
(1− x js)

)
, if (3.40) holds(

T ∗sk−
(

1−∑i∈Jsk
(1− x js)

))
, otherwise,

where T ∗sk is the minimal tardiness on segment s in iteration k. The total tardiness
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over all segments is then bounded by

T ≥ ∑
s∈S

Ts.

3.6 Computational evaluation

The effectiveness of the cut-strengthening techniques, described in Section 3.3.2,

is evaluated in a series of computational experiments. The first experiment solves

the cumulative scheduling problem for three objective functions given in Sec-

tion 3.4.1. The experiment runs the LBBD solution scheme applying each cut-

strengthening technique separately for all of the problems. The second and

third experiments similarly solve the single-facility scheduling 3.4.2 and vehicle

routing 3.4.3 problems, respectively.

Each experiment comprises one problem that only generates feasibility cuts

and two problems that generate both feasibility and value cuts. We extend the com-

putational experiments from the conference paper (Karlsson & Rönnberg, 2021) by

adding an analysis of problems that generate value cuts. Moreover, two types of

value cuts are analysed — strengthened optimality cuts and analytic Benders’ cuts.

Each corresponding problem is solved twice with respect to the type of generated

value cuts. The cut-strengthening techniques are applied to both types of cuts. In

the case when the subproblem can be separated into independent problems, we

also make a comparison between solving these independent problems individually

and solving them together as one large problem; referred to as solving the split or

no-split subproblem, respectively.

The comparison of cut-strengthening techniques will be performed by evaluat-

ing the run time and the size of the strengthened cuts.

The LBBD scheme is implemented in Python 3.8, and the MIP and CP models

are solved using Gurobi Optimizer version 9.1.2 and IBM ILOG CP Optimizer

version 20.1, respectively. All tests have been carried out on a computer with two
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Intel Xeon Gold 6130 processors (16 cores, 2.1 GHz each) and 96 GB RAM. Each

instance was given a total time of 20 minutes and the MIP-gaps are set to 0 for the

master problems.

3.6.1 Instances

The instances are either taken from the literature or generated in line with de-

scriptions in the literature, but with new parameter settings. All instances can be

accessed, either directly or via reference, from our repository1. For the cumulative

facility scheduling problem with fixed costs, referred to as Problem 3.4.1, we use

336 instances from (Hooker, 2007). For the single machine scheduling problem

with sequence-dependent setup times and multiple time windows, referred to as

Problem 3.4.2, we use instances generated based on the description in (Coban &

Hooker, 2013). For the vehicle routing problem with location congestion, referred

to as Problem 3.4.3, we use 450 instances from (Lam et al., 2020).

3.6.2 Computational effectiveness

To evaluate the effectiveness of the cut-strengthening techniques we first look at

their impact on the run time of the LBBD scheme. We then look at the average

size of the cuts generated by the cut-strengthening techniques. Additional data is

provided in Tables B.1–B.10 in Appendix B.

For the run time plots, the horizontal axis gives the time and the vertical axis

gives the percentage of solved instances. A point (x,y) on the curve means that

y% of instances can be solved in less than x seconds. The cut size figures are

histograms, a point (x,y) means average cut size x has frequency y. Where the

frequency y is the number of generated cuts. Since the type of a value cut does

not influence the size of the cut, we only differentiate the histograms by the type

of the subproblem. In the figures below, the additive/deletion filter and no cut

strengthening are referred to as adel and none, respectively.

1 https://gitlab.liu.se/eliro15/lbbd instances
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The experiments evaluating the effect of cut strengthening on analytic cuts

show results very similar to results for strengthened optimality cuts. For the sake

of brevity, the results and discussion related to analytic cuts have been moved to

Appendix A.

3.6.2.1 Minimising makespan for cumulative facility scheduling problem

It can be seen in the Figure 3.2a for the split subproblem that the most instances

are solved to optimality when applying the deletion filter and DFBS. Specifically,

65.48% and 64.29% of instances, respectively. This result is closely followed by

additive/deletion filter and greedy method with very similar profiles in Figure 3.2a

and the respective percentages of solved instances of 63.99% and 63.39%. An

analysis of the experiment data shows that the additive/deletion filter and DFBS

spend more time solving subproblems than deletion filter. The additive/deletion

filter and DFBS respectively spend 107.05 seconds and 113.21 seconds of run

time, while deletion filter spends 81.17 seconds. This might suggest that the

random order of variables is better suited for the search strategy of deletion filter.

Similar to deletion filter, the greedy method spends 84.19 seconds. However,

Figure 3.3 shows that the greedy method generates cuts of higher density, which

lead to a master problem that is harder to solve.

Interestingly, applying cut-strengthening techniques to the no-split subproblem

has the same impact on the results as splitting the subproblem with no cut strength-

ening. The DFBS, deletion filter, additive/deletion filter, and additive method used

for the no-split subproblem, with the respective percentages of solved instances

of 58.93%, 54.17%, 56.25%, and 54.46%, achieve similar results to splitting the

subproblem and applying no cut strengthening with 54.46% of solved instances.

The weak effectiveness of the greedy algorithm for the no-split subproblem can be

explained by the high density of the cuts, as can be seen in Figure 3.4. The cuts

generated by the greedy algorithm are less sparse compared to other techniques.

They substantially increase the number of iterations and the master problem run

time. In other words, the time spent strengthening the cuts using the greedy
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algorithm does not pay off.
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Figure 3.2: Cumulative scheduling: Percentage of solved instances for minimising
makespan problem for with strengthened optimality cuts

3.6.2.2 Minimising tardiness for cumulative facility scheduling problem

The first thing to notice in the run time Figure 3.5 is that the split subproblem gives

significantly higher results than the no-split subproblem. The best effectiveness for

the no-split subproblem is shown in Figure 3.5b by the deletion filter with 7.44%

of solved instances. However, this result is considerably different to effectiveness

when splitting the subproblems, with the lowest result of 25.6% of solved instances

that corresponds to no cut strengthening. The deletion filter shows the best

result when splitting the subproblem with 37.2% of instances solved. This result

is followed by additive/deletion, DFBS, and additive with 36.31%, 36.12%, and

35.71% of solved instances, respectively. The greedy algorithm with 30.36% of
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Figure 3.3: Cumulative scheduling: Average size of optimality cuts for the minim-
ising makespan problem with split subproblem
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Figure 3.4: Cumulative scheduling: Average size of optimality cuts for the minim-
ising makespan problem for with no-split subproblem

solved instances is notably behind other algorithms. The results in Figure 3.6 show

that all of the algorithms except for the greedy method are similar in terms of the

average size of the cuts. The median values of number of variables per cut for

DFBS, additive/deletion filter, additive, and deletion filter are 3.30, 3.31, 3.32, and

3.37, respectively. Whereas, the greedy method and no cut strengthening have

respective median values of 4.44 and 4.65 variables per cut. The nature of the

objective function is likely to be the reason of the poor performance of the greedy

algorithm. The greedy algorithm does not remove many assignments in the search

process before the objective value of the subproblem decreases. This leads to

the cut not having reduced its size. The generated dense cuts then lead to the

increased number of Bender’s iterations.

The relative effectiveness for each of the strengthening technqiues is similar

for both the strengthened and analytic cuts. However, the results presented in

Appendix A.2 demonstrate that analytic cuts for the split subproblem perform

relatively poorly with less instances solved to optimality compared to strengthened

optimality cuts, an observation that is also reported by Hooker (2007).

3.6.2.3 Minimising total cost for cumulative facility scheduling problem

Similar to the previous experiments, a considerable rise in computational effective-

ness of the LBBD scheme comes from splitting the subproblem, as can be seen
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Figure 3.5: Cumulative scheduling: Percentage of solved instances for minimising
tardiness problem with strengthened optimality cuts
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Figure 3.6: Cumulative scheduling: Average size of optimality cuts for the minim-
ising tardiness problem with split subproblem
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Figure 3.7: Cumulative scheduling: Average size of optimality cuts for the minim-
ising tardiness problem with no-split subproblem

in run time Figure 3.8. At the same time, applying cut-strengthening to the split

subproblem still gives a significant boost to the results: the deletion filter, DFBS,

additive/deletion filter, and the greedy algorithm with the respective percentages
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of 74.70%, 74.11%, 72.91%, and 72.32% outperform no cut strengthening and

additive method with 65.17% and 65.47% of solved instances, respectively. In-

terestingly, Figure 3.9 shows that DFBS, deletion filter, and additive/deletion filter

have very similar histograms of average cut sizes with the same median value of 4.

The median values for the additive method, greedy method, and no cut strength-

ening are 5.67, 6.38, and 7.52 variables per cut, respectively. Although the greedy

algorithm generates denser cuts than the additive method, the number of subprob-

lems it performs is lower. The greedy algorithm and the additive method solve 59.3

and 163.1 subproblems, respectively. This is likely to be the reason of the relatively

good performance of the greedy algorithm. Overall, the results for the most of the

cut-strengthening techniques for the split-subproblem do not differ much in terms

of run time. In contrast to the split subproblem, the difference in effectiveness

0 200 400 600 800 1000 1200
Time Spent

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f s
ol

ve
d 

in
st

an
ce

s

greedy
dfbs
adel
deletion
additive
none

Split

0 200 400 600 800 1000 1200
Time Spent

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f s
ol

ve
d 

in
st

an
ce

s

greedy
dfbs
adel
deletion
additive
none

No-split

Figure 3.8: Cumulative scheduling: Percentage of solved instances for minimising
total cost problem with strengthened feasibility cuts

is more pronounced for the no-split subproblem. The additive/deletion method

for the no-split subproblem outperforms all other cut-strengthening techniques

with 63.39% of instances solved to optimality. The additive/deletion filter, DFBS,

and the deletion filter have similar sparsity of the feasibility cuts, as shown in

Figure 3.10. However, additive/deletion filter has a lower number of subproblems

solved per instance compared to the deletion filter and DFBS. This indicates that

additive/deletion filter is successful in removing variables not contributing to infeas-

ibility early on. The effectiveness of the additive/deletion filter also compares to

the split subproblem with no cut strengthening.
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Figure 3.9: Cumulative scheduling problem: Average size of feasibility cuts for the
minimising total cost with split subproblem
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Figure 3.10: Cumulative scheduling: Average size of Feasibility cuts for the
Minimising Total Cost problem with No-Split Subproblem
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3.6.2.4 Minimising makespan for disjunctive scheduling problem

The run time results in Figure 3.11a show that using cut-strengthening techniques

does not accelerate the LBBD scheme for the split subproblem. In fact, using the

greedy method or no cut strengthening outperforms all of the other techniques.

The results in Figure 3.12 show that on average all of the techniques fail to reduce

the size of the cuts. This implies that master variables are already split into

minimal subsets and cannot be reduced further. Therefore the time spent on

cut strengthening is not compensated, as can be seen in the run time profiles in

Figure 3.11a.
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Figure 3.11: Disjunctive scheduling: Percentage of solved instances for minimising
makespan with strengthened optimality cuts
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Figure 3.12: Disjunctive scheduling: Average size of optimality cuts for the minim-
ising makespan problem with split subproblem

By contrast, Figure 3.13 shows that all of the cut-strengthening techniques,

except for the greedy, give a significant rise in effectiveness for the no-split sub-

problem. This can be explained by significant difference in the sparsity of the
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Figure 3.13: Disjunctive scheduling: Average size of optimality cuts for the minim-
ising makespan problem with no-split subproblem

generated cuts. The DFBS, deletion filter, additive/deletion filter, and the additive

method have the median of 2 for average cut size, compared to 38 and 75 for

the greedy algorithm and no cut strengthening, respectively. The sparsity of the

irreducible cuts can be explained by the fact that only one job at a time can be

processed, and the suboptimality of the solution is likely to be caused by the few

jobs with the greatest processing end times. The greedy algorithm generates

cuts that are stronger than the original, however, they are not strong enough to

compensate for the time spent on the search. On the other hand, the DFBS is

by far the best-performing cut-strengthening technique. DFBS solves 95.41% of

instances, which is higher than 95.20% using no cut strengthening for the split sub-

problem. This can be explained by the low number of iterations and subproblems

solved: DFBS solves 28.28 subproblems in 4.91 iterations, compared to 49.38

subproblems in 5.14 iterations by additive/deletion filter and 90.94 subproblems

in 5.02 iterations by deletion filter. This result suggests that the search strategy

employed by the DFBS is more effective compared to the deletion filter and the

additive/deletion filter. The comparison of the split and no-split results shows that

DFBS can be used instead of splitting the subproblem, and vice versa.

3.6.2.5 Minimising tardiness for disjunctive scheduling problem

The most noticeable observation from the run time Figure 3.14 is that cut strength-

ening is not an effective way to accelerate the solution. Only splitting the subprob-
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Figure 3.14: Disjunctive scheduling: Percentage of solved instances for minimising
tardiness with strengthened optimality cuts

lem makes a meaningful impact on the ability to solve the instances. When using

no cut strengthening, splitting the subproblems solves 48.13% of the instances

to optimality. This is compared to 1.88% of instances solved to optimality when

no splitting of the subproblems is performed. Similar to previous experiments, the

greedy algorithm reduces the cut density the least, as can be seen in Figure 3.16.

It can also be seen that although the additive method generates sparse cuts, it

fails to solve many instances. This is due to the long time it takes to find the irre-

ducible feasibility cuts. Another striking observation is that the results presented

in Figure 3.15 for the split subproblem are similar for all of the cut-strengthening

techniques including no cut strengthening. This suggests that, as in the case

for the minimising makespan problem, the master variables are already split into

minimal subsets.
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Figure 3.15: Disjunctive scheduling: Average size of optimality cuts for the minim-
ising tardiness problem with split subproblem
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Figure 3.16: Disjunctive scheduling: Average size of optimality cuts for the minim-
ising tardiness problem with no-split subproblem

3.6.2.6 Finding a feasible schedule for disjunctive scheduling problem

As can be seen from the comparison of the run time in Figure 3.17, splitting the

subproblem is more effective in accelerating the solution process than cut strength-

ening. Within 9.98 seconds, all of the cut-strengthening techniques, including none,

solve at least 87.7% of instances. Nevertheless, cut-strengthening techniques still

have a substantial impact on the solution process when the subproblem is not

split. Similar to the results for the minimising makespan problem, all of the cut-

strengthening techniques except for the greedy method increase the percentage

of solved instances compared to using no cut strengthening by at least 39.79%.

The most effective algorithms for the no-split subproblem are DFBS and additive

method with respective percentages of solved instances of 94.38% and 92.71%,

compared to 47.92% with no cut strengthening. The DFBS tends to generate the

most sparse cuts. The median value of the average cut size for DFBS is 3.33

variables per cut, compared to 3.4 for deletion filter and the additive method, and

3.44 for additive/deleton filter. The DFBS also spends much less time on average

solving the subproblem — only 31.34 seconds compared to the next closest result

of 62.22 seconds by the additive method. That implies that DFBS detects an

irreducible set of variables much faster than other techniques. This result suggests

that the search method used by DFBS is better suited for this problem compared

to the other techniques under investigation.
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Figure 3.17: Disjunctive scheduling: Percentage of solved instances for finding a
feasible schedule problem with strengthened feasibility cuts
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Figure 3.18: Disjunctive scheduling: Average size of feasibility cuts for the finding
a feasible schedule problem with split subproblem
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Figure 3.19: Disjunctive scheduling: Average size of feasibility cuts for the finding
a feasible schedule problem with no-split subproblem

3.6.2.7 Minimising makespan for vehicle routing problem

The first thing to notice in Figure 3.20a is that 53.11% of instances terminate after a

single iteration regardless of the cut-strengthening technique applied. The reason
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is that the instances either have an infeasible master problem or an infeasible

subproblem. The infeasibility of the master problem detected before adding

any feasibility cuts, and the infeasibility of the subproblem is detected without

any restriction on the master problem variables. The subproblem infeasibility is

checked before the initialisation of the LBBD scheme.

When using no cut strengthening, no instances are solved to optimality. Al-

though the greedy algorithm improves that result by solving 59.33% of instances to

optimality, it still performs poorly compared to other cut-strengthening techniques.

Interestingly, cut-strengthening techniques with similar search processes show

similar results. The additive/deletion filter and additive method solve 91.11% and

88.89% of instances to optimality, respectively. The deletion filter and DFBS are

the most effective, solving 99.55% of instances to optimality. Figure 3.21 shows

that the average size of the generated cuts is similar for the deletion filter, DFBS,

additive/deletion filter, and the additive method. However, the deletion filter tends

to have fewer Bender’s iterations than other cut-strengthening techniques — 30.68

iterations compared to 62.64, 65.27, and 65.73 by DFBS, additive/deletion filter,

and additive method, respectively. This suggests that the cuts generated by the

deletion filter are more effective. At the same time, DFBS has a smaller number of

subproblems solved — 697.14 compared to 1344.53, 1475.92, and 2676.89 when

using additive/deletion filter, deletion filter, and additive method, respectively. That

implies that DFBS generates less effective cuts, but in a shorter time. Therefore

the time spent on a greater number of iterations is offset by smaller subproblem

solution time per iteration.
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Figure 3.20: Vehicle routing problem: Percentage of solved instances for minim-
ising makespan, minimising tardiness, and minimising total travel time problems
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Figure 3.21: VRPLC: Average size of feasibility cuts for the minimising makespan
problem

3.6.2.8 Minimising total tardiness for vehicle routing problem

As can be seen in Figure 3.20b the share of infeasible instances is smaller than

for the minimising makespan problem. This is due to jobs being allowed to

run past their deadlines. The job deadlines would otherwise cause infeasibility

of valid inequalities in the master problem. All of the 6.89% of instances that

terminate after a single iteration have an infeasible subproblem. When using no cut

strengthening or the greedy method, no instances are solved to optimality. DFBS,

surprisingly, has a small impact on the computational performance and solves

10.44% of instances. Somewhat better results are shown by the additive method

and additive/deletion filter, with both solving 20.67% of instances. However, the

additive method has a better run time profile than the additive/deletion filter. This

is likely due to a greater number of iterations performed by additive/deletion filter

— 197.71 compared to 61.71 by additive method. The deletion filter significantly

boosts the performance with 41.33% of instances solved. Figure 3.22 shows

that the DFBS, deletion filter, and the additive method have a similar average cut

size. However, the deletion filter solves fewer subproblems — 820.79 compared

to 3823.91 and 6036.35 by additive method and DFBS, respectively. Moreover,

the deletion filter performs the smallest number of iterations — 27.06 compared to

61.71, 165.76, and 197.91 by additive method, DFBS, and additive/deletion filter,

respectively. That implies that the deletion filter generates stronger cuts, and its
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search method is the best suited for the given instances.
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Figure 3.22: VRPLC: Average size of optimality cuts for the minimising tardiness
problem

3.6.2.9 Minimising total travel time for vehicle routing problem

Similar to the minimising makespan problem, 53.11% of instances are detected to

be infeasible after a single iteration. No other instances are solved to optimality

when using no cut strengthening, as can be seen in Figure 3.20c. The greedy

method improves this result by 12.66% with 65.77% of solved instances. Notably,

other techniques under investigation show substantial improvement in computa-

tional effectiveness. Namely, using DFBS solves 100% of the given instances.

This result is followed by deletion filter and additive method both solving 95.55%

of instances. Although the additive/deletion filter solves 91.55% of instances, it

has a better run time profile than the additive method. This is due to a lower

number of iterations and subproblems solved — 20.99 iterations and 533.29 sub-

problems compared to 26.36 and 1510.15 by the additive method. All of these

four cut-strengthening techniques have similar results in terms of the average

cut size. However, DFBS on average solves 286.65 of subproblems — much

lower number than the other three techniques. That implies that DFBS is more

efficient in generating similar cuts. Overall, we note that DFBS, deletion filter,

additive/deletion filter, and additive method generate similar cuts and the marginal

difference in run time is caused by the different efficiency of the search strategies.
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Figure 3.23: VRPLC: Average size of feasibility cuts for the minimising total travel
time problem

3.7 Conclusions

This chapter investigates the impact of various cut-strengthening techniques on the

computational effectiveness of the LBBD scheme. Namely, the greedy algorithm,

deletion filter, additive method, additive/deletion filter, and the depth-first binary

search were evaluated. The evaluation is based on computational experiments

that solve the cumulative facility scheduling problem, the single-facility scheduling

with a segmented timeline problem, and the vehicle routing with local congestion

problem. The three types of problems with various objective functions have been

solved applying the cut-strengthening techniques within the LBBD scheme. The

previous work of Karlsson and Rönnberg (2021) is extended by including problem

formulations that require generating both feasibility and optimality cuts. Additionally,

the cut-strengthening techniques were applied to two types of value cuts—no-

good optimality cuts and analytic Benders’ cuts. For the problem formulations

that allow subproblem separation, the comparison is made between applying the

cut-strengthening techniques to the separated subproblem and applying them to

one large subproblem.

When summarising the results, the following can be observed. The cut-

strengthening techniques, such as DFBS, deletion filter, additive/deletion filter and

additive, that generate irreducible cuts tend to outperform the greedy algorithm
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and no cut strengthening. This is mostly due to sparsity of the irreducible cuts.

We also note that the effectiveness of the greedy algorithm depends on the

type of the objective function. Overall, DFBS and deletion filter have the best

computational effectiveness. Although DFBS and deletion filter generate cuts of

the same size and strength as additive/deletion filter and the additive method, they

solve lower number of subproblems. Therefore, DFBS and deletion filter have

lower subproblem solution time. This implies that DFBS and deletion filter are

more efficient in identifying irreducible cuts.

Another observation is that the separation of the subproblem does not always

strongly dominate cut strengthening in terms of benefiting the solution process. In

fact, there are cases when splitting the subproblem and applying cut strengthening

are interchangeable. Therefore some of the techniques can benefit the solution

process significantly even if the subproblem is not separable. For example, the

vehicle routing problem does not naturally separate the subproblem, and the

computational results show that it is imperative to use cut strengthening.

The results show that the difference in performance between the cut-strengthening

techniques comes from the efficiency of the search strategy. It would be relevant

to investigate the impact of the order of variables on the search strategy. An-

other observation is that the cut-strengthening techniques have different results

depending on the type of the objective function. It may also be worth analysing

how the objective function could be exploited to improve the effectiveness of the

techniques.
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Chapter 4

Increasing computational efficiency
of depth-first binary search using
variable sorting

4.1 Introduction

As discussed in the previous chapter, depth-first binary search (DFBS) is one

of the most computationally effective cut-strengthening techniques for the LBBD

scheme. However, the results showed that the effectiveness of a cut-strengthening

technique does not only depend on the size of a generated cut, but it is strongly

correlated with the number of subproblems solved to generate the cut. It was also

observed that the random order of variables can negatively affect the efficiency of

DFBS and lead to a higher number of subproblems solved. This chapter introduces

new strategies to improve computational efficiency of the DFBS algorithm.

In this thesis, computational effectiveness of a cut-strengthening technique

in LBBD is assessed based on the number of instances solved to optimality, the

size of the generated cuts, and the number of Benders’ iterations. Computational

effectiveness is a measure of an impact that a cut-strengthening technique has

on the overall LBBD scheme. Computational efficiency of a cut-strengthening

technique, on the other hand, is assessed based on the subproblem solution

time and the number of subproblems solved. Computational efficiency measures

the time and the resources a cut-strengthening technique requires to generate a

strengthened cut. Both measures are important in evaluating the overall quality of

a technique, and there is a trade-off between effectiveness and efficiency.

In the previous chapter, the DFBS algorithm has been evaluated in its simplest
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implementation, where the order of variables was random, and the set of variables

has always been divided into two equal groups. This chapter is therefore mainly

concerned with evaluating the impact of the order of the variables and the size of

variable groups on the efficiency of search strategy.

This chapter is structured as follows: An overview of the most relevant imple-

mentations and modifications of DFBS in the literature is presented in Section 4.2.

Section 4.2 also presents a variable ordering heuristic that inspired one of the

new strategies proposed in this chapter. Section 4.3 presents the preliminary

investigation of the new variable sorting strategies. Three new heuristics based

on these strategies are then formalised in Section 4.4. Section 4.5 evaluates the

effectiveness and efficiency of the proposed methods based on computational

experiments. The summary is provided in Section 4.6.

The contributions of this chapter are:

• the preliminary investigation of the variable-sorting strategies,

• the introduction of novel variable-sorting and variable-grouping heuristics,

• the computational evaluation of the new strategies.

4.2 Related literature

There are many depth-first search algorithms, and they are not exclusive to the

optimisation community. This section, however, focuses on the literature that

is relevant to the implementation of the DFBS algorithm, which is evaluated in

Chapter 3.

4.2.1 Depth-first binary search as a filtering algorithm

Guieu and Chinneck (1999) presented several filtering algorithms such as the

deletion filter, the additive method, and the additive/deletion filter, in their work on

infeasibility of mixed-integer linear programs (MILP) and integer linear programs
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(ILP). The algorithms are applied to identify an irreducible infeasible subset of

constraints of an infeasible problem. They proposed several methods of improving

the computational efficiency of the algorithms—by dynamically reordering the

constraints, by grouping constraints, by replacing the original objective function

with a function that decides feasibility status more rapidly, and other possibilities.

The grouping of constraints with the fixed group size of four constraints is assessed

for the deletion filter, the additive method, and the additive/deletion filter. The

authors recommend this method when it is important to find an isolation quickly.

DFBS can be viewed as a modification of the deletion filter that applies grouping

of constraints.

Atlihan and Schrage (2008) generalise the idea of grouping constraints de-

scribed in Guieu and Chinneck (1999) by using the binary search to isolate an IIS in

infeasible LP, MILP, and general nonlinear programs (NLP). They propose a binary

search algorithm that evaluates groups of constraints instead of one constraint at

a time. In its simplest form the algorithm splits the set of constraints in half. Once

a subset is known to be infeasible, the algorithm continues to ’pursue’ that subset,

while dropping the other group of constraints. The version of the DFBS algorithm

proposed by Atlihan and Schrage (2008) is adapted as a cut-strengthening tech-

nique in the previous chapter, see pseudo-code in Algorithm 8. Based on their

empirical tests, Atlihan and Schrage (2008) suggest that the algorithm can be

improved by using alternative strategies for splitting the constraint sets into groups.

One idea is to use a priority queue based on the estimates of a constraint being in

an IIS. This idea is similar to the new variable sorting strategies proposed in this

chapter.

Work on DFBS has also been done for constraint satisfaction programs

and constraint programs. Junker (2004) proposes DIVIDE-AND-CONQUER, an

algorithm similar to DFBS, as a part of the conflict detection method QUICKXPLAIN.

The algorithm finds an irreducible subset of constraints causing infeasibility of a

constraint programming problem. QUICKXPLAIN then produces a no-good cut
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containing variables present in the irreducible subset. Junker suggests that the

algorithm could be improved by making more informed decisions on the grouping

of constraints based on the connections between constraints.

4.2.2 DFBS in the LBBD scheme

Cambazard et al. (2004) apply QUICKXPLAIN to generate strong feasibility cuts in

their LBBD scheme, which solves a hard real-time task allocation problem. The

problem assigns real-time tasks with fixed priorities to distributed processors. It

can be decomposed into allocation and scheduling problems. QUICKXPLAIN is

used to determine the minimal set of tasks causing inconsistency to generate

stronger no-good cuts in order to improve communication between the master

problem and subproblem.

Karlsson and Rönnberg (2021) evaluate DFBS as one of the cut-strengthening

techniques for feasibility cuts generated within an LBBD scheme. Their study con-

siders the cumulative facility scheduling with fixed costs, single machine scheduling

with sequence-dependent setup times and multiple time windows, and vehicle

routing with local congestion problems. The authors conclude that DFBS is the

most computationally effective technique and suggest investigating the impact

of variable sorting on DFBS. In a different work, Karlsson and Rönnberg (2022)

integrate the DFBS algorithm into their partial assignment acceleration technique

within an LBBD scheme for the avionics scheduling problem. The implementation

of DFBS in both papers is based on the algorithm proposed in Atlihan and Schrage

(2008). To the best of my knowledge, these are the only works that presented

results for DFBS in the LBBD related literature.c

4.2.3 Heuristic dom/wdeg

The variable sorting presented in this chapter is based on the conflict-directed

variable ordering heuristic dom/wdeg proposed in Boussemart et al. (2004). The

authors are interested in solving constraint satisfaction problems (CSPs). As

mentioned in Chapter 2, solving a CSP involves either determining the infeasibility
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of the problem or finding one (or more) solution. The variable ordering heuristic is

proposed to aid the search process towards hard or inconsistent parts of a CSP.

The dom/wdeg heuristic is a combination of two separate heuristics— dom

and wdeg. The dom (Haralick & Elliott, 1980) heuristic is a well-known dynamic

variable ordering heuristic. Dynamic in this context means that the order of

variables changes along the search, and the current state of the search is taken

into account. The heuristic orders the variables according to the current size of

their domains. No single heuristic clearly outperforms other heuristics, but dynamic

heuristics are usually considered to be the most efficient (Boussemart et al., 2004).

The limitations of traditional dynamic heuristics such as dom is that they only

look at the current state of the search, without taking into account the previous

states of the search. Boussemart et al. (2004) propose to capture such information

by associating a weight counter with each constraint of the problem. The counters

are updated whenever the search finds an inconsistency. The proposed variable

ordering heuristic is denoted wdeg. The counter of a constraint is increased by

1 when it belongs to an inconsistent part of CSP. As the search progresses, the

weights of hard constraints increase, the constraints with greatest weights then

direct the search toward the inconsistent part of CSP. This is what makes the

heuristic ”conflict-directed”. The variables in wdeg are ordered according to their

weighted degrees. The degree of a variable is the number of constraints where it

is involved. Similarly, the weighted degree of a variable is a sum of weights of the

constraints containing the variable.

The authors suggest implementing the heuristic within a depth-first search

algorithm applied to solve a CSP. At each step of the search process the algorithm

performs a variable assignment followed by constraint propagation. Intuitively, by

the so called fail-first principle, the variables with greatest weighted degrees lead

the search to the hard parts of CSPs (Boussemart et al., 2004). Combining dom

and wdeg results in a heuristic that prioritises the variables with the smallest ratio

of current domain size to current weighted degree.
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Hemery et al. (2006) use dom/wdeg to prioritise constraints in order to extract

minimal unsatisfiable cores (MUCs) from constraint networks. As mentioned in

Chapter 2, extracting the MUCs from CSPs is similar to isolating IIS of MIPs.

Therefore, dom/wdeg could potentially be applied to MIPs.

The results presented both in Boussemart et al. (2004) and Hemery et al.

(2006) confirm that the number of times each constraint is violated during the

search is important information that can be used to locate the inconsistent part of

a CSP. Similar to filtering algorithms and other ideas that are applicable to both

CSP and MIP, this result can be transferred to MIPs.

4.3 Preliminary investigation

The previous implementations of DFBS within the LBBD scheme in the literature,

and in this thesis, used a random order of variables. The natural question is what

impact variable sorting would have on the efficiency of the algorithm. The goal

of this section is to introduce two types of variable sorting strategies that will be

proposed as heuristics in the following sections. The first strategy is based on an

idea similar to the dom/wdeg heuristic. The idea behind the second strategy is to

use the problem structure and data. The argument for the use of the new strategies

is constructed based on the evidence provided by computational experiments. The

computational experiments run the default implementation of the DFBS algorithm.

The computational experiments solve the cumulative scheduling problem to

minimise tardiness. The experiments in Chapter 3 showed that the tardiness

instances tend to be the most difficult ones to solve. Therefore they seemed to be

the most interesting choice. All of the instances are taken from Hooker (2007) with

the same settings as in the previous chapter (the instances can be accessed via

the reference). The number of jobs to be scheduled varies between 10, 12, 14, 16,

and 18, and the number of machines goes from 2 to 4 machines.

The LBBD scheme is implemented in Python 3.8, and the MIP and CP models
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are solved using Gurobi Optimizer version 9.1.2 and IBM ILOG CP Optimizer

version 20.1, respectively. All tests have been carried out on a computer with two

Intel Xeon Gold 6130 processors (16 cores, 2.1 GHz each) and 96 GB RAM. Each

instance was given a total time of 20 minutes and the MIP-gaps are set to 0 for the

master problems.

4.3.1 Variable sorting

As described in Section 3.3.2.5, in each iteration of the DFBS algorithm, the goal

is to find a new variable that belongs to an IIS. Since this requires repeatedly

solving the subproblems, the speed of the algorithm depends on the number of

subproblems solved. In each minor iteration of DFBS, shown in Algorithm 9, the

best outcome is to remove as many variables as possible that do not belong to the

IIS. One can note, intuitively, that the more of the IIS variables get selected into

set T1 as early in the search as possible, the better, see Example 2.

Algorithm 9 ”Minor iteration” of the DFBS cut-strengthening algorithm
1: Split T into T1 and T2
2: x̄ j← 1, j ∈ S∪T1∪ I
3: let v′k be the new optimal value of [SP(x̄)]
4: if v′k = vk then
5: T ← T1
6: else
7: S← S+T1; T ← T2
8: end if

Example 2 The example presented in Figures 4.1– 4.2 illustrates DFBS applied

to set J = {1,2,3,4,5,6,7,8}. Let v be the objective value of [SP(J )]. DFBS is

applied to identify an irreducible subset I ⊆J , such that the objective value of

[SP(I)] is equal to v. In each iteration, the goal of DFBS is to identify a variable that

belongs to an IIS, if the set of variables to consider is greater than one, then the

minor iteration is called. Set T stores current candidates to be included in set I.

Set S stores variables that are not current candidates, but can still be considered

in the following iterations. Set T is initially equal to J , and sets S and I are empty.

We start by looking at the DFBS implementation that uses an order of variables
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with no particular sorting in Figure 4.1.

• Iteration 1: Set T contains more than one variable, it is therefore split into

T1 = {1,2,4,6} and T2 = {3,7,5,8}, see Algorithm 9. First, the objective value

v′ of [SP(T1∪ I∪S)] is evaluated. Since v′ is not equal to the original objective

v, set T1 is stored in set S, and set T2 becomes the new set T .

• Iteration 2: Set T is then split into T1 = {3,7} and T2 = {5,8}. The objective

value v′ of [SP(T1∪ I∪S)] is evaluated, since v′ is not equal to v, T1 = {3,7} is

added to set S, and T2 becomes the new set T .

• Iteration 3: Set T is split into T1 = {5} and T2 = {8}. The objective value v′

of [SP(T1∪ I∪S)] is evaluated, v′ is equal to v, therefore T1 = {5} is stored as

new set T , and T2 = {8} is not considered in the following iterations.

• Iteration 4: Set T = {5} only contains a single index, therefore it is added to I.

Next, the objective value v′ of [SP(I)] is evaluated, v′ is not equal to v, indices

of set S = {1,2,4,6,3,7} are therefore stored in set T , set S is then emptied.

• Iteration 5: Since set T contains more than one index, it is split into T1 =

{1,2,4} and T2 = {6,3,7}. The objective value v′ of [SP(T1∪I∪S)] is evaluated,

v′ is not equal to v, therefore set T1 is added to set S, and set T2 becomes the

new set T .

• Iteration 6: Set T is split into sets T1 = {6,3} and T2 = {7}. The objective

value v′ of [SP(T1∪ I∪S)] is evaluated, v′ is equal to v, therefore set T1 = {6,3}

becomes the new set T , and set T2 = {7} is no longer considered in the

following iterations.

• Iteration 7: Set T is split into sets T1 = {6} and T2 = {3}. The objective value

v′ of [SP(T1 ∪ I ∪ S)] is evaluated, v′ is not equal to v, T1 = {6} is therefore

added to set S, and T2 = {3} becomes the new set T .

• Iteration 8: Since set T = {3} only contains one index, it is added to set
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I = {5}. The objective value v′ of [SP(I)] is evaluated, v′ is equal to v, the

search is complete with the irreducible set I = {3,5}.

It can be seen in Figure 4.1, the random order of variables leads to set S containing

a big number of indices. For most of the search, only one variable is identified as

an IIS member, and only one variable is removed from the search. This leads to a

greater number of iterations and subproblems solved.

i = 1: 1 2 4 6 3 7 5 8 v′ ̸= v
i = 2: 1 2 4 6 3 7 5 8 v′ ̸= v
i = 3: 1 2 4 6 3 7 5 8 v′ = v
i = 4: 1 2 4 6 3 7 5 8 v′ = v
i = 5: 1 2 4 6 3 7 5 8 v′ ̸= v
i = 6: 1 2 4 6 3 7 5 8 v′ = v
i = 7: 1 2 4 6 3 7 5 8 v′ ̸= v
i = 8: 1 2 4 6 3 7 5 8 v′ = v

Figure 4.1: DFBS example with random sorting: T1= ■, T2=■, S=■, I=■

We now look at the DFBS implementation with a favourable order of variables.

• Iteration 1: Assume set T is ordered by applying some variable sorting. Set

T is then split into sets T1 = {3,5,4,6} and T2 = {1,2,7,8}. The objective

value v′ of [SP(T1∪ I∪S)] is evaluated, v′ is equal to the original objective v,

set T1 therefore becomes the new set T and, set T2 is no longer considered

in the following iterations.

• Iteration 2: Set T is split into sets T1 = {3,5} and T2 = {4,6}. The objective

value v′ of [SP(T1∪ I∪S)] is evaluated, v′ is equal to v, set T1 = {3,5} becomes

the new set T , and set T2 = {4,6} is no longer considered in the following

iterations.

• Iteration 3: Set T is split into sets T1 = {3} and T2 = {5}. The objective value

v′ of [SP(T1∪ I∪S)] is evaluated, v′ is not equal to v, set T1 = {3} is therefore

added to set S, and set T2 = {5} becomes the new set T .

• Iteration 4: Since set T = {5} only contains a single index, it is added to set

I. The objective value v′ of [SP(I)] is then evaluated, v′ is not equal to v, set
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S = {3} become the new set T .

• Iteration 5: Set T = {3} only contains a single index, it is therefore added

to set I = {5}. The objective value v′ of [SP(I)] is evaluated, v′ is equal to v.

The search is complete with the irreducible set I = {3,5}.

It can be seen in Figure 4.2, that having elements of an IIS in set T1 early

on in the search significantly increases efficiency of the algorithm. Half of the

variables are not considered in the search after the first iteration. In each iteration,

at least one variable is either removed from the search or identified to be in the

IIS. Set S only stored one index for a single iteration. The number of iterations is

therefore lower than the number of iterations for the search with the random order

of variables.

i = 1: 3 5 4 6 1 2 7 8 v′ = v
i = 2: 3 5 4 6 1 2 7 8 v′ = v
i = 3: 3 5 4 6 1 2 7 8 v′ ̸= v
i = 4: 3 5 4 6 1 2 7 8 v′ = v
i = 5: 3 5 4 6 1 2 7 8 v′ = v

Figure 4.2: DFBS example with favoured sorting: T1= ■, T2=■, S=■, I=■

The example highlights the importance of variable sorting. Using the right

sorting strategy, e.g. sorting strategy that increases the chances of set T1 con-

taining all of the elements of an IIS, is expected to increase the efficiency of the

algorithm.

4.3.2 Variable weight counter

This section introduces the idea of using a variable weight counter in variable

sorting for DFBS. The variable weight counter is the key component of the heuristic

weights proposed in Section 4.4.

A somewhat simplified version of the dom/wdeg heuristic can be used to

sort variables in DFBS. The main idea of the dom/wdeg heuristic is to use the

information about the number of times a constraint was violated to direct the search

to ’difficult’ parts of CSP. Similarly, the number of times a variable was present in
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an irreducible cut can be used to direct DFBS to the subset of variables likely to

contain the irreducible cut elements.

Since all of the variables in the original cut have value 1, domains of the

variables do not differ throughout the search, therefore the dom heuristic is not

applicable to variable sorting. The wdeg part of the dom/wdeg heuristic can be

applied as a simple variable weight counter. The variable weight counter is defined

as follows. Each variable has its own weight counter. At the start of the LBBD

solution process, all of the weight counters are initialised to 0. Then, in each

iteration of the LBBD, the weight counter of a variable is increased by 1 when the

variable belongs to the irreducible cut. The variables with higher weights are then

prioritised by the DFBS algorithm.

To validate the use of the weight counter for variable sorting, the following

computational experiment is carried out. The default implementation of the DFBS

algorithm is applied to strengthen cuts in the LBBD scheme for minimising total

tardiness for cumulative scheduling problem (see Section 3.4.1). The weight

counter is set up for each variable. In each Benders’ iteration, the counter of a

variable is increased by 1 when it is present in the irreducible cut. Note in the

experiment that the weight counter is only used to collect information and does

not influence the DFBS algorithm. The experiment solves 75 instances with 10,

12, 14, 16, and 18 jobs that must be scheduled on 2, 3, or 4 machines.

The results of the experiment are presented in Figure 4.3. There is a separate

plot for each instance set corresponding to a particular number of jobs. A point on

a plot corresponds to the probability of a variable (job) being in an irreducible cut.

The probability is calculated as the ratio of the number of Benders’ iterations where

the variable was present in an irreducible cut (the weight of the variable) to the

total number of Benders’ iterations. Note that there can be multiple irreducible cuts,

only one irreducible cut per iteration identified in one execution of the algorithm

is used. In the plots, the variables are sorted in the descending order by the

probability of appearing in the irreducible cuts. Note that the variables are sorted
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for each instance separately, and the sorting is different for each instance. For one

instance, job number 2 can have the highest probability, while for another instance,

it can be job number 10. The red line in each plot shows the average probability of

jobs across instances.

The first thing to notice in Figure 4.3 is that, some variables are more likely to

be present in an irreducible cut than others. All of the plots show a clear downward

trend — with some jobs having the probability as great as 1, and some jobs having

probability of 0. For the instance set with 14 jobs, there is an instance where 7

jobs were present in all of the cuts. This indicates that as the solution scheme

progresses, these jobs can clearly be prioritised over the other half of the jobs.

In all of the plots, one can also observe in that even for the instances with all

variables having low probabilities, some variables can clearly be prioritised over

others. These instances are represented by the lowest series of points in each

plot.

Another interesting observation is that, for the instance set with 18 jobs, the

plot shows that all of the jobs were present in the irreducible cuts for one of

the instances. This is due to solving the problem in one Benders’ iteration and

generating only one cut. Overall, in each plot, the red line indicates that for all

of the instances, on average, some of the variables are more likely to be in an

irreducible cut than others. Moreover, for each of the instances sets, there are jobs

that were never present in the cuts.

The experimental results show that, although different cuts are generated

in each Benders’ iteration, there are variables that appear in the cuts almost

constantly. In other words, sorting by the probability of the variable being in a cut

clearly favours some variables over others. By capturing the information about the

previous cuts, one can direct the search towards the variables with higher weights,

which are more likely to be in an irreducible cut.

104



0 2 4 6 8 10
Sorted jobs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 a
 jo

b 
be

in
g 

in
 a

 c
ut

Instance set with 10 jobs

0 2 4 6 8 10 12
Sorted jobs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 a
 jo

b 
be

in
g 

in
 a

 c
ut

Instance set with 12 jobs

0 2 4 6 8 10 12 14
Sorted jobs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 a
 jo

b 
be

in
g 

in
 a

 c
ut

Instance set with 14 jobs

0 2 4 6 8 10 12 14 16
Sorted jobs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 a
 jo

b 
be

in
g 

in
 a

 c
ut

Instance set with 16 jobs

0 2 4 6 8 10 12 14 16
Sorted jobs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 a
 jo

b 
be

in
g 

in
 a

 c
ut

Instance set with 18 jobs

Figure 4.3: Results for the default DFBS implementation
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4.3.3 Valid inequality

The second approach to variable sorting is to use the problem structure and data.

It is important to determine what information about the problem structure can

be used in variable sorting. One can observe from the Example 2 that favoured

sorting should prioritise variables that are likely to appear in an irreducible cut.

The likelihood of variables appearing in a cut depends on the objective function

and the type of cut generated. In the case of the minimising tardiness problem,

the LBBD scheme mostly generates optimality cuts. Therefore, it is important to

prioritise jobs that contribute to total tardiness.

In the solution process, once the jobs are assigned to facilities by the master

problem, the subproblem schedules them according to the time windows of the

jobs and the capacity of a facility. Note that the facility becomes known only after

the master problem solution. One way to use this data and estimate tardiness of

each job is to use subproblem relaxation in a form of valid inequality.

Recall that J (t1, t2) is the set of jobs that can be scheduled within time

interval [t1, t2]. The number of jobs that can run simultaneously is limited due to

the resource capacity of a facility. Therefore, based on the resource consumption

of each job, the last job in the set J (0,dk) scheduled on facility i has an end time

of no earlier than

T̄ =
1
Ci

∑
j∈J (0,dk)

p j f c j f . (4.1)

Since the last job has a due date no later than dk, its tardiness is no less than

max(T̄ −dk,0) (Hooker, 2007). This lower bound on tardiness of a job can be used

as a score to prioritise the variables. The following score can be calculated for

each variable k:

score =
1
Ci

∑
j∈J (0,dk)

p j f c j f −dk (4.2)

Note that unlike tardiness, that cannot have negative values, the score values can

be negative. The variables with higher scores are more likely to contribute to total
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tardiness.

Since the score of a variable depends on the facility it is assigned to, the

master problem solution is necessary to identify all of the jobs assigned to the

same machine. The score is then recalculated in each Benders’ iteration based

on the master problem solution.

Similar to the weight counter, a computational experiment is set up to valid-

ate the use of the proposed strategy. The default implementation of the DFBS

algorithm is applied to strengthen cuts in the LBBD scheme for the minimising total

tardiness for cumulative scheduling problem. The experiment solves 75 instances

from Hooker (2007) with 10, 12, 14, 16, and 18 jobs that must be scheduled on

2, 3, or 4 machines. The score values are calculated for all variables in each

Benders’ iteration. The calculation is only used for data collection and does not

influence the DFBS algorithm.

The results of the computational experiment are presented in Figure 4.4.

Since the scores are recalculated in each iteration, and the score of a variable

varies significantly, the scores are not aggregated for variables. Instead, we look

at all scores separately. The histograms on the left-hand side of the figure present

score distributions for each instance set. Overall distribution of scores is given in

blue colour, and the scores are divided into 30 bins for each instance set. Some

of these scores belong to variables that were present in irreducible cuts. The

distribution of such scores is given in orange colour, the bins for these scores

are equal to the bins for all scores. The bar graphs on the right-hand side of the

figure 4.4 represent the ratio between the number of scores in irreducible cuts and

the overall number of scores. For each score value on the horizontal axis, the bar

can be seen as the probability of a variable with such score being in an irreducible

cut.

The most important thing to notice in Figure 4.4 is the difference between two

distributions. For each instance set, the plot on the left-hand side shows that as
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the value of score increases, the difference between the orange bars and blue

bars decreases. This can also be seen in the ratio bars on the right-hand side.

This indicates that with the increase of the score value, it is more likely that the

variable with such score will be present in an irreducible cut.

Another interesting observation is that most of the scores for all instance sets

are in the range between -10 and 0. The distribution of scores in cuts usually has

more significant increase in frequency than the overall distribution of scores. This

again highlights that the probability of scores being in a cut increases with the

value of the score. Much smaller number of scores have values greater than 0 or

smaller than -10. The plots that correspond to instance sets with 10 and 14 jobs

show that, when a greater number of scores have values outside of -10 and 0,

the scores follow the overall trend of increasing probability. In other plots, sudden

drops in probability can be seen, when the number of scores is significantly low.

Overall, the plots confirm that the variables with higher scores are more likely

to be in an irreducible cut. The increase in the score value is generally matched by

the increase in the probability of a variable being in the cut. This can been easily

observed by upward trends in the bar graphs.

These results suggest that the proposed scores can be used in variable

sorting. The variables with high scores should be prioritised over variables with

lower scores.

4.4 Proposed heuristics

The preliminary investigation of the two strategies of variable sorting in Section 4.3

showed that both information about the cuts and the problem structure can be

used to sort variables. This section proposes and formalises three new heuristics

that can be used to sort variables within the DFBS algorithm.
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Figure 4.4: Distribution of scores
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4.4.1 Proposed heuristic weights

The main idea of the weights heuristics is to use the variable weight counter to

direct the search in DFBS. Initially, all of the variable weight counters are set to 0.

In each iteration of the LBBD, the weight counter of a variable is then increased by

1 when the variable belongs to the irreducible cut. As the LBBD solution scheme

progresses, the variables contributing to the objective value (infeasibility) the most,

have higher weights. See Algorithm 10.

Algorithm 10 Weight counter
Input: An irreducible subset set J (x̂),weight(x)
Output: An array weight of variables’ weights

1: for j ∈J (x̂) do
2: weight[x j]← weight[x j]+1
3: end for
4: return weight(x)

Algorithm 10 updates the weights array in each Benders’ iteration. The array

is then used in the DFBS algorithm (see Algorithm 8) to prioritise variables with

the greatest weights when sorting variables in set T .

The main advantage of the proposed method is the simplicity. Updating

the weights of variables does not require extra computation. Another important

advantage is that the weights do not depend on the problem structure.

4.4.2 Valid-inequality based priority

Unlike the weights heuristics, the valid-inequality based priority utilises problem

structure, and therefore has to be tailored for each problem. However, using valid

inequalities can be considered as the general guide.

The valid inequality based priority for the minimising total tardiness for cumu-

lative scheduling problem is implemented as follows. The heuristic recalculates

scores in (4.2) for variables based on the lower bound of tardiness of a job in

(4.1). The scores are recalculated in each Benders’ iteration based on the master
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problem solution. The variable in set T are then sorted in descending order of

their scores.

Since the scores are recalculated in each Benders’ iteration, the heuristics

only takes into account the current state of the LBBD search. In addition to using

the problem structure, this is another main difference with the weights heuristics.

The advantage of it is that, the heuristic is efficient from the first iteration.

4.4.3 Weight+Dynamic size

This heuristic combines the ideas of variable sorting and dynamic grouping of

constraints. One can note that, if T1 either contains too few or too many variables

and, subsequently, the objective value of the relaxation is not equal to the original

objective value, set T2 will not be discarded. DFBS will then pursue T2, while

T1 is appended to S and ”set aside”. Set S becoming large means the number

of variables to evaluate is still high, and it has adverse effects on computational

efficiency.

Ideally, set T1 should contain the number of variables equal to or close to the

size of the cut that will eventually be generated. One way to get an estimate of

the size is to look at the average size of the cuts generated so far. The ratio of the

average reduced cut size to the original cut size can then be used to split set T .

The ratio is calculated as follows,

ratio =
Nav

N
, (4.3)

where Nav is the average number of jobs in the irreducible cuts generated so far,

and N is the number of jobs in the original cut.

This heuristic should be used in combination with a heuristic that sorts vari-

ables. We suggest using the weights heuristic, since it is also does not depend

on the problem structure and requires no extra computation. Set T is first sorted
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using weights, and then split in the following way

T1 := {xi ∈ T |i = 1, ...,ratio∗n}, T2 = {xi ∈ T |i = ratio∗n, ...,n},

where n is the total number of variables. The main idea of this heuristic is to

facilitate all of the IIS variables falling to T1, ideally the first time T is split.

4.5 Computational evaluation

I will refer to the modified versions of the DFBS algorithm as different cut-strengthening

techniques. The effectiveness and efficiency of the cut-strengthening techniques

are evaluated in a similar way as in Chapter 3. The computational experiment

solves the cumulative scheduling problem to minimise tardiness. The LBBD

scheme is set up the same way as for the preliminary investigation. The problem is

solved using the LBBD solution scheme applying each cut-strengthening technique

separately. Minimising tardiness problem generates only value cuts. As in the

previous chapter, the comparison is made between solving the split and no-split

subproblem.

The comparison of the computational effectiveness will be made by evaluating

the run time and the size of the strengthened cuts. Since I am interested in

the efficiency of each strategy, particular attention will be paid to number of

subproblems solved and to the number of Benders’ iterations.

4.5.1 Instances

All of the 336 instances are taken from Hooker (2007) with the same settings as in

the previous chapter. The number of tasks to be scheduled varies between 10, 12,

14, up to 38, and the number of machines goes from 2 to 10 machines.
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4.5.2 Computational effectiveness and efficiency

The effectiveness of the strategies is evaluated by looking at the impact on the

run time of the LBBD scheme. The main metric for the efficiency of each search

strategy is the number of subproblems solved.

For the run time plots, the horizontal axis gives the time and the vertical axis

gives the percentage of solved instances. A point (x,y) on the curve means that

y% of instances can be solved in less than x seconds. The cut size figures are

histograms, a point (x,y) means average cut size x has frequency y. Where the

frequency y is the number of generated cuts.

All of the statistics in the tables are evaluated for instances that were solved

by all of the techniques. The tables below present the following data.

Niter — average number of Benders’ iterations needed to solve an instance.

Nsub — average number of subproblems solved per instance.

Tsub — average subproblem solution time per instance.

Tmas — average master problem solution time per instance

Ninst — number of instances solved by all of the techniques

Psol — percentage of instances solved by one technique

Nsol — number of instances solved by one technique

Tinst — average time spent on problems solved by all of the techniques.

In the figures and tables below, the modifications of DFBS using weighted

variable prioritising, valid inequality prioritising, and dynamic size grouping are

referred to as weight, valin, and dyno, respectively. The dfbs method refers to the

DFBS using the random order of variables. Separate results are given for the split

and no-split subproblems.
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4.5.2.1 No-split subproblem
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Figure 4.5: Percentage of solved instances for minimising tardiness problem with
strengthened optimality cuts and no-split subproblem

Cut-strengthening technique Psol Tspent Nsol Ninst
DFBS 5.35 213.77 18 17
DYNO 6.85 166.33 23 17
WEIGHT 6.55 170.04 22 17
VALIN 6.55 177.73 22 17

Table 4.1: Results for the minimising tardiness problem with no-split subproblem

It can be seen in Figure 4.5 and Table 4.1 that all of the modifications of

the DFBS algorithm outperform the default implementation, both in terms of

the profile and in terms of the number of instances solved. Figure 4.6 shows

that all of the techniques generate cuts of similar size, the number of Benders’

iterations is also similar for all of the techniques (see Table 4.2). The difference in

performance comes from the lower number of subproblems solved by the modified

techniques. Valid inequality technique solves 1192 subproblems on average, the

weight technique solves 1156, and the dynamic size techniques solves 1104

subproblems, which is 6.5%, 9.3%, and 13.4% less than 1275 subproblems by

the default implementation,respectively. The lower number of subproblems then

results in lower subproblem solution time, as can be seen in Table 4.2. The

overall most efficient technique is the dynamic size technique. It solves more

instances than other techniques — 23, compared to 22 by the weight and valid
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inequality, and 18 by the default implementation; while solving the smallest number

of subproblems. This leads to the dynamic size technique spending 27.17% less

time on solving subproblems than the default implementation.
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Figure 4.6: Cumulative scheduling: : Average size of optimality cuts for the
minimising tardiness problem with no-split subproblem

Cut-strengthening technique Niter Nsub Tsub Tmas Ninst
DFBS 63 1275 211.13 1.27 17
DYNO 64 1104 153.75 1.28 17
WEIGHT 64 1156 167.45 1.26 17
VALIN 65 1192 174.96 1.27 17

Table 4.2: Results for the minimising tardiness problem with no-split subproblem

4.5.2.2 Split subproblem

Similar to the results for the no-split problem, it can be seen in Figure 4.7 and

Table 4.3 that all of the modified techniques outperform the default implementation

of the DFBS algorithm. The results in Figure 4.8 illustrate that all of the techniques

generate cuts of similar size. While the number of Benders’ iterations is similar

too (see Table 4.4), interestingly, all of the modified techniques also spend less

time solving the master problem. Note that there can be multiple irreducible cuts

for each master problem solution. The cuts generated by different techniques

are not necessarily the same. The master problem solution time might indicate

that the cuts generated by the modified techniques are less complicated for the
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Figure 4.7: Percentage of solved instances for minimising tardiness problem with
strengthened optimality cuts and split subproblem

Cut-strengthening technique Psol Tspent Nsol Ninst
DFBS 35.12 256.20 118 113
DYNO 36.31 208.44 122 113
WEIGHT 36.01 213.68 121 113
VALIN 36.31 226.77 122 113

Table 4.3: Results for the minimising tardiness problem with no-split subproblem

master problem. Similar to the no-split subproblem, the dynamic size technique

solves the smallest number of subproblems — 1823, which is 9.2% less than 2009

by the default implementation. The lower number of subproblems solved is also

reflected in the lower subproblem solution time — 201.33 on average per instance,

which is 9.2% lower than 222.05 by the default implementation. This result is

closely followed by the weight heuristic with 1928 subproblems solved and 206.67

seconds of subproblem solution time.

Cut-strengthening technique N iter N sub T sub T mas N inst
DFBS 72 2009 222.05 5.56 113
DYNO 71 1823 201.33 4.98 113
WEIGHT 71 1928 206.67 4.89 113
VALIN 72 1993 219.76 4.82 113

Table 4.4: Results for the minimising tardiness problem with split subproblem
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Figure 4.8: Cumulative scheduling: : Average size of feasibility cuts for the finding
a feasible schedule problem with split subproblem

4.6 Conclusions

This chapter investigates new methods for improving the efficiency of the DFBS

algorithm. Namely, the impact of variable sorting and dynamic grouping of variables

is investigated. Three methods were proposed and evaluated — weighted variable

sorting, valid inequality sorting, and combination of weighted variable sorting with

dynamic size grouping of variables. The evaluation is based on the computational

experiment that solves the minimising tardiness for cumulative scheduling problem.

The results are reported for the split and no-split subproblems.

The computational results show that all of the modified techniques have better

efficiency than the default DFBS cut-strengthening technique. The dynamic group

size technique combined with the weighted variables showed the best results. The

proposed technique solved the lowest number of subproblems, and subsequently

spent the lowest time solving the subproblems. An interesting observation is how

the lower number of subproblems solved translates into difference in the subprob-

lem solution time — for the no-split subproblem the percentage difference in the

number of solved subproblems gives roughly twice as much difference in subprob-
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lem solution time. This indicates that the modified techniques not only solve fewer

subproblems, but also lead to less difficult subproblems, i.e. subproblems with

fewer variables. For the split subproblem the percentage difference in the number

of subproblem solved and the difference in subproblem solution time are almost

equal. This indicates that the difference in the size of subproblems solved is not

as significant as for the no-split subproblem. Another interesting observation is

that the modification also impacts the master problem solution time for the split

subproblem.

The proposed techniques save the cost of solving more subproblems, which

can have big impact for large industrial instances (such as the instances presented

in (Karlsson & Rönnberg, 2022)). Importantly, the proposed techniques are easy to

implement and require no additional computation. Therefore, it is worth investing

time in implementing the modifications.
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Chapter 5

Subproblem separation in
logic-based Benders’ decomposition
for the vehicle routing problem with
local congestion

5.1 Introduction

Logic-based Benders’ decomposition (LBBD) is an extension of classical Benders’

decomposition. LBBD extends the classical Benders’ approach by allowing the

subproblem to be an optimisation problem of any form. LBBD was first introduced

in (Hooker, 2000) and then formalised in (Hooker & Ottosson, 2003). It generates

Benders’ cuts by using logical deductions from subproblem solutions, therefore

it can handle any type of subproblem. This makes LBBD an effective method of

combining different approaches such as mixed-integer programming (MIP) and

constraint programming (CP).

Successful applications of LBBD include resource allocation and scheduling

problems (Coban & Hooker, 2013; Emde, Polten & Gendreau, 2020; Hooker, 2007;

Karlsson & Rönnberg, 2022; Lombardi & Milano, 2012; Sun, Tang & Baldacci,

2019), vehicle routing problems (Lam et al., 2020; Raidl, Baumhauer & Hu, 2014;

2015; Riazi et al., 2013), and other types of large-scale optmisation problems

(Hooker, 2019). Various acceleration techniques have been used in these applic-

ations in order to improve the effectiveness of the LBBD scheme. The common

acceleration techniques are subproblem relaxation, cut-strengthening techniques,

and subproblem separation. The computational evaluation in Chapter 3 shows

that for problems, which have inherently separable subproblems, benefits of apply-
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ing subproblem separation dominate the benefits of applying cut-strengthening

techniques.

Subproblem separation can be applied to problems with a bordered block-

diagonal structure. This structure allows splitting the subproblem when master

problem variables are fixed. We propose a new method for subproblem separation

for problems that do not have such structure. On the example of the VRPLC,

we demonstrate why problems with no block-diagonal structure can not be sep-

arated at the problem formulation stage. We then introduce a new method that

applies the connected components algorithm to identify separable blocks of the

subproblem based on the master problem solution in each iteration of the Bend-

ers’ algorithm. The computational evaluation of the new method confirms that

subproblem separation we propose has a significant impact on the LBBD scheme.

The main contributions of this chapter are:

• A new method of subproblem separation in the LBBD scheme using the

connected components in a graph.

• A derivation and analytical validation of various Benders’cuts.

• Detailed computational experiments evaluating four different methods ap-

plying subproblem separation and the default method with no subproblem

separation.

• The code related to the LBBD scheme and the subproblem separation is

freely available at https://git.exeter.ac.uk/as1392/subproblem-separation-in-

lbbd.

The rest of this chapter is structured as follows. Section 5.2 describes the

VRPLC. Section 5.3 presents the problem formulation. A brief description of the

LBBD scheme for the problem is given in Section 5.4. The main contributions

of this paper are Sections 5.5–5.7. Section 5.5 introduces the new method for

subproblem separation. The derivation of new Benders’ cuts is given in Section 5.6.
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The computational results in Section 5.7 demonstrate the effectiveness of the

subproblem separation by evaluating the solution run times for the various new

methods. Finally, concluding comments are given in Section 5.8.

5.2 Vehicle routing problem with local congestion

The vehicle routing problem (VRP) (Clarke & Wright, 1964) is a problem that finds a

set of suitable routes for a fleet of vehicles that deliver/collect goods from the central

depot to a set of customers. The obtained routes must satisfy all of the customer

requests while minimising the total travel distance and/or other costs. Some

examples of practical applications are grocery delivery, parcel delivery (Berbeglia

et al., 2007), farm produce collection, waste collection (Benjamin & Beasley, 2010)

etc. The VRP is one of the most extensively studied problems in optimisation due

to both practical and theoretical interest.

There is no standard VRP formulation. However, one of the best-studied

formulations of the vehicle routing problem is the capacitated VRP (CVRP)(Arnold,

Gendreau and Sörensen, 2019; Pecin et al., 2017; Raidl, Baumhauer and Hu,

2014; 2015; Ralphs et al., 2003; Riazi et al., 2013; Uchoa et al., 2017, and

references therein). A lot of VRP problem formulations are based on CVRP. A

feasible solution of CVRP is a set of routes starting and ending at the central

depot. Every customer is visited only once on a specific route, and the cumulative

demand (weight) of all requests the vehicle delivers must not exceed its capacity.

The VRPLC is the CVRP enriched with time window and local congestion con-

straints. This variant of the CVRP was introduced in (Lam, Pardalos & Hentenryck,

2016). The customer requests are grouped by locations. The congestion con-

straint at each location is a cumulative resource constraint that limits the number

of vehicles present and/or in service at any given time. If all resources at a location

are engaged, incoming vehicles must wait until the resources become available.

This leads to time dependencies, and, subsequently, a scheduling substructure

that is not present in conventional CVRPs (Lam, Pardalos & Hentenryck, 2016).
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An example of such time dependency is that a delay on one route entails delays

on other routes visiting the same location. These delays can cause infeasibility of

a solution because of the time window constraints.

Developing a hybrid MIP and CP solver ”Nutmeg”, Lam et al. (2020) introduce

a logic-based Benders’ decomposition (LBBD) scheme for the VRPLC. As VRPLC

can be decomposed into a routing and a scheduling problem, it is naturally suited

to LBBD. The authors use the branch-and-cut style of LBBD known as branch-and-

check. Two objective types are considered— minimising total travel distance and

minimising makespan.

5.3 Problem formulation

The problem formulation studied in this chapter is based on the VRPLC formulation

in (Lam et al., 2020). However, we only consider the minimising total tardiness

objective, that was shown to be the most difficult in Chapter 3. The requests are

allowed to be delivered past their time window, the tardiness of each request is

the amount of time that has passed since the end of the window until the delivery

time. The total tardiness is the sum of the tardiness of all requests.

The problem is to create a set of routes for vehicles to deliver goods from a

central depot to various locations. The vehicles and the locations are subject to

vehicle capacity and congestion constraints, respectively.

Table 5.1 lists the data and decision variables for the problem. The requests for

goods are grouped by locations. Each request i ∈ R must be delivered to location

li ∈ L within a time window [ri,di], and all vehicles must return to the central

depot before time T . Each vehicle requires the use of one piece of equipment for

processing time pi to unload the goods for request i ∈ R. Each location only has

the total fixed set of equipment Cl, the limited capacity of equipment then leads to

location congestion.

The problem can be modelled using a graph (N ,A ). The central depot and
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Name Description

Sets

l ∈ {1, . . . ,L } Set of locations
N = R∪{O−,O+} Set of nodes
Rl = {i ∈ R|li = l} Set of requests at location l ∈L
A = {(i, j) ∈N ×N |i ̸= j} Set of arcs connecting the nodes
R = {1, . . . ,n} Set of requests

Parameters

T ∈ {1, . . . ,∞} Time horizon
Cl ∈ {1, . . . ,∞} Resource capacity of location l ∈L
n Number of requests
li ∈L Location of request i ∈ R
ri ∈ [0,T ] Release time of request i ∈ R
di ∈ [0,T ] Deadline of request i ∈ R
pi ∈ [0,T ] Processing time of request i ∈ R
qi ∈ [1,Q] Weight of request i ∈ R
Q ∈ {0, . . . ,∞} Maximum weight a vehicle can carry
O+ Artificial start that corresponds to the central depot
O− Artificial end that corresponds to the central depot
ci j Travel time along arc (i, j)

Decision variables

xi j ∈ {0,1} Indicates if a vehicle travels along arc (i, j)
ystart

i ∈ [ri,di] Time a vehicle starts unloading goods
yweight

i ∈ [qi,Q] Total accumulated weight of delivered goods

Table 5.1: Data and decision variables for the model
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each request i ∈ R with the corresponding location information are represented

through the set of nodes N . The set A denotes the arcs connecting the nodes.

The variables xi j equal 1 if a vehicle travels along arc (i, j) ∈A , and 0 otherwise.

Moving along arc (i, j) takes ci j time units. There are two continuous subproblem

variables at each node i ∈N . The continuous variables ystart
i and yweight

i are equal

to the time a vehicle starts unloading goods and the total accumulated weight of

delivered goods, respectively.

The model for the vehicle routing problem with location congestion is given by

min ∑
i∈R

max{ystart
i + pi−di,0} (5.1)

s. t. ∑
i:(i, j)∈A

xi j = 1, j ∈ R, (5.2)

∑
j:(i, j)∈A

xi j = 1, i ∈ R, (5.3)

CUMULATIVE((ystart
i |i ∈ Rl),(pi|i ∈ Rl),(1|i ∈ Rl),Cl), l ∈L , (5.4)

xi j = 1→ yweight
i +q j ≤ yweight

j , (i, j) ∈A , (5.5)

xi j = 1→ ystart
i + pi + ci j ≤ ystart

j , (i, j) ∈A , (5.6)

xi j ∈ {0,1}, (i, j) ∈A , (5.7)

ystart
i ∈ [ri,di], i ∈N , (5.8)

yweight
i ∈ [qi,Q], i ∈N . (5.9)

The objective function (5.1) minimises total tardiness of all requests. Constraints (5.2)–

(5.3) ensure each node has exactly one incoming and outgoing arc. This ensures

each request is assigned to exactly one vehicle. The CUMULATIVE constraints (5.4)

enforce processing capacity limit at each location. Vector ((1|i ∈ Rl)) represents

resource requirement for each request i ∈ Rl. The CUMULATIVE constraints require

the following: ∑i∈Rlt
1≤Cl for all times t, where Rlt = {i|ystart

i ≤ t < ystart
i + pi} is the

set of requests being processed at time t. Constraints (5.5)–(5.6) are only enforced

when the corresponding values of xi j are equal to 1. Constraints (5.5) ensure that

the total accumulated weight of delivered goods by a vehicle does not decrease
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after each delivered request. Constraints (5.6) ensure request processing time

and minimum travel times are respected. Constraints (5.6) are sufficient to avoid

cycles. All of the vehicles are assumed to be identical, and each node has one

incoming and outgoing arc, therefore the vehicles are not presented explicitly. The

number of arcs outgoing from (or incoming to) the central depot gives the number

of vehicles used in a solution.

5.4 Logic-based Benders’ decomposition for VRPLC

The VRPLC decomposes into routing and scheduling components. The variables

xi j are viewed as the complicating variables. Fixing variables xi j to trial values

leads to a scheduling subproblem. The scheduling subproblem can be solved as

a CP. The trial values of xi j are found by solving the routing master problem as a

MIP. The master problem identifies a set of vehicle routes that satisfy all delivery

requests.

Let T denote the total tardiness. The master problem in iteration k is given by

min T (5.10)

s. t. ∑
i:(i, j)∈A

xi j = 1, j ∈ R, (5.11)

∑
j:(i, j)∈A

xi j = 1, i ∈ R, (5.12)

T ≥ Bxi(x), i = 1, ...,k−1, (5.13)

[Valid inequalities]. (5.14)

The [Valid inequalities] contain constraints (5.5)–(5.6), they are added to the

master problem to retain some information about the subproblem. They state that

for a vehicle that travels along arc (i, j) the accumulated weight of goods delivered

after request j cannot be smaller than the accumulated weight after request i.

Similarly, unloading of goods at node j cannot start before unloading at node i.
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Inequalities (5.13) are the Benders’ cuts obtained by solving the subproblem for

master problem solutions xi in iterations i = 1, . . . ,k−1. The Benders’ cuts ensure

feasibility and optimality of the problem solution.

Let xk be the master problem solution in iteration k, then the subproblem is

given by

min ∑
i∈R

max{ystart
i + pi−di,0} (5.15)

s. t. CUMULATIVE((ystart
i |i ∈ Rl),(pi|i ∈ Rl),(1|i ∈ Rl),Cl), l ∈L , (5.16)

xk
i j = 1→ yweight

i +q j ≤ yweight
j , (i, j) ∈A , (5.17)

xk
i j = 1→ ystart

i + pi + ci j ≤ ystart
j , (i, j) ∈A . (5.18)

The subproblem is solved to schedule deliveries on the routes identified by the

master problem.

The solution procedure is an iterative process that iterates between solving the

master problem and the subproblem. Let T ∗ and T ∗k denote the optimal objective

value of the master problem and the subproblem, respectively. In each iteration,

the optimal value T ∗ provides a lower bound on the optimal value of (5.1)–(5.9),

and T ∗k provides an upper bound. The optimal value T ∗ increases monotonically,

the subproblem value T ∗k can increase or decrease. The procedure terminates

when T ∗ = min{T ∗1 , . . . ,T ∗k }.

The main idea of LBBD is to use T ∗k and the reasoning behind this solution

to obtain a bounding function Bxk(x) that gives a valid lower bound on the optimal

value of (5.1). The bounding function Bxk(x) should have following two properties.

Property 3 Bxk(x) provides a valid lower bound on (5.1) for any given x ∈ Dx,

where Dx is the domain of x. That is, T ≥ Bxk(x) for any feasible (x,y) in problem .

Property 4 Bxk(xk) = T ∗k .

It is convenient to regard T ∗k as having an infinite value if the subproblem is
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infeasible. By this assumption, a strong duality holds for the dual of the subproblem:

the optimal value of the subproblem is always equal to the optimal value of its

dual (Hooker & Ottosson, 2003).

Theorem 3 (Hooker, 2007) If the bounding function Bxk(x) satisfies properties 3

and 4 in each iteration of the Benders algorithm, and the domain Dy of y is finite,

the Benders algorithm converges to the optimal value of (problem) after finitely

many steps.

Let Jk = {(i, j)∈A |xk
i j = 1} be the set of arcs that were selected in the master

problem solution in iteration k. If the subproblem is infeasible, a feasibility cut given

by

∑
(i, j)∈Jk

(1− xi j)≥ 1 (5.19)

is generated. If the subproblem has an optimal solution with value T ∗k , an optimality

cut T ≥ Bxk(x) is generated. The cut is given by

T ≥ T ∗k
(
1− ∑

(i, j)∈Jk

(1− xi j)
)
. (5.20)

The cut indicates that the total tardiness T will have a value of at least T ∗k , unless

one of the arcs (i, j) ∈Jk is removed from the route.

Both feasibility cuts (5.19) and optimality cuts (5.20) can be routinely strengthened

by replacing Jk with a smaller subset J
′

k ⊆Jk, if the subproblem corresponding

to J
′

k gives a solution with the same objective value as the solution for Jk.

5.5 Subproblem separation

Subproblem separation is a common strategy used to accelerate the LBBD scheme.

It is especially useful when the subproblem is a scheduling problem. Given that

scheduling problems are difficult to scale up, splitting one big subproblem into

many small independent subproblems usually benefits the solution procedure.
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Figure 5.1: Example of a graph representing the central depot (D) and four
locations.

The subproblem can be separated when the problem has a bordered block

diagonal structure, where the master variables define the border. Therefore, fixing

the master variables to trial values makes the blocks separable. Meaning that the

subproblem can be decoupled into a separate subproblem for each such block,

and the solution of any decoupled subproblem does not depend on solutions of

other subproblems.

The VRPLC formulation does not exhibit a block diagonal structure. Fixing

master variables for the vehicle routing problem, does not naturally decouple

the subproblem. One might consider decoupling the subproblem by each loca-

tion. However, since a vehicle can travel through more than one location, con-

straints (5.5)–(5.6) create a border that connects the locations. For example, if a

vehicle first travels through location l1 and then location l2, the subproblem for loc-

ation l2 would require the subproblem solution for l1. This issue could be resolved

by solving the subproblem for l1 before solving subproblem for l2. However, since

a location may host several requests, it is possible that another vehicle travels

through l1 and l2 in the opposite order, thus making this method of subproblem sep-

aration inapplicable. Therefore, the subproblem cannot be decoupled by locations

at the problem formulation stage.

We propose to separate the subproblem during the solution process. One can

note that some master subproblem solutions give routes that only connect some

of the locations. For example, see Figure 5.1a, locations 1 and 4 are connected to

each other and the central depot, while locations 2 and 3 are only connected to

the central depot. One subproblem can be solved for locations 1 and 4 together,
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and one subproblem for each of locations 3 and 4.

We propose to identify separable blocks of locations in each iteration of the

Benders’ algorithm. The master problem solution xk
i j can be represented as a

graph Jk. The edges in graph Jk are the connections between requests. In

order to identify separable locations, a new graph is formed where the nodes are

given by locations. The edges between requests are mapped onto the edges

between locations. Connected locations can then be found by using an algorithm

to identify connected components in the location graph. Our implementation uses

a depth-first search (DFS) to identify connected components. Note that the edges

that connect the central depot to the locations are ignored, otherwise, all of the

locations will belong to a single connected component through the central depot.

The number of independent calls of the DFS function is equal to the number of

connected components. In the example above, (see Figure 5.1b) the connected

components are {[1,4], [2], [3]}. A separate subproblem is then solved for each

connected component. Observe that solving the subproblem when a connected

component is a path is trivial.

It is important to note that the proposed algorithm can identify connected

components for more general cases than the example above. Since a vehicle can

travel to multiple locations, the algorithm ensures that all of the locations visited by

one vehicle belong to a single component. Moreover, if several vehicles deliver

requests to the same location, all of the locations traversed by the vehicles will be

encompassed in a single component. This is possible due to the step of mapping

the edges between requests to the edges between locations — several request

nodes become one location node.

5.6 New Benders’ cuts

There is an inherent computational benefit to splitting the subproblem into smaller

independent subproblems. Nevertheless, in order to fully exploit the new subprob-

lem structure it is important to generate strong Bender’s cuts. In this section, we
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analytically derive different sets of valid Benders’ cuts.

Let xk be the master problem solution in iteration k, and let set Jk be given by

Jk = {(i, j)|xk
i j = 1}. As mentioned in Section 5.5, since Jk ⊆A is a graph, it can

be separated into connected components. Let set Ck denote the set of connected

components in iteration k. The connected components partition the set Jk, i.e.,

⋃
c∈Ck

J c
k = Jk and J c

k

⋂
J c′

k =∅ c,c′ ∈Ck, c ̸= c′,

where J c
k ⊆Jk is the set of all edges from Jk in the connected component c.

Sets J c
k partition Jk, cut (5.20) therefore can be rewritten as

T ≥ T ∗k
(
1− ∑

c∈Ck

∑
(i, j)∈J c

k

(1− xi j)
)
. (5.21)

Each connected component c ∈Ck describes a separate subproblem. The optimal

objective for subproblem c in iteration k is given by T ∗ck. Further, cut (5.21) can then

be rewritten as the first cut we are proposing to generate

T ≥ ∑
c∈Ck

T ∗ck
(
1− ∑

(i, j)∈J c
k

(1− xi j)
)
. (5.22)

The cut (5.22) can be seen as a summation of cuts of type (5.20) for each com-

ponent c ∈Ck. Note that cut strengthening can be applied to all cuts presented in

this section unless otherwise stated.

The second valid set of cuts we propose to generate in iteration k is given by

Tck ≥ T ∗ck
(
1− ∑

(i, j)∈J c
k

(1− xi j)
)
, c ∈Ck, (5.23)

T ≥ ∑
c∈Ck

Tck. (5.24)

The auxiliary variables Tck, denoting total tardiness for each connected com-

ponent, are added to the master problem.
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We now looking at splitting the cuts further. The main idea is to look at

the edges (i, j) ∈ A in the routes identified by the master problem. When the

subproblem is decoupled, the corresponding edges are also decoupled. Tardiness

incurred by a vehicle traveling along (i, j) is denoted by Ti j. Consider cut (5.20),

replacing T with T = ∑(i, j)∈A Ti j results in

∑
(i, j)∈A

Ti j ≥ T ∗k
(
1− ∑

(i, j)∈Jk

(1− xi j)
)
. (5.25)

Since (i, j) ∈A \Jk have no influence on the bound given by cut (5.25), we

can replace A by Jk and rewrite the cut as

∑
(i, j)∈Jk

Ti j ≥ T ∗k
(
1− ∑

(i, j)∈Jk

(1− xi j)
)
, (5.26)

Theorem 4 Cuts (5.26) will provide a valid set of cuts to solve the problem to

optimality.

Proof.

Cuts (5.26) can be presented in the form of Benders’ cuts T ≥ Bxk(x). Where

in iteration k

T = ∑
(i, j)∈Jk

Ti j, and Bxk(x) = T ∗k
(
1− ∑

(i, j)∈Jk

(1− xi j)
)

According to Theorem 1 and Properties 1 and 2, if for any feasible solution

(x,y) the total tardiness is bounded such that T ≥ Bxk(x), and Bxk(xk) = T ∗k , the

Benders’ algorithm converges to the optimal value.

We start from proving that T ≥ Bxk(x) for any feasible (x,y). Note that, trivially

T ≥ ∑(i, j)∈Jk
Ti j.

Let m be an iteration of the Benders’ algorithm, such that m ̸= k. Let set Jm

be defined as Jm = {(i, j)|xm
i j = 1}. There can be three cases: Jm is a subset
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of Jk, Jm is a superset of Jk, and the symmetrical set difference Jm△Jk is

non-empty. In the third case, the indices in Jm \Jk do not influence the bound by

the definition of the cut, the indices in set Jk \Jm correspond to variables xm
i j = 0

in the cut and do not influence the bound. Therefore, it is sufficient to consider the

former two cases:

• Jm ⊆Jk. This gives
(
1−∑(i, j)∈Jk

(1−xm
i j)
)
≤ 0, since ∃(i, j) ∈Jk, such that

xm
i j = 0. Therefore T ≥ T ∗k

(
1−∑(i, j)∈Jk

(1− xi j)
)
.

• Jk ⊆Jm. This gives
(
1−∑(i, j)∈Jk

(1− xm
i j)
)
= 1, since ∀(i, j) ∈Jk, xm

i j = 1.

Therefore T ≥ T ∗k
(
1−∑(i, j)∈Jk

(1− xi j)
)
, because T ≥ T ∗k .

We now prove that Bxk(xk) = T ∗k in any iteration k:

Bxk(xk) = T ∗k
(
1− ∑

(i, j)∈Jk

(1− xi j)
)
= T ∗k , since ∀(i, j) ∈Jk, xk

i j = 1.

□

The third set of cuts we propose to generate can be derived by splitting the

edges in Jk by the connected components. Since sets J c
k partition Jk, cut (5.26)

can be rewritten as the set of cuts

∑
(i, j)∈J c

k

Ti j ≥ T ∗ck
(
1− ∑

(i, j)∈J c
k

(1− xi j)
)
, c ∈Ck (5.27)

T ≥ ∑
c∈Ck

∑
(i, j)∈J c

k

Ti j. (5.28)

The main difference from previously introduced cuts is that new auxiliary

variables Ti j are added. Compared to Tck variables, new variables further partition

the total tardiness.

Theorem 5 Cuts (5.27)–(5.28) will provide a valid set of cuts to solve the problem
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to optimality

Proof. A logic similar to the proof of Theorem 4 can be applied here. Let Tck

be defined as Tck = ∑(i, j)∈J c
k

Ti j. We first prove that Tck ≥ T ∗ck

(
1−∑(i, j)∈J c

k
(1− xi j)

)
for any feasible solution (x,y).

Let Jm be the master problem solution in iteration m. The set Jm can be split

by the connected components obtained in iteration k such that
⋃

c∈Ck
J c

m = Jm.

Similar to the proof of Theorem 4, it is sufficient to consider the following two

cases:

• J c
m ⊆J c

k . This gives
(
1−∑(i, j)∈J c

k
(1− xm

i j)
)
≤ 0, since ∃(i, j) ∈J c

k , such

that xm
i j = 0. Therefore Tck ≥ T ∗ck

(
1−∑(i, j)∈J c

k
(1− xi j)

)
.

• J c
k ⊆Jm. This gives

(
1−∑(i, j)∈J c

k
(1− xm

i j)
)
= 1, since ∀(i, j) ∈J c

k , xm
i j = 1.

Therefore Tck ≥ T ∗ck

(
1−∑(i, j)∈J c

k
(1− xi j)

)
□

5.7 Computational experiments

The computational effectiveness of subproblem separation and various Benders’

cuts, described in Section 5.6, is evaluated in a series of computational experi-

ments. The evaluated cuts are cuts (5.22), cuts (5.23)–(5.24), cuts (5.27), and

the combination of cuts (5.23)–(5.24) and cuts (5.27). Using the combination of

cuts (5.23)–(5.24) and cuts (5.27) means generating both sets of cuts in each

iteration. Each experiment solves the VRPLC with the minimising total tardiness

objective. The experiments run the LBBD scheme with the separated subproblem

generating each type of cuts separately. Another experiment runs the default

implementation of the LBBD scheme with no subproblem separation. The different

implementations are referred to as ”methods” for the sake of brevity. Since it

is important to apply cut strengthening to accelerate the solution process, the
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deletion filter cut-strengthening technique with the default variable sorting has

been applied in all computational runs.

The main metric of computational effectiveness is the impact of different

methods on the run time of the LBBD scheme. For the run time plots, the horizontal

axis gives the time and the vertical axis gives the percentage of solved instances.

A point (x,y) on the curve means that y% of instances can be solved in less than x

seconds.

5.7.1 Experiment setting

The LBBD scheme is implemented in Python 3.8, and the MIP and CP models are

solved using Gurobi Optimizer version 9.1.2 and IBM ILOG CP Optimizer version

20.1, respectively. All tests have been carried out on a computer with two Intel

Xeon Gold 6130 processors (16 cores, 2.1 GHz each) and 96 GB RAM. Each

instance was given a total time of 20 minutes and the MIP-gaps are set to 0 for the

master problems.

5.7.2 Instances

We use 450 instances from Lam et al. Lam et al., 2020, the instances are available

at https://github.com/ed-lam/nutmeg/tree/master/examples/vrplc/Instances. The

instances are generated for 5, 8, or 10 locations. For each number of locations,

there are instances with 20, 30, and 40 requests. Location resource capacities

vary between one and eight for all instances. Since the instances were originally

created for feasibility and makespan objective functions, the instances are modified

for the minimising total tardiness objective with deadlines decreased by 10%.

5.7.3 Percentage of solved instances

The main observation from Figure 5.2 is that all of the methods applying subprob-

lem separation outperform the default implementation. The default implementation

with 12% of solved instances is notably behind the methods applying subproblem
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separation. Cuts (5.23)–(5.24) have the highest effectiveness with 81.5% of solved

instances. Cuts (5.22) and the combination of cuts (5.23)–(5.24) and (5.27) have

marginally lower percentages of solved instances—77.8% and 80%, respectively.

An interesting result is that although cuts (5.27) outperform the default method,

they show significantly lower results than other methods applying subproblem

separation—28.2% of solved instances. The main reason is that the cuts lead to

repeated master problem solutions with the same connected components. This

implies that this type of cut introduces symmetry that is difficult to handle for

the master problem solver. The results for the combination of cuts (5.27) and

cuts (5.23)–(5.24) being slightly lower than the results for cuts (5.23)–(5.24) also

imply that cuts (5.27) adversely impact the run time. As it was expected, Figure 5.3

shows that optimality cuts (5.23)–(5.24), cuts (5.22), and the combination of cuts

(5.23)–(5.24) have a similar average cut size, with most of the cuts being sparse.

It is also noticeable that cuts (5.27) did not generate cuts of full size.
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Figure 5.2: Percentage of instances solved to optimality for the minimising tardi-
ness for cumulative scheduling problem.

The results in Table 5.2 highlight the effect of subproblem separation on

the LBBD scheme. The reported values are calculated for different sets for

each method. For each method, the set comprises retrieved instances that were

either solved to optimality or timed out. The Ninst column indicates the number

of instances in each set, this includes solved instances and the instances that
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Figure 5.3: Average size of optimality cuts for the minimising tardiness for cumulat-
ive scheduling problem.

timed out. Note that if an instance times out while solving the subproblem, the

results cannot be retrieved. The number of instances solved to optimality by each

method is given in the last column. As can be seen in Table 5.2, the default

implementation spends much more time solving subproblem per instance—3.75

seconds compared to 0.141 seconds and below by other methods. This can be

explained by the greater average subproblem solution time per Benders’ iteration—

0.67 seconds compared to 0.02 seconds, 0.016 seconds, 0.03 seconds, and 0.015

seconds by cuts (5.22), cuts (5.23)–(5.24), cuts (5.27), and the combination of

cuts (5.23)–(5.24) and cuts (5.27), respectively. This result shows that it takes

less time to solve multiple smaller subproblems than to solve one subproblem.

Another interesting observation is that the default implementation leads to a higher

number of Benders’ iterations and subproblems solved, this suggests that the cuts

generated by the default implementation are less effective than the cuts generated

by the other methods.

5.7.4 Connected components

Another interesting question is what problem structures various types of cuts lead

to. Different cuts lead to different master problem solutions, which in turn lead

to different blocks in subproblem separation. Figure 5.4 gives information about
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Method TMP Tsub Tsub Nsub Niter Ninst Ninst
(per iter) (solved)

Default 1.36 3.75 0.67 1453 40.3 105 53
Cuts 22 0.92 0.138 0.02 430 11.25 352 349
Cuts 23-24 1.09 0.141 0.016 578 17.6 367 366
Cuts 27 0.26 0.065 0.03 108 3.3 126 126
Combination 1.19 0.068 0.015 502 12.11 361 359

Table 5.2: The table presents the average master problem solution time, average
subproblem solution time, and number of subproblems solved per instance. The
instances for which the results were not retrieved within 20 minutes are omitted
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Figure 5.4: Results for the default DFBS implementation

the subproblem structure by showing how the average number of components

changes in each Benders’ iteration for different instance sets. For each instance

set, the maximum number of components is the number of locations plus one

central depot. The changes in the number of components are shown for 40

Benders’ iterations.

Interestingly, it can be seen in Figure 5.4 that the first master solution always

leads to subproblem structure with all of the locations separated. In the first 2 or
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3 iterations the number of components decreases for all types of cuts, meaning

that some of the locations are connected. This decreasing tend to continues until

the number of components converges at 2 (with some small fluctuations) for all

the cuts except for cuts (5.27). Cuts (5.27) repeats a certain pattern in each

plot, this repetition again implies that these cuts lead to symmetry in the solutions.

This means that the algorithm keeps trying symmetric solution that do not leat to

convergence of the algorithm.

5.8 Conclusions

This chapter proposes a new implementation of the LBBD scheme for the vehicle

routing problem with local congestion. We propose using the connected com-

ponents algorithm to identify separable blocks of the subproblem. The new im-

plementation reformulates the separated subproblem in each Benders’ algorithm

iteration. This method of separating the subproblem can be applied to other vehicle

routing problems with vehicle capacity and congestion constraints. Since the new

reformulation requires new Bender’s cuts, we derive various types of cuts. We

then evaluate subproblem separation and new Benders’ cuts in computational

experiments.

The main conclusion is that subproblem separation is an effective technique

for accelerating the LBBD scheme for the vehicle routing problem with local

congestion. However, in order to fully exploit the new subproblem structure, it is

important to generate strong cuts. Splitting the cuts by the connected components

showed the best computational results. Whereas, splitting the cuts by edges

was not effective. An area of future work is to investigate methods to handle the

difficulty introduces by these cuts.
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Chapter 6

Summary and Conclusion

Logic-based Benders’ decomposition (LBBD) is a solution approach introduced by

Hooker and Ottosson (2003) as an extension to classical Benders’ decomposition.

LBBD decomposes a given optimisation problem into a master problem, which

is often solved as a mixed-integer program (MIP), and a subproblem, which is

often solved as a constraint program (CP). The LBBD solution scheme is a finite

iterative algorithm, which guarantees optimality of the solution. The convergence

of the algorithm depends on the strength of the generated Benders’ cuts. This

thesis proposes various improvements to cut generation algorithms in order to

accelerate LBBD. The key features of this thesis are i) computational evaluation of

cut-strengthening techniques, ii) variable sorting heuristics, and iii) a subproblem

separation method.

The cut-strengthening techniques investigated in this thesis are the greedy

algorithm, deletion filter, additive method, additive/deletion filter, and depth-first

binary search. The computational evaluation of cut-strengthening techniques is

presented in Chapter 3, which gives an in-depth discussion of each of the cut-

strengthening techniques. The computational experiments in Chapter 3 cover

cumulative facility scheduling with fixed costs, single-facility scheduling with a

segmented timeline, and vehicle routing with local congestion problems. The

key contribution of Chapter 3 is the first systemic evaluation of cut-strengthening

techniques for both feasibility and optimality Benders’ cuts. The main metrics of

effectiveness of cut-strengthening techniques are the percentage of instances

solved, number of Benders’ iterations, subproblem solution time, and the overall

solution time. Computational results in Chapter 3 show that cut-strengthening

techniques that generate irreducible cuts outperform the greedy algorithm and

no cut strengthening. The results also demonstrate that due to the lowest sub-
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problem solution times, deletion filter and DFBS have the highest computational

effectiveness overall. Chapter 3 showed that although subproblem separation often

dominated the effectiveness of cut-strengthening techniques, cut-strengthening

techniques and subproblem separation can be used interchangeably for the accel-

eration of LBBD.

The main contribution of Chapter 4 are the novel heuristics for variable sorting.

A preliminary investigation of variable sorting strategies is presented in Chapter 4.

Based on this investigation, three new heuristics for variable sorting are proposed.

The new heuristics have been proposed for DFBS, which Chapter 3 determined

as one of the most computationally effective techniques. However, the heuristics

can be applied to other cut-strengthening techniques. Moreover, weights and

dynamic size heuristics do not depend on the problem structure, and can therefore

be applied to solving any problem. The computational results in Chapter 4 show

that applying variable sorting increases the efficiency of DFBS and leads to the

lower overall solution time.

Chapter 5 proposes a method of subproblem separation using the example

of the vehicle routing problem with local congestion, for which the subproblem

does not separate naturally. The main contribution of Chapter 5 is a subproblem

separation technique based on a connected components algorithm. The proposed

technique allows separating the subproblem by locations that have no connecting

arcs between them. Another important contribution of Chapter 5 are the new types

of Benders’ cuts. The results in Chapter 5 show that subproblem separation applied

together with certain types of Benders’ cuts achieves a significant acceleration

of LBBD. This result highlights that the type of Benders’ cut to generate is an

important decision for cut generation algorithms, which can negatively affect the

overall acceleration of LBBD.
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Outlook

This thesis demonstrates how improvements of cut generation algorithms acceler-

ate the LBBD solution scheme. The results from each chapter show that effective

convergence of LBBD requires various enhancements like cut-strengthening tech-

niques, subproblem separation, valid inequalities etc. Further research into these

techniques can help realise the full potential of LBBD.

One of the limitations of the studies in thesis is that the investigated problems

assume a specific problem structure presented in Section 3.3.1.2. This problem

structure facilitates the use of cut-strengthening techniques. One of the potential

avenues of future research is to look into other theoretical assumptions that would

make using cut-strengthening techniques valid.

Chapter 3 showed that cut-strengthening techniques perform differently de-

pending on the objective function. More theoretical research could be done to

investigate the impact of the type of the objective functions on the computational

effectiveness of the techniques. A special interest are the objective functions

leading to optimisation subproblems.

Chapter 4 shows that there is limited previous research on various heuristics

for cut strengthening in LBBD. More computational and theoretical results could

be established by studying the problem structure and valid inequalities in LBBD.

An interesting practical question from Chapter 5 is handling the difficulty introduce

by the cuts of type (5.27).

Computational results in this thesis showed that although various cut-strengthening

techniques generate cuts of similar size, they often lead to different master problem

solutions and numbers of Benders’ iterations. It would be worthwhile to investigate

the difference between the generated cuts. The deeper look into what cuts are

being generated might yield interesting results.

From the practical point of view, it would be interesting to apply cut generation
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algorithms studied in this thesis to a large-scale industrial application. The improve-

ments to cut generation algorithms were studied independently , so it would be

interesting to see the results of applying them simultaneously. New formulations,

new valid inequalities and other important decisions in applying LBBD might also

be possible when looking at new practical applications.
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Appendix A

Analytic cuts

A.1 Minimising makespan for cumulative facility

scheduling problem

As can be seen in Figure A.1a The deletion filter and the greedy algorithm give

the best performance for the split subproblem with 66.7% of the instances solved

to optimality for both methods. Similarly, the DFBS and the additive/deletion

with respective percentages of solved instances of 64.58% and 63.69% show

better results than the additive method and no cut strengthening. Given that

splitting the subproblem gives the performance rise from 24.11% to 54.46% for

no cut strengthening, we can tell that substantial time improvement comes from

the subproblem separation. Figure A.1b shows that all of the cut-strengthening

techniques except for the greedy algorithm used for the no-split subproblem

either outperform or match the performance of the split subproblem with no cut

strengthening.

0 200 400 600 800 1000 1200
Time Spent

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f s
ol

ve
d 

in
st

an
ce

s

greedy
dfbs
adel
deletion
additive
none

Split

0 200 400 600 800 1000 1200
Time Spent

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 o

f s
ol

ve
d 

in
st

an
ce

s

greedy
dfbs
adel
deletion
additive
none

No-split

Figure A.1: Cumulative scheduling:Percentage of solved instances for minimising
makespan problem with analytic optimality cuts
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A.2 Minimising tardiness for cumulative facility

scheduling problem

It can be seen in Figure A.2b that the deletion filter shows the best performance

for the no-split subproblem with 7.4% of instances solved to optimality. This

results is notably lower than 10.71% of solved instances that correspond to no cut

strengthening for the split subproblem. The deletion filter shows the best result for

the split subproblem with 27.67% of solved instances.
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Figure A.2: Cumulative scheduling: Percentage of solved instances for minimising
tardiness problem with analytic optimality cuts

A.3 Minimising makespan for disjunctive schedul-

ing problem

Using no cut strengthening for the split subproblem solves 94.79% for analytic

cuts. The additive/deletion filter, the best-performing algorithm for analytic cuts,

improves the results by 0.83% with 95.62% of solved instances. Another interesting

observation is that using the additive method for the split subproblem solves

93.13% of instances, which is worse than no cut strengthening. The cut size

Figure 3.12 shows that the additive method generates cuts of similar size to other

cut-strengthening techniques. However, it performs many more subproblems. As

a results, it spends much more time solving the subproblems.

152



All of the cut-strengthening techniques except for the greedy have a con-

siderable impact on the computational performance. Using the DFBS for the

no-split subproblem solves 95.62% of instances. This results matches the best

performance for the split subproblem.
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Figure A.3: Disjunctive scheduling: Percentage of solved instances for minimising
makespan with analytic cuts

A.4 Minimising tardiness for disjunctive scheduling

problem

Using analytic cuts for the split subproblem solves 46.88% of instances com-

pared to 1.67% for the no-split subproblem. It appears that the impact of cut-

strengthening techniques does not differ much when comparing split and no-split

results. For example, the deletion filter gives a performance rise of 2.91% of

instances solved for the split subproblem, and 2.71% of instances solved for the

no-split subproblem.
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Figure A.4: Disjunctive scheduling: Percentage of solved instances for minimising
tardiness with analytic cuts
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Appendix B

Tables with additional data

problem cut str Niter Nsub Tsub Tmas Ninst

no str

Greedy 64.58 366.13 179.93 1.93 62
DFBS 11.0 131.45 63.01 0.12 62
AdDel 11.0 75.45 52.68 0.13 62
Deletion 10.9 146.66 94.05 0.13 62
Additive 11.1 222.03 66.56 0.13 62
None 409.76 409.82 105.73 71.62 62

no an

Greedy 57.87 324.74 163.58 1.95 69
DFBS 10.33 118.93 54.78 0.12 69
AdDel 10.51 71.3 53.98 0.13 69
Deletion 10.33 139.52 81.34 0.13 69
Additive 10.55 206.46 65.85 0.13 69
None 337.23 337.3 93.08 56.84 69

sp str

Greedy 38.09 387.93 84.19 5.58 153
DFBS 17.38 679.6 107.05 1.48 153
AdDel 17.4 379.91 113.21 1.24 153
Deletion 17.32 417.82 81.17 1.36 153
Additive 17.38 1053.56 188.55 1.26 153
None 93.08 346.67 88.76 25.55 153

sp an

Greedy 32.38 364.7 70.92 10.1 160
DFBS 17.18 762.74 110.18 2.9 160
AdDel 17.2 431.67 116.72 2.94 160
Deletion 16.71 454.84 78.14 2.98 160
Additive 17.34 1204.62 187.64 3.15 160
None 67.84 267.49 57.31 29.43 160

The results are only compared for instances that were solved by all of the methods

Table B.1: Cumulative scheduling: Results for the variants of the Minimising
Makespan problem
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problem cut str Niter Nsub Tsub Tmas Ninst

no str

Greedy 125.71 330.57 175.1 4.23 7
DFBS 27.0 558.29 138.39 0.35 7
AdDel 27.0 265.0 140.39 0.36 7
Deletion 27.0 312.43 118.49 0.33 7
Additive 27.0 1047.0 121.04 0.35 7
None 122.14 122.43 63.84 7.11 7

no an

Greedy 125.71 330.57 175.26 4.44 7
DFBS 27.0 558.29 138.17 0.35 7
AdDel 15.86 156.57 99.52 0.2 7
Deletion 27.0 312.43 118.32 0.34 7
Additive 27.0 1047.0 120.76 0.36 7
None 122.14 122.43 63.69 7.2 7

sp str

Greedy 126.17 849.74 77.61 14.79 80
DFBS 54.2 1359.97 134.31 4.04 80
AdDel 52.33 720.12 131.07 3.93 80
Deletion 53.09 780.8 77.75 3.86 80
Additive 53.54 2032.7 164.37 3.84 80
None 268.38 864.85 74.12 52.96 80

sp an

Greedy 216.69 1289.53 124.14 27.27 32
DFBS 74.03 1612.75 167.22 5.78 32
AdDel 74.19 899.16 174.34 5.7 32
Deletion 74.09 947.22 102.24 5.67 32
Additive 74.38 2442.06 198.59 5.87 32
None 441.28 1239.97 105.48 105.21 32

The results are only compared for instances that were solved by all of the methods

Table B.2: Cumulative scheduling: Results for the variants of the Minimising
Tardiness problem

problem cut str Niter Nsub Tsub Tmas Ninst

No-split

Greedy 10.2 65.43 22.5 0.27 125
DFBS 3.98 45.0 22.31 0.04 125
AdDel 3.95 27.41 22.48 0.04 125
Deletion 4.21 50.93 22.62 0.04 125
Additive 6.08 88.03 22.55 0.09 125
None 36.02 37.02 22.82 2.53 125

Split

Greedy 8.94 59.3 0.04 0.36 202
DFBS 5.49 104.21 0.04 0.14 202
AdDel 5.54 64.33 0.04 0.15 202
Deletion 5.49 70.66 0.04 0.14 202
Additive 7.74 163.1 0.04 0.24 202
None 17.03 57.79 0.04 0.81 202

The results are only compared for instances that were solved by all of the methods

Table B.3: Cumulative scheduling: Results for the variants of the Minimising Total
Cost problem
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problem cut str Niter Nsub Tsub Tmas Ninst

no str

Greedy 17.39 406.78 100.8 48.02 179
DFBS 4.91 106.79 28.28 25.64 179
AdDel 5.14 198.61 49.38 24.03 179
Deletion 5.02 375.66 90.94 19.93 179
Additive 4.99 541.09 79.74 20.56 179
None 30.91 31.91 5.92 73.96 179

no an

Greedy 17.39 406.78 100.03 48.05 179
DFBS 4.91 106.79 28.14 25.6 179
AdDel 5.14 198.61 88.95 23.93 179
Deletion 5.02 375.66 109.92 19.92 179
Additive 4.99 541.09 79.26 20.55 179
None 30.91 31.91 5.91 73.96 179

sp str

Greedy 7.14 242.47 21.63 30.21 428
DFBS 5.78 1046.75 92.84 26.23 428
AdDel 5.59 491.89 78.84 22.97 428
Deletion 5.69 506.39 45.41 25.83 428
Additive 5.68 1695.06 150.89 24.53 428
None 7.84 120.3 11.0 32.34 428

sp an

Greedy 6.83 234.42 20.91 24.24 425
DFBS 6.25 1144.71 101.71 26.39 425
AdDel 5.83 521.09 84.07 26.54 425
Deletion 6.09 555.2 49.93 24.91 425
Additive 5.78 1694.09 150.78 24.72 425
None 8.11 127.13 11.66 26.85 425

The results are only compared for instances that were solved by all of the methods

Table B.4: Disjunctive scheduling: Results for the variants of the Minimising
Makespan problem

157



problem cut str Niter Nsub Tsub Tmas Ninst

no str

Greedy 111.25 500.5 142.42 80.86 4
DFBS 10.75 507.5 149.69 3.25 4
AdDel 10.75 347.5 182.08 3.23 4
Deletion 10.75 349.5 117.4 3.18 4
Additive 10.75 2075.5 591.15 3.23 4
None 128.75 129.75 44.37 96.23 4

no an

Greedy 104.0 372.0 118.44 49.56 3
DFBS 12.67 631.0 191.93 3.03 3
AdDel 12.67 381.0 214.07 3.07 3
Deletion 12.67 382.0 140.71 3.01 3
Additive 12.67 2522.67 748.05 3.09 3
None 119.67 120.67 45.54 62.23 3

sp str

Greedy 20.79 434.3 39.6 88.27 198
DFBS 18.14 939.87 83.73 71.51 198
AdDel 18.22 599.21 82.92 70.58 198
Deletion 18.38 626.41 56.48 72.53 198
Additive 18.02 1337.05 119.55 69.93 198
None 22.71 327.65 30.85 98.79 198

sp an

Greedy 19.13 386.86 35.05 71.2 195
DFBS 17.76 921.14 82.24 67.0 195
AdDel 17.87 581.02 80.99 67.33 195
Deletion 17.99 605.18 54.7 69.61 195
Additive 17.88 1337.76 119.81 67.14 195
None 20.82 282.62 26.17 78.06 195

The results are only compared for instances that were solved by all of the methods

Table B.5: Disjunctive scheduling: Results for the variants of the Minimising
Tardiness problem

problem cut str Niter Nsub Tsub Tmas Ninst

No-Split

Greedy 20.02 444.46 117.18 38.65 178
DFBS 5.79 111.52 31.34 29.65 178
AdDel 5.74 149.14 71.39 20.14 178
Deletion 6.01 392.45 127.21 26.95 178
Additive 5.48 472.69 62.22 23.12 178
None 42.41 43.41 7.86 74.47 178

Split

Greedy 1.0 21.54 1.49 4.79 477
DFBS 1.0 39.74 2.79 4.81 477
AdDel 1.0 29.16 2.85 4.79 477
Deletion 1.0 30.57 2.1 4.8 477
Additive 1.0 52.97 3.66 4.76 477
None 1.0 17.66 1.23 4.78 477

The results are only compared for instances that were solved by all of the methods

Table B.6: Disjunctive scheduling: Results for the variants of the Finding a feasible
schedule problem
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cut str Niter Nsub Tsub Tmas Ninst
DFBS 62.64 697.14 0.01 2.46 158
AdDel 65.27 1344.53 0.01 2.55 158
Deletion 30.68 1475.92 0.01 1.29 158
Additive 65.73 2676.89 0.01 2.67 158

The results are only compared for instances that were solved by all of the methods

Table B.7: Vehicle routing problem: Results for the Minimising Makespan problem

cut str Niter Nsub Tsub Tmas Ninst
DFBS 3.0 117.5 0.06 0.04 16
AdDel 128.5 1266.0 0.07 1.88 16
Deletion 3.0 85.0 0.06 0.04 16
Additive 3.0 300.0 0.06 0.04 16

The results are only compared for instances that were solved by all of the methods

Table B.8: Vehicle routing problem: Results for the Minimising Tardiness problem

cut str Niter Nsub Tsub Tmas Ninst
DFBS 165.76 6036.35 0.07 5.03 34
AdDel 197.71 2283.91 0.07 3.61 34
Deletion 27.06 820.79 0.07 0.67 34
Additive 61.71 3823.91 0.07 1.47 34

The results are only compared for instances that were solved or timed out by all of the methods

Table B.9: Vehicle routing problem: Results for the Minimising Tardiness problem

cut str Niter Nsub Tsub Tmas Ninst
DFBS 22.36 286.65 0.02 12.19 161
AdDel 20.99 533.29 0.02 9.04 161
Deletion 25.96 887.76 0.02 22.44 161
Additive 26.36 1510.15 0.02 12.93 161

The results are only compared for instances that were solved by all of the methods

Table B.10: Vehicle routing problem: Results for the Minimising Total Travel time
problem
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