
Becher et al, Resource gap during colony establishment phase

Supplementary Material for: 1

Becher, M.A. 1,2† ; Twiston-Davies, G.1†; Osborne, J.L.1 ; Lander, T.A. (2024) Resource gaps pose 2
the greatest threat for bumblebees during the colony establishment phase. 3

Insect Conservation and Diversity DOI: 10.1111/icad.12736 4

 5

Supplementary Material 1 6

Habitats and Flower Species input files details. 7

Supplementary Material 2 8

Visual Guide – Understanding BEE-STEWARD. 9

Supplementary Material 3 10

Bumble-BEEHAVE model description. 11

 12

 13

Becher et al, Resource gap during colony establishment phase

Supplementary Material for: 14

Becher, M.A. 1,2† ; Twiston-Davies, G.1†; Osborne, J.L.1 ; Lander, T.A. (2024) Resource gaps pose 15
the greatest threat for bumblebees during the colony establishment phase. 16

Insect Conservation and Diversity DOI: 10.1111/icad.12736 17

 18

Supplementary Material 1 19

Habitats and Flower Species input files details. 20

For the Flower Species input file used in this manuscript we made the following calculations: 21

Pollen volume to pollen weight 22

Pollen volume was converted to pollen weight as follows: Pollen volume (cm3/5mg, from 1,2) was 23

converted to ul/mg by multiplying by 200. A linear regression of the resulting ul/mg data as a function 24

of pollen grain longitudinal axis length (um) resulted in the equation y= 0.001x + 0.0409 (r2 0.7883). 25

We multiplied this conversion factor by the volume of pollen (ul) and then divided by 1000 to convert 26

mg to g. For example, red campion (Silene dioica) with a pollen volume of 0.360 ul 2 and a pollen 27

grain longitudinal axis length of 34 um 3, is converted as follows (Eq. 1): 28

[Eq. 1] Silene dioica: (0.360ul (0.001(34 um) + 0.0409))/1000 = 0.00002696 ul/g 29

Pollen grain equatorial and longitudinal axis lengths to pollen weight 30

For species where pollen grain volume was not available but pollen grain longitudinal axis length 31

was, a conversion was developed as follows: Data from 1 were used to conduct a linear regression of 32

weight (g) of one pollen grain against longitudinal axis length (um) (r2 0.939), resulting in the 33

equation y= 6E-08x - 2E-06. Similar results were obtained using equatorial axis length (r2 0.9455, y= 34

6E-08x - 2E-06). The assumption of our regression is that a pollen grain is spherical which is not 35

necessarily the case for all species. 36

Due to the negative intercept, this equation only functioned for pollen grains over 34 um, therefore we 37

created another regression using a subset of pollen grain sizes from 17.2 to 26.6 um (r2 0.7591) from 1, 38

resulting in the equation y= 1E-08x - 2E-07. This produced results for pollen grains 20.1-34 um. 39

Becher et al, Resource gap during colony establishment phase

Primula pollen weight 40

Primulas have pin and thrum flowers which have different sized pollen grains. Data for cowslip (P. 41

veris) was taken from 4 with 211,000, 18.1 um sized pollen grains and 87,000, 29.5 um sized pollen 42

grains for individual pins and thrum flowers, respectively. For each flower type we calculated a 43

weight of 0.000211 g (if pollen grains were scaled up to minimum 20.1 um) and 0.008265 g for pin 44

and thrum, respectively. With a pin:thrum ratio of 2.4:1 we calculated pollen for 2.4 pin flowers 45

(0.000506 g) and 1 thrum flower (0.008265 g). These values were added together and divided by 3.4 46

to get weight per average flower (0.00258 g) (Table S4). 47

Nectar sugar weight to nectar volume 48

Data on weight of nectar sugar (g) per flower (from 2,5) was converted to volume of nectar (ml) by 49

first converting average nectar concentration (%) to mol/l assuming an average 32.3% sugar 50

concentration of nectar and assuming sucrose molar mass of 342.3 g/mol. Thus, on average, 323(g/l) / 51

342.3 (g/mol) = 0.9436 mol/l. Second, ml of nectar per day was estimated by dividing the weight of 52

nectar (ug/day) by sucrose molar mass of 342.3 and then multiplying this by 1- 0.9436 mol/l +1 to 53

give nectar (ul) per day. This value is then divided by 1000 to get nectar ml/day (Eq. 2, Table S5). 54

[Eq. 2] nectar weight (ug/day)/342.3 x ((1-0.9436)+1)/1000 = nectar ml/day 55

When nectar production data was available as kg/ha/year (e.g. 5), this was converted to nectar volume 56

by dividing kg/ha/year by the species’ period of flowering in days, then multiplying this by 100,000 to 57

get ug/m2/day. The resulting value was divided by the flower density per m2 from 6 to get 58

ug/flower/day (Eq. 3). This ug/flower/day value was converted to ml/flower-day (Eq. 2, Table S6). 59

For cowslip (P. veris) the estimated flower density per m2 was based on data for primrose (P. 60

vulgaris) 6. 61

[Eq. 3] Final nectar productivity (((kg/ha/yr) / length of flowering (days)) * 10,000) / flower 62
density per m2 = nectar ug/flower/day 63

For sweet cherry (Prunis avium) we transformed nectar weight (g/flower, Baude et al. 2016) to nectar 64

ml/day (see Eq. 2). That value was converted to nectar ml/day/m2 by multiplying by the number of 65

Becher et al, Resource gap during colony establishment phase

open flowers/m2 (from 6), and then converted to a value per 100m2 by dividing by 100: (0.001186575 66

ml/day x 1476.44 flowers/m2) / 100 = 0.017519070 ml/day per 100m2. 67

Becher et al, Resource gap during colony establishment phase

Table S1: Number of flowers per m2 of each species within the four habitat types in the model 68
agricultural landscape used in Scenarios 4 and 5 69

 Latin name Hedgerow Scrub

Un-improved

grassland

Improved

grassland

Birdsfoot trefoil Lotus corniculatus 0.04 0.22 0.35 0

Blackthorn Prunus spinosa 0.93 1.29 0.23 0

Bluebell

Hyacinthoides non-

scripta 0.06 0.26 0.49 0

Bramble Rubus fruticosus 0.16 0.21 0.02 0

Bugle Ajuga reptans 0.12 0.51 0.03 0

Burdock Arctium spp. 0.01 0.05 0.02 0

Buttercup Ranunculus spp. 0.38 0.79 2.16 0

Comfrey Symphytum spp. 0.04 0 0 0

Common knapweed Centaurea nigra 0.22 0.56 0.01 0

Common vetch Vicia sativa 0.13 0.01 0.03 0

Dandelion

Taraxacum

officinale 0.11 0.11 0.12 0.01

Dog rose Rosa canina 0.18 0.06 0 0

Field scabious Knautia arvensis 0.01 0.02 0.02 0

Foxglove Digitalis purpurea 0.07 0.09 0 0

Giant bindweed

Convolvulus

arvensis 0.05 0.03 0 0

Greater knapweed Centaurea scabiosa 0 0.03 0 0

Ground ivy

Glechoma

hederacea 0.06 0.1 0.06 0

Hawthorn Cratageus spp. 0.44 0.60 0.62 0

Hedge woundwort Stachys sylvatica 0.04 0.29 0 0

Marsh thistle Cirsium palustre 0 0.02 0 0

Ragwort Jacobaea vulgaris 0.02 0.06 0.02 0

Red clover Trifolium pratense 0.05 0.05 0.25 0

Red dead nettle Lamium purpureum 0.1 0.03 0.03 0

Rosebay willowherb

Chamaenerion

angustifolium 0.13 0.04 0 0

Selfheal Prunella vulgaris 0.04 0.06 0.11 0

Spear thistle Cirsium vulgare 0.01 0.01 0.01 0

St John’s wort Hypericum spp. 0 0.01 0 0

Tufted vetch Vicia cracca 0.05 0.03 0.12 0

Vipers bugloss Echium vulgare 0 0.50 0 0

White clover Trifolium repens 0.40 0.76 1.67 0.47

White dead nettle Lamium album 0.14 0.17 0.03 0

Wild teasel Dipsacus spp. 0.02 0.04 0 0

Willow (‘Average’) Salix spp. 1.28 1.21 0 0

 70

Becher et al, Resource gap during colony establishment phase

Table S2: Early flowering floral resources for the BEE-STEWARD Flower Species input file. 71
Flower species were selected that have flowering periods during the critical forage gap highlighted by 72
Simulation 2: March to May. For willow we used male and female flowers averaged together, rather 73
than male and female flowers separately. For primrose (P. vulgaris) and cowslip (P. veris) we used 74
pin and thrum flower types averaged together, accounting for the difference in pin:thrum ratio in the 75
two species. Flower species common name (FlowerSpecies), weight of pollen in grams per flower 76
(Pollen_g/flower), volume of nectar in millilitres per flower (Nectar_ml/flower), proportion of protein 77
in pollen (Protein prop), concentration of sugar in nectar in Mols per Litre (Concentration), first and 78
last Julian day of flowering (Start Day, Stop Day, respectively) and depth of the flower corolla tube in 79
millimetres (Corolla Depth). 80

FlowerSpecies

Pollen

(g/flower)

Nectar

(ml/ flower)

Protein

prop.

Conc.

(mol/l)q

Start

Day

Stop

Day

Corolla

Depth

(mm)

field maple

(Acer campestre) 0.2044a 0.0341a 0.2b 1.75a 92a 152a 0p

hawthorn

(Crataegus

monogyna) 0.000113b 0.001875b 0.153979b 1.023306b 120b 180b 0b

ground ivy

(Glechoma

hederacea) 0.000897b 0.002618b 0.190697b 0.872367b 59b 150b 7b

red dead nettle

(Lamium

purpureum) 0.000673b 0.005453b 0.228b 1.012757b 59b 303b 7b

cowslip

(Primula veris) 0.0025798j

0.001434226
k 0.2b 0.9436h 120f 150f 8f

primrose

(Primula vulgaris) 0.0009941j

0.000507214
c 0.2b 0.9436h 90f 150f 30f

sweet cherry

(Prunus avium) 0.001181152e 0.01751907c 0.2b 1.49o 92d 152d 0p

blackthorn

(Prunus spinosa) 3.33E-05b 9.33E-05b 0.272b 0.779652b 59b 150b 0b

goat willow

(Salix caprea) 0.0852a 0.0184a 0.2b 1.08a 61a 121a 0b

red campion

(Silene dioica) 0.0000269lmn 0.00044748g 0.2b 0.9436h 120f 211f 13i
 81
a Agatz (2019). Value for 100% coverage per m2 divided by 100 to get 1m2 of tree species per 100m2 82

of hedgerow. 83
b Becher (2014). Using the Bumble-BEEHAVE model default values. 84
c Baude (2016). Transformed from weight of nectar sugar (g) to volume of nectar (ml) (see calculation 85

below). 86
d British Beekeepers Association (2007) 87
e Stralkowska-Abramek (2019). Using sour cherry variety ‘Kanzan’ as a proxy for sweet cherry 88

(Prunus avium) as this species flowers at a similar time to sweet cherry. Using number of 89
flowers per m2 from Baude (2015). 90

f Rose (2010) 91
g Hicks (2016). Transformed weight of sugar (g) to volume of nectar (ml), (see calculations below) 92
h default concentration of 0.9436. 93
i Brian (1957). 94
j for the average ‘flower’ (pin and thrum) based on an estimation of the weight of one pollen grain as a 95

function of its longitudinal axis length (from (Buchmann and O'rourke, 1991)). Pollen grain 96
sizes from Brys (2009). 97

Becher et al, Resource gap during colony establishment phase

k Baude (2015). Using the coverage of P. vulgaris as a proxy for the coverage of P. veris (Baude et 98

al., 2015). 99
l Hicks (2016). Transforming volume of pollen (ul) to weight of pollen (g) using the average pollen 100

equatorial width to estimate average weight (g) of 1 ul of pollen (see below). 101
m Ecoflora (2021). 102
n Pollen for wild cherry (Prunus avium) was calculated using the weight of pollen per flower from 103

Prunus cerasus ‘Kanzan’ variety which has a similar flowering period (April-end May) 104
(Stralkowska-Abramek, 2019). Pollen weight for Prunus cerasus ‘Kanzan’ is 0.00008g per 105
flower. To convert the weight to the same format as the data from Agatz (2019), the weight 106
was multiplied by the number of flowers per m2 on sweet cherry (Prunus avium), 1476.44 107
(Baude et al., 2015), and dividing by 100 to account for 1m2 in 100m2 of hedge, giving a 108
result of 0.001181152 g/flower. 109

o Stralkowska-Abramek (2019). Using sugar percentage and converting this to Mol per Litre. 110
p The assumption is that they are open flowers so corolla depth is 0mm, as for other open flowers in 111

BEE-STEWARD. 112
q Sugar concentration was calculated from its percentage value of 51.1% (Stralkowska-Abramek, 113

2019), transformed to mol/l by assuming a sucrose molar mass of 342.3, 51.1% is 511g/l 114
divided by sucrose molar mass of 342.3 = 1.492843 (mol/l). 115

Becher et al, Resource gap during colony establishment phase

Table S3: Table S3: Species of non-crop flowering plants recommended for planting to support wild pollinators on UK agricultural land. 1 Species recommended by the Centre for Ecology and Hydrology, but not generally included in United Kingdom Agri-116
Environment Agreements (https://www.ceh.ac.uk/sites/default/files/CEH_HabitatManagementAndCreationForPollinators_LowRes-ForHomePrint.pdf). 2 Species recognized as filling important phenological gaps in forage availability on UK agricultural 117
land(Timberlake et al., 2019). 3 Species recommended in Countryside Stewardship Options(DEFRA, 2019). 4 Species providing important quantities of pollen and/or nectar on UK agricultural land(Requier et al., 2015). 5 Species recommended for long-tongued 118
bumblebees(Goulson and Darvill, 2004). 6 Species recommended for wild bees (Nichols et al., 2019). 7 Pollen values from(Hicks et al., 2016). 8 Nectar and phenology values from Baude(2016), and www.rhsplants.co.uk. 119

 Pollen (ul)7, nectar

sugar (ug)8 per

flower/day

Main flowering period7 Countryside Stewardship Options

Plant Latin name Notes Mar Apr May Jun Jul Aug Sep Oct Nov AB1 AB8 AB15 AB16 BE3 EE12 EF1 EF4 EF11 EK3 EK21 GS4 OP4

ground ivy Glechoma hederacea phenologically important 2 n/a 94.37 Y Y Y
primrose Primula vulgaris pollen/nectar 1 0.03 171.91 Y Y Y
willow Salix spp. phenologically important 2 n/a 36.03 Y Y Y
red campion Silene dioica pollen/nectar 1 0.36 450.65 Y Y Y Y Y Y Y
lawn daisy Bellis perennis phenologically important 2 0.65 0.84 Y Y Y Y Y Y Y Y Y
dandelion Taraxacum officinale phenologically important 2 2.82 22.57 Y Y Y Y Y Y Y Y Y
kale Brassica oleracea pollen/nectar 3 n/a n/a Y Y Y Y Y Y
black medick Medicago lupulina pollen/nectar 1 n/a 1.63 Y Y Y Y Y
wild cherry/plum Prunus spp. key pollen/nectar 4 n/a 384.48 Y Y
sorrel Rumex acetosa pollen/nectar 3 n/a n/a Y Y Y
cowslip Primula veris pollen/nectar 1 n/a n/a Y Y Y
ribwort plantain Plantago lanceolata pollen/nectar 3 0.01 0.00 Y Y Y Y Y Y Y
wild garlic Allium ursinum phenologically important 2 n/a n/a Y
maple Acer spp. key pollen/nectar 4 n/a n/a Y Y
rough chervil Chaerophyllum temulum pollen/nectar 6 n/a n/a Y Y

hawthorn Cratageus spp. key pollen/nectar 4 n/a 102.47 Y Y
tall meliot Melilotus latissimus long-tongue bumblebees 5 n/a n/a Y Y
meadow vetchling Lathyrus pratensis pollen/nectar 1 n/a 952.69 Y Y Y Y
hoary plantain Plantago media pollen/nectar 1 n/a n/a Y Y Y Y
yellow rattle Rhinanthus minor pollen/nectar 3 n/a 108.90 Y Y Y Y Y
charlock Sinapsis arvensis pollen/nectar 6 n/a 55.60 Y Y Y Y

bramble Rubus fruticosus

phenologically important 2,

key pollen/nectar 4 n/a 1892.83 Y Y Y Y Y

red clover Trifolium pratense

phenologically important 2,

long-tongue bumblebees 5
0.02 116.86

 Y Y Y Y Y Y Y Y Y Y
common vetch Vicia sativa pollen/nectar 3 n/a 300.34 Y Y Y Y Y Y Y
bird’s-foot trefoil Lotus corniculatus pollen/nectar 3 0.15 61.82 Y Y Y Y Y Y Y Y Y Y Y Y Y
meadow buttercup Ranunculus acris phenologically important 2 1.40 78.83 Y Y Y Y Y Y Y
crimson clover Trifolium incarnatum pollen/nectar 3 n/a n/a Y Y Y Y Y Y Y
gold of pleasure Camelina sativa pollen/nectar 3 n/a n/a Y Y Y
fodder radish Raphanus sativus pollen/nectar 3 n/a 112.32 Y Y Y
yarrow Achillea millefolium pollen/nectar 3 1.13 7.56 Y Y Y Y Y
greater knapweed Centaurea scabiosa pollen/nectar 1 n/a n/a Y Y Y
wild carrot Daucus carota pollen/nectar 3 0.02 7.35 Y Y Y Y Y Y
oxeye daisy Leucanthemum vulgare pollen/nectar 3 15.92 15.81 Y Y Y Y Y Y
wild mignonette Reseda lutea key pollen/nectar 4 0.19 360.57 Y Y Y
mignonette Reseda spp. pollen/nectar 1 n/a n/a Y Y Y
tufted vetch Vicia cracca pollen/nectar 1 0.04 484.40 Y Y Y
kidney vetch Anthyllis vulneraria pollen/nectar 1,6 n/a n/a Y Y Y Y Y
betony Betonica officinalis pollen/nectar 1 n/a n/a Y Y Y Y
cornflower Centaurea cyanus pollen/nectar 1 n/a n/a Y Y Y Y
common knapweed Centaurea nigra phenologically important 2 6.40 198.99 Y Y Y Y Y Y Y Y Y Y
field bindweed Convolvulus arvensis pollen/nectar 6 n/a 351.82 Y Y Y Y

vipers bugloss Echium vulgare pollen/nectar 1 0.15 688.27 Y Y Y Y

http://www.rhsplants.co.uk/

Becher et al, Resource gap during colony establishment phase

meadow crane's-bill Geranium pratense pollen/nectar 6 n/a 16.43 Y Y Y Y

hogweed Heracleum sphondylium phenologically important 2 n/a 98.17 Y Y Y Y
rough hawkbit Leontodon hispidus pollen/nectar 3 1.05 6.15 Y Y Y Y Y
phacelia Phacelia tanacetifolia pollen/nectar 3 n/a n/a Y Y Y Y Y
self heal Prunella vulgaris pollen/nectar 3 n/a 138.62 Y Y Y Y Y Y
alsike clover Trifolium hybridum pollen/nectar 3 n/a n/a Y Y Y Y Y Y
white clover Trifolium repens phenologically important 2 0.03 116.86 Y Y Y Y Y
wild mustard Sinapis spp. key pollen/nectar 4 0.04 55.60 Y Y Y Y
common poppy Papaver rhoeas key pollen/nectar 4 13.34 5.35 Y Y Y Y Y
autumn hawkbit Scorzoneroids autumnalis pollen/nectar 1 1.83 536.18 Y Y Y Y Y
devil's bit scabious Succisa pratensis pollen/nectar 1 n/a 47.47 Y Y Y Y Y
sweet chestnut Castanea sativa key pollen/nectar 4 n/a 2.15 Y
lady’s bedstraw Galium verum pollen/nectar 3 0.01 0.66 Y Y Y
red bartisa Odontites vernus long-tongue bumblebees 5 n/a 10.84 Y Y

sainfoin Onobrychis viciifolia

pollen/nectar 3, long-tongue

bumblebees 5 n/a n/a Y Y Y Y
hedge woundwort Stachys sylvatica pollen/nectar 1 n/a 311.11 Y Y
corn marigold Chrysanthemum segetum pollen/nectar 1 n/a n/a Y Y Y
creeping thistle Cirsium arvense phenologically important 2 0.60 76.22 Y Y Y
wild basil Clinopodium vulgare pollen/nectar 1 n/a n/a Y Y Y
smooth hawksbeard Crepis capillaris pollen/nectar 6 0.74 9.02 Y Y Y

field scabious Knautia arvensis pollen/nectar 1 n/a 146.31 Y Y Y
marjoram Origanum majorana pollen/nectar 1 0.01 49.84 Y Y Y
small scabious Scabiosa columbaria pollen/nectar 1 n/a n/a Y Y Y
chicory Cichorium intybus pollen/nectar 3 n/a n/a Y Y Y Y Y
dog's mercury Mercurialis annua key pollen/nectar 4 n/a 0.00 Y Y Y Y
musk mallow Malva moschata pollen/nectar 3 5.08 540.65 Y Y Y Y
ivy Hedera helix phenologically important 2 n/a 609.82 Y Y Y Y
common bent Agrostis capillaris grass 3 n/a n/a Y Y
sweet vernal grass Anthoxanthum odoratum grass 3 n/a n/a Y
crested dog’s tail Cynosurus cristatus grass 3 n/a n/a Y Y
sheep’s fescue Festuca ovina grass 3 n/a n/a Y

chewings fescue

Festuca rubra ssp

commutata grass 3 n/a n/a Y
slender red fescue Festuca rubra ssp litoralis grass 3 n/a n/a Y Y
winter barley Hordeum vulgare grass 3 n/a n/a Y
intermediate or late

perennial ryegrass Lolium spp. grass 3 n/a n/a Y
smaller cat’s-tail Phleum bertolonii grass 3 n/a n/a Y
smooth-stalked

meadow grass Poa pratensis grass 3 n/a n/a Y Y
winter triticale x Triticosecale spp. grass 3 n/a Y
early and late flowering red clovers mix 3 n/a n/a Y
‘five species of grass’ mix 3 n/a n/a Y Y

‘five species of herb/ wildflower’ mix 3 n/a n/a Y
‘three species of herb/ wildflower’ mix 3 n/a n/a Y

three species of legume (including bird’s-foot trefoil) mix 3 n/a n/a Y Y

not planted - grassland flowering plants mix 3 n/a n/a Y Y
composed of at least 80% native shrubs mix 3 n/a n/a Y
not planted - grassland flowering plants and scrub mix 3 n/a n/a Y
Total pollen and nectar species per Countryside Stewardship Option 5 11 4 11 0 7 0 6 0 0 3 3 0

120

Becher et al, Resource gap during colony establishment phase

Table S4: Calculation of pollen weight for Cowslip (Primula veris) and Primrose (P. vulgaris) with

pin:thrum ratios of 2.4:1 and 2.1:1, respectively. Weight of 1 pollen grain using linear regression

based on mean longitudinal axis of 1 pollen grain calculated from Buchmann (1991).

Primula sp. Type Pollen

(um)

Pollen

grain n

1 pollen

grain (g)

Pollen

(g/flower)

Multiply by

weight

Per

flower

cowslip

Pin 2.4 20.1

(18.1)

211,000 0.000000001 0.000211 0.0005064 --

Thrum 1 29.5 87,000 0.000000095 0.008265 0.008265 --

3.4 -- -- -- -- 0.0087714 0.0025798

primrose

Pin 2.1 21.14 36,620 0.0000000114 0.000417 0.0008757 --

Thrum 1 32.85 17,165 0.0000001285 0.002206 0.002206 --

3.1 -- -- -- -- 0.0030817 0.0009941

Table S5: Nectar volume per flower. Nectar volume per flower, per day was calculated from final

yearly nectar productivity per area data in Baude (2016), converting weight of nectar per flower, per

day to volume of nectar from Hicks (2016). *converted to ml/m2/day for the model.

Species kg/ha/yr days kg/ha/day

in flower

ug/m2/d

ay

no./m2 ug/flower/day ml/flower/day

Step 1 2 3 4

primrose 73.47 181 0.405912 40591.2 246.98 164.35 0.000507214

cowslip 103.30 90 1.1478 114780 246.98 464.725 0.001434226

red

campion

-- -- -- -- -- 144.994 0.00044748

sweet

cherry

-- -- -- -- -- 384.48 0.001186575*

Table S6. Densities of early flowering species of open flowers per 100% coverage of 1m2 from Baude

(2015) and the conversation for the BEE-STEWARD Habitats input file (Habitats input file).

Species Agriland Habitats input file Reference

willow -- 1 7

field maple -- 1 7

sweet cherry -- 1 10, converted to format from 7

red campion 226.54 2.26 6

primrose 246.98 2.468 6

cowslip 246.98 2.468 6; primrose data used as a proxy

ground Ivy 734.26 7.3426 6

red dead nettle 927.777 9.27777 6

hawthorn 10387.69 103.8769 6

blackthorn 1327.88 13.2788 6

Becher et al, Resource gap during colony establishment phase

Table S7. Statistical analysis results comparing the baseline treatment with hedgerow enhancement

treatments for 5 herb and 5 tree early flowering species for B. terrestris and B. pascuorum. Results of

F-test (F test), test conducted either Student’s (S) or Welch’s (W), Degrees of Freedom (df) and p

value of the resulting T-test (p=).

 Max colonies Queens

Scenario Treatment f-test T df p f-test T df p

 B. terrestris

4.2 cowslip 0.323 S 19 0.235900 0.123 S 19 0.263100

4.3 ground ivy 0.018 W 24.867 0.000000 0.002 W 23.704 0.000000

4.4 primrose 0.928 S 11 0.540800 0.146 S 11 0.504600

4.5 red campion 0.104 S 12 0.134900 0.487 S 12 0.953200

4.6 red dead nettle 0.000 W 20.731 0.000000 0.000 W 19.898 0.000000

5.1 blackthorn 0.764 S 10 0.678600 0.117 S 10 0.311400

5.2 cherry 0.000 W 22.28 <2.2e-16 0.000 W 21.439 0.000000

5.3 field maple 0.000 W 21.384 0.000000 0.000 W 20.374 0.000000

5.4 hawthorn 0.060 S 24 0.000115 0.006 W 23.499 0.000000

5.5 willow 0.337 S 25 0.001054 0.032 W 24.258 0.000008

 B. pascuorum

4.2 cowslip 0.893 S 35 0.3377 0.475 S 35 0.204200

4.3 ground ivy 0.741 S 35 0.09799 0.747 S 35 0.295700

4.4 primrose 0.499 S 35 0.7989 0.400 S 35 0.929100

4.5 red campion 0.735 S 35 0.292 0.974 S 35 0.840700

4.6 red dead nettle 0.002 W 27.214 6.45E-13 0.002 W 27.31 0.000000

5.1 blackthorn 0.890 S 35 0.7656 0.864 S 35 0.996900

5.2 cherry 0.151 S 36 0.001304 0.706 S 36 0.003577

5.3 field maple 0.057 S 36 0.001876 0.229 S 36 0.028470

5.4 hawthorn 0.147 S 36 0.004576 0.196 S 36 0.000720

5.5 willow 0.453 S 36 0.3259 0.576 S 36 0.739100

Becher et al, Resource gap during colony establishment phase

References – Supplementary Materials

AGATZ, A., KUHL, R., MILES, M., SCHAD, T. & PREUSS, T. G. 2019. An Evaluation of the

BEEHAVE Model Using Honey Bee Field Study Data: Insights and Recommendations.

Environmental Toxicology and Chemistry, 38, 2535-2545.

BAUDE, M., KUNIN, W. E., BOATMAN, N. D., CONYERS, S., DAVIES, N., GILLESPIE, M. A.

K., MORTON, R. D., SMART, S. M. & MEMMOTT, J. 2016. Historical nectar assessment

reveals the fall and rise of floral resources in Britain. Nature, 530, 85–88.

BAUDE, M., KUNIN, W. E. & MEMMOTT, J. 2015. Flower density values of common British plant

species [AgriLand] NERC Environmental Information Data Centre.

BECHER, M. A., GRIMM, V., THORBEK, P., HORN, J., KENNEDY, P. J. & OSBORNE, J. L.

2014. BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore

multifactorial causes of colony failure. Journal of Applied Ecology 51, 470-482.

BRIAN, A. D. 1957. Differences in the Flowers Visited by Four Species if Bumble-Bee and their

Causes. Journal of Animal Ecology, 26, 71-98.

BRITISH BEEKEEPERS ASSOCIATION, B. 2007. Trees for Bees.

BRYS, R. & JACQUEMYN, H. 2009. Biological Flora of the British Isles: Primula veris L. Journal

of Ecology, 97, 581-600.

BUCHMANN, S. L. & O'ROURKE, M. K. 1991. Importance of pollen grain volumes for calculating

bee diets. Grana, 30, 591-595.

DEFRA 2019. Countryside Stewardship. https://www.gov.uk/government/collections/countryside-

stewardship-get-paid-for-environmental-land-management. In: UK DEPARTMENT FOR

ENVIRONMENT, F. R. A. (ed.). London, UK.

ECOFLORA 2021. Description and Ecological Characteristics, ecoflora.org.uk.

GOULSON, D. & DARVILL, B. 2004. Niche overlap and diet breadth in bumblebees; are rare

species more specialized in their choice of flowers? Apidologie, 35, 55–63.

HICKS, D. M., OUVRARD, P., BALDOCK, K. C. R., BAUDE, M., GODDARD, M. A., KUNIN,

W. E., MITSCHUNAS, N., MEMMOTT, J., MORSE, H., NIKOLITSI, M., OSGATHORPE,

L. M., POTTS, S. G., ROBERTSON, K. M., SCOTT, A. V., SINCLAIR, F., WESTBURY,

D. B. & STONE, G. N. 2016. Food for pollinators: quantifying the nectar and pollen

resources of urban flower meadows. PLoS ONE, 11, e0158117

NICHOLS, R. N., GOULSON, D. & HOLLAND, J. M. 2019. The best wildfowers for wild bees.

Journal of Insect Conservation, 23, 819–830.

REQUIER, F., ODOUX, J. F., TAMIC, T., MOREAU, N., HENRY, M., DECOURTYE, A. &

BRETAGNOLLE, V. 2015. Honey bee diet in intensive farmland habitats reveals an

unexpectedly high flower richness and a major role of weeds. Ecological Applications, 25,

881– 890.

ROSE, F. 2010. The Wildflower Key (revised Edition) – How to identify wild plants, trees and shrubs

in Britain and Ireland, Warne.

STRALKOWSKA-ABRAMEK, M. 2019. Nectar and Pollen production in ornamental cultivars of

Prunus serrulata (Rosaceae). Folia Horticulturae, 31, 205-212.

TIMBERLAKE, T. P., VAUGHAN, I. P. & MEMMOTT, J. 2019. Phenology of farmland floral

resources reveals seasonal gaps in nectar availability for bumblebees. Journal of Applied

Ecology, https://doi.org/10.1111/1365-2664.13403.

https://www.gov.uk/government/collections/countryside-stewardship-get-paid-for-environmental-land-management
https://www.gov.uk/government/collections/countryside-stewardship-get-paid-for-environmental-land-management
https://doi.org/10.1111/1365-2664.13403

Grace Twiston‐Davies, Matthias A. Becher and Juliet L. Osborne. "BEE‐STEWARD: A research and
decision‐support software for effective land management to promote bumblebee populations." Methods in

Ecology and Evolution 12.10 (2021): 1809-1815.

Understanding BEE-STEWARD

Overview:

Simulated Processes

hibernating queens
(of 6 UK species)

colony foundation

production queens &
males

eggs

larvae

pupae

adults

- search food sources
- decide on best food source
- collect nectar or pollen
- foraging mortality?
- return: store food!

e
gg

 la
yi

n
g

Landscape

- load forage map
- define flower patches
- define flower species
- define phenologies
=> nectar & pollen availability

in time and space

population dynamics &
colony density

se
ar

ch
n

e
st

n
u

rs
in

g

foraging

Implemented in Netlogo5.3.1
Wilensky, U. (1999) http://ccl.northwestern.edu/netlogo/
Centerfor Connected Learning and Computer-Based
Modeling, NorthwesternUniversity, Evanston, IL.

Simulated Processes

DETAILS

Queens emerge from hibernation

WHEN?

=> normally distributed around
average date

SURVIVAL?

=> based on relative weight of the
queen

Finding nests

- defined nesting habitats for BB species

- (theoretically) unlimited nest density

- daily probability to find a nest

- daily risk to die if unsuccessful

?

Establishing nests

- collect nectar and pollen

- finally lay first batch of eggs

Decision making?

brood care?

pollen foraging?

egg laying?

queen worker

thresholds

Colony

stimulus

nectar foraging?

P
R

IO
R

IT
Y

+
+

 +

 +
-

-

Activities - decision making

exceeds TH?

FORAGING:

How to define landscape?

Oilseed rape

Field beans

Woodland

Grasland

Maize

The BEESCOUT model

Import land cover map (image)

Identify fields/patches

Define resources Ecological Modelling (2016) 340: 126–133

Now integrated in BEE-STEWARD!

food sources: nectar & pollen flow

semi-natural habitat:

"layers" of single species food sources

=> nectar & pollen production/m2 during flowering period

flowering period

FORAGING:

Trip duration

& decision making

Trip duration:

2 x distance

/ flight speed (5m/s)

+ handling time in patch

Trip duration & detection probability

Detection probability:

for scouts:

calculated from distance

(colony – food patch)

Based on model by Harder (1983, Oecologia 57:274-280)

Foraging: Handling time nectar

long short tongued bees

flower depth

tongue length: 5mm

max depth max depth

6mm

7mm
8mm

10mm

also: flower volume

depletion of patch

No handling time model

available for pollen

activity: forage
nectar/pollen

dying?

activity: forage
nectar/pollen

searching

unloading

found a patch?

collect
nectar/pollen

experienced?

Foraging

abandon patch?
stop foraging?

max. repetitions depending
on weather conditions

Brood care

Nectar & pollen stores already present

First batch of eggs is laid

=> Brood needs incubation & feeding

Brood development
Brood needs..

- incubation

- feeding pollen

- feeding nectar

cumul. pollen & incubation required

eggs

Nectar consumption larvae: depends on today's weight gain

larvae

adult

Age

pupae

min max. age pupation

min max. age hatching

min. max. age emerging

† eggs † larvae † pupae

P
O

L
L

E
N

IN
C

U
B

A
T

IO
N

size depends on pollen

consumption

Social phase

Queen: egg laying

Workers: brood care & foraging

larva

Caste determination

egg

male

worker

queen

diploid

haploid
(or homozygous)

Queen: starts laying diploid eggs => workers

eventually switches to lay haploid eggs => males

=> increased feeding for diploid larvae => queens

Reproduction

Productions of males and/or queens

based on Duchateau & Velthuis 1988

Queen switches to lay haploid eggs

=> triggers production of queens

Mating & hibernation

Adult queens immediately mate with
single, random male (from different
colony)

1 locus: allele from male stored in
spermatheca

Optional (if set as sex locus):

risk of diploid males

Mated queens => hibernation

Simulation of multiple years

time

N
 q

u
e

e
n

s

Species

Species may differ in:

- mean (+-s.d.) date of emergence

- nesting habitat

- development times & weights for workers & queens

- tongue length => preferences for food sources

Up to 6 different (UK) species

Overview:

Model Structure

Main elements
2. GO

- run simulations
- daily time steps
- weather related foraging
- seasonal/annual events

RUN Button

1. SETUP

- clear memory
- set parameters
- show map
- initialise agents (e.g. bees,
food sources, bee species)

SETUP Button

(1c) ANALYSIS

- Identify food patches on
map
- calculate food production
- create FoodsourcesFile,
MyMap

UPDATE Button

(1b). USER INTERACTION

- load/modify map
- change parameters settings
- add stewardship options
- create report
etc.

various PANEL buttons

Information flow & files

provides

image

MyMap
FoodsourcesFileANALSYIS

USER

HabitatsFile

FlowerspecisFile
BeespeciesFile
MyParametersFile

SETUP

GO

re
a

d
 i
n

create

re
a

d
 i
n

re
a

d
 i
n

read in

MyMap(IMAGE file; e.g. "_SYSTEM_Example_Farm.png")(optional)
-> representation of the map (may also be defined via a text file)

FoodsourcesFile(TEXT file; e.g. "_SYSTEM_Example_Farm_Foodsources.txt")
-> defines all available food patches (location, size, habitat type etc.)

FlowerspeciesFile(CSV file; e.g. "_SYSTEM_Flowerspecies.csv")
-> defines plants (flowering period, nectar and pollen production etc.)

BeespeciesFile(CSV file; e.g. "_SYSTEM_BumbleSpecies_UK_01.csv")
-> defines bee species (nesting habitat, weights, tongue lengths etc.)

MyParametersFile(CSV file; e.g. "_SYSTEM_Parameters.csv")
-> defines many model parameters (initial queens, input files etc.)

HabitatsFile (CSV file; e.g. "_SYSTEM_Habitats.csv")
-> defines habitats types (plant species, flower densities)

BackgroundImage(image file, e.g. a satellite image)(optional)
-> additional information for the user, no impact on model

Report_name(CSV file)
-> results of a short simulation study, that can be used with

“_SYSTEM_MyBEE-STEWARD.xlsm” to compare results from two scenarios

BEE-STEWARD files

1

Bumble-BEEHAVE – Model
Description

The model description follows the ODD (Overview, Design concepts, Details) protocol, a

standard format for describing individual-based models (Grimm et al. 2006, 2010).

Bumble-BEEHAVE was implemented in NetLogo (Wilensky, 1999), version 5.3.1. The

program and a user manual are available at http://beehave-model.net/.

1. PURPOSE

The purpose of the model is to explore the colony and population dynamics of bumblebees as

a result of the spatial and temporal distribution of forage resources and nesting habitat.

Additional factors like weather/foraging conditions, predation by badgers and social-

parasitism from cuckoo bees can be added but are implemented in the current version of the

model in a relatively simplified way.

Bumble-BEEHAVE simulates in an agent-based approach the life cycle of bumblebees,

foraging for nectar and pollen from a variety of forage plant species in a spatially explicit

landscape. Starting with an initial number of hibernating queens of up to six European

bumblebee species, the foundation of nests in suitable habitat and raising of brood by the

queen and later by worker bees is modelled. The population dynamics then results from the

number of reproductives, particularly queens, produced by colonies of the same species (Fig.

1).

Fig. 1: Screenshot of the Bumble-BEEHAVE interface during a simulation run with badgers

being present.

http://ccl.northwestern.edu/netlogo/
http://beehave-model.net/

2

2. ENTITIES, STATE VARIABLES, AND SCALES

I. ENVIRONMENT

Grid cells

The NetLogo world (i.e. the main object on the interface, representing the model landscape) is

made of a grid of 300 x 210 cells (termed patches in NetLogo). The real dimensions of a grid

cell varies with the landscape simulated (in the examples provided with the model it is 25 x 25

m). Bumble-BEEHAVE uses these NetLogo patches to visualise the map, if an image file,

specified by InputMap is provided. NetLogo patches are also used to show where on the map

colonies produced males or queens (Tab. 1).

Table 1: Variables of grid cells (NetLogo patches)

VARIABLENAME DESCRIPTION

nColonies keeps track of the total number of colonies ever produced on this grid cell (Netlogo

patch)

nMalesProduced keeps track of the total number of males ever produced on this grid cell (Netlogo

patch)

nQueensProduced keeps track of the total number of queens ever produced on this grid cell (Netlogo

patch)

pcolorSave remembers the current colour of a grid cell (Netlogo patch)

Food patches

The simulated, 2-dimensional landscape comprises of a number of flower patches providing

nectar, pollen and/or nesting opportunities. Flower patches are implemented as one or more

foodsources (defined as a NetLogo breed). Each foodsource represents a single forage plant

species, being in flower during a certain time of the year, with a location, area and

specifications of flower shape and food production (Tab. 2). To simulate semi-natural habitat,

two or more foodsources can be "layered", i.e. placed at the same location and linked with

each other. One of these layers at each flower patch is called "masterpatch" and addressed for

processes concerning the food patch as a whole.

The data is loaded from two input files, defined by Input_File and FlowerspeciesFile. A third,

optional input file, InputMap, is an image file, showing a map of the model landscape.

Terminology: We refer to a group of foodsources (or "layers") with the same location and the

same size, as a "flower patch" (or sometimes "layergroup"). Some statistics concerning the

flower patch as a whole (i.e. all foodsources forming this flower patch) are saved in a single

foodsource, the "masterpatch" of this flower patch.

3

Table 2: Variables of foodsources

VARIABLE NAME DESCRIPTION

area_sqm size of the foodsource (m2), identical for all 'layers' within a

flower patch

colorMemo saves original colour in which the foodsoure is shown, identical

for all 'layers' within a flower patch

corollaDepth_mm average length of the corolla tubes of the flower species

represented by this particular foodsource ('layer')

cumulNectarVisits number of all visits of nectar foragers over the whole simulation

run at this particular foodsource ('layer')

cumulPollenVisits number of all visits of pollen foragers over the whole simulation

run at this particular foodsource ('layer')

flowerSpecies_relativeAbundanceList lists the single flower species represented by this particular

foodsource ('layer') and its abundance, relative to a reference

habitat type (format e.g. ["Common_knapweed" 2.54],

indicating that the density of common knapweed here is 2.54

times higher than in the reference habitat)

flowerSpeciesList lists all flower species and their relative abundances at the

current flower patch, identical for all 'layers' within a flower

patch (format e.g. [["Bugle" 4.273] ["Burdock" 10][..]..[..]])

id_Beescout if the input file ("Input_File") was created with BEESCOUT,

then id_Beescout refers to the "who" of this food patch as it was

identified in the BEESCOUT model; this variable is defined but

not used in Bumble-BEEHAVE

interFlowerTime_s average time a foraging bee spends between two flowers

layersInPatchList lists "who" of all foodsources ('layers') of the flower patch, this

particular foodsource is part of

masterpatch? true for only one foodsource ('layer') of each flower patch

masterpatchID ID ("who") of the (single) 'masterpatch' foodsource of each

flower patch, hence identical for all 'layers' within a flower

patch

nectar_myl the actual amount of nectar [μl] currently available at a

particular foodsource (updated after each bee visit)

nectarConcentration_mol/l the (constant) sugar concentration of the nectar of this particular

foodsource

nectarFlowerVolume_myl amount of nectar [μl] available in a single flower (or floret) of

the flower species at this particular foodsource; a flower can

either be full or empty and the proportion of emptied flowers

might increase during a day

nectarMax_myl the maximal amount of nectar [μl] that can be available at this

particular foodsource

patchInfo may provide additional information for the user (no other use in

the model)

patchType crop or habitat type of the flower patch (identical for all 'layers'

within a flower patch)

pollen_g the actual amount of pollen [g] currently available at a particular

foodsource (updated after each bee visit)

pollenMax_g the maximal amount of pollen [g] that can be available at this

particular foodsource

proteinPollenProp the protein content of the pollen at this particular foodsource. In

the current version of the model, this has NO EFFECT on the

bees (e.g. when feeding larvae)

4

radius_m the (hypothetical) radius of a foodsource, calculated from its

area (i.e. assuming a circular shaped flower patch), identical for

all 'layers' within a flower patch

startDay the first day of the year when the foodsource ('layer') is in

flower and provides resources

(it is assumed that startDate < stopDate!)

stopDay the first day of the year after the flowering period of a

foodsource ('layer') when no more resources are provided

(it is assumed that stopDate > startDate!)

Weather

Weather is not explicitly implemented in the model (e.g. via directly using meteorological

data) and hence there is no effect of temperature or humidity on the bee's energy consumption

or the survival probability of queens during hibernation. However, it is represented (in the

variable "Weather") by the daily allowance of foraging hours (i.e. the maximal time foragers

can spend every day on foraging). Furthermore, climate and weather conditions are implicitly

taken into account by the phenology of flower patches and by the timing when queens emerge

from hibernation, which both have to be provided by the user.

Badgers

To simulate predation by badgers, the NetLogo breed badgers is defined and used to

distribute a number of badger setts in suitable habitat over the landscape. Badgers in the

current version of the model are implemented in a very simplistic way, they do not reproduce

or die, and show no other activity than destroying nests they find within their foraging range.

Badgers are only defined by the variables built-in to all NetLogo turtles.

II. BEES

Bumblebees

Bumblebees are implemented as the Netlogo breed bees. Each bee does either represent a

single individual or a 1-day age cohort (with the cohort size specified by number). Adult

queens are always implemented as individuals. Bees differ, among others, in their age

(distinguishing between broodAge and adultAge), caste (worker, queen, male or undefined),

their activity and their size (which affects their tongue length and forage loads) (Tab. 3).

Furthermore, bees belong to a defined species and are usually member of a certain colony

(except of hibernating and nest searching queens).

5

Table 3: Variables of bees

VARIABLE NAME DESCRIPTION

activity

current activity of a bee, (possible activities: "hibernate",

"nestConstruction", "resting", "searching", "returningEmpty",

"returningUnhappyN", "returningUnhappyP", "nectarForaging",

"collectNectar", "bringingNectar", "expForagingN", "pollenForaging",

"collectPollen", "bringingPollen", "expForagingP", "egglaying",

"nursing")

activityList logs the bee's activities on current day

adultAge age [d] of adult bee, being 0 at day of emergence and increasing by 1 in

"DevelopmentProc" for bees with stage = "adult"

allelesList a list with 1 (haploid males) or 2 (females, diploid males) alleles from the

bees nuclear DNA, inherited from its mother (and father if diploid). If

"InbreedingEffects?" is true, then they refer to the sex alleles with diploid

males being sterile; otherwise, no effect on simulation run

brood? true if the bee's "stage" is "egg", "larva" or "pupa", "false" if it is "adult"

broodAge age [d] of sub-adult bees, being 0 when egg is laid and increases by 1 in

"DevelopmentProc" for bees with stage != "adult"

caste the bee's caste: "undefined", "queen", "worker", "male" (with "undefined"

being a diploid egg or larva that can develop into either a worker or a

queen)

colonyID the ID ("who") of the bee's colony (-1 for queens without colonies)

(colonies are implemented as Netlogo "breed")

cropvolume_myl amount of nectar [µl] that can be carried by a bee (determined in

CropAndPelletSizeREP when a new adult bee is created/emerges from

pupation depending on the bee's weight). The value refers to a single bee,

hence is multiplied by the cohort size (number) when the bee agent

collects nectar

cumulIncubationReceived_kJ cumulative amount of energy [kJ] received (until now) by individual bee

(in any brood stage) due to incubation

cumulTimeEgg_d the number of days a bee has been an egg (i.e. for eggs equal to

broodAge)

cumulTimeLarva_d the number of days a bee has been a larva (i.e. for larvae equal to

broodAge - cumulTimeEgg_d)

cumulTimePupa_d the number of days a bee has been a pupa (i.e. for pupae equal to

broodAge - cumulTimeEgg_d - cumulTimeLarva_d)

currentFoodsource ID ("who") of the foodsource a foraging bee is currently exploiting

emergingDate date (time step) when a queen emerges from hibernation

expectation_NectarTrip_s expected duration [s] of a nectar trip, based on previous experience

expectation_PollenTrip_s expected duration [s] of a pollen trip, based on previous experience

glossaLength_mm length [mm] of a bee's glossa (proboscis)

knownMasterpatchesNectarList lists the masterpatchID's of all nectar providing patches ('layergroups')

sorted by the distance to the bee's colony

knownMasterpatchesPollenList lists the masterpatchID's of all pollen providing patches ('layergroups')

sorted by the distance to the bee's colony

mated? set true when young queens leave their mother's nest

(QueensLeavingNestProc)

mtDNA an allele from the bee's mitochondrial DNA, inherited from its mother or -

for initial queens - set to a random float number between 0 and 139.9 (i.e.

within the range of Netlogo colours) (no effect on simulation run)

nectarLoadSquadron_kJ amount of energy [kJ] in nectar load carried by a cohort of foraging bees

nectarsourceToGoTo ID ("who")of the foodsource the bee will be visiting on its next nectar

foraging trip

number number of bees in a cohort: initial value either "batchsize" (Species-own

variable) if colony is "cohortBased?" or 1 if colony is individual-based.

6

personalTime_s current time of day [s] of a bee, updated after each activity; set to

GET_UP_TIME_s (+ randomTimeToGetUp_s) in UpdateMorning_Proc

ploidy ploidy of a bee: 1: haploid male, 2: diploid female (or diploid male)

pollenForager? if true, bee is foraging for pollen, otherwise for nectar

pollenLoadSquadron_g amount of pollen [g] carried by a cohort of foraging bees

pollenPellets_g amount of pollen [g] that can be carried by a bee (determined in

CropAndPelletSizeREP when a new adult bee is created/emerges from

pupation depending on the bee's weight). The value refers to a single bee,

hence is multiplied by "number" when the bee agent collects pollen

pollensourceToGoTo ID/"who" of the foodsource the bee will be visiting on its next pollen

foraging trip

speciesID ID ("who") of the bee's species (species are implemented as NetLogo

"breed")

speciesName the bee's species name written-out

spermathecaList a list that stores the allele received from a male by mating. Empty for

males and unmated females.

stage developmental stage of a bee ("egg", "larva", "pupa" or "adult")

thEgglaying threshold that needs to be exceeded by a stimulus to potentially trigger egg

laying in a bee

thForagingNectar threshold that needs to be exceeded by a stimulus to trigger nectar

foraging in a bee

thForagingPollen threshold that needs to be exceeded by a stimulus to potentially trigger

pollen foraging in a bee

thNursing threshold that needs to be exceeded by a stimulus to potentially trigger

nursing in a bee

weight_mg the weight [mg] of an individual bee

Bumblebee species

Parameter values for bumblebee species are stored in the NetLogo breed species. They

describe i.a. batch size, durations and weights of developmental stages, tongue lengths,

suitable nesting habitat, periods of emerging from hibernation, etc. (Tab. 4). The data is

loaded from an input file, defined by SpeciesFilename. The provided input file "BBH-

BumbleSpecies_UK_01.csv" contains data of six common bumblebee species in the UK and

of a generic cuckoo bee.

Table 4: Variables of bumblebee species

VARIABLE NAME DESCRIPTION

batchsize number of eggs laid in one batch and hence defining the cohort size

chanceFindNest daily probability to find a suitable nest site for a searching queen

dev_larvalAge_QueenDetermination_d the day of larval development (i.e. "cumulTimeLarva_d" and not

"broodAge") when it is decided whether a female larva develops into a

worker or a queen

dev_Q_DeterminationWeight_mg minimal weight [mg] a female larva needs to have to possibly develop

into a queen (a necessary but not sufficient condition)

devAge_Q_EmergingMax_d the maximal age ("broodAge") of a queen pupa to emerge

devAge_Q_EmergingMin_d the minimal age ("broodAge") of a queen pupa to emerge

devAge_Q_PupationMax_d the maximal age ("broodAge") of a queen larva to pupate

devAge_Q_PupationMin_d the minimal age ("broodAge") of a queen larva to pupate

devAgeEmergingMax_d the maximal age ("broodAge") of a worker or male pupa to emerge

7

devAgeEmergingMin_d the minimal age ("broodAge") of a worker or male pupa to emerge

devAgeHatchingMax_d the maximal age ("broodAge") of an egg (male or female) to hatch

devAgeHatchingMin_d the minimal age ("broodAge") of an egg (male or female) to hatch

devAgePupationMax_d the maximal age ("broodAge") of a worker or male larva to pupate

devAgePupationMin_d the minimal age ("broodAge") of a worker or male larva to pupate

devIncubation_Q_EmergingTH_kJ the minimal, cumulative amount of energy [kJ] from incubation a

queen pupa needs to have received during its development to emerge

devIncubation_Q_PupationTH_kJ the minimal, cumulative amount of energy [kJ] from incubation a

queen larva needs to have received during its development to pupate

devIncubationEmergingTH_kJ the minimal, cumulative amount of energy [kJ] from incubation a

worker or male pupa needs to have received during its development to

emerge

devIncubationHatchingTH_kJ the minimal, cumulative amount of energy [kJ] from incubation any

egg needs to have received to hatch

devIncubationPupationTH_kJ the minimal, cumulative amount of energy [kJ] from incubation a

worker or male larva needs to have received during its development to

pupate

devQuotaIncubationToday_kJ average amount of energy [kJ] a bee needs to receive daily as

incubation during its development

devWeight_Q_PupationMax_mg the maximal weight [mg] a queen larva can have

devWeight_Q_PupationMin_mg the minimal weight [mg] a queen larva needs to have to pupate

devWeightEgg_mg the weight [mg] of an egg

devWeightPupationMax_mg the maximal weight [mg] a worker or male larva can have

devWeightPupationMin_mg the minimal weight [mg] a worker or male larva needs to have to

pupate

emergingDay_mean the average day of year when queens of this species emerge from

hibernation

emergingDay_sd the standard deviation around "emergingDay_mean" for determining a

queen's emerging date from hibernation

flightCosts_kJ/m/mg energetic flight costs [kJ] of a bee of this species, depending on the

bee's weight [mg] and and the distance [m] travelled

flightVelocity_m/s speed [m/s] of a foraging bee when travelling to or back from a

foodsource

growthFactor defines the maximal weight gain of a larva during one day:

maxWeightGain_mg = (weight_mg * myGrowthFactor) - weight_mg

maxLifespanWorkers maximal lifespan [d] worker, referring to "adultAge" i.e. excluding

brood developement phase

minPollenStore_g minimal amount of pollen bees are trying to store, independent of

expected consumption rates. If the actual pollen store is lower, no eggs

are laid.

minToMaxFactor to calculate the maximal age for a a developmental stage based on the

given minimal age, e.g. devAgeHatchingMax_d =

devAgeHatchingMin_d * minToMaxFactor

name species name as a string

nestHabitatsList lists the habitats suitable for nesting for this species

nestSiteArea total area of habitat suitable for nesting

nestsiteFoodsourceList a set of foodsources which are masterpatches and belong to a habitat

suitable for nesting

pollenToBodymassFactor factor to translate the amount of pollen consumed [mg] into a larva's

weight gain [mg]

proboscis_max_mm maximal possible proboscis length [mm] for a bee of this species

proboscis_min_mm minimal possible proboscis length [mm] for a bee of this species

searchLength_m length [m] of a scouting trip

seasonStop day of year when the season for this species ends and all bees except

of hibernating queens die

specMax_cropVolume_myl maximal possible crop volume [µl] for a bee of this species

specMax_pollenPellets_g maximal possible size of pollen pellets [g] for a bee of this species

timeUnloading time [s] to unload a nectar or pollen load to the colony's stores

8

Bumblebee colonies

Bumblebee colonies are implemented as the NetLogo breed colonies. Colonies are created

after a queen has found a suitable nest site. They are defined, amongst others, by a location,

nectar and pollen stores, the bees belonging to the colony, the developmental phase of the

colony and task stimuli, affecting the decision making of the bees (Tab. 5). To not lose data

when colonies vanish, they are transferred into the breed deadCols, instead of just being

removed. DeadCols do not affect the simulation run and only serve as data storage.

Table 5: Variables of bumblebee colonies

VARIABLE NAME DESCRIPTION

allAdultActiveQueens number of (not hibernating) adult queens in the colony

allAdultMales number of adult males in the colony

allAdultQueens number of adult queens in the colony

allAdults number of all adult bees in the colony

allAdultWorkers number of all adult workers in the colony

allEggs number of all eggs in the colony

allLarvae number of all larvae in the colony

allPatchesInRangeList lists "who" of all foodsources within the foraging distance (i.e.

independent of "masterpatch?")

allPupae number of all pupae in the colony

allSourcesInFlowerAndRangeList lists all foodsources (i.e. irrespective of "masterpatch?") within the

foraging range that provide nectar and/or pollen

broodDeathBadger number of eggs, larvae and pupae killed by badger

broodDeathEndSeason number of eggs, larvae and pupae dying due to end of season

broodDeathsCP number of eggs, larvae and pupae dying due to competition point

broodDeathsEnergyStores number of eggs, larvae and pupae dying as nectar stores are depleted

broodDeathsNoAdults number of eggs, larvae and pupae dying as no adults are left in the colony

cohortBased? if true, bees are implemented as cohorts (with number equals batch size),

otherwise as individuals

colonyAge number of days passed since foundation of colony (until death of colony)

colonyFoundationDay time step (ticks) when colony was founded

colonysize total number of bees (brood, workers, queens, males) in the colony (i.e.

with "colonyID" = who of the colony)

colonyWeight_mg total weight [mg] of bees (brood, workers, queens, males) in the colony

(but without stores or wax etc.)

competitionPointDate time step (ticks) of the colony's competition point (i.e. when workers start

to lay and destroy eggs)

eggDeathsIncubation number of eggs dying due to lack of incubation

energyNeedToday_kJ approximate amount of energy [kJ] required today to feed the colony's

larvae

energyStore_kJ amount of energy [kJ] stored as nectar in the colony

eusocialPhaseDate time step (ticks) when the colony enters the eusocial phase (i.e. when the

first workers emerge)

idealEnergyStore_kJ amount of energy [kJ] the colony tries to store as nectar

idealPollenStore_g amount of pollen [g] the colony tries to store

9

larvaDeathsIncubation number of larvae dying due to lack of incubation

larvaDeathsWeight number of larvae dying as they haven't reached the minimum weight for

pupation

larvaWorkerRatio "allLarvae" divided by "allAdultWorkers"

masterpatchesInRangeList all masterpatches within foraging range, determined only once, when

colony is created

masterpatchesWithNectarlayers

InFlowerAndRangeList

all masterpatches within the foraging range where at least one 'layer'

provides nectar today (before foraging starts) (i.e.

nectarInFlowerAndRangeList without the non-masterpatches)

masterpatchesWithPollenlayers

InFlowerAndRangeList

all masterpatches within the foraging range where at least one 'layer'

provides pollen today (before foraging starts) (i.e.

pollenInFlowerAndRangeList without the non-masterpatches)

nectarInFlowerAndRangeList lists "who" of all foodsources within foraging range that provide nectar

today (before foraging starts)

pollenInFlowerAndRangeList lists "who" of all foodsources within foraging range that provide pollen

today (before foraging starts)

pollenNeedLarvaeToday_g approximate amount of pollen [g] required today to feed the colony's

larvae

pollenStore_g amount of pollen [g] stored in the colony

pupaDeathsIncubation number of pupae dying due to lack of incubation

queenProduction? is set true once the colony's criteria for queen production are fulfilled

queenProductionDate (theoretical) date (time step) when the first queen-destined eggs were laid,

back calculated on the day when "queenProduction?" is set true (in

QueenProductionDateProc). Does not require that any eggs were actually

laid on that day.

queenright? set false after the death of the mother queen

speciesIDcolony the species of the founding queen in numerical format (i.e. "who" of the

corresponding species-turtle)

stimEgglaying stimulus to lay eggs

stimNectarForaging stimulus to forage nectar

stimNursing stimulus to nurse brood

stimPollenForaging stimulus to forage pollen

summedIncubationToday_kJ total amount of energy [kJ] spent on incubating the brood today

switchPointDate time step (ticks) of the colony's switch point (i.e. when queens starts to lay

haploid eggs)

totalAdultsProduced total number of bees (workers, queens, males) that reach adulthood ever

produced by this colony

totalEggsProduced total number of eggs (haploid or diploid) ever produced by this colony

totalLarvaeProduced total number of larvae ever produced by this colony

totalMalesProduced total number of males reaching adulthood ever produced by this colony

totalPupaeProduced total number of pupae ever produced by this colony

totalQueensProduced total number of queens reaching adulthood ever produced by this colony

totalWorkersProduced total number of workers reaching adulthood ever produced by this colony

for deadCols only:

colonyDeathDay time step (ticks) when the colony died (only defined for "deadCols")

10

III. INTERFACE

Signs and storebars

The NetLogo breeds signs and storebars do not represent real entities but provide information

for the user on the interface. Signs only use NetLogo built-in variables. They differ in their

shape ("sun", "cloud" or "circletarget") and show today's foraging conditions or help to locate

a certain "turtle" (an agent in NetLogo, e.g. a bee) on the map.

Storebars represent for each bumblebee colony shown on the interface the amount of nectar

(energy) and pollen stored, relative to an "ideal" amount of nectar and pollen (based on

colony size). Their (additional) variables are maxSize (the maximal length of the storebar

when displayed on the interface), store (defines whether the storebar represents "Nectar" or

"Pollen") and storeColonyID (ID/"who" of the colony the storebar is associated with).

State variables & global variables

Low level state variables are those variables which describe the current state of the modelled

system, and cannot be derived from other variables. Most of the "bees-own" variables, (such

as adultAge, activity etc.), the majority of "foodsources-own" variables (like area_sqm, or

pollen_g) and a few of the "colonies-own" variables (like energyStore_kJ or pollenStore_g)

are considered to be low level state variables. Not considered as low level state variables are

auxiliary variables that e.g. keep track of the number of certain individuals (like

TotalColonies) or do not describe a real entity (like AssertionViolated) (Grimm et al. 2006,

2010), hence none of the "species-own", "patches-own", "storebars-own" variables nor any

global or local variables are state variables. For a detailed list of all variables including

information whether or not they are low level state variables see Supporting Information

SI_04. Variables

3. PROCESS OVERVIEW AND SCHEDULING

SETUP

Bumble-BEEHAVE is initialised by running the procedure Setup. This clears all agents, sets

back time steps to 0, initialises the random-number generator, and calls a number of sub-

procedures to upload data from input files and create initial agents (Tab. 6a).

In ParametersProc, parameter values values are set.

Then a map of the landscape can be imported (specified by InputMap, file formats: bmp, jpg,

gif or png) and foodsources are created in CreateFoodsourcesProc, based on an input files

defined by Input_File (file format: txt). CreateLayersProc then checks if foodsources are

composed of more than one flower species and - if this is a case - copies of this foodsource

("layers") are created (one for each flower species present) and the foodsource specific

variables are then changed according to the flower data (e.g. start and stop date of the

flowering period, amount of nectar and pollen provided, corolla depth etc.) of the flower

species they represent (from FlowerspeciesFile, file format: csv). For the first copy created,

11

masterpatch? is set "true" and masterpatchID is set to the ID (who) of this new foodsource,

for all other copies of this particular flower patch, masterpatch? is set "false" and

masterpatchID is set to the ID (who) of the first copy (i.e. the "masterpatch" of this flower

patch). This creates a number of foodsources at the same location, which are linked with each

other to represent a semi-natural habitat (the original foodsource is then no longer needed and

removed).

Next, bumblebee species are created in the procedure CreateSpeciesProc. Specifications of

species are provided in SpeciesFilename (file format: csv) and given for six common UK

bumblebee species (Bombus terrestris, lapidarius, pascuorum, hortorum, pratorum and

hypnorum) as well as a (general) cuckoo bee (Psithyrus). All of these species can be present

in a simulation run at the same time.

Badgers are then created in CreateBadgersProc in a habitat suitable for badger setts. Badgers

don't move, die or reproduce but can destroy bumblebee colonies located within the badger's

foraging range (see procedure BadgersOnTheProwlProc). The initial number of badgers is set

by the user on the interface (N_Badgers).

Then initial bumblebee queens (including cuckoo bees) are created in

CreateInitialQueensProc, according to the numbers set by the user (interface input:

B_terrestris, B_lapidarius etc.). The date to emerge from hibernation and the queen's weight

are randomly determined, based on a normal distribution with species-specific mean and

standard deviation.

UpdateMorning_Proc is first called in Setup and then again at the beginning of each time

step. It will be described under the section "GO".

Finally, signs to show the current foraging conditions and the nectar and pollen supply of

colonies are created (see CreateSignsProc) and OutputDailyProc determines some output

statistics and updates the plots shown on the interface.

Table 6a: Scheduling of "Setup" procedures (initiated by the Setup-button) (without reporter-

procedures). In total, 69 procedures are defined of which 19 are reporter-procedures)

SETUP

 ParametersProc

 CreateFoodsourcesProc

 CreateLayersProc

 CreateSpeciesProc

 CreateBadgersProc

 DieProc

 CreateInitialQueensProc

 UpdateMorning_Proc

 UpdateFoodsourcesProc

 UpdateSeasonalEventsProc

 EmergenceNewQueensProc

 DieProc

 NestSitesSearchingProc

12

 DieProc

 PsithyrusNestSearchProc

 DieProc

 DieProc

 CreateColoniesProc

 PatchesInRangeProc

 FoodsourcesInFlowerAndRangeProc

 UpdateColoniesProc

 DieProc

 UpdateColonyStoreBarsProc

 CheckNumbersProc

 CreateSignsProc

 OutputDailyProc

 PlottingProc

Table 6b: Scheduling of "Go" procedures (called by the various run buttons), addressing all

processes of a time step (day) (reporter-procedures are not shown).

GO

 UpdateMorning_Proc

 UpdateFoodsourcesProc

 UpdateSeasonalEventsProc

 DieProc

 EmergenceNewQueensProc

 DieProc

 NestSitesSearchingProc

 DieProc

 PsithyrusNestSearchProc

 DieProc

 DieProc

 CreateColoniesProc

 PatchesInRangeProc

 FoodsourcesInFlowerAndRangeProc

 UpdateColoniesProc

 FoodsourcesInFlowerAndRangeProc

 DieProc

 UpdateColonyStoreBarsProc

 CheckNumbersProc

 NeedNectarPollenLarvaeTodayProc

 ActivityProc

 EgglayingProc

 EggsParameterSettingProc

 BroodIncubationProc

 ForagingProc

13

GO

The Go procedure, covering all processes of a single time step, is called one or several times

by various run buttons (e.g. "Run", "1 day", "1 week" etc.) (Tab. 6b).

Daily update
After proceeding the time step by one day, all entities are updated (see

UpdateMorning_Proc). The new date is set (DateREP), maximal hours of foraging for today

is determined (see Foraging_PeriodREP) and foodsources are updated

(UpdateFoodsourcesProc) by setting the nectar and pollen available to the maximal values

during the flowering period or to 0 outside of the flowering period. In

UpdateSeasonalEventsProc not-hibernating queens die at the end of the species-specific

duration of the season (on day seasonStop), males are removed if all potential queens are in

hibernation and on each 1st January (Day = 1), the number of hibernating queens is - if

exceeded - reduced to its maximal value (MaxHibernatingQueens, default: 10000), to avoid

undue computation time.

In EmergenceNewQueensProc, those queens emerging from hibernation today are addressed.

Their activity changes from "hibernate" to "emerging", and their task thresholds for egg

laying, nursing and nectar and pollen foraging are updated. As hibernating queens might have

been implemented as cohorts while mother queens have to be implemented as individuals, a

number of copies (clones) are created from an emerging queen, reflecting their cohort size and

then their cohort size (number) is set to 1, i.e. they are now actual individuals.

 Foraging_searchingProc

 Foraging_collectNectarPollenProc

 Foraging_costs&choiceProc

 DieProc

 Foraging_PatchChoiceProc

 Foraging_unloadingProc

 QueensLeavingNestProc

 FeedLarvaeProc

 QueenProductionDateProc

 DevelopmentProc

 Development_Mortality_AdultsProc

 DieProc

 Development_PupaeProc

 Development_LarvaeProc

 Development_EggsProc

 MortalityBroodProc

 DieProc

 BadgersOnTheProwlProc

 DieProc

 OutputDailyProc

 PlottingProc

 DrawCohortsProc

14

Winter mortality for each freshly emerged queen is then determined on the basis of her

(relative) weight (see WintermortalityProbREP). Bees that die are counted and removed in

DieProc. Surviving queens then search for nests (see NestSitesSearchingProc). The daily

probability to find a nest is independent of the habitat available and only depends on the

species-specific variable chanceFindNest. If a queen finds a suitable nest site, a flower patch,

suitable for nesting for this bumblebee species, is chosen (see NestSiteFoodSourceREP) and

the nest is randomly located within the (theoretical) radius of that foodsource (Note: for

simplicity, foodsoures are assumed to be round, i.e. they have a x- and y-coordinate, an area

and a radius, calculated from the area. The underlying map serves to inform the user but is not

used by the model itself). Queens that do not find a nest site might die, otherwise they will

continue searching the next day.

Cuckoo bees (Psithyrus) are not searching for nest sites but for already established colonies of

social queens (see PsithyrusNestSearchProc). They can invade any nest, irrespective of the

host species. If they find a nest, they try to access it and, if they manage, might then be killed

by the social queen or otherwise might kill the queen themselves. If they have successfully

invaded a colony, they become a colony member and can then start to lay eggs.

Social queens that have found a nest site, can then create a colony (see CreateColoniesProc).

To speed up the foraging procedures, various lists are then created to keep track of

foodsources and "masterpatches" within foraging range, foodsources currently in flower,

foodsources providing nectar or pollen etc. All colonies are then updated (see

UpdateColoniesProc) which includes refreshing the lists of foodsources in flower, counting

bees of various developmental stages and castes, checking for the switch point (when queen

switches to lay haploid eggs) and competition point (when workers compete with the queen

and no more eggs survive) and updating the colony's nectar and pollen store bars on the

interface (see UpdateColonyStoreBarsProc). If colonies run out of energy, all colony

members die. If no more adult bees are left in a colony, all brood dies. The morning update is

completed after making sure that the number of bees present is identical to the number of

initial bees plus all bees ever produced minus all bees that ever died (see

CheckNumbersProc), otherwise the procedure AssertionProc is called, an error message pops

up and the simulation run stops.

Tasks and activities
For each colony, the amount of nectar and pollen required today to feed the larvae is

estimated (see NeedNectarPollenLarvaeTodayProc) and will affect the colony's foraging

stimuli and hence the activities of the bees.

Bees can work (e.g. nurse brood) from GetUpTime_s till CallItaDay_s, which, under default

setting, is ca. 24 hours a day. However, foraging can only be done after Sunrise_s (8:00 am)

for DailyForagingPeriod_s seconds (default: 8 hours). As long as the current day time

(Daytime_s) allows bees to work, the bee with the lowest personalTime_s (which defines the

current day time) is determined, becomes active and might perform a task (see ActivityProc).

A bee engages in a task, if the stimulus in the bee's colony for this task is higher than the bee's

threshold for this task. The bee's activity is then set to this task. Tasks are addressed in the

following order: egg laying, nursing, pollen foraging and nectar foraging, where each task

potentially overwrites the outcome of the previous task, i.e. a bee will only engage in egg

laying, if none of the other three stimuli is above the corresponding threshold, whereas if the

nectar foraging stimulus is above its threshold, the bee will certainly forage for nectar,

irrespective of the stimulus-threshold relations of the other three tasks (Fig. 3a). If none of the

task stimuli is above their threshold, the bee has a break of 30 minutes (activity set to

"resting") and then might become active again.

15

Egg laying
If the bee ' s activity is "egglaying" one or more bee agents are produced (see EgglayingProc).

If the mother's colony is "cohort based", then only one new bee agent is created but its cohort

size (number) is set to the species batchsize. If the mother's colony is "individual based", then

the species' batchsize determines how many bee agents are produced and number of each of

these new bees is set to 1. New eggs are created as copies (clones) of their mother and then a

number of variables has to be changed, e.g. ploidy is set to either 1 or 2, depending on

whether the mother is a worker (results in ploidy 1) or a queen (results in ploidy 2 or, after the

switch point, in ploidy 1), stage is set to "egg", brood and adult age is set to 0, their weight is

set to the weight of an egg etc. (see EggsParameterSettingProc). If ploidy is 1, caste of the

new egg is set to "males". If ploidy is 2, caste is usually set to "undefined" and will later

(during the larval development) be changed to either "worker" or "queen". However, if a

diploid egg is homozygous and the bee's alleles represent the sex locus (NetLogo switch

SexLocus? on interface is "true") then caste is set to "male" (note: diploid males can develop

into adults and mate with queens but these queens can't reproduce and are removed from the

simulation). At last, the costs in terms of nectar and pollen consumption from the colony's

stores are calculated. The activity "egglaying" lasts until the end of the day.

Nursing
If the bee's activity is "nursing", then she spents 48 minutes with the brood to incubate it (see

BroodIncubationProc). The amount of heat transfered to the brood depends on the bee's

weight (and the number of individuals represented by the bee agent) and is equally distributed

over all eggs, larvae and pupae and summed up for each of these receiving bees (to develop

into the next stage, brood has to receive a certain amount of incubation within a certain time

frame, otherwise it will die) (Fig. 2).

Nursing/brood incubation implicitly also covers feeding of larvae, although this is not a task

in itself and is addressed only once each time step (see FeedLarvaeProc).

16

Fig. 2: To develop into the next stage, brood not only has to be of a minimum age, but also

has to receive a certain amount of incubation (symbolised by the size of the red bar), which is

provided by workers or the queen. Larvae also require feeding of nectar and pollen

(symbolised by the the yellow bar). If the minimal requirements are not met within a certain

time frame, the brood will die (†). The amount of pollen consumed as larva defines the weight

of the adult bee and hence also affects its proboscis length and the amount of nectar and

pollen that can be collected per foraging trip.

Foraging
If the bee's activity is "pollenForaging" or "nectarForaging", then the bee will leave the colony

to collect food (see ForagingProc). Experienced bees typically know a number of flower

patches, saved in two bee-specific lists for nectar and pollen patches

(knownMasterpatchesNectarList, knownMasterpatchesPollenList) (a flower patch consists of

one or several foodsources, each foodsource represents a single flower species). They usually

also remember a single, relatively profitable foodsource for nectar (nectarsourceToGoTo) and

one for pollen (pollensourceToGoTo). A foraging bee will then either go to the pollen

foodsource she knows, if she is looking for pollen or to the nectar foodsource she knows, if

she is looking for nectar. If she doesn't know such a foodsource, her activity is set to

"searching", even if the knownMasterpatches(Nectar or Pollen)List is not empty (see

Foraging_searchingProc) (Fig. 3b).

17

Fig. 3a: Overview of the decision making process: Bees perform a certain task, if the colony's

stimulus for this activity is higher than the bee's threshold. If several stimuli exceed their

threshold, the bee performs the task with the highest priority.

18

Fig. 3b: Overview of the decision making process of foraging bees.

19

Searching
To determine whether a flower patch is found, each entry of the bees' list of food patches

currently offering the right type of forage within the colony's foraging range is addressed in a

randomized order. For each of these flower patches, the detection probability is calculated,

based on the distance between the colony and the flower patch (see DetectionProbREP), and

it is randomly determined whether that flower patch was detected (if several flower patches

are detected, only the last one is remembered by the bee). The bee then chooses the most

profitable foodsource (flower species) of that flower patch (see Foraging_bestLayerREP),

which is either based on the time to collect a pollen load or on the energetic efficiency for

nectar foraging. This foodsource (i.e. a certain flower species at a certain flower patch) is then

visited by the bee. If no flower patch at all was detected, the bee returns empty.

Collecting nectar and pollen
Once a foraging bee arrived at the foodsource it starts to collect nectar or pollen (see

Foraging_collectNectarPollenProc). The amount of food removed depends on the bee's

crop volume or the size of its pollen pellets, but cannot exceed what is actually still available

at the foodsource. The amount of the forage load is then removed from the foodsource and the

visit is counted.

Foraging costs, mortality and patch choice
Before a foraging bee returns to the colony, the costs of the trip in terms of time, energy and

mortality are determined (see Foraging_costs&choiceProc). For bees returning empty, these

costs are based on the constant, species-specific length of the scouting trip (searchLength_m),

from which the duration and the energetic costs (taking the bee's weight into account) can be

calculated. The mortality risk depends on the duration of the trip and the constant, global

foraging mortality per second (MortalityForager_per_s) and the bee's survival is then

randomly determined.

For successful foragers, the trip duration is calculated from the time needed to fly to and

return from the patch plus the handling time (see HandlingTime_s_REP), i.e. how long it took

to collect a full load of nectar or pollen. Energetic costs and foraging mortality are then

determined in the same way as for bees returning empty.

Following Harder (1983), the calculation of handling time for nectar foragers is based on the

bee's proboscis length, its weight, the corolla depth of the flower and the nectar volume

available in a flower. Additionally, the time to fly from one flower to the next and the

proportion of flowers already emptied is taken into account, e.g. if 50% of the nectar at a food

source is already removed, the time to fly from one flower to the next and to test whether it

has already been emptied is doubled (the actual ingestion time however remains unaffected).

Lacking detailed data or existing models, the handling time for pollen foragers is based on

poppy flowers and modified by the proportion of flowers already emptied. Hence,

foodsources exploited by bees loose attractiveness as their handling time increases during the

day with each visit.

Finally, the duration of the trip is added to the bee's personal time and then she reconsiders

her current choice of foodsource (see Foraging_PatchChoiceProc) by comparing the duration

of the current trip with the duration of previous trips. Bees are more likely to become

"unhappy" with their current choice the longer the trip takes, in which case they again check

for the best foodsource ("layer") of the current flower patch (see Foraging_bestLayerREP). If

they are not at the best layer already, they will choose the newly determined best layer to be

visited on their next foraging trip. If they already are at the best layer, then they will go to a

new flower patch altogether, drawing on the flower patches they already know. In most cases

20

bees will go to a randomly chosen flower patch closer to the colony than the current one, but

with a 10% probability they will visit a flower patch somewhat further away. If they do not

know such a patch (because they are already foraging at the patch closest to or furthest from

the colony) they will search for a new flower patch on their next trip.

Unloading
Successfully returning foragers unload their pollen or nectar load to the colony's stores (see

Foraging_unloadingProc), which again takes some time (species-specific variable

timeUnloading).

Mating and hibernation of young queens
As soon as young queens have developed into adults, they leave their mother's colony to mate.

(see QueensLeavingNestProc). If adult males are currently present in the simulation, one of

them is randomly chosen. If no such male is present, mating with an ad hoc created male from

outside may be allowed (if the NetLogo switch UnlimitedMales? is "true"), otherwise the

queen is removed from the simulation. When mating, the queen receives the allele from the

male and saves it in her spermatheca (spermathecaList). She then goes into hibernation and

won't be active until she emerges again in the following year.

Feeding larvae and weight gain
Feeding of larvae takes place once a day (see FeedLarvaeProc). To grow, larvae need to

consume pollen and energy from nectar. Based on the ratio of a colony's actual pollen store to

a theoretical, "ideal" pollen store, the relative amount of pollen fed to the larvae is calculated.

The same calculation is done for the nectar store. The amount of food actually fed is

determined by the scarcer food type. For each larva it is then calculated how much pollen

would be required for maximal growth (see MaxWeightGainToday_mg_REP), and a certain

proportion - according to the relative stores - is then fed. E.g. if the nectar store is almost full

and the pollen store is half-empty, larvae are fed half of the pollen they would like to

consume. Based on the amount of pollen consumed and a species-specific assimilation factor

(pollenToBodymassFactor), the new weight of the larva is calculated. From the total amount

of pollen fed to all larvae it is then calculated how much energy from nectar was consumed, to

assimilate the proteins from the pollen and the colony's stores are reduced accordingly.

Timing of queen and male production
Timing of queen and male production in the model is derived from data on B. terrestris by

Duchateau and Velthuis (1988). At the beginning of the colony development, female larvae

develop into workers, whereas later, they may develop into queens (see

QueenProductionDateProc). The onset of queen production follows, with a few days of

delay, the queen's switch from laying diploid eggs to haploid, male eggs. However, this also

requires a sufficient number of workers relative to larvae in the colony. Diploid larvae of a

certain age can then develop into queens instead of workers.

Development and mortality
Development procedures are called in the reversed order of the bee's developmental stages

(i.e. starting with adults and ending with eggs) to avoid addressing those bees entering a new

stage twice. On each time step, bees age by one day, which is either added to their adultAge or

21

their broodAge (see DevelopmentProc). Adult males and workers die when they reach a

caste-specific maximal age (see Development_Mortality_AdultsProc). All adult bees can be

subject to a constant, daily background mortality risk (see MortalityAdultsBackground_daily).

However, as adult mortality in real colonies kept captive is negligible (Plowright and Jay

1968), we set the default value of this parameter to 0. Adult mortality outside the colony is

covered in the model by foraging mortality or winter mortality for hibernating queens.

Also the task thresholds of queens are changing when the colony enters the social phase, so

that she stops foraging and focuses on egg laying.

Pupae develop into adults, when they reached a caste- and species-specific minimum age of

emerging and summed amount of incubation received (see Development_PupaeProc)(Fig. 2).

Their stage is then set to "adult" and their task tresholds as well as crop size, pollen pellets,

and proboscis lengths are set (for queens also their date of emerging from hibernation is

determined).

Similar to pupae, larvae have to reach a certain caste- and species-specific age and summed

incubation to pupate, but additionally, they also need to have a minimum weight (see

Development_LarvaeProc). For diploid female larvae of undefined caste, their caste is

determined at a specific larval age (see DetermineCaste_REP). The larva will develop into a

worker, unless the colony is ready for queen production (queenProduction? is "true") and

larvae has already reached a species-specific minimal weight.

Eggs only require a species-specific minimum age and a certain amount of summed

incubation (both independent of caste) to hatch (see Development_EggsProc).

If bees are unable to proceed to the next developmental stage within a certain caste- and

species-specific time frame, they die (see MortalityBroodProc). Furthermore, following

Duchateau and Velthuis (1988), if a colony has passed its competition point, all eggs die,

reflecting the reciprocal oophagy of workers and the queen.

Predation by badgers
Once in each time step, badgers are addressed to check if colonies within the foraging range

(735m, Kruuk & Parish 1982) of a badger sett are destroyed (see BadgersOnTheProwlProc).

If a badger comes across a colony (19% chance, Kowalczyk et al. 2006) and digs it up (10%

chance) all bees in this colony are killed, resulting in the death of the colony.

Output and update of interface
At the end of each time step, some summary statistics are calculated, the plots on the user

interface are updated (see OutputDailyProc and PlottingProc) and the weather signs

(indicating today's foraging conditions) and representations of the colonies' cohorts on the

simulated world are redrawn (see DrawCohortsProc).

PLEASE NOTE: Histograms on the model's interface to not take the cohort size into

account, hence IBM colonies may be overrepresented in histograms!

4. DESIGN CONCEPTS

22

Basic principles

The model is agent based with an agent either representing a 1-day age cohort of bees or a

single individual, depending on the setup of the bee's colony. This allows flexibility in terms

of computation speed versus accuracy of output.

Growth and development as well as task performance are based on first principles. Bee

weights depend on the amount of pollen consumed as larvae. Activities require energy

consumption based on empirical data as well as time to perform them. Decision are made

using a stimulus-threshold approach; task are ranked according to their importance for colony

survival, and bees perform the highest ranked task, where the stimulus is above the threshold.

Foraging decision aim to maximise pollen intake per unit time or energetic efficiency for

nectar foraging, based on the bee's knowledge of food sources. Mortalities depend on the

bees' activity or nutritional situation.

Emergence

Patterns can emerge at all organisational levels, and these are the primary outputs available:

At the individual level, the activities of bees and their foraging decisions (when and where to

go in the landscape, which forage plants they exploit) as well as their lifespans emerge.

At the colony level colony dynamics, number and sex ratio of reproductives produced emerge.

At the population level the number of hibernating queens shaping the population dynamics,

genetic diversity, and overall sex ratios emerge.

At the landscape level, the number of visits at the various food sources (flower patches and

flower species), the locations where colonies produced males and queens and the colony

densities emerge.

Adaption

Using a stimulus-threshold approach in the decision making process allows the bees to

perform tasks flexibly and following the actual needs of the colony. Bees also react to the

quality of food provided in the landscape and try to maximise their pollen intake per unit time

or energetic efficiency for nectar foraging. With increasing handling time, as a consequence

of the depletion of a food source visited by bees, the probability that bees switch to another,

more profitable foodsource increases. Although bees possess alleles for one locus, these

alleles are in the current model version not linked to a trait (though they may be intrepreted as

sex alleles, prohibiting diploid males from reproduction). Linking alleles with bee-specific

variables though could be easily added to the model to allow evolutionary processes to be

studied.

Objectives

Decisions are made using a stimulus-threshold approach; task are ranked according to their

importance for colony survival, and bees perform the highest ranked task, where the stimulus

is above the threshold. Foraging decision aim to maximise pollen intake per unit time or

energetic efficiency for nectar foraging, based on the bee's knowledge of foodsources.

23

Learning

Successful foragers memorize all food patches they have detected as well as their distances

and the forage type they provide. They also remember the average duration of recent trips and

compare it to the duration of the current trip to judge whether to stay at a current foodsource

or to go to another one.

Prediction

Foraging bees remember the average duration of recent trips. The longer the current trip takes

in comparison to previous trips, the higher is the probability of a forager to switch to another

foodsource.

Sensing

Bees perceive time and they are able to sense the colony needs via stimuli for tasks (egg

laying, nursing, nectar and pollen foraging). This implicitly or explicitly involves knowledge

of nectar and pollen stores, of number, developmental stages and castes of nest mates and the

demand of larvae for feeding. Bees also perceive food patches, can distinguish flowers of

different species, find nectar and pollen, judge the sugar concentration of nectar and navigate

in the landscape.

Interaction

There are direct interactions when queens mate with males or fight cuckoo bees entering the

colony. Worker bees feed and incubate larvae. Indirect interaction takes place within a colony

via task stimuli (see also ODD section "Sensing" above). Bees of different colonies (and

possibly different species) also interact indirectly via collecting and hence reducing nectar and

pollen at foodsources, leading to increased handling times.

Badgers interact with colonies they find by destroying them and killing all the bees.

Stochasticity

Agents (bees, colonies etc.) are addressed in a random order, Furthermore, a number of

processes are based on or contain to some degree stochasticity:

- nest foundation and nest location

- mortality of queens during nest search, foraging mortality, winter survival of hibernating

queens

- determining alleles of chromosomal DNA, mtDNA and in spermatheca of initial queens

- variation in time when bees get up in the morning

- date when queens emerge from hibernation

- badgers: finding (and destroying) a bumblebee colony

- cuckoo bees: finding a colony, entering it, killing the social queen or get killed, or dying

during search for a nest

- determination of the queen production date

- switch of queen from diploid to haploid eggg laying

- foraging: finding a foodsource, becoming unhappy with current foodsource, decision of

whether to go to a closer foodsource or one further away

24

Collectives

Bees belong to a certain species, where queens can only mate with males from the same

species. They form colonies, founded by a single queen, with each worker and the mother

queen contributing to the brood care and nectar and pollen stores. If a colony runs out of

energy, all colony members die. Colonies can be invaded by cuckoo bees or destroyed by

badgers.

Observation

The interface shows a map of the modelled landscape, location, size and type of habitat

patches, location of colonies (distinguishing different species), colony age structures (# eggs,

larvae, pupae, adults; workers, males, queens), location of badger setts, today's foraging

conditions, locations where colonies produced males and queens in the past, and nectar and

pollen visits of food patches. Five "generic" plots provide a number of output options like

colony structures, number of colonies, number of queens of different species, nectar and

pollen stores, nectar and pollen available in the landscape. Some of the output can also be

created for a single, selected colony only.

5. INITIALISATION

The model is initialised in the procedure Setup (e.g. by pressing the "Setup" button) (see also

Chapter 3 (Processes): Setup). The initial situation in the model is defined by the choices of

the user made on the model interface (Tab. 7 and Supporting Information SI_04, sheet "GUI

variables"), by parameters set in the procedure ParametersProc, and by data importet from

input files (as specified by the user). Parameters defined as global variables are listed in Tab.

8. Variables on the interface can be set to the suggested default values by pressing the button

"Default". The most important input on the interface are the number of initial bumblebee

queens (including cuckoo bees) (B_hortorum, B_hypnorum, B_lapidarius, B_pascuorum,

B_pratorum, B_terrestris, and N_Psithyrus), the number of badgers (N_Badgers) and which

input files are loaded to define the landscape (number, location etc. of foodsources;

Input_File), the flower species (nectar and pollen production etc. of forage plants;

FlowerspeciesFile), and the bumblebee species (SpeciesFilename). More information for

parameterisation and references can be found in Supporting Information SI_04).

In the default setting, 500 B. terrestris queens are initially present, but no other bumblebee

species or badgers. This initial bee population is small, but grows rapidly over the next ca. 10

years to about 8000 hibernating queens.

Rand_Seed, which is not set in DefaultProc, defines the seed of the NetLogo pseudo-random

number generator and hence the sequence of random numbers created during a model run. If

Rand_Seed is 0, the seed is automatically set, based on the current date and time. In this case,

the results of a run are not replicable.

25

Table 7 GUI input. Input options provided on interface

VARIABLENAME Default value DESCRIPTION

AbundanceBoost 1 factor to increase (or decrease) the amount of

nectar and pollen at each foodsource

B_hortorum 0 number of initial Bombus hortorum queens

B_hypnorum 0 number of initial Bombus hypnorum queens

B_lapidarius 0 number of initial Bombus lapidarius queens

B_pascuorum 0 number of initial Bombus pascuorum queens

B_pratorum 0 number of initial Bombus pratorum queens

B_terrestris 500 number of initial Bombus terrestris queens

Backgroundcolour 5 colour of the 'matrix' (non-patch area) on the map

ChooseInputFile "BBH-T_Suss1.txt" a quick way to select a predefined filename as

input for "Input_File" (when pressing "Apply!"

button)

ChooseInputMap "BBH-I_Suss1.png" a quick way to select a predefined filename as

input for "InputMap" (when pressing "Apply!"

button)

Colonies_IBM 0 (maximal) number of colonies implemented as

individual-based

FlowerspeciesFile "BBH-

Flowerspecies_Suss.csv"

input file with the specifications of flower species

FoodSourceLimit 25 approx. number of trips a foodsource must be able

to supply with nectar or pollen, otherwise,

foodsource might be removed

ForagingMortalityFactor 1 is multiplied by

MORTALITY_FORAGER_PER_SEC to modify

the foraging mortality

GenericPlot1 "SpeciesQueenabundance" defines the graphs shown on associated plot

GenericPlot2 "speciesNcolonies" defines the graphs shown on associated plot

GenericPlot3 "Foodavailable" defines the graphs shown on associated plot

GenericPlot4 "Colonystructures" defines the graphs shown on associated plot

GenericPlot5 "Speciesabundance" defines the graphs shown on associated plot

Gridsize 500 distance [m] of gridlines, which can be shown on

the map

Input_File "BBH-T_Suss1.txt" name of the text file read in to define number and

specifications of foodsources

InputMap "BBH-I_Suss1.png" name of the image file read in to define the map,

(supported formats: BMP, JPG, GIF, and PNG)

InspectTurtle 1 ID (who) of a turtle that can be addressed by the

buttons "Inspect turtle" or Find!"

KeepDeadColonies? TRUE If false, dead colonies are removed after each year

Lambda_detectProb -0.005 to calculate the the probability that a worker of a

certain colony finds a certain foodsource, based

on the distance [m] between foodsource and

colony (detection probability is then e ^

(Lambda_detectProb * relevantDistance_m)). Use

the BEESCOUT model to simulate detection

probabilities and derive lambda.

MasterSizeFactor 1 affects the size of elements (turtles) displayed on

the map

MaxHibernatingQueens 10000 maximal number of hibernating queens in the

simulation. If exceeded, queens (irrespective of

species) are randomly picked and removed

MinSizeFoodSources? TRUE If true foodsources offering less nectar or pollen

as it is required for ca. than ca.

"FoodSourceLimit" foraging trips have their

nectar or pollen set to 0.

26

N_Badgers 0 number of badgers (badger's setts) in the

simulation

N_Psithyrus 0 initial number of cuckoo bees

RAND_SEED [no default value for

RAND_SEED defined]

initial seed for the Netlogo pseudo-random

number generator (if ≠ 0; otherwise (i.e if 0),

random-seed is not set)

RemoveEmptyFoodSources? TRUE if true, foodsources that provide neither nectar nor

pollen (e.g. because MinSizeFoodSources? is

true) are removed during Setup

SexLocus? FALSE if true, homozygous diploid eggs will develop into

males instead of workers or queens (diploid males

can survive into adulthood and even mate but

cannot reproduce)

ShowCohorts? TRUE if true, bee cohorts are shown on the map

ShowDeadCols? FALSE if true, dead colonies are shown on the map

ShowFoodsources? TRUE if true, foodsources are shown on the map

ShowGrid? FALSE if true, a grid is shown on the map

ShowInspectedColony? TRUE if true, certain "plotChoices" (e.g. "Colony

structures") show the output of a single colony,

defines by "inspectTurtle". If false, an average

value of all colonies is calculated and shown in

these plots

ShowMasterpatchesOnly? FALSE if true, non-masterpatches are hidden from the

map

ShowNests? TRUE if true, colonies are shown on the map in the

shape of a bumblebee of the respective species

ShowPlots? TRUE if true, "GenericPlots" are updated each time step

ShowQueens? TRUE if true, mated queens are shown on the map in the

shape of a red circle

ShowSearchingQueens? TRUE if true, not-hibernating queens without a colony

are shown on the map (in the very bottem left

corner)

ShowWeather? TRUE if true, the weather symbols (sun/cloud) and the

hours of foraging for the current day are shown

SpeciesFilename "BBH-

BumbleSpecies_2016-10-

25_devQweight_mod.csv"

name of the input file that provides parameter

values of the bumblebee species

UnlimitedMales? TRUE if true, queens are allowed to mate, even if no

males are currently present in the simulation

Weather "Constant8hrs" defines the weather conditions as hours of

foraging allowed on each day of the simulation

WinterMortality? TRUE if true, hibernating queens can die due to winter

mortality in the procedure

"EmergenceNewQueensProc"

X_Days 90 defines how many time steps the model proceeds,

when the button "run X days" is pressed

27

Table 8 Parameters defined as global variables and their default values

VARIABLENAME Default value DESCRIPTION

CallItaDay_s 24 * 3600 time of day when bees stop working

CohortSymbolSize 0.75 *

MasterSizeFactor

to calculate size of bee cohort graphics,

when displayed on interface map

ColonySymbolSize 9 * MasterSizeFactor to calculate size of colony graphics, when

displayed on interface map

ColorIBM 24 color of colony graphics, representing

individual-based colonies

DailyForagingPeriod_s "Constant 8 hrs" today's time allowance for foraging, set in

Foraging_PeriodREP (identical for all BB

species); in current version set to constant

value (8 hrs per day)

DailySwitchProbability 0.13 daily probability of a colony to switch to

laying aploid eggs (if larvae:workers ratio is

sufficient)

EnergyFactorOnFlower 0.3 reduces energy spent on flying while a bee is

in a flower patch (in

Foraging_costs&choiceProc)

EnergyHoney_kJ/ml 22.67 energy content [kJ/ml] of stored nectar/honey

EnergySucrose_kJ/mymol 0.00582 energy content of sucrose [kJ/μmol]

EnergyRequiredForPollen

Assimilation_kJ_per_g

6.2 energy [kJ] required to digest and assimilate

proteins from pollen [g] consumed

FoodsourceSymbolSizeFactor 1.5 * MasterSizeFactor to calculate size of foodsource graphics,

when displayed on interface map

ForagingRangeMax_m 758 maximal foraging range [m] of the

bumblebees (for all species)

GetUpTime_s 1 beginning of the working day

LarvaWorkerRatioTH 3 to determine a colony's switch point and

queen production date (larvaWorkerRatio

needs to be smaller than

LarvaWorkerRatioTH to switch /produce

queens)

MaxLifespanMales 30 maximal lifespan [d] of male bumblebees

MetabolicRateFlight_W/kg 488.6 metabolic rate during flight

MinFoodSourceSymbolSize 2.5 * MasterSizeFactor to calculate minimal size of foodsource

graphics, when displayed on interface map

MortalityForager_per_s 0.00001 mortality risk per second outside the nest

N_ForeignAlleles 24 number of available alleles from which one is

randomly drawn, if a queen mates when no

males are present but "UnlimitedMales?" is

set true

NestSearchTime_h 6 time spent by a queen searching a nest site to

calculate the queen's mortality risk (i.e. does

NOT affect the probability to find a nest site)

NotSetHigh 1E+15 auxiliary variable with a high value

NotSetLow -1 * NotSetHigh auxiliary variable with a low (i.e. negative)

value

QueenDestinedEggsBeforeSP_d 5 First queen destined egg is laid ca. 5d before

the colony's switch point

QueenSymbolsize 2 * MasterSizeFactor to calculate the size of queen graphics, when

displayed on interface map

StepWidth 0.5 * MasterSizeFactor cohort graphics on map move to the right

each day by this distance

Sunrise_s 8 * 3600 time of day when first foraging may take

place

28

6. INPUT DATA

Up to four input files can be loaded during setup:

Definition of bumblebee species: SpeciesFilename

In the default setting, SpeciesFilename is set to "BBH-BumbleSpecies_UK_01.csv", which

provides the parameterisation for six common UK bumblebee species: Bombus terrestris, B.

lapidarius, B. pascuorum, B. hortorum, B. pratorum and B. hypnorum and for an unspecific

cuckoo bee (Psithyrus). The file is imported in the procedure CreateSpeciesProc.

SpeciesFilename refers to a file in the "csv"-format. The first line serves as header, each of

the following lines represents a bumblebee species. More species can be added to this file.

It is important that the captions of each column is not changed, they have to be identical to the

names of the species-specific variables they define (e.g. the column "batchsize" contains the

the values for batchsize of each species). The first column needs to define the species name

(format example: B_terrestris), the order of the other columns could be changed.

Tab. 9 lists the caption and a data example of the SpeciesFilename input file. Species and

names are strings (but do not require double qoutes), nestHabitatsList is a list defining the

habitat types (as strings, with double quotes) suitable for nesting.

Table 9: Caption and a data example of the SpeciesFilename input file

Variable name/caption Format example

species B_terrestris

name B_terrestris

emergingDay_mean 91

emergingDay_sd 28

nestHabitatsList ["Grassland" "Garden" "Hedge" "Scrub"

"Woodland" "Nestboxes"]

proboscis_min_mm 6.9

proboscis_max_mm 11.1

growthFactor 1.88

seasonStop 305

maxLifespanWorkers 60

batchsize 12

flightVelocity_m/s 5

searchLength_m 2500

timeUnloading 165

specMax_cropVolume_myl 173

specMax_pollenPellets_g 0.15

minToMaxFactor 2

devAgeHatchingMin_d 5

devAgePupationMin_d 12.9

29

devAgeEmergingMin_d 23.8

devWeightEgg_mg 1.5

devWeightPupationMin_mg 62.4

devWeightPupationMax_mg 249.5

pollenToBodymassFactor 1

dev_Q_DeterminationWeight_mg 0

devAge_Q_PupationMin_d 17

devWeight_Q_PupationMin_mg 590

devWeight_Q_PupationMax_mg 980

devAge_Q_EmergingMin_d 32

dailyNestSiteChance 0.2

dailyNestSiteChance 0.2

Definition of foodsources: Input_File

In the default setting, Input_File is set to "BBH-T_Suss1.txt", which provides the definitions

of foodsources, derived from a 5 x 5km area in Sussex, UK. Input_File refers to a file in "txt"-

format and is imported in the procedure CreateFoodsourcesProc.

The first line contains a single value, defining the edge length [m] of a grid cell forming the

simulated landscape (i.e. the scale of a NetLogo "patch" in the NetLogo "world" shown on the

interface), e.g. 25 means that a grid cell has the dimensions of 25 x 25m

The second line (optional) contains again a single number, defining the number of

foodsources listed in the file.

The third line contains the header with the caption of each data column, each of the following

lines defines one (or more) foodsources (Tab. 10).

Note that patchType and info are string variables in double quotes, flowerSpeciesList is a

(nested) list, all other variables are numbers. If flowerSpeciesList is empty (i.e. []), the line

represents a single foodsource (e.g. a crop). If flowerSpeciesList is not empty, it contains a

number of sub-lists, each sub-list representing a flower species and its relative abundance, e.g.

[["Bugle" 4.273] ["Burdock" 10] ["Ground_ivy" 1.52] ...]. (Relative abundance refers to the

default nectar and pollen production per m2 of this species, defined in the FlowerspeciesFile).

Each flower species will be implemented as foodsource ("layer") (see also Chapter 2

(Entities): "Food patches" and Chapter 7 (Submodels): "CreateFoodsourcesProc" and

"CreateLayersProc").

Bumble-BEEHAVE Input_Files can be created with the (updated) version of the BEEHAVE

landscape module BEESCOUT.

Please note that TotalMapArea_km2 has to be set by the user to the total area [km2] of

the simulated landscape (which might be smaller than the area of the whole NetLogo

"world") .

30

Table 10: The Input_File text file defines the available food sources. Variables marked with

* are not used by the model.

Header (3rd line) first patch (4th line) second patch (5th line)

id 0 1

patchType "Crop_Maize" "Scrub"

patchColour 55 125

xcor 102.582 131

ycor 200.6 205

size_sqm 68750 625

quantityPollen_g 51700 625

proteinPollenProp* 0.2 0.2

quantityNectar_l 0 0.625

concentration_mol/l 0 1.5

startDay 197 0

stopDay 210 0

corollaDepth_mm 5 5

nectarFlowerVolume_myl 4 4

intFlowerTime_s 2.5 2.5

flowerSpeciesList [] [["Bugle" 4.273] ["Burdock" 10] ["Ground_ivy"

1.52] ...]

info* "no info" "no info"

Definition of forage plant species: FlowerspeciesFile

In the default setting, FlowerspeciesFile is set to "BBH-Flowerspecies_Suss.csv", which

provides the parameterisation for the 37 wildflower and crop species mapped in our example

Sussex landscapes. FlowerspeciesFile refers to a file in "csv"-format and is imported in the

procedure CreateLayersProc (Tab. 11).

Similar to SpeciesFilename, the first line serves as header, each of the following lines

represents a forage plant species. Flowerspecies is a string variable in double quotes, all other

variables are numbers, with startDay and stopDay being integers.

Table 11: The input file FlowerspeciesFile is a csv file, defining forage plant species that

might serve as food sources.

Header (1st line) 1st species (2nd line) 2nd species (3rd line)

Flowerspecies "Bugle" "Burdock"

pollen_g/flower 0.00065 0.00043

nectar_ml/flower 0.00081 0.002289

proteinPollenProp 0.072104 0.11179

concentration_mol/l 0.824738 0.886487

startDay 120 181

stopDay 211 272

corollaDepth_mm 10 3.9

31

nectarFlowerVolume_myl 0.809667 2.289

intFlowerTime_s 0.6 0.6

Map of modelled area: InputMap

InputMap defines an image file representing a crop or habitat map of the simulated area. In

the default setting it is set to "BBH-I_Suss1.png", showing the habitat types of one of the 5 x

5km areas we mapped in Sussex, UK. The supported file formats are BMP, JPG, GIF, and

PNG. Loading a map is optional, the information is not used by the model and only serves as

additional information for the user.

Please make sure that the map loaded corresponds to the Input_File and that

TotalMapArea_km2 (input field on interface) is set to the total area [km2] of the

simulated landscape (which might be smaller than the area of the whole NetLogo

"world").

7. SUBMODELS

A description of standard NetLogo commands can be found on the NetLogo website:

https://ccl.northwestern.edu/netlogo/docs/dictionary.html

For commands related to the csv extension (used for loading csv input files) see:

https://ccl.northwestern.edu/netlogo/docs/csv.html

Bumblebee biology, life cycle and general rationales

In this section we give a short, general overview of the life cycle of bumblebees and provide

some justifications for the implementation the modelled processes. The model was developed

with European/UK bumblebees in mind, but it should be adjustable with small changes to

bumblebees elsewhere.

Hibernation and winter mortality

Biology:

Bumblebees, unlike honeybees, do not overwinter as a colony but instead only the (mated)

queens survive the end of the season by burying themselves in the ground or under litter to

depths of usually less than 10cm (Alford 1969a). Queens remain in their winter quarters for

ca. 6-9 months (Alford 1975) until they emerge in spring.

During hibernation queens lose weight, largely due to spending energy resources stored in the

fat body (Alford 1969b, Holm 1972). Heavier queens have higher probabilities to survive

hibernation. For B. terrestris Beekman et al. (1998) found that queens with wet weight of less

than 0.6g prior to diapause did not survive hibernation under laboratory conditions,

independent of the temperature (-5 to +10C).

Implementation:

https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/csv.html

32

The model starts on 1st January with an initial number of queens being in hibernation. Queens

are inactive in the model until they emerge from hibernation. On the day of their emergence,

winter mortality is determined (WintermortalityProbREP), based on Beekman et al. (1998).

We re-drew their Fig. 1B to calculate the weight-dependent survival probability from the

proportion of survivors to survivors + non-survivors. We expected a sigmoid curve, however,

survival probability dropped for very large queens. Beekman et al. provide the following

explanation: "One would expect that queens with the highest weight will survive diapause. It

is therefore surprising that the initial weight distribution of dead queens exceeds that of the

surviving queens (Figure 1B and 1C). However, in 1993 the average initial weight of the

queens was highest and in this period the most severe diapause regimes (6 or 8 months) were

started. Since the majority of the queens that were given a treatment with a length of 6 or 8

months died, the initial weight distribution of dead queens exceeds that of the surviving

queens."

Assuming this drop of survival probability for heavy queens was an artifact, we fitted a

sigmoid curve to the left side of the survival curve only. We then related the absolute wet

weight to the minimal and maximal weight of a B. terrestris queen in the model. This

approach allows us to determine the winter survival probability for queens of any species,

based on their weight, relative to the minimal and maximal weight of queens of their species.

Main procedures covering these processes:

WintermortalityProbREP

Searching nests

Biology:

Bumblebee species differ in their preferences for nest sites and nesting habitats with some

nesting overground, preferring rough, tussocky grassland and others nesting underground,

using pre-existing holes, particularly abandoned nests of rodents (Alford 1975, Goulson

2010). Gardens and linear features like hedgerows or woodland edges show high nest

densities (Osborne et al. 2008a). A queen spends a few days to several weeks on searching a

suitable nest site (Alford 1975). McFrederick and LeBuhn (2006) find a correlation between

the number of rodent holes and bee abundance, Heinrich (1979) reports of queens fighting for

desirable nest sites, which indicates that nest sites could be a limiting factor.

Implementation:

The number of (potential) nest sites in reality can not be easily estimated. In most cases, their

number will be (much) higher than the number of established colonies, particularly for species

not relying on abandoned mammal nests. For this reason, we were not able to get useful

estimates of potential nest site densities for different habitats and bumblebee species. We

hence followed a very simplistic approach and assume that the number of nest sites is

unlimited in any habitat, suitable for nesting. Whether or not a queen finds a nest site is

determined by a constant, daily probability, independent of the area of available nesting

habitat. Queens not finding a nest site are then subject to mortality, derived from an estimate

of hours spent on searching and the bees' foraging mortality. As a result, densities of newly

founded nests in the model could be very high (particularly in artificial landscapes), but due to

competition for nectar and pollen and mortality of foraging queens, nest densities will soon

decline.

33

Although this approach is a strong simplification of the actual processes and future versions

of the model might come up with a more realistic implementation, it does not lead to

unrealistically high colony densities, when modelling real landscapes.

The quality of a nest site (other than its location and hence distances to foraging patches) is

not addressed in the model, not only because we do not have data on that but also because it

would add considerably more complexity to the model, in terms of the decision making

process of the queen when finding a nest of not very high quality, but nest quality should then

also have effects on e.g. the energy requirements during brood incubation, possibly in

interaction with ambient temperatures or maximal size of the brood nest in small cavities, etc.

Main procedures covering these processes:

NestSitesSearchingProc

Colony initiation

Biology:

After a queen has found a suitable nest site, she starts to store nectar and pollen in the nest

(Alford 1975). She then lays a first batch of eggs on the pollen lump from which after ca. 4

days the larvae hatch. Depending on the way larvae are fed, bumblebees can be divided in two

groups "pocket-makers" where larvae feed collectively and "pollen-storers" where larvae are

fed individually, resulting in smaller size variation of workers than in pocket-makers

(Goulson 2010). Once the first generation of larvae has pupated, the queen lays a second

batch of eggs (Duchateau & Velthuis 1988). With the emergence of the first workers the

colony enters the eusocial phase: the queen focuses on egg laying and the workers take over

foraging and brood care (Duchateau & Velthuis 1988).

Implementation:

Calculations of task stimuli were set up in a way to replicate the behaviours described above.

The queen first collects enough nectar and pollen before she lays a first batch of eggs, and,

after their pupation, she then lays a second batch of eggs. Once workers are present, the queen

stops foraging and specialises on egg laying. The bees' developmental stages are eggs, larvae,

pupae and adults, development from one stage to the next is described in the section below.

We did not distinguish between pocket-makers and pollen-storers as in most cases the vast

majority of colonies modelled will be "cohort-based", i.e. a single bee agent in this case does

not represent an individual but a group of bees of the same age. As the different feeding

regimes of pollen-storers and pocket-makers result in different size variations within a batch

of bees of the same age, it cannot be represented by a single agent, as this agent has the

average weight or size of the cohort.

Main procedures covering these processes:

ActivityProc

StimEgglayingREP

StimNursingREP

StimForagingNectarREP

EgglayingProc

34

ThresholdLevelREP

Brood care and brood development

Biology:

Bumblee brood of all stages needs to be incubated, initially by the queen and later by workers

(Heinrich 1979). Larvae additionally need to feed on pollen and nectar. The sizes attained by

larvae are directionally proportional to the amount of food they are given (Goulson 2010) and

high pollen quality accelerates the maturation of larvae (Moerman et al. 2015). The

developmental times are approximately five days for eggs to hatch, fourteen days for larvae

before pupating and another fourteen days until adult workers emerge, so in total roughly five

weeks (Alford 1975). Reports on brood mortality range from ca. 5% (eggs to larvae mortality;

Duchateau & Velthuis 1988) to about 66% (eggs to adults; Alford 1975).

Implementation:

Nursing bees in the model transfer heat to the brood nest. The energy transferred is calculated

from the mass of incubating bees and distributed to all brood agents. Each brood agent sums

up the energy from incubation (cumulIncubationReceived_kJ). Eggs, larvae or pupae can only

proceed to the next developmental stage if they have received enough incubation (e.g.

devIncubationEmergingTH_kJ: minimal energy received for an egg to hatch).

Furthermore, larvae need to consume nectar and pollen, where the amount of pollen

consumed determines the larval growth. The pollen efficacy (i.e. how pollen consumption

translates into weight gain) is set for each species in the input file defining the bumblebee

species, we suggest a value of 1 (Moerman et al. 2017, Fig. 1: approx. average of mixed

pollen diets). Finally, development into the next stage has to take place within a certain time

frame, defined a caste specific minimal and maximal age (e.g. devAgeHatchingMin_d and

devAgeHatchingMax_d), otherwise the bee dies. As brood mortality can be very low

(Duchateau & Velthuis 1988), we did not implement an additional daily background mortality

for brood.

Main procedures covering these processes:

BroodIncubationProc

DevelopmentProc

Development_PupaeProc

Development_LarvaeProc

Development_EggsProc

MortalityBroodProc

Production of males and queens

Biology:

In social bumblebees, reproductives are produced towards the end of the colony life cycle,

when the queen switches from laying fertilized eggs developing into workers to laying

unfertilized eggs, developing into males (Goulson 2010). This change is accompanied by

35

worker bees starting to lay (unfertilized) eggs themselves causing increased levels of

aggression, including extensive mutual oophagy (Honk et al. 1981, Bloch & Hefetz 1999,

Cnaani et al 2000a).

In B. terrestris, diploid larvae may develop into queens between the switch point (SP), when

the mother queen lays haploid eggs, and the competition point (CP), after which almost all

eggs are killed due to oophagy (though eggs laid before the the competition point will still

develop into adults) (Duchateau & Velthuis 1988, Duchateau et al. 2004, Lopez‐Vaamonde et

al 2009).

Larvae developing into queens gain significantly more weight than worker destined larvae,

particularly in pollen-storing bumblebee species (Goulson 2010). However, it is unclear

whether the weight of a larva triggers the development into a queen or whether increased

weight is the consequence of a larva's development into a queen (Ribeiro 1999, Ribeiro et al.

1999), though at least in B. terrestris, the latter seems to be the case (Cnaani et al. 1997,

2000b, Pereboom et al. 2003).

In some cases, when a bee is homozygous at the sex determining locus, fertilized eggs do not

develop into workers, but males (Beye et al. 2003). Unlike in honeybees, diploid bumblebee

males are viable (Duchateau et al. 1994). They can also mate with queens, however, these

queens are not able to establish a colony (Duchateau & Marien 1995).

Young adult queens and males stay in their mother's nest for a few days and may take part in

brood incubation before they finally leave (Alford 1975). The queens then mate with usually a

single male only (Schmid-Hempel & Schmid-Hempel 2000), whereas males are able to mate

multiple times (Tasei et al. 1998). Soon after mating, queens take up their winter quarters

(Alford 1975).

Implementation:

We followed Duchateau & Velthuis (1988) to implement these processes:

They found that 50% of their colonies switched early, with the SP 9.8 ± 2.4 days after

emergence of the first worker, but only when the larva/worker ratio was below 3 (their Fig.2).

We estimated that these conditions were fulfilled for about 5 days, hence resulting in a daily

probability to switch (when the L:W ratio is below 3) of ca. 13% (0.13^5 = 0.5). For reasons

of simplicity we assume that the queen switches within one day from laying only diploid eggs

to laying only haploid eggs, whereas Duchateau & Velthuis (1988) suggest that this transition

takes several days.

They also found that first eggs to develop into queens were laid ca. 5d before SP (their Fig. 4)

but again only if the L:W ratio was below 3. Based on these assumptions we can determine

when the colony starts to produce queens (see QueenProductionDateProc).

From their Fig. 6 we calculate CP as 0.7 * onset of queen production + 15.5 [in days of the

eusocial phase] with a maximum of 45d (see CompetitionPointDateREP). After CP, egg

mortality in the model is 100%. We therefore ignored egg laying of workers as they won't

contribute to the colony's production of males (though this would be feasible by reducing the

workers' threshold for egg laying after CP).

Due to lack of data, we used this mechanism to determine production of males and queens for

all species, though in reality there might be considerable differences between B. terrestris and

other species.

The production of diploid males is an option in the model. In this case, the bee's locus is

assumed to be the sex locus and homozygous, diploid bees will develop into (adult) males.

These males can mate with queens, in which case the queen is removed from the simulation as

she won' be able to produce a colony.

36

The queens leave their mother's nest when they develop into adults. For simplification, they

then immediately mate and go into hibernation. Bees in the model possess one locus and

during mating, the queen receives and saves the male's allele.

Main procedures covering these processes:

UpdateColoniesProc

QueenProductionDateProc

CompetitionPointDateREP

QueensLeavingNestProc

Foraging

Biology:

Bumblebees forage for nectar and pollen and may collect either or both forage types during

one trip (Free 1955a,b). Foraging decisions depend on the needs of the colony, with the

presence of larvae increasing the collection of pollen (Free 1955b).

Bumblebees can forage under a wide range of weather conditions, including temperature close

to or even below freezing (Alford 1975) and their foraging activities seem to be quite robust

against temperature, wind speed and cloud cover (Peat & Goulson 2005), Nevertheless, based

on a huge data set, Sanderson et al. (2015) found a positive impact of increasing air

temperature and solar elevation and a negative impact of rainfall and windspeed of foraging

activity.

There is evidence that bees are trying to maximise their foraging efficiency, with honeybees

using energetic efficiency as currency for nectar foraging (Seeley 1994). Foraging efficiency

can be increased by foraging closer or at food sources with shorter handling times.

Nevertheless, bumbelebees do not forage very close (< 50m) to the colony (Dramstad et al.

1996) but can have a foraging range of several hundred to over 1.5 km (Knight et al. 2005,

Osborne et al. 2008b).

Handling times for nectar depend on the flower sizes and shapes (like corolla depth) but also

on the bees' sizes and tongue lengths (Brian 1957, Holm 1966, Inouye 1980, Harder 1985), as

well as their experience (Peat & Goulson 2005). Some bumblebee species practice "nectar

robbing" and access nectar without pollinating by biting holes in the corolla (Stout et al. 2000,

Goulson 2010, Irwin et al. 2010).

Bumblebees tend to stay loyal to a forage patch (Dramstad et al. 1996) and they can establish

traplines and visit food sources in a certain order (Lihoreau et al. 2012).

During foraging, bees are exposed to a considerable mortality risk, e.g. by crab spiders,

robberflies or birds (Rodd 1980, Morse 1986, Schmid-Hempel & Heeb 1991, Stelzer et al.

2010).

In contrast to honeybees, successfully returning bumblebee foragers do not recruit nestmates

to a specific food source, but they might stimulate other workers to leave the nest and search

for food and possibly transfer information via scent (Dornhaus & Chittka 2001, 2004).

Implementation:

Depending on the needs of the colony, stimuli for nectar and pollen foraging are calculated,

affecting the decision-making process of the bees. As weather conditions have relatively little

37

impact on the foraging activities, the maximal foraging hours per day (Weather) are set to a

constant value.

Food sources are patches that can be composed of one or more flower species. For each

flower species in each foraging patch, the amount of nectar and pollen still available today is

kept track of. Individual flowers or the exact behaviour of a bee within a food source are not

modelled. Choosing food sources is based on efficiency, either to minimise the total trip

duration in pollen foragers or to maximise energetic efficiency in nectar foragers. The

calculation of the nectar handling times are based on a model by Harder (1983), taking tongue

length and corolla depths into account, for pollen foragers, due to lack of data, handling times

are simply calculated on the basis of the food sources' depletion. Nectar robbing is currently

not an option in the model. Bees have a high probability to return to the food patch they are

currently exploiting but we did not include traplining as this activity would be below the

spatial resolution of the model. Stimulation to forage is not considered as the model

environment does not provide short-lasting foraging opportunities that would make this

behaviour beneficial.

Main procedures covering these processes:

ForagingProc

Foraging_searchingProc

DetectionProbREP

Foraging_bestLayerREP

HandlingTime_s_REP

Foraging_SortKnownPatchesListREP

Foraging_collectNectarPollenProc

Foraging_costs&choiceProc

DieProc

Foraging_PatchChoiceProc

Foraging_bestLayerREP

Foraging_unloadingProc

SETUP

Purpose: sets up the model world in its inital state

Called by: "Setup" Button

Asking agents: none

Calling*:

 ParametersProc

 CreateFoodsourcesProc

 CreateSpeciesProc

 CreateBadgersProc

 CreateInitialQueensProc

 UpdateMorning_Proc

 CreateSignsProc

 OutputDailyProc

38

* Calls of AssertionProc are not listed here

For a complete scheduling of all procedures and reporter-procedures see Supporting

Information SI_04.

Description

The Setup procedure sets the initial state of the model world, i.e. all agents are removed, all

grid cells are set to their default initial values, all global variables are set to 0, plots and other

output on the interface is cleared. The tick counter (NetLogo function to count the time steps)

is re-set, and random-seed (to initialise NetLogo's pseudo-random number generator) is set -

either to RAND_SEED, if RAND_SEED is not equal 0 or otherwise to a number automatically

derived from the current date and time. Setting RAND_SEED to a value not equal 0 allows the

user to exactly replicate a simulation run as the sequence of pseudo-random numbers will

always be the same for the same seed.

Then procedures are called to set parameter values and create the initial agents (foodsources,

initial queens etc.). If ShowGrid? is true a grid is shown on the map of the modelled world,

with an edge length of Gridsize [m].

to Setup

 clear-all ; combines the effects of clear-globals, clear-ticks, clear-turtles,

 ; clear-patches, clear-drawing, clear-all-plots, and clear-output

 stop-inspecting-dead-agents ; closes all agent monitors

 ;(ALL agents dead after clear-all!)

 reset-ticks ; Resets the tick counter to zero, sets up all plots, then updates all plots

 if RAND_SEED != 0 [random-seed RAND_SEED] ; if RAND_SEED = 0: seed is based

 ; on date & time

 ParametersProc

 CreateFoodsourcesProc

 CreateSpeciesProc

 CreateBadgersProc

 CreateInitialQueensProc

 UpdateMorning_Proc

 CreateSignsProc

 if UpdateInterface? [OutputDailyProc]

 if ShowGrid? = true

 [

 ask patches with [remainder pxcor round (Gridsize * Scaling_NLpatches/m) = 0]

 [set pcolor black]

 ask patches with [remainder pycor round (Gridsize * Scaling_NLpatches/m) = 0]

 [set pcolor black]

 ask patch 290 5

 [set plabel-color black set plabel word Gridsize " m"]

]

end

ParametersProc

Purpose: sets the values of global variables

Called by: Setup

Asking agents: none

Calling: none

39

Description

The procedure sets the initial values of global variables. References (and calculations) of

parameter values are provided in Supporting Information SI_04.

to ParametersProc

 ; this procedure sets the GLOBAL parameters of the model

 set SpeciesList [] ; contains the BB species present in a run

 if B_terrestris > 0 [set SpeciesList fput "B_terrestris" SpeciesList]

 if B_pascuorum > 0 [set SpeciesList fput "B_pascuorum" SpeciesList]

 if B_lapidarius > 0 [set SpeciesList fput "B_lapidarius" SpeciesList]

 if B_hortorum > 0 [set SpeciesList fput "B_hortorum" SpeciesList]

 if B_hypnorum > 0 [set SpeciesList fput "B_hypnorum" SpeciesList]

 if B_pratorum > 0 [set SpeciesList fput "B_pratorum" SpeciesList]

 if N_Psithyrus > 0 [set SpeciesList fput "Psithyrus" SpeciesList]

 set AssertionViolated false ; will be set true when an assertion is not met

 set CallItaDay_s 24 * 3600 ; [s]

 set ColorIBM 24 ; (24 = dark orange)

 set EnergyFactorOnFlower 0.3 ; for honeybees: Kacelnik et al 1986: 0.3

 set EnergySucrose_kJ/mymol 0.00582 ; [kJ/micromol] 342.3 g/mol from BEEHAVE

 set GetUpTime_s 1 ; 8 * 3600 ; 8:00h a.m.

 set Sunrise_s 8 * 3600

 if ForagingMortalityModel = "high" [set MortalityForager_per_s 1.0E-05]

; (BEEHAVE VALUE: 0.00001, from Visscher&Dukas 1997 (Mort 0.036 per hour foraging)

 if ForagingMortalityModel = "intermediate" [set MortalityForager_per_s 2.14E-06]

 ; (Schmid-Hempel & Heeb 1991: mortality 30-40% per week (=>35%), survival rate per

 ; week: 0.65, assuming 8hrs foraging per day: 7 * 8 * 3600 = 201600 seconds,

 ; survival rate/s = 0.65^(1/201600) => mortality rate/s 2.14E-06

 if ForagingMortalityModel = "low" [set MortalityForager_per_s 2.75E-07] ; Stelzer et

 ; al. 2010 (doi:10.1111/j.1469-7998.2010.00709.x), Tab. 1 (from mean of loss rate %/h)

 set MortalityAdultsBackground_daily 0 ; Plowright & Jay 1968: negligible adult

 ; mortality in captive colonies (B. ternarius)

 set NotSetHigh 999999999999999 ; preliminary, high value, for a variable

 set NotSetLow -1 * NotSetHigh ; preliminary, low value, for a variable

 set QueenSymbolSize 2 * MasterSizeFactor ; relative size of queens displayed on GUI/world

 set ColonySymbolsize 9 * MasterSizeFactor ; .. rel. size of colonies...

 set FoodsourceSymbolSizeFactor 1.5 * MasterSizeFactor ; .. of foodsources etc.

 set MinFoodSourceSymbolSize 2.5 * MasterSizeFactor

 set CohortSymbolSize 0.75 * MasterSizeFactor

 set StepWidth 0.5 * MasterSizeFactor

 set EnergyRequiredForPollenAssimilation_kJ_per_g 6.2 ; Hrassnig, Crailsheim 2005

 set DailySwitchProbability 0.13 ; derived from Duchateau & Velthuis 1988

 set QueenDestinedEggsBeforeSP_d 5 ; Duchateau & Velthuis 1988 , Fig. 4

 set LarvaWorkerRatioTH 3 ; Duchateau & Velthuis 1988

 set N_ForeignAlleles 24 ; Duchateau et al. 1994

 set FoodsourcesInFlowerUpdate? false

 set NestSearchTime_h 6

 set QueensProducingColoniesList []

 set MetabolicRateFlight_W/kg 488.6 ; Wolf et al. 1999 (Tab. 1, Open air)

 set MaxLifespanMales 30 ; 30d of adult age;

 ; Duchateau & Marien 1995 Ins. Soc. 42:255-266 (1995): 30.48+-10.23;

 ; however: bees were kept in flight-cages hence most likely overestimating life span

end

CreateSpeciesProc

Purpose: creates the agents representing bumblebee species

Called by: Setup

Asking agents: none

Calling: none

40

Description

 A "csv" input file, specifying the parameter values of potential bumblebee species is loaded

and saved (as nested lists) in the local variable speciesDataCSV. The first line of this input file

(and hence the first item of speciesDataCSV) is the header of the table containing the names

of the parameters and is saved as header (Note: in NetLogo lists, the first item of the list is

counted as "item 0", the second as "item 1" etc.)

The procedure addresses all items of speciesDataCSV, each item representing one line of the

original csv input file, containing the data of one bumblebee species. In each of these items

(lines of the input file) the first (sub-)item (item 0) contains the information from the first cell

of the current line in the original csv input file. This first column of the csv input file lists the

bumblebee species name. If this sub-item is included in (i.e. is a "member" of) SpeciesList (a

list containing all bumblebee species names that are included in the current run, based on the

choices of the user and set in ParametersProc) then a new species is created.

The parameter values of this new species are taken from the current item ("?") which

represents the data line of this species in the csv input file. The location of the correct value

for a parameter to be set is determined from the position of the parameter's name in the

header list.

For example, to set the species-specific parameter emergingDay_mean, the position of the

string "emergingDay_mean" in the header list is determined. The value for

emergingDay_mean is then at this very same position but not in the header but in the variable

"?" which stores the line of data currently addressed. The advantage of this approach is that

the order of the columns in the input file can be changed without having to change the code,

with exception of the first column where the species names are defined (see also Chapter 6

(Input data): Definition of bumblebee species).

References (and calculations) of species parameter values are provided see Supporting

Information SI_04.

to CreateSpeciesProc

 let speciesDataCSV csv:from-file SpeciesFilename ; a csv input file is loaded and saved

 let header item 0 speciesDataCSV ; first line of the input file is the header

 foreach speciesDataCSV ; goes through all "lines" in ordered way

 [

 if member? item 0 ? SpeciesList ; if the species (i.e.first entry) of the current

 ; row is member of the SpeciesList (i.e. the list with those bee species added

 ; to the simulation, which was created in ParametersProc)

 [

 create-Species 1 ;

 [

 set name item (position "name" header) ? ; checks in which column of

; the input data the species are listed and uses the value of the current row

 set maxLifespanWorkers item (position "maxLifespanWorkers" header) ?

 set emergingDay_mean item (position "emergingDay_mean" header) ?

 set emergingDay_sd round (item (position "emergingDay_sd" header) ?)

 set batchsize item (position "batchsize" header) ?

 set flightVelocity_m/s item (position "flightVelocity_m/s" header) ?

 set flightCosts_kJ/m/mg MetabolicRateFlight_W/kg / flightVelocity_m/s

/ (1000 * 1000 * 1000)

; W/kg = J/s/kg; div. by speed => J/m/kg i.e. 0.001kJ/s/(1000000*mg)

 set searchLength_m item (position "searchLength_m" header) ?

 set seasonStop item (position "seasonStop" header) ?

 set timeUnloading item (position "timeUnloading" header) ?

 set specMax_cropVolume_myl item (position "specMax_cropVolume_myl" header) ?

 set specMax_pollenPellets_g item (position "specMax_pollenPellets_g" header) ?

 set nestHabitatsList []

41

 set nestHabitatsList read-from-string item (position "nestHabitatsList" header) ?

 set minToMaxFactor item (position "minToMaxFactor" header) ?

 set devAgeHatchingMin_d item (position "devAgeHatchingMin_d" header) ?

 set devAgePupationMin_d item (position "devAgePupationMin_d" header) ?

 set devAgeEmergingMin_d item (position "devAgeEmergingMin_d" header) ?

 set devWeightEgg_mg item (position "devWeightEgg_mg" header) ?

 set devWeightPupationMin_mg item (position "devWeightPupationMin_mg" header) ?

 set devWeightPupationMax_mg item (position "devWeightPupationMax_mg" header) ?

 set pollenToBodymassFactor item (position "pollenToBodymassFactor" header) ?

 set dev_Q_DeterminationWeight_mg

item (position "dev_Q_DeterminationWeight_mg" header) ?

 set devAge_Q_PupationMin_d

item (position "devAge_Q_PupationMin_d" header) ?

 set devWeight_Q_PupationMin_mg

item (position "devWeight_Q_PupationMin_mg" header) ?

 set devWeight_Q_PupationMax_mg

item (position "devWeight_Q_PupationMax_mg" header) ?

 set devAge_Q_EmergingMin_d item (position "devAge_Q_EmergingMin_d" header) ?

 set growthFactor item (position "growthFactor" header) ?

 set proboscis_min_mm item (position "proboscis_min_mm" header) ?

 set proboscis_max_mm item (position "proboscis_max_mm" header) ?

 set chanceFindNest item (position "dailyNestSiteChance" header) ?

 set devQuotaIncubationToday_kJ 10 / (1.5 * batchsize)

 set devAgeHatchingMax_d devAgeHatchingMin_d * minToMaxFactor

 set devAgePupationMax_d devAgePupationMin_d * minToMaxFactor - devAgeHatchingMin_d

 set devAgeEmergingMax_d devAgeEmergingMin_d * minToMaxFactor - devAgePupationMin_d

 set devIncubationHatchingTH_kJ devQuotaIncubationToday_kJ * devAgeHatchingMin_d

 set devIncubationPupationTH_kJ devQuotaIncubationToday_kJ * devAgePupationMin_d

 set devIncubationEmergingTH_kJ devQuotaIncubationToday_kJ * devAgeEmergingMin_d

 set dev_larvalAge_QueenDetermination_d 3

 set devAge_Q_PupationMax_d devAge_Q_PupationMin_d

* minToMaxFactor - devAgeHatchingMin_d

 set devAge_Q_EmergingMax_d devAge_Q_EmergingMin_d

* minToMaxFactor - devAge_Q_PupationMin_d

 set devIncubation_Q_PupationTH_kJ devQuotaIncubationToday_kJ

* devAge_Q_PupationMin_d

 set devIncubation_Q_EmergingTH_kJ devQuotaIncubationToday_kJ

* devAge_Q_EmergingMin_d ; * Incubation_Q_Factor

 ;Create list of foodSources as nest sites and calculate their total area

 set nestsiteFoodsourceList FoodSources with

 [(member? patchtype [nestHabitatsList] of myself) AND masterPatch?]

 set nestSiteArea sum [area_sqm] of nestsiteFoodsourceList

 set minPollenStore_g 0.5 * 0.001 * devWeightPupationMin_mg

* batchsize / pollenToBodymassFactor

 if count nestsiteFoodsourceList = 0 and name != "Psithyrus" [output-print (word name

" has no suitable nesting foodsources. No colonies will form")]

]

]

]

end

CreateFoodsourcesProc

Purpose: creates the agents representing food sources

Called by: Setup

Asking agents: none

Calling: CreateLayersProc

Description

42

If an input map defined by InputMap exists, it is loaded (supported image file formats: BMP,

JPG, GIF, and PNG) and the colours (pcolor) of the grid cells (NetLogo "patches") is set

accordingly. The colour of the grid cell is also saved in the variable pcolorSave, which allows

changing colours to display certain information without losing the original map. This image

file is optional and only serves to provide additional information for the user. If InputMap is

"none" or the file does not exist, then the world's grid cells are shown in grey.

to CreateFoodsourcesProc

 ifelse (file-exists? InputMap)

 [

 import-pcolors InputMap

 ask patches [set pcolorSave pcolor]

]

 [

 ask patches

 [

 set pcolor 5 ; matrix colour if no map image is available; color 5 = grey

 set pcolorSave pcolor

]

]

The actual information about resources available in the landscape is saved in a text file

(".txt"), specified by Input_File. If this file exists in the model's folder, it is opened.

The first line of this input file contains a single value, defining the edge length [m] of a grid

cell (NetLogo "patch") on the interface, e.g. 25 means that a grid cell has the dimensions of

25 x 25m and hence, SCALING_NLpatches/m is set to the reciprocal of this value. The second

line (optional) contains again a single number, defining the number of foodsources listed in

the file. The third line of the input file contains the header with the caption of each data

column, each of the following lines defines one (or more) foodsources (see also Chapter 6

(Input data): Definition of foodsources). For each line (starting with line 4) a new foodsource

is created and the parameter values are read in and saved in the corresponding foodsource

specific variables. Some auxiliary patch variables are then calculated from the parameters

(e.g. radius and size). Foodsources created in this procedure are "masterpatches" (i.e.

masterpatch? is set true) and their variable flowerSpeciesList contains all flower species that

occur at this food patch. As foodsources in the model only represent a single flower species,

for each of the flower species listed in flowerSpeciesList a new foodsource needs to be

created. This happens in CreateLayersProc which is called at the end of the procedure.

 ifelse (file-exists? Input_File)

 [

 file-open Input_File

 set SCALING_NLpatches/m precision (1 / file-read) 8

; CAUTION! Scaling in BEESCOUT: m/NLpatch <-> in Bumble-BEEHAVE: NLpatches per m

 let dustbin file-read-line

; N patches in old input file format or heading in new format

 if length dustbin <= 10 [set dustbin file-read-line] ; heading

 while [not file-at-end?]

 [

 create-Foodsources 1

 [

 ; imported file format:

 ; id patchType patchColour xcor ycor size_sqm quantityPollen_g quantityNectar_l

 ; concentration startDay stopDay corollaLength_mm nectarFlowerVolume_myl

 ; interFlowerTime_s patchInfo

 set id_Beescout file-read

 set patchType file-read

 set flowerSpecies_relativeAbundanceList (list patchType 1)

 let memoFoodpatchColour file-read

; the colour of the food patch, as shown on the map

 set color memoFoodpatchColour - 1 ; the colour of the food source (= turtle),

; slightly darker then the food patch to be visible

 set colorMemo color ; saves original color (for use in buttons)

43

 set xcor file-read

 set ycor file-read

 set area_sqm file-read ; [m^2]

 set pollen_g ABUNDANCEBOOST * file-read ; [g]

 set pollenMax_g pollen_g

 set proteinPollenProp file-read

 set nectar_myl ABUNDANCEBOOST * file-read * 1000 * 1000

; [quantityNectar_l: l * 1000 = ml; ml * 1000 = myl]

 set nectarMax_myl nectar_myl

 set nectarConcentration_mol/l file-read ; [mol/l]

 set startDay file-read ; day of year

 set stopDay file-read ; day of year

 set corollaDepth_mm file-read ; [mm]

 set nectarFlowerVolume_myl file-read ; [microlitre]

 set interFlowerTime_s file-read ; [s]

 set flowerSpeciesList file-read ; [s]

 set patchInfo file-read-line ; the rest of the line is now read in

 set radius_m sqrt (area_sqm / pi) ; [m]

 set shape "circle"

 set size FoodsourceSymbolSizeFactor * radius_m * Scaling_NLpatches/m

 if size < MinFoodSourceSymbolSize [set size MinFoodSourceSymbolSize]

 ifelse ShowFoodsources? = false

 [hide-turtle]

 [show-turtle]

 set masterpatch? true

 set layersInPatchList (list who)

 set masterpatchID who

]

]

 file-close

]

 [

 user-message "There is no such Input_File in current directory!"

]

 if MergeHedges? = true and count foodsources with [patchType != "Hedgerow"] > 0

 [MergeHedgesProc]

 CreateLayersProc ; creates new foodsources from those foodsources with

; multiple species (i.e. with flowerSpeciesList != [])

 set TotalFoodSources count foodsources

end

MergeHedgesProc

Purpose: hedges are often represented by a large number of very small patches. If

"MinSizeFoodSources?" (and "RemoveEmptyFoodSources?") are switched on, they may

only contain one (Average willow) or very few foodsources. To avoid this, several small

patches of hedges can be merged into a single, larger one (without loss of total area).

Called by: CreateFoodsourcesProc

Asking agents: none

Calling: none

Description

First, the closest non-hedge food patch for each hedge patch is determined. This information

is saved in a list (fieldsHedgeLinksList) that contains who of the closest non-hedge field and

who of the hedge.

to MergeHedgesProc

let fieldsHedgeLinksList [] ; to link hedges with their closest non-hedge field, format

44

; e.g. [[1 17] [5 29] [1 18]..] each sublist with 2 elements: 1st: who of closest non-

; hedge patch, 2nd: who of hedge

 let fieldsWithHedgesList [] ; contains who of all non-hedge patches that are closest

; to at least one hedge patch

 ask foodsources with [patchType = "Hedgerow"]

 [

 let singleHedgeMatchList (list who)

 let myField min-one-of foodsources with [patchType != "Hedgerow"] [distance myself]

 ; myField saves the (non-hedge) foodsource closest to the current hedge patch

 set singleHedgeMatchList fput [who] of myField singleHedgeMatchList ; this is a 2 item

; list, 1st item: who of the hegde's closest non-hedge field, second item who

; of the hedge

 set fieldsWithHedgesList lput [who] of myField fieldsWithHedgesList

 set fieldsHedgeLinksList lput singleHedgeMatchList fieldsHedgeLinksList

]

 set fieldsWithHedgesList remove-duplicates fieldsWithHedgesList ; duplicates are removed

 ; from the list

Then a list (shortSublist) is created that only contains who of those hedge patches, sharing the

same, closest non-hedge field:

 foreach fieldsWithHedgesList

 [

 let myFieldID ?

 let hedgesSublist filter [first ? = myFieldID] fieldsHedgeLinksList ; this sublist only

; contains those elements where the current field is present

 let shortSublist []

 foreach hedgesSublist [set shortSublist lput (item 1 ?) shortSublist] ; this

; shortSublist only contains the who of those hedges, linked to the current field

 let masterHedgeID -1 ; will save who of the hedge patch that will increase in area

Finally, hedges sharing the same closest non-hedge patch are merged by summing up their

areas in one of those hedge patches, the other hedge patches get an area of 0 and will be

removed in CreateLayersProc.

 foreach shortSublist

 [

 ifelse masterHedgeID = -1 ; in this case, the foodsource is the first hedge at that

; field and will increase in size

 [set masterHedgeID ?]

 [; the areas of all other hedge patches are now added to the "master" hedge patch

 let areaToBeAdded_sqm [area_sqm] of foodsource ?

 let nectarToBeAdded_myl [nectarMax_myl] of foodsource ?

 let pollenToBeAdded_g [pollenMax_g] of foodsource ?

 ask foodsource masterHedgeID

 [

 set area_sqm area_sqm + areaToBeAdded_sqm

 set nectarMax_myl nectarMax_myl + nectarToBeAdded_myl ; if hedges are composed

; of layers/several foodsources, this value will be overwritten

; in CreateLayersProc

 set pollenMax_g pollenMax_g + pollenToBeAdded_g ; if hedges are composed of

 ; layers/several foodsources, this value will be overwritten

 ; in CreateLayersProc

]

 ask foodsource ?

 [

 set area_sqm 0

 hide-turtle

]

]

]

]

 ask foodsources with [patchType = "Hedgerow"]

 [

 set radius_m sqrt (area_sqm / pi) ; [m]

 set size FoodsourceSymbolSizeFactor * radius_m * Scaling_NLpatches/m

 ;; if size < MinFoodSourceSymbolSize [set size MinFoodSourceSymbolSize]

]

end

45

CreateLayersProc

Purpose: adresses flower patches which are composed of at least two flower species and

creates for each flower species a "layer", i.e. a foodsource with only a single flower species

located at a certain flower patch represented by a single "masterpatch". Very small

foodsources, providing hardly any nectar or pollen, may be removed.

Called by: CreateFoodsourcesProc

Asking agents: none

Calling: none

Description

The local variables minNectSize_myl and minPolsize_g define the least maximal amount of

nectar and pollen a foodsource needs to provide, to not be removed, when the switches

MinSizeFoodSources? and RemoveEmptyFoodSources? are both set true. They are calculated

from an approximate average nectar and pollen load of a queen bee, multiplied by the

minimum number of trips (FoodSourceLimit, set by user on interface) a foodsource is

supposed to support. Removing those very small foodsources improves computation time but

also colony performance, as handling times can rapidly increase there.

An input file in the "csv" format specified by FlowerspeciesFile contains information of

flowering period, nectar and pollen production etc. for each flower species (see also Chapter 6

(Input data): Definition of forage plant species). The data of the csv file is accessed in the

same way as described in more detail for CreateSpeciesProc. The file is opened and the

content saved in the local variable flowerspeciesDataCSV:

to CreateLayersProc

; if the flowerSpeciesList of food source is not empty (i.e. it usually contains

; several plant species that might be in flower at different times) this procedure then

; creates a single flowerspecies food source (at the same location, area etc) for

; each flowerspecies of the original foodsource. At the end, the original food source

; is removed.

; Remove foodsources with low resource values

; If the switch MinSizeFoodSources? is ON, all foodsources with either nectarMax or

; pollenMax values under a certain threshold will

; have that resource set to 0. This is to prevent foragers from visiting low-resource

; flowers and having very high handling times, leading

; to poor colony performance. The thresholds for nectar and pollen are set below, each

; one being the amount of nectar/pollen an average Bterr

; queen can carry multiplied by the FoodSourceLimit interface variable. For example, if

; the variable is set to 20, the minimum nectar/pollen

; amount at a foodsource is enough for FoodSourceLimit trips by a queen Bterr with a

; crop size of 180myl and pollen pellets of 0.05g.

; If the switch RemoveEmptyFoodSources? is ON, all foodsources with BOTH nectarMax and

; pollenMax levels set to 0 by the above are removed from

; the model, which greatly improves the speed of the model.

 let foodsourcesRemoved false

 let minNectSize_myl FoodSourceLimit * 180 ; minimum nectar for a foodsource to

; not be removed when MinSizeFoodSources? is true

; amount equal to "foodSourceLimit" number of trips by a

; queen with a crop volume of 180myl

 let minPolsize_g FoodSourceLimit * 0.05 ; minimum pollen for a foodsource is

; amount equal to "foodSourceLimit" number of trips by a

; queen with pollen pellet size of 0.05g

46

 ifelse (file-exists? FlowerspeciesFile)

 [

 let flowerspeciesDataCSV csv:from-file FlowerspeciesFile ; reads flower species data

 ; from csv file and saves it in list, i.e. [[line 1][line 2]..[last line]]

 let header item 0 flowerspeciesDataCSV ; saves header = first line of csv file

; (i.e. item 0 of list)

 let allFlowerspeciesList []

The names of all flower species present in the input file are then saved in

allFlowerspeciesList:

 foreach but-first flowerspeciesDataCSV ; but-first: ignores header

 [

 let flowerSpec read-from-string item 0 ? ; gets the first value (= flower species)

; of each column (in actual order)

 set allFlowerspeciesList lput flowerSpec allFlowerspeciesList ; the species is

 ; now added to the list containing al possible flower species

]

Now foodsources with flowerSpeciesList not empty are addressed, i.e. these foodsources

represent a flower patch that is composed of at least two flower species. For each of these

flower species a new foodsource will be created, using the "hatch" command so that the new

foodsource inherits all variables from its parent foodsource (i.e the one currently addressed):

 ask Foodsources with [flowerSpeciesList != []]

 [

 let memoMasterpatchID -1

 foreach flowerSpeciesList ; for each flowerspecues a new foodsource is created

 ; (flowerSpeciesList is a Foodsources-own)

 [

 hatch 1

 [

Then those variables of the new foodsource are re-set that refer to flower species

specifications, as defined in in the input file (FlowerspeciesFile). The variable

flowerSpecies_relativeAbundanceList is a list (with 2 items) that contains a single flower

species' name and its relative abundance in the current flower patch (e.g. ["Bugle" 0.236]) and

the first item (item 0, i.e. the species name) is saved in the local variable mySpecies. If the

species name contains the string "Margin" (as in e.g. "MarginRed_clover") the shape of the

foodsource is set to "fieldmargin", which is a filled circle surrounded by a blue ring.

 set flowerSpecies_relativeAbundanceList ?

 let mySpecies item 0 flowerSpecies_relativeAbundanceList

 if member? "Margin" mySpecies [set shape "fieldmargin"] ; margins of

 ; (crop) fields are presented on the map as a blue ring

The date for the current flower species are then copied from flowerspeciesDataCSV to the

local variable myDataLine:

 let myDataLine item (position mySpecies allFlowerspeciesList + 1)

 flowerspeciesDataCSV ; myDataLine: the relevant line of the csv file for

 ; this particular flower species; position..+1 to account for header

The abundance (i.e. the second item of flowerSpecies_relativeAbundanceList, e.g. 0.236 for

["Bugle" 0.236]) is saved as myRelativeAbundance. ABUNDANCEBOOST is set to 1 per

47

default but can be changed by the user to adjust the total amount of nectar and pollen

available in the modelled landscape.

 let myRelativeAbundance ABUNDANCEBOOST

* (item 1 flowerSpecies_relativeAbundanceList) ; proportion of

; patch area covered by this species

 ; pollen available at patch: pollen produced by this plant species per m2

; * total area of this foodsource * relative abundance of this flowerspecies

; in the habitat:

 set pollenMax_g area_sqm

 * myRelativeAbundance

 * (item (position "pollen_g/flower" header) myDataLine)

 set nectarMax_myl area_sqm

 * myRelativeAbundance

 * 1000 ; ul to ml

 * (item (position "nectar_ml/flower" header) myDataLine)

 set nectarConcentration_mol/l

(item (position "concentration_mol/l" header) myDataLine) ; [mol/l]

; "position" determines the column with the relevant data

 set proteinPollenProp (item (position "proteinPollenProp" header) myDataLine)

 set startDay (item (position "startDay" header) myDataLine)

 set stopDay (item (position "stopDay" header) myDataLine)

 set corollaDepth_mm (item (position "corollaDepth_mm" header) myDataLine)

 set nectarFlowerVolume_myl

(item (position "nectarFlowerVolume_myl" header) myDataLine)

 set interFlowerTime_s (item (position "intFlowerTime_s" header) myDataLine)

If the switch MinSizeFoodSources? is set true then the amount of nectar and/or pollen is set to

0, when it is below a minimal threshold:

 ;Set nectar / pollen levels to 0 if smaller than the minimum size

 if MinSizeFoodSources? AND nectarMax_myl < minNectSize_myl

 [set nectarMax_myl 0]

 if MinSizeFoodSources? AND pollenMax_g < minPolsize_g

 [set pollenMax_g 0]

If the switch RemoveEmptyFoodSources? is set true then foodsources offering neither nectar

or pollen are removed:

 ; kill the foodSource if both nectar and pollen are below the respective

; minimum values and if RemoveEmptyFoodSources? is TRUE

 if nectarMax_myl = 0 AND pollenMax_g = 0 AND RemoveEmptyFoodSources?

 [

 set foodsourcesRemoved true

 die

]

If the masterpatch hasn't been defined yet for this flower patch (i.e. the local variable

memoMasterpatchID is still set to -1) it is set now. Hence the first "layer" created will become

the masterpatch for this flower patch and all foodsources (flower species) belonging

belonging to this flower patch will have their masterpatchID set to the ID (who) of that first

"layer". After a foodsource for each flower species is created, the original foodsource is no

longer needed and is removed. Finally, to foodsources-own variable layersInPatchList,

containing the ID of all foodsources of the current flower patch, is udated:

 ifelse memoMasterpatchID < 0 ; if the masterpatch hasn't been set yet..

 [

 set memoMasterpatchID who ; ..the first foodsource/layer will be the

 ; masterpatch

 set masterpatchID memoMasterpatchID ; (only masterpatchID has to be updated,

48

; as 'masterpatch?' is true by default)

]

 [

 set masterpatch? false ; .. for all other 'layers' of the original

; foodsource, masterpatch? is set false

 set masterpatchID memoMasterpatchID ; set to the first 'layer' created at

; this flower patch

 set layersInPatchList [] ; will be populated later

 if ShowMasterpatchesOnly = true [hide-turtle]

 ; non-masterpatches might be hidden

]

]

] ; end of "foreach flowerSpeciesList" loop

 die ; the original foodsource is no longer needed and can be removed

]

]

 [if FlowerspeciesFile != "No Input File"

 [user-message "There is no such FlowerspeciesFile in current directory!"]

]

 if foodsourcesRemoved = true [output-print "One or more very small food sources

 removed! To avoid, set RemoveEmptyFoodSources? 'false'!"]

 ; set layersInPatchList to a list of all foodsources at same location:

 ask foodsources [set layersInPatchList sort [who] of foodsources-here]

end

CreateBadgersProc

Purpose: creates the agents representing badgers

Called by: Setup

Asking agents: none

Calling: DieProc

Description

The habitat types suitable for badgers to burrow a sett are listed in burrowHabitatsList and

the minimal distance between two setts is defined in distanceLimit_m (and distance_patches

for this distance in grid cells). A list of potential habitat patches for badger setts is then

created (burrowFsSet), listing the ID (who) of "masterpatch" foodsources of those habitat

types specified in burrowHabitatsList.

N_Badgers badgers are created and moved to the location of a randomly picked habitat patch

from the burrowFsSet list. Suggested numbers for badgers range from 0 to 3 for intermediate

badger densities (Reilly & Courtenay 2007). After the creation of each badger, this list is

updated and only takes those "masterpatch" foodsources of suitable habitat type into account

which do not have any badgers within a daius of distance_patches grid cells. If no more more

habitat patches suitable for badger setts are available, the remaining badgers die:

 to CreateBadgersProc

 let burrowHabitatsList ["Scrub"] ; habitats badgers can nest in

 let distanceLimit_m 300 ; badgers cannot be created within this distance

; of a current sett (Kruuk 1978, J. Zool., Lond.184, 1-19; Fig. 2)

 let memoX 0

 let memoY 0

49

 ; convert distance to netlogo patches:

 let distance_patches distanceLimit_m * SCALING_NLpatches/m

 ; agentset of suitable foodsources:

 let burrowFsSet FoodSources with [(member? patchtype burrowHabitatsList) AND

 masterPatch?]

 create-badgers N_Badgers ; create the badgers

 [

 ifelse count burrowFsSet > 0 ; check for suitable foodsource

 [

 let chosenFs one-of burrowFsSet

 ask chosenFs [set memoX pxcor set memoY pycor]

 setxy memoX memoY

 set size 9 * MasterSizeFactor

 set shape "Badger"

 ; recreate the agentset, only taking masterpatches without any badgers

 ; in a certain radius into account

 set burrowFsSet FoodSources with [(member? patchtype burrowHabitatsList) AND

 masterPatch? AND

 count badgers-here = 0 AND

 count badgers in-radius distance_patches = 0

]

]

 [DieProc "Badger: not enough habitat!"]

; no badgers if there is no habitat for their burrows!

]

end

CreateInitialQueensProc

Purpose: creates the agents representing the initial queen bees

Called by: Setup

Asking agents: none

Calling: ThresholdLevelREP, ProboscisLengthREP

Description

For each item in the SpeciesList (containing the bee species present), a number of intial

queens (specified by the interface input B_lapidarius, B_pascuorum, etc.) are created and

their initial bee parameters are set. As these initial queens are in hibernation (activity =

"hibernate"), their age is set to 180d (note: adult age of queens has no effect). Alleles are set

to random float numbers (with 2^53 possible numbers as output). Activity thresholds are set

by calling the reporter-procedure ThresholdLevelREP. The queen's emerging date is randomly

determined, based on a normal distribution with emergingDay_mean as mean and

emergingDay_sd as standard deviation. Emerging date needs to be larger than 0 and smaller

than the species-specific end of the season. The queen's weight is also determined randomly

with mean and standard deviation being derived from the minimal and maximal queen

pupation weight of this species, which then allows to calculate its proboscis length (in the

reporter-procedure ProboscisLengthREP) as well as cropvolume_myl and pollenPellets_g (in

CropAndPelletSizeREP).

to CreateInitialQueensProc

 let newQueens 0

 foreach SpeciesList ; lists bee species present

 [

 if ? = "B_lapidarius" [set newQueens B_lapidarius] ; numbers specified on interface

 if ? = "B_pascuorum" [set newQueens B_pascuorum]

50

 if ? = "B_terrestris" [set newQueens B_terrestris]

 if ? = "B_hortorum" [set newQueens B_hortorum]

 if ? = "B_hypnorum" [set newQueens B_hypnorum]

 if ? = "B_pratorum" [set newQueens B_pratorum]

 if ? = "Psithyrus" [set newQueens N_Psithyrus]

 let modelledSpecies ?

 create-bees newQueens ; newQueens = number of new queens created here

 [

 set shape "circle"

 if ShowQueens? = false [hide-turtle]

 set size QueenSymbolSize

 set adultAge 180 ; queens have hibernated (exact age doesn't matter)

 set broodAge 36 ; (exact age doesn't matter)

 set color red

 set brood? false

 set caste "queen"

 set mated? true

 set number 1

 set ploidy 2

 set mtDNA random-float 139.9 ; i.e. within the range of Netlogo colours

 set allelesList list (random-float 139.9) (random-float 139.9)

 set spermathecaList [] ;list (allele)

 set spermathecaList fput (random-float 139.9) spermathecaList

 set colonyID -1 ; i.e. does not belong to any colony yet

 let speciesIDmemo -1

 let speciesNameMemo "noName"

 ask one-of Species with [name = modelledSpecies]

 [

 set speciesIDmemo who

 set speciesNameMemo name

]

 set speciesID speciesIDmemo

 set speciesName speciesNameMemo

 set stage "adult"

 set thEgglaying ThresholdLevelREP "eggLaying" "QueenInitiationPhase"

 set thForagingNectar ThresholdLevelREP "nectarForaging" "QueenInitiationPhase"

 set thForagingPollen ThresholdLevelREP "pollenForaging" "QueenInitiationPhase"

 set thNursing ThresholdLevelREP "nursing" "QueenInitiationPhase"

 set activity "hibernate"

 set activityList []

 set personalTime_s random (2 * 3600) + (GetUpTime_s - 3600) ; = Start_time_s +- 1hr

 ;(i.e. between 7:00 and 9:00 am)

 let yearEndSeason [seasonStop] of OneSpecies speciesID ; prevent bees from setting

; emergingDate past the end of season

 while [emergingDate <= 0 OR emergingDate >= yearEndSeason]

 [set emergingDate

 round random-normal [emergingDay_mean]

 of OneSpecies speciesID [emergingDay_sd] of OneSpecies speciesID]

 ; emerging from hibernation next year on day "emergingDay_mean" (+- s.d.)

 set currentFoodsource -1

 set nectarsourceToGoTo -1

 set pollensourceToGoTo -1

 set pollenForager? false

 set knownMasterpatchesNectarList []

 set knownMasterpatchesPollenList []

 ; determination of the queen's weight:

 let minWeight_mg [devWeight_Q_PupationMin_mg] of oneSpecies speciesID

 let maxWeight_mg [devWeight_Q_PupationMax_mg] of oneSpecies speciesID

 let meanWeight_mg (maxWeight_mg + minWeight_mg) / 2

 let sd_weight (maxWeight_mg - minWeight_mg) / 4 ; mean +- 2xSD > 95%

 set weight_mg random-normal meanWeight_mg sd_weight

 if weight_mg > maxWeight_mg [set weight_mg maxWeight_mg]

 if weight_mg < minWeight_mg [set weight_mg minWeight_mg]

 set glossaLength_mm ProboscisLengthREP

 set cropvolume_myl CropAndPelletSizeREP "nectar"

 set pollenPellets_g CropAndPelletSizeREP "pollen"

]

]

end

51

ThresholdLevelREP

Purpose: reports the thresholds of the four tasks, for bees in different stages

Asking agents: bees

Called by: QueensLeavingNestProc, CreateInitialQueensProc, PsithyrusNestSearchProc,

Development_Mortality_AdultsProc, Development_PupaeProc, EggsParameterSettingProc,

EmergenceNewQueensProc

Calling: none

Input: thType, situation

Description

The input variable thType defines the task (egg laying, pollen or nectar foraging, nursing) a

bee is asking its threshold for and the input variable situation describes the developmental

stage, caste or species of the bee. Based on these two inputs, the reported result (local variable

th) is set. Tasks that will not be performed are set to the very high value NotSetHigh:

to-report ThresholdLevelREP [thType situation]

 ;TYPES: eggLaying pollenForaging nectarForaging nursing

 ;SITUATIONS: egg worker youngQueen QueenInitiationPhase QueenSocialPhase Psith

 let th -1

 ;Egg Laying

 if thType = "eggLaying"

 [

 if situation = "egg" [set th NotSetHigh]

 if situation = "worker" [set th NotSetHigh]

 if situation = "youngQueen" [set th NotSetHigh]

 if situation = "QueenInitiationPhase" [set th 0.1]

 if situation = "QueenSocialPhase" [set th 0]

 if situation = "Psith" [set th 0.2]

]

 ; Pollen foraging

 if thType = "pollenForaging"

 [

 if situation = "egg" [set th NotSetHigh]

 if situation = "worker" [set th 0.9]

 if situation = "youngQueen" [set th NotSetHigh]

 if situation = "QueenInitiationPhase" [set th 0.7]

 if situation = "QueenSocialPhase" [set th NotSetHigh]

 if situation = "Psith" [set th NotSetHigh]

]

 ; Nectar foraging

 if thType = "nectarForaging"

 [

 if situation = "egg" [set th NotSetHigh]

 if situation = "worker" [set th 0.9]

 if situation = "youngQueen" [set th NotSetHigh]

 if situation = "QueenInitiationPhase" [set th 0.7]

 if situation = "QueenSocialPhase" [set th NotSetHigh]

 if situation = "Psith" [set th NotSetHigh]

]

 ; Nursing

 if thType = "nursing"

 [

 if situation = "egg" [set th NotSetHigh]

 if situation = "worker" [set th 0.9]

 if situation = "youngQueen" [set th NotSetHigh]

 if situation = "QueenInitiationPhase" [set th 0.5]

 if situation = "QueenSocialPhase" [set th 0.9]

 if situation = "Psith" [set th NotSetHigh]

52

]

 if th = -1 [AssertionProc "Assertion violated in ThresholdLevelREP: TH not set!"]

 report th

end

CropAndPelletSizeREP

Purpose: calculates a bee's crop volume and size of its pollen pellets based on the weight of

the bee.

Asking agents: bees

Calling: none

Input: forage

Description

As crop volume and size of pollen pellets will change with the size of the bee, we calculate

cropvolume_myl and pollenPellets_g from the bee's weight_mg. Calculation of the crop

volume is based on data from Ings et al. 2006 (described below). We then infer from the crop

volume the size of the pollen pellet, using the factor beehaveCropToPelletFactor_ul-to-g.

This factor is derived from the BEEHAVE model (Becher et al. 2014), dividing the value for

pollen pellets weight (0.015g) by the crop volume (50μl) of honeybees.

Calculations of crop and pellet sizes

Fig. 2 of Ings et al. 2006 was re-drawn (using the "Point" tool of the image-processing

software ImageJ (https://imagej.nih.gov/ij/)). The values were converted from foraging-load-

per-hour to foraging-load-per-trip with the average trip duration (for each series) as presented

in their Fig. 1c. Then they were converted from mg to myl using a conversion factor from

Schmickl & Crailsheim (2007): Nectar(myl) = Nectar(mg) * 0.72

All data series were combined in a plot of foraging load per trip (mg) vs bee weight (g) and a

linear trend line was fitted: foragingLoadNectar/trip(mg) = 402.32* beeWeight(g)

As we haven’t been able to find comparable data for pollen gathering, we assume that the

relation of nectar load to pollen load in bumblebees is the same as in honeybees, i.e. crop

volume honeybees: 50µl (Nuñez 1966, 1970, Schmid-Hempel et al. 1985), pollen load:

0.015g (Schmickl & Crailsheim 2007 from Seeley 1995).

to-report CropAndPelletSizeREP [forage]

 ; bee crop and pollen capacity based on weight using (1) linear formula

 ; (2) pollen:crop ratio from HBs in BEEHAVE, with both

 ; having an upper limit set by species-own variables.

 let beeWeightToLoadFactor 0.402 ; 0.402: derived from Ings et al 2006 for nectar loads

 let beehaveCropToPelletFactor_ul-to-g 0.015 / 50 ; nectar load BEEHAVE: 50ul

; (Winston (1987), Nuñez (1966, 1970), Schmid-Hempel et al. (1985)

; POLLENLOAD 0.015 [g] (from HoPoMo, Schmickl Crailsheim 2007,

; based on Seeley 1995)

 let result 0

 let maxCropVol_myl [specMax_cropVolume_myl] of oneSpecies speciesID

 let maxPollen_g [specMax_pollenPellets_g] of oneSpecies speciesID

 if forage = "nectar"

 [set result min list (maxCropVol_myl) (weight_mg * beeWeightToLoadFactor)] ; result

; is the lower of these two values

 if forage = "pollen"

 [set result min list (maxPollen_g) (weight_mg *

https://imagej.nih.gov/ij/

53

 beeWeightToLoadFactor * beehaveCropToPelletFactor_ul-to-g)] ; result is the

 ; lower of these two values

 if result = 0 [AssertionProc "Assertion violated: Error in CropAndPelletSizeREP"]

 report result ; units: ul for nectar, g for pollen!

end

CreateSignsProc

Purpose: creates agents used as "signs" on the interface to inform the user about today's

foraging conditions or the location of an agent.

Called by: Setup

Asking agents: none

Calling: none

Description

Creates a single agent in the shape of "sun", "cloud" and "circletarget". The agents can be

shown or hidden, depending on the users choice.

 to CreateSignsProc

 create-Signs 1 ; Weather symbol: Sun

 [

 setxy max-pxcor - 6 max-pycor - 16

 set shape "sun"

 set size 11

 set color 44.2

 hide-turtle

 set colonyID -1

]

 create-Signs 1 ; Weather symbol: Cloud

 [

 setxy max-pxcor - 10 max-pycor - 17

 set shape "cloud"

 set size 11

 set color grey - 2

 hide-turtle

 set colonyID -1

]

 create-Signs 1 ; Symbol for FIND-Button

 [

 set color red

 set shape "circletarget"

 set size 30

 hide-turtle

]

end

GO

Purpose: represents all processes of a single time step (day)

Called by: Buttons ("Run", "1 day", "1 week", "1 year", "run X days")

Asking agents: none

54

Calling:

 UpdateMorning_Proc

 NeedNectarPollenLarvaeTodayProc

NextActiveBeeREP

ActivityProc

QueensLeavingNestProc

FeedLarvaeProc

QueenProductionDateProc

DevelopmentProc

MortalityBroodProc

BadgersOnTheProwlProc

OutputDailyProc

DrawCohortsProc

Description

If an assertion was violated during the previous time step, the simulation run stops, the

modelled world turns red and a message pops up to inform the user.

Then it is made sure that InspectColony refers to a colony and the Netlogo time step counter

tick is increased by 1 (day)

The procedure UpdateMorning_Proc is called to updates those variables that count or

represent events on a daily or seasonal basis.

For each colony its estimated today's need of nectar and pollen for the larvae is calculated in

the procedure NeedNectarPollenLarvaeTodayProc, which will affect the foraging stimuli in

the colony.

While the local variable continueWorking is true and active (i.e. not “hibernating”) workers or

queens are present, these active bees can perform tasks (specified in the procedure

ActivityProc). Activities include "nestConstruction", "resting", "egglaying", "nursing", and

various activities related to foraging (for nectar or pollen).

 to GO

 if AssertionViolated = true

 [

 user-message "Assertion violated!"

 ask patches [set pcolor red]

 stop

]

 ; make sure, InspectColony refers to a colony:

 if (count Bees with [colonyID = InspectColony] = 0 and count Colonies > 0)

 [set InspectColony [who] of one-of colonies]

 if any? turtles with [who = InspectColony] and count Colonies > 0

 [

 if ([breed] of turtle InspectColony != Colonies)

 [set InspectColony [who] of one-of colonies]

]

 let continueWorking true

 while [continueWorking = true ; still some time left today to do some work..

 and count Bees with [(caste = "worker" or caste = "queen")

 and (activity != "hibernate") and stage = "adult"] > 0 ; there are actually (active)

bees, that can work

 and count colonies > 0]

 [

55

 set ActiveBee NextActiveBeeREP

 ask Bee ActiveBee

 [

 ifelse personalTime_s > CallItaDay_s

 [set continueWorking false]

 [

 set Daytime_s personalTime_s ; day time based on personal time of current bee

 ifelse (floor (remainder personalTime_s 3600) / 60) >= 10

 ; adds current personal time to activityList (hh:mm)

 [set activityList lput (word floor (personalTime_s / 3600) ":"

floor ((remainder personalTime_s 3600) / 60)) activityList]

 [set activityList lput (word floor (personalTime_s / 3600) ":0"

floor ((remainder personalTime_s 3600) / 60)) activityList]

 ActivityProc

]

 if colonyID = -1 [set personalTime_s CallItaDay_s + 1] ; if queen hasn't founded

; a colony yet, it won't be active for the rest of the day

]

]

The bee addressed is the one with the lowest value for personalTime_s (determined in

NextActiveBeeREP), hence bees performing a short task can earlier engage in a new task than

bees performing a longer task. PersonalTime_s of the current bee also represents the current

time (Daytime_s) and is saved in the bees activityList, a list that logs all activities a bee

performs during a day.

If personalTime_s of all active bees exceeds CallItADay_s (24 * 3600s =24hrs),

continueWorking is set false, no more tasks are performed and all bees are “resting” (except

of hibernating queens and males).

Then a number of procedures is called and finally the program stops if no bees or colonies are

left:

 ask Bees with [stage = "adult" and activity != "hibernate" and caste != "male"]

 [

 set activity "resting"

 set activityList lput "End" activityList

]

 QueensLeavingNestProc ; young queens leave the nest to mate & hibernate

 FeedLarvaeProc

 QueenProductionDateProc

 DevelopmentProc

 MortalityBroodProc

 BadgersOnTheProwlProc

 if UpdateInterface? [OutputDailyProc]

 if ShowCohorts? = true [DrawCohortsProc]

 if count Colonies + count Bees = 0 and StopExtinct? = true [stop]

end

NextActiveBeeREP

Purpose: determines which is the next bee to become active (faster than using Netlogo's min-

one-of command)

Called by: Go

Asking agents: none

Calling: none

56

Description

The list ActiveBeesSortedList (set up in UpdateMorning_Proc) contains the ID's (who) of all

bees who can perform a task today. The list is ordered according to the personal time of a bee

(personalTime_s). The first item in this list refers to a bee that either just had been active

and/or will be active next and its position in the list needs to be updated. The first item of the

updated list will then be the next active bee (an alternative approach would be use the

NetLogo command min-one-of to determine the bee with the lowest personalTime_s.

However, the procedure we describe here runs considerably faster).

ActiveBee is set to this first item of ActiveBeesSortedList and the personal time of this "active

bee" is then saved in the local variable persTime_activeBee. The local variables minPosition

and maxPosition describe the range of positions in ActiveBeesSortedList where the active bee

should be placed. They are set to the first and last postition of the list to start with and then

approach each other until finally the correct position is determined. The local variable

currentPosition is set to the position just in the middle of the list:

to-report NextActiveBeeREP

 ; determines which is the next bee to become active

 set ActiveBee first ActiveBeesSortedList ; this refers to the bee

 ; that JUST HAD BEEN active! (but not e.g.if the previously active bee just had died!)

 let persTime_activeBee [personalTime_s] of bee ActiveBee

 ; the actual position is somewhere between the minimal and the maximal position:

 let minPosition 0 ; counting of items in list start with 0

 let maxPosition length ActiveBeesSortedList - 1

; -1, as counting of items in listst start with 0

 let currentPosition round (maxPosition / 2) ; don't know where the final position will be

; so currentPosition is set right into the middle

If personalTime_s of the bee at currentPosition is larger than persTime_activeBee then the

correct position of the active bee will be in the first half of the list, hence maxPosition can

now be set to currentPosition and the new currentPosition is then set into the middle of

minPosition and the previous currentPosition. Otherwise (i.e. if personalTime_s of the bee at

currentPosition was smaller than persTime_activeBee) the correct position of the active bee

will be in the second half of the list, hence minPosition is set to currentPosition and the new

current position is set to the middle of the previous currentPosition and maxPosition. This

process is repeated, while the difference between maxPosition and minPosition is larger 1:

 ; now the correct position is determined:

 while [maxPosition - minPosition > 1]

 [

 ifelse [personalTime_s] of bee item currentPosition ActiveBeesSortedList

> persTime_activeBee

 [

 set maxPosition currentPosition

 set currentPosition round ((currentPosition + minPosition) / 2)

]

 [

 set minPosition currentPosition

 set currentPosition round ((maxPosition + currentPosition) / 2)

]

]

57

The correct position of the active bee has now been determined and two sublists of

ActiveBeesSortedList are created, beginningList (from the beginning of ActiveBeesSortedList

to currentPosition (excluding)) and endList from currentPosition (including) to the end of

ActiveBeesSortedList:

 ; beginningList is activeList to currentposition & endList is currentPosition

 ; to end of list:

 let beginningList sublist ActiveBeesSortedList 0 currentPosition

; beginning to (excluding) currentPosition

 let endList sublist ActiveBeesSortedList currentPosition length ActiveBeesSortedList

; from (including) currentPosition to end

The active bee is now removed from its original position. If more than one bee is active

(ActiveBeesSortedList contains at least two items), the first item of beginningList is removed,

if only one bee is active, the first item of endlist is removed (as beginningList is empty in this

case):

 ;if the number of bees in list is greater than 1, the first bee from the beginningList

; is removed, as this is the activeBee duplicated ; if number of bees in list is 0,

; the first bee from the endList is removed, as this is the activeBee duplicated

 ifelse length ActiveBeesSortedList > 1

 [set beginningList but-first beginningList] ; first item of beginningList is removed

 [set endlist but-first endlist] ; first item of endList is removed

Finally, ActiveBeesSortedList is re-set again by merging beginningList and endList and

ActiveBee, which is the ID (who) of the active bee, is then copied to the correct position,

either at the very end or between beginningList and endList (note that beginningList might be

empty here so that the previously active bee can end up in the first position again).

ActiveBeesSortedList is now updated and its first item will be reported as the next active bee:

 ifelse (length endList = 1

 and persTime_activeBee > [personalTime_s] of bee item 0 endList)

 [set ActiveBeesSortedList (sentence beginningList endList ActiveBee)]

 [set ActiveBeesSortedList (sentence beginningList ActiveBee endList)]

 report first ActiveBeesSortedList

end

UpdateMorning_Proc

Purpose: updates those variables that count or represent events on a daily or seasonal basis

Called by: Setup, Go

Asking agents: none

Calling:

DateREP

Foraging_PeriodREP

UpdateFoodsourcesProc

UpdateSeasonalEventsProc

EmergenceNewQueensProc

UpdateColoniesProc

58

UpdateColonyStoreBarsProc

CheckNumbersProc

Description

If an assertion (i.e. a statement in the code that needs to be true) is violated, the user message

"Assertion violated!" pops up:

 if AssertionViolated [ask patches [set pcolor red]

 user-message "Assertion violated!"]

The current day of the year, Day, is calculated on the basis of the time step (ticks) and the date

is set:

 set Day round (ticks mod 365.00000001)

 set Date DateREP

Today's foraging period (reflecting the weather conditions) are calculated:

 if Day > 0 [set DailyForagingPeriod_s Foraging_PeriodREP]

Procedures to update foodsources and to incorporate seasonal events are called and

hibernating queen may emerge:

UpdateFoodsourcesProc

UpdateSeasonalEventsProc

EmergenceNewQueensProc

PersonalTime_s of not hibernating adult queens and workers is set to GetUpTime_s (1s) plus

a random timespan (local variable: randomTimeToGetUp_s) ranging from 0 - 1800s and the

activityList of the bees is emptied from the entries of the previous day:

 set ActiveBeesSortedList []

 ask Bees with [(caste = "worker" or caste = "queen")

 and (activity != "hibernate") and stage = "adult"]

 [

 set personalTime_s GetUpTime_s + random randomTimeToGetUp_s

 set activityList []

 set ActiveBeesSortedList fput who ActiveBeesSortedList

]

 set ActiveBeesSortedList sort-by [[personalTime_s] of bee ?1

< [personalTime_s] of bee ?2] ActiveBeesSortedList

The variable ActiveBeesSortedList keeps track of all potentially active adult bees (i.e. workers

and not hibernating queens), sorted by their personalTime_s. The first bee in this list is the

next one to become active (see also NextActiveBeeREP).

Finally, three more procedures are called (UpdateColoniesProc, UpdateColonyStoreBarsProc

and CheckNumbersProc) to update the colonies and assert that the total numbers of bees is

correct.

DateRep

Purpose: calculates the current date

59

Called by: UpdateMorning_Proc

Asking agents: none

Input: none

Description

This procedure determines the date (day, month, year) based on the current time step ("ticks").

The first date after pressing the Setup button (with ticks = 0) is "31 December 0". Leap years

are not considered.

to-report DateREP

 let month-names (list "January" "February" "March" "April" "May" "June" "July" "August"

 "September" "October" "November" "December")

 let days-in-months (list 31 28 31 30 31 30 31 31 30 31 30 31)

 let year floor (ticks / 365.01) + 1

 if ticks = 0 [set year 0]

 let month 0

 let dayOfYear remainder ticks 365

 if dayOfYear = 0 [set dayOfYear 365]

 let dayOfMonth 0

 let sumDaysInMonths 0

 while [sumDaysInMonths < dayOfYear]

 [

 set month month + 1

 set sumDaysInMonths sumDaysInMonths + item (month - 1) days-in-months

 set dayOfMonth dayOfYear - sumDaysInMonths + item (month - 1) days-in-months

]

 let result ""

 if month > 0

 [set result (word dayOfMonth " " (item (month - 1) month-names) " " year)]

 report result

end

Foraging_PeriodREP

Purpose: calculates today's foraging period

Called by: UpdateMorning_Proc

Asking agents: none

Calling: none

Input: none

Description

This reporter procedure determines how much time [s] bees can spend on foraging today. The

result is based on the "weather" condition, chosen by the user via the Netlogo "chooser"

Weather. Most options refer to constant daily foraging conditions, e.g. "Constant 8 hrs"

results in (up to) 8 hours of foraging every day. The option "foragingHoursExample" provides

an arbitrary example of a list with 365 items, defining the hours of foraging for each day of

the year. The value for the current Day is then picked and reported.

60

to-report Foraging_periodREP

 let foragingPeriod_s -1

 let foragingHoursList []

 let foragingHoursExample [0 3.1 0 0 0 1.5 0 0.1 0 0 1.7 1.6 0 0 0 0 0 0

0 0 1.5 5 0 3.2 0 0 0 0.2 0 0 0 0.1 0.9 5.9 3.5 6.9 1.3 7.7 2.3

4.6 2.2 0.5 9.2 0 8 3.2 4.1 0 9 9.1 7.3 5.7 4.9 0 12.1 6.5 7.9 7.9

11.1 2.8 0 2.8 6 5.7 0 4 10.1 2.9 10.1 0 11.4 6.3 9.9 4.4 7.5 8

12.3 8.7 10.3 3.7 11.3 13.2 14 4.2 7.7 8.2 7.2 9.2 5 13.1 10.5 3.5

11.1 13.6 6.2 8.4 7.8 8.5 9.8 6.5 4.1 10.8 12.5 15.1 10.1 4.3 7 9.4

8.9 7.5 7.8 6.6 11.4 12.1 12.4 11.9 10.1 14.7 7.8 13.1 3.3 16.6 14.8

17.9 5.7 0.2 2.9 10 14.7 16.2 15.8 5.3 5.8 2.5 6 15.2 1.3 13.1 11.2 2

12.9 9.7 2.1 17.3 5.7 8.5 13.1 18.5 1.7 6.7 13.8 0.5 0.8 15.7 4.9 11.4

11.9 3.8 11.7 7.1 21.2 17.7 1.8 12.3 15.7 16.9 16.8 9.9 3.6 20.4 13

5.1 0.6 11.7 2.1 4.7 13.9 13.8 1.4 0.3 18.4 14.8 12.8 3.7 13.5 4.7 0.3

5.5 4 17.5 1.7 0.3 14.9 12.4 11.6 8.5 4.5 11.1 16 13.2 13.8 0.7 7.1

14.3 3.4 2.2 5.6 10.6 3.4 15.5 15.6 12.8 15 14 5.9 15.5 9.1 2 1 3.2

9.3 3 3.1 14 10.2 1 9.7 8.8 3.8 1.9 11.9 9.3 6.5 6.6 8.4 4.3 7.2 1.5

11.4 10.4 13.5 1.2 6 4.4 13.5 12.4 8 9.3 5.9 0.9 6.8 5.9 9.1 10.5 6

7.9 2.3 0.8 0 7.9 11 1.3 8.7 6.5 6.6 7.6 0 0 9.4 7.1 6.4 4 6.6 0

2.7 0 0 7.8 0 8.7 0.3 2 4.8 1.8 0.9 0 0 7.2 5.8 6.5 0 1.1 0 0 0.7

6.3 1.3 0 5.5 1.4 2.8 0 0 0 4 0 1.4 5.1 0 0 2.1 0 0.5 0 1 0 0

2.3 0 0 0 1.4 0.6 0 0 0 0 0.8 0 0 1 0.9 0 0 0 0 0 0 2.3 0 0

1.9 1.4 0 0 0 1.5 0 0 0 1 1.9 0 0 3.4 0 0 1 0 0 0 0 0 0 1.6]

 if Weather = "foragingHoursExample"

 [

 set foragingHoursList foragingHoursExample

 set foragingPeriod_s (item (day - 1) foragingHoursList) * 3600

]

 if Weather = "Constant 24 hrs" [set foragingPeriod_s 24 * 3600]

 if Weather = "Constant 20 hrs" [set foragingPeriod_s 20 * 3600]

 if Weather = "Constant 16 hrs" [set foragingPeriod_s 16 * 3600]

 if Weather = "Constant 12 hrs" [set foragingPeriod_s 12 * 3600]

 if Weather = "Constant 11 hrs" [set foragingPeriod_s 11 * 3600]

 if Weather = "Constant 10 hrs" [set foragingPeriod_s 10 * 3600]

 if Weather = "Constant 9 hrs" [set foragingPeriod_s 9 * 3600]

 if Weather = "Constant 8 hrs" [set foragingPeriod_s 8 * 3600]

 if Weather = "Constant 7 hrs" [set foragingPeriod_s 7 * 3600]

 if Weather = "Constant 6 hrs" [set foragingPeriod_s 6 * 3600]

 if Weather = "Constant 5 hrs" [set foragingPeriod_s 5 * 3600]

 if Weather = "Constant 4 hrs" [set foragingPeriod_s 4 * 3600]

 if Weather = "Constant 3 hrs" [set foragingPeriod_s 3 * 3600]

 if Weather = "Constant 2 hrs" [set foragingPeriod_s 2 * 3600]

 if Weather = "Constant 1 hrs" [set foragingPeriod_s 1 * 3600]

 report foragingPeriod_s

end

UpdateSeasonalEventsProc

Purpose: addresses seasonal events such as the species-specific end of the season

Called by: Updates_Proc

Asking agents: none

Calling: DieProc

Description

If Day equals the species-specific seasonStop date, for all bees of this species (except for

hibernating queens) the procedure DieProc is called in which these bees and their colonies are

removed. If all queens are in hibernation and no brood is present, any adult males still alive

are removed to save computing time, as they won't be able to mate. To prevent the model to

61

run too slowly, on first of January (Day = 1) the number of hibernating queens may be

reduced to MaxHibernatingQueens (input set on interface, default: 10000) or slightly less,

depending on whether the queens are from cohort-based colonies or IBM-colonies.

to UpdateSeasonalEventsProc

 ask Species

 [

 let whoSpec who

 if Day = seasonStop

 [

 ask Bees with [speciesID = whoSpec and activity != "hibernate"]

 [

 let memoNumber number

 if brood?

[ask colony colonyID

[set broodDeathEndSeason broodDeathEndSeason + memoNumber]]

 DieProc "End of season"

]

]

]

 if TotalHibernatingQueens = TotalQueens and (TotalEggs + TotalLarvae + TotalPupae = 0)

 and TotalMales > 0 ; i.e. kill males in autumn if

 ; all queens are in hibernation and no brood is left

 [

 ask bees with [caste = "male"][DieProc "Males: all queens in hibernation!"]

]

if Day = 1

 [

 with-local-randomness [ask bees with [caste = "queen" and activity = "hibernate"]

[setxy 0 0]] ; hibernating queens are moved to bottem left corner

; to distinguish this year's and last years queens; with-local-randomness: to

; not change sequence of random numbers, results of "Version test", 2017-04-21

 let queensToKill TotalHibernatingQueens - MaxHibernatingQueens

 if queensToKill > 0

 [

 set TotalHibernatingQueensEverRemoved TotalHibernatingQueensEverRemoved

 + queensToKill

 output-print "Reduced number of hibernating queens to

 no more than MaxHibernatingQueens!"]

 while [queensToKill > 0]

 [

 ask one-of bees with [caste = "queen" and activity = "hibernate"]

 [

 set queensToKill queensToKill - number

 DieProc "max. number of hibernating queens"

]

]

]

end

DieProc

Purpose: calls the "die" command for all biologically relevant agents and keeps track of all

their deaths

Called by: UpdateSeasonalEventsProc

Asking agents: Bees with [speciesID = whoSpec and activity != "hibernate"]

Calling: none

Input: causeOfDeath

62

Description

If the calling agent is a bee, the number of all bees ever died (TotalBeesEverDied) is increased

by the bees cohort size, the bee is removed from the ActiveBeesSortedList (a list that keeps

track of all bees that can perform a task, ordered by the time they finish their current activity)

and the bee then dies:

to DieProc [causeOfDeath] ; calls the actual "die" command for all biologically

 ; relevant agents and keeps track of all their deaths

 if breed = Bees

 [

 set TotalBeesEverDied TotalBeesEverDied + number

 if number < 1

[show ticks AssertionProc "Less than 1 bee in bee agent (CheckNumbersProc)"]

 ; Remove dying bees from the ActiveBeesSortedList:

 if member? who ActiveBeesSortedList

 [set ActiveBeesSortedList filter [? != who] ActiveBeesSortedList]

 die

]

If the calling agent is a colony, then some colony statistic may be printed in the model's output

area and the breed changes from "colonies" to "deadCols", shown as white circles, if the

switch showDeadCols? is on. This allows to archive colonies to later access the stored data:

if breed = Colonies

 [

 if eusocialPhaseDate + switchPointDate + competitionPointDate < NotSetHigh

 [

 output-type "ticks id 1stWorker SP CP QPD death #Q #M: "

 output-type ticks output-type " "

 output-type who output-type " "

 output-type eusocialPhaseDate output-type " "

 output-type switchPointDate output-type " "

 output-type competitionPointDate output-type " "

 output-type queenproductiondate output-type " "

 output-type ticks output-type " "

 output-type totalQueensProduced output-type " "

 output-type totalMalesProduced output-print " "

]

 ; instead of removing colony, change breed to deadCol

 ; also kill store bars and change agent into a small white dot on the 2D view

 ask storebars with [storeColonyID = [who] of myself] [die]

 set breed deadCols

 set size 1

 set label ""

 set color white

 set shape "circle"

 set colonyDeathDay ticks

 if not showDeadCols? [ht]

]

Also badgers can die during Setup, when they can't find a suitable location for their sett

(determined in CreateBadgersProc):

if breed = badgers

 [

 output-show causeOfDeath

 die

]

if breed != deadCols [AssertionProc "Zombie alarm in DieProc"]

; only dead colonies are supposed to survive DieProc

63

end

UpdateFoodsourcesProc

Purpose: the amounts of available nectar and pollen foodsources are re-set

Called by: Updates_Proc

Asking agents: none

Calling: none

Description

The total amount of nectar and pollen available today (i.e. before foraging starts) is calculated.

All foodsources are addressed and their nectar and pollen supply is summed up in the global

variables NectarAvailableTotal_l and PollenAvailableTotal_kg.

If the current day is the first or last day of the flowering period (startDay, stopDay) of at least

one foodsource, then the global variable FoodsourcesInFlowerUpdate? is set true. (In this

case, the colonies will need to update their list of foodsources in flower, which happens in the

procedure FoodsourcesInFlowerAndRangeProc called by UpdateColoniesProc. For details,

see descriptions of these procedures).

Flower patches do not provide nectar or pollen outside their flowering period. It is assumed

that foodsources are not in flower at the turn of the year, i.e. startDay has to be smaller than

stopDay, otherwise AssertionProc will be called and the program stops.

to UpdateFoodsourcesProc

 ; updating FOODSOURCES (nectar & pollen):

 set PollenAvailableTotal_kg 0

 set NectarAvailableTotal_l 0

 set FoodsourcesInFlowerUpdate? false

 ask Foodsources

 [

 if startDay > StopDay

 [AssertionProc "Foodsource: startDay > StopDay! (UpdateFoodsourcesProc)"]

 if day = startDay or day = stopDay [set FoodsourcesInFlowerUpdate? true]

 ifelse day >= startDay and day < StopDay

 [

 set nectar_myl nectarMax_myl

 set pollen_g pollenMax_g

]

 [

 set nectar_myl 0

 set pollen_g 0

]

 set NectarAvailableTotal_l NectarAvailableTotal_l + (nectar_myl / (1000 * 1000))

 set PollenAvailableTotal_kg PollenAvailableTotal_kg + (pollen_g / 1000)

]

end

EmergenceNewQueensProc

64

Purpose: new queens may die over winter or otherwise emerge from hibernation and can

found a new colony

Called by: UpdateMorning_Proc

Asking agents: none

Calling:

ThresholdLevelREP

WintermortalityProbREP

DieProc

NestSitesSearchingProc

PsithyrusNestSearchProc

CreateColoniesProc

Description

The task thresholds of bees emerging today (i.e. emergingDate = ticks) are updated, as

defined in the reporter-procedure ThresholdLevelREP. As queens from a "cohort based"

colony are still represented as cohorts, they now have to be re-implemented as individuals,

before they can found a new colony. This is done by creating cohort-size (number) - 1 copies

of the current bee and setting the new cohort-size (number) to 1. (Turtles created with the

NetLogo command "hatch" inherit all variables from its parent).

 ask Bees with [emergingDate = ticks]

 [

 ; EMERGING

 ...

 ; thresholds are updated:

 set activity "emerging"

 set thEgglaying ThresholdLevelREP "eggLaying" "QueenInitiationPhase"

 set thForagingNectar ThresholdLevelREP "nectarForaging" "QueenInitiationPhase"

 set thForagingPollen ThresholdLevelREP "pollenForaging" "QueenInitiationPhase"

 set thNursing ThresholdLevelREP "nursing" "QueenInitiationPhase"

 ; HATCHING INDIVIDUALS

 ; cohort based queens become individuals:

 let hatchlings number - 1

; for cohort based queens: bee needs to be "cloned" cohortsize - 1 times!

 set number 1 ; new queens are individuals now (not cohorts)

 hatch hatchlings

; the "clones" of the originally cohort-based queenagent are created

]

Then these newly emerged bees (with activity = "emerging") are addressed to randomly

determine whether or not they died over winter. The propability to die is calculated in the

reporter-procedure WintermortalityProbREP, based on the weight of the queen. (Winter

mortality can be switched off on the interface with the switch ("WinterMortality?")

 ask bees with [activity = "emerging"]

 [

 ...

 ; WINTER MORTALITY

65

 if WinterMortality? = true and random-float 1 > WintermortalityProbREP

 [DieProc "winter mortality"]

 ; AFTER SURVIVAL

 set activity "resting"

 set colonyID -1 ; queens haven't found a nest site yet nor started a colony

 ifelse ShowQueens? = true

 [show-turtle]

 [hide-turtle]

]

Those queens that have emerged from hibernation but still are without a nest a nest are then

addressed. If no habitat suitable for nesting exists for the queen in the simulated landscape, it

dies immediately. Otherwise, the queen can find a nest site, which is determined in the

procedures NestSitesSearchingProc for social bumblebees and PsithyrusNestSearchProc for

cuckoo bumblebees (the activity of a successful, social queen is then changed to

"nestConstruction" in NestSitesSearchingProc).

Finally the procedure CreateColoniesProc is called if there is at least one bee with the activity

"nestConstruction".

 if count bees with [caste = "queen" and colonyID = -1

 and activity != "hibernate"] > 0

 [

 ; queens without a colony search for nest sites

 ask bees with [caste = "queen" and colonyID = -1 and activity != "hibernate"]

 [

 ifelse count [nestsiteFoodsourceList] of onespecies speciesID > 0

 [

 ifelse speciesName != "Psithyrus"

 [NestSitesSearchingProc] ; social BB

 [PsithyrusNestSearchProc] ; cuckoo BB

]

 [

 DieProc (word "no suitable foodsources for nesting exist for " speciesname)

;kill off bees with no chance of finding a nest site

]

]

 ; if successful, they build a new nest:

 if count bees with [activity = "nestConstruction"] > 0

 [CreateColoniesProc]

]

WintermortalityProbREP

Purpose: determines the probability of a hibernating queen to survive the winter, based on its

weight

Called by: EmergenceNewQueensProc

Asking agents: bees with [activity = "emerging"]

Calling: none

Description

The weight of the queen is expressed as a relative weight in comparison to the minimal and

maximal queen weights of this species. Based on this relative weight (myRelativeWeight) the

survival probability of the queen is calculated. We derived this equation from Fig. 1B in

66

Beekman et al. (1998) (for details see Chapter 7, Bumblebee biology, life cycle and

rationales: Hibernation and winter mortality).

to-report WintermortalityProbREP

 let minWeightSpecies_mg [devWeight_Q_PupationMin_mg] of oneSpecies speciesID

 let maxWeightSpecies_mg [devWeight_Q_PupationMax_mg] of oneSpecies speciesID

 let myRelativeWeight (weight_mg - minWeightSpecies_mg)

 / (maxWeightSpecies_mg - minWeightSpecies_mg)

 let survivalProb 0.64 / (1 + e ^ (-22 * (myRelativeWeight - 0.32)))

 report survivalProb

end

NestSitesSearchingProc

Purpose: determines if a (social) bumblebee queen finds a nest site

Called by: EmergenceNewQueensProc

Asking agents: Bees (non-Psithyrus queens (not hibernating) without a colony)

Calling:

DieProc

NestSiteFoodSourceREP

Description

Based on a species-specific probability (chanceFindNest) it is randomly determined whether

or not a queen finds a nest site. (Note that this probability is constant and not affected by the

area of suitable nesting habitat or density of already established colonies).

If the queen is successful, the foodsource, providing suitable nest habitat, is determined in the

reporter-procedure NestSiteFoodSourceREP. The nest is then build on a randomly chosen grid

cell (NetLogo "patch") within the (theoretical) area of the foodsource (food sources in the

model are assumed to have a circular shape, with the (theoretical) radius being calculated

from the (actual) area of the food source). The bee then moves to the location of the nest site

and changes its activity to "nestConstruction".

Bees that have not found a nest might die during searching. The probability to die is based on

the foraging mortality per second (MortalityForager_per_s) and the time they spent searching

(NestSearchTime_h) (both global variables).

to NestSitesSearchingProc

 let memoX 0

 let memoY 0

 let memoSpecies oneSpecies speciesID

 let nestSiteFound false

 let memoFoodSource nobody

 let dailyChance [chanceFindNest] of memoSpecies ; chance is species-own variable

 ; Decide if queen finds a nest today

 if random-float 1 <= dailyChance

 [

 ; this food source is found and will be used as nesting habitat:

 set memoFoodSource NestSiteFoodSourceREP memoSpecies

 ; determine loaction of the nest (= a NetLogo patch (gridcell)):

 ask memoFoodSource

 [

 ask one-of patches with

67

[distance myself < ([radius_m] of myself * SCALING_NLpatches/m)]

 [

 set memoX pxcor

 set memoY pycor

]

]

 set nestSiteFound true

]

 ifelse nestSiteFound = true

 [

 setxy memoX memoY

 set activity "nestConstruction"

]

 ;If nest site not found, queen has probability of dying based on foraging mortality

per sec multiplied by seconds searching for nest site

 [

 if random-float 1 <if random-float 1

< 1 - ((1 - MortalityForager_per_s) ^ (NestSearchTime_h * 60 * 60))

; 1 - MortalityForager_per_s: prob. to survive 1s

; ^ (NestSearchTime_h * 60 * 60): prob to survive the searching period

; 1 - prob. to survive = prob. to die

 [

 DieProc "Queen: died while searching nest site"

]

]

end

NestSiteFoodSourceREP

Purpose: determines which foodsource was found by a searching queen to be used as nesting

habitat

Called by: NestSitesSearchingProc

Asking agents: Bees (non-Psithyrus queens (not hibernating) without a colony)

Calling: none

Input: memoSpecies

Description

The species-specific variable nestsiteFoodsourceList lists all foodsources suitable for nesting

for the queen while nestSiteArea is the total area of suitable nesting habitat. The probablity for

a certain foodsource to be chosen for nesting is then the area of this foodsource divided by the

total area of suitable nesting habitat. This probabilities are summed up (probsSummedUp) for

all foodsources in nestsiteFoodsourceList in an ordered way (starting with the first) until a

randomly determined threshold probability p ([0..1[) is reach. The foodsource currently

addressed is then chosen for nesting (chosenFoodSource) and reported.

to-report NestSiteFoodSourceREP [memoSpecies]

 let chosenFoodSource nobody

 let foodSourceList shuffle sort [nestsiteFoodsourceList] of memoSpecies

; Randomise order of species-suitable foodSources

 let foodSourceArea [nestSiteArea] of memoSpecies

; total area of species-suitable foodSources

 let p random-float 1 ; this is the threshold probability

 let probsSummedUp 0

 let foodCounter 0 ; keeps track of the food source currently addressed

 let fsFound? FALSE ; so far, no food source (= nesting site) has been found

 while [not fsFound?] ; go through all food sources in the list

 [

68

 ; the probability of the current food source to be found:

 let probs [area_sqm / foodSourceArea] of (item foodCounter foodSourceList)

 ; these probabilities are then summed up for each food source in the list..

 set probsSummedUp probs + probsSummedUp

 ; until the sum is larger then p:

 if probsSummedUp > p

 [

 set chosenFoodSource (item foodCounter foodSourceList)

; current food source is chosen for nesting

 set fsFound? TRUE ; yes, suitable food source/nesting site has been found

]

 set foodCounter foodCounter + 1

]

 ...

 report chosenFoodSource

end

PsithyrusNestSearchProc

Purpose: determines if a cuckoo bee finds a suitable host colony and can enter it successfully

Called by: EmergenceNewQueensProc

Asking agents: Bees (Psithyrus queens (not hibernating) without a colony)

Calling:

DieProc

ThresholdLevelREP

Description

First the probabilities to find a host nest (findSingleNestProb), to get access to the nest

(getAccessProb), to get killed by the host queen (getKilledProb) and to kill the host queen

(killQueenProb) are defined (please note that these suggested probabilities are arbitrary and

not yet based on empirical studies).

It is randomly determined if a nest is found with the probability based on the probability to

find a single nest (findSingleNestProb) and number of nests now available (cuckoo bees in the

model can invade any nest, irrespective of the host species). It is then randomly determined

whether the cuckoo bee gets access to the nest (getAccessProb) and if it gets killed by the host

queen (getKilledProb). Successful cuckoo bees then move to a randomly chosen nest and

become a member of the colony by setting their variable colonyID to the ID (who) of the host

colony. They are now shown on the map as a black circle around the infested colony. The

Psithyrus queens then update their activity threshold as defined in ThresholdLevelREP. The

host queen might then get killed by the cuckoo bee (killQueenProb). If both queens survive,

they won't fight again.

If the Psithyrus queen is not successful in invading a host nest, it might die during searching,

similar as social queens in NestSitesSearchingProc.

to PsithyrusNestSearchProc

 ; determines if a cuckoo bee finds a suitable host colony and can enter it

successfully

 let memoColID -1

 let findSingleNestProb 0.05

 let getAccessProb 0.25

 let getKilledProb 0.25

 let killQueenProb 0.5

69

 let succesful false

 let myWho who

 ; probablility to find any host nest:

 let findAnyNestProb 1 - ((1 - findSingleNestProb) ^ count colonies)

 if random-float 1 < findAnyNestProb ; is a host nest found?

 [

 if random-float 1 < getAccessProb ; if yes, does cuckoo bee get access to it?

 [

 ifelse random-float 1 < getKilledProb ; if so, is it killed by host queen?

 [DieProc "Psithyrus: killed by Bombus queen"]

 [

 set succesful true

 set color black

 set size size * 8

 set shape "circleSingle"

 ask one-of colonies [set memoColID who] ; the host colony is randomly chosen

 set colonyID memoColID ; cuckoo bee becomes a member of the new host colony

 move-to colony colonyID ; cuckoo bee moves to its new host colony

 set thForagingNectar ThresholdLevelREP "nectarForaging" "Psith"

 set thForagingPollen ThresholdLevelREP "pollenForaging" "Psith"

 set thNursing ThresholdLevelREP "nursing" "Psith"

 set thEgglaying ThresholdLevelREP "eggLaying" "Psith"

]

]

]

 ifelse succesful = true ; if cuckoo bee was successful - which colony was invaded?

 [

 if count bees with [colonyID = memoColID and caste = "queen" and mated? = true] > 0

 [

 ask bees with [colonyID = memoColID and caste = "queen" and mated? = true

 and who != myWho] ; host queen might be killed by Psithyrus

 [

 if random-float 1 < killQueenProb

 [

 DieProc "Queen killed by cuckoo bee!"

]

]

]

]

 ; if no host nest was invaded, cuckoo bee might die:

 [

 if random-float 1 <

 1 - ((1 - MortalityForager_per_s) ^ (NestSearchTime_h * 60 * 60))

 [

 DieProc "Psithyrus: died while searching nest"

]

]

end

CreateColoniesProc

Purpose: creates and sets up initial values of a newly founded colony

Called by: EmergenceNewQueensProc

Asking agents: none

Calling:

PatchesInRangeProc

FoodsourcesInFlowerAndRangeProc

Description

70

After determining the number of new colonies needed (nNewColonies) by counting the bees

with activity = "nestConstruction", two storebars are created, to display the relative amount of

nectar and pollen stored in the the colony on the interface:

 create-storebars 2 * nNewColonies

 [

 set shape "halfline"

 set heading 90

 set size 10 * MasterSizeFactor

 set maxSize size

 set storeColonyID whoColony

]

Then the colonies are created at the current locations of the founding queens. The date of

foundation is saved (colonyFoundationDay).

Nectar stores are represented by the amount of energy stored (energyStore_kJ) which is set to

a small inital value, corresponding to 100μl of nectar with a sucrose concentration of 1.5M.

Some variables defining the developmental phase of the colony (switchPointDate,

competitionPointDate, eusocialPhaseDate, queenProductionDate) are set to a very high value

(NotSetHigh = 999999999999999). They may be re-set in the further course of the simulation.

The variable cohortBased? determines if colony members are created in the model as cohorts

or as individuals. If the current number of colonies that are individual based (cohortBased? =

false) is smaller than the maximal number of individual based colonies allowed in the model

(COLONIES_IBM), then the new colony is implemented as individual based (cohortBased? =

false), i.e. each individual bumblebee is represented as an agent. Otherwise the colony is

implemented as cohort based (cohortBased? = true), in this case, all bumblebees laid in the

same batch are represented by only one bee agent.

create-Colonies nNewColonies

 [

 set whoColony who ; the ID of the colony

 set colonyFoundationDay ticks

 ask one-of bees with [activity = "nestConstruction"]

 [

 set xcol xcor ; x and y coordinates of the queen are saved, so that the nest can

be located where the queen is

 set ycol ycor

 set colonyID whoColony ; queen gets the ID of the colony..

 set memoSpeciesID SpeciesID ; and saves her species-type for the colony

 set activity "resting" ; as the colony is created now, the queen rests

 set speciesShape speciesName ; saves the species of the queen so that the colony

can be displayed in the according shape

 if ShowQueens? = true [show-turtle]

]

 set queenProduction? false ; no production of queens yet

 set switchPointDate NotSetHigh ; queen won't lay haploid eggs until switchPointDate

is re-se

 set competitionPointDate NotSetHigh

 set eusocialPhaseDate NotSetHigh

 set queenProductionDate NotSetHigh

 set speciesIDcolony memoSpeciesID ; colony gets species-type from queen

 if ShowNests? = false [hide-turtle]

 set xcor xcol ; the colony is placed at the location of queen

 set ycor ycol

 set queenright? true ; queen is still alive

 set shape speciesShape ; colony is displayd on the interface as a bumblebee, showing

the species of the queen

 set heading 0

 set color 33 ; dark brown

 set size ColonySymbolsize

 set energyStore_kJ 100 * EnergySucrose_kJ/mymol * 1.5

 ; i.e. 0.873kJ (= 100 microliter of 1.5M nectar (i.e. ca. 1 crop))

 set colonysize 1 ; i.e. the queen

 set cohortBased? true

71

 if count Colonies with [cohortBased? = false] < COLONIES_IBM

 [

 set cohortBased? false

 set color ColorIBM

 set InspectColony Who

]

The procedures PatchesInRangeProc and FoodsourcesInFlowerAndRangeProc are called to

determine which foodsources are within the foraging range of a colony and which of those are

currently in flower.

Then the storeBars are moved to the location just below their colonies and are assigned to

either represent pollen stores (orange) or nectar stores (yellow). Finally the global variable

TotalColoniesEverProduced, keeping track of the number of colonies ever produced, is

increased by 1.

 let barX 3.5

 let barY 5

 ; a nectar and a pollen storebar is now assigned to the new colony

 ask one-of storebars with [storeColonyID = -1]

 [

 ifelse xcol - barX > min-pxcor and ycol - barY > min-pycor

 [setxy xcol - barX ycol - barY]

 [hide-turtle]

 set storeColonyID whoColony

 set store "Nectar"

 set color yellow

]

 set barY barY - 1

 ask one-of storebars with [storeColonyID = -1]

 [

 ifelse xcol - barX > min-pxcor and ycol - barY > min-pycor

 [setxy xcol - barX ycol - barY]

 [hide-turtle]

 set storeColonyID whoColony

 set store "Pollen"

 set color orange - 0.5

]

 set TotalColoniesEverProduced TotalColoniesEverProduced + 1

]

end

PatchesInRangeProc

Purpose: creates 2 lists, containing the who of all foodsources and masterpatch-foodsources

within the foraging range of the colony

Called by: CreateColoniesProc

Asking agents: (newly created) colonies

Calling: none

Description

72

All foodsources within the foraging range, defined by the global variable

ForagingRangeMax_m (i.e. independent of the bee species), are addressed and their ID (who)

is saved in the colonies' list allPatchesInRangeList. All of these foodsources for which

masterpatch? is true, also become member of the colonies' list masterpatchesInRangeList.

to PatchesInRangeProc

 let allPatches []

 let allMasterPatches []

 let xcol xcor

 let ycol ycor

 set allPatchesInRangeList []

 set masterpatchesInRangeList []

; food sources within the colonies' foraging range are addressed..

 ask foodsources with [distancexy xcol ycol <= (ForagingRangeMax_m

 * Scaling_NLpatches/m)]

 [

 set allPatches fput who allPatches

 ; and their ID (who) is saved

 if masterpatch? = true [set allMasterPatches fput who allMasterPatches]

 ; they they are masterpatches, their ID (who) is also saved in another list

]

 set allPatchesInRangeList allPatches

 ; list of all food sources within the colonies foraging range

 set masterpatchesInRangeList allMasterPatches

 ; list of the masterpatch food sources within the colonies foraging range

end

FoodsourcesInFlowerAndRangeProc

Purpose: creates 5 lists, containing the who of foodsources or masterpatches offering nectar,

offering pollen or offering either nectar or pollen within the foraging range

Called by: CreateColoniesProc

Asking agents: (newly created) colonies

Calling: none

Description

All foodsources within the foraging range of a colony are addressed, using the colonies' list

allPatchesInRangeList (created in FoodsourcesInFlowerAndRangeProc).

If they contain pollen, their ID (who) is added to the colonies' list

pollenInFlowerAndRangeList and their masterpatches are added to

masterpatchesWithPollenlayersInFlowerAndRangeList.

This is then repeated for foodsources offering nectar within foraging to create the lists

nectarInFlowerAndRangeList and masterpatchesWithNectarlayersInFlowerAndRangeList.

The two lists pollenInFlowerAndRangeList and nectarInFlowerAndRangeList are then

combined in the list allSourcesInFlowerAndRangeList with duplicates being removed. These

lists allow to easily address nectar or pollen patches accessible to a colony in the foraging

procedures.

to FoodsourcesInFlowerAndRangeProc

 ; called by a colony; creates 5 lists, containing the who of foodsources or

 ; masterpatches offering nectar, offering pollen or offering either nectar or pollen

 ; within the foraging range

73

 set pollenInFlowerAndRangeList []

 set nectarInFlowerAndRangeList []

 set allSourcesInFlowerAndRangeList []

 let pol []

 let polM []

 let nec []

 let necM []

 foreach allPatchesInRangeList ; all patches within foraging range are addressed

 [

 ask foodsource ?

 [

 if pollen_g > 0 ; if they contain pollen..

 [

 set pol lput who pol ; .. their ID is added to the list pol

 set polM lput masterpatchID polM ; .. and their masterpatch is added to the

 list polM

]

 if nectar_myl > 0 ; similar for nectar

 [

 set nec lput who nec

 set necM lput masterpatchID necM

]

]

]

 set polM remove-duplicates polM ; make sure, a masterpatch occurs only once in the

 ; polM list

 set necM remove-duplicates necM ; ditto for necM

 set pollenInFlowerAndRangeList pol

 set masterpatchesWithPollenlayersInFlowerAndRangeList polM

 set nectarInFlowerAndRangeList nec

 set masterpatchesWithNectarlayersInFlowerAndRangeList necM

 set allSourcesInFlowerAndRangeList remove-duplicates

(sentence pollenInFlowerAndRangeList nectarInFlowerAndRangeList)

; combines the nectar and pollen list into a single list

end

UpdateColoniesProc

Purpose: daily update of the colonies' statistics, labels and signs, removal of dead colonies

Called by: UpdateMorning_Proc

Asking agents: none

Calling:

FoodsourcesInFlowerAndRangeProc

DieProc

CompetitionPointDateREP

Description

Colonies that run out of energy or are without adult bees are removed. The total number of

colonies and the number of adult males and queens ever produced in a gridcell are saved as

patches-own variables (nColonies, nMalesProduced, nQueensProduced).

74

If FoodsourcesInFlowerUpdate? was set true in UpdateFoodsourcesProc, then

FoodsourcesInFlowerAndRangeProc is called to update which foodsources in the foraging

range of the colony are in flower.

All worker bees and the old mother queen die after the colony's competition day as soon as no

more brood is left in the colony.

All colony members die due to starvation, when its nectar stores (energyStore_kJ) are

depleted.

If no adult bees are left in the colony, the brood dies.

 to UpdateColoniesProc

 ask colonies

 [

 let whoCol who

 let countBroodMort_NA 0 ; count number of brood dying through no adults left

 let countBRoodMort_ES 0 ; count number of brood dying through energy stores

 ; being empty

 if FoodsourcesInFlowerUpdate? = true

 [FoodsourcesInFlowerAndRangeProc] ; updated, if some foodsources started

; or stopped flowering today

 if ticks > competitionPointDate ; death of colony after competition point

 and allEggs + allLarvae + allPupae = 0

 [ask Bees with [colonyID = whoCol and adultAge > 10

 and (caste = "worker" or caste = "queen")] ; as males are outside

 ; the colony they are killed separately in UpdateSeasonalEventsProc

 [DieProc "Colony death after CP!"]]

 if energyStore_kJ <= 0 ; death of colony due to starvation

 [

 ask Bees with [colonyID = whoCol]

 [

 if brood? = TRUE [set countBRoodMort_ES countBRoodMort_ES + number]

 DieProc "Colony's energy store depleted!"

]

]

 if (sum [number] of Bees with [colonyID = whoCol and brood? = false] = 0)

 [ask Bees with [colonyID = whoCol] ; brood dies, if no adults are left

 [

 if brood? = TRUE [set countBroodMort_NA countBroodMort_NA + number]

 DieProc "No adult bees left!"

]

]

 ; keeping track of dying brood & reason of death:

 set broodDeathsNoAdults broodDeathsNoAdults + countBroodMort_NA

 set broodDeathsEnergyStores broodDeathsEnergyStores + countBRoodMort_ES

 set summedIncubationToday_kJ 0 ; so far, no incubation has taken place today

Additionally, some colony statistics are updated, to keep track of the number of bees in

different developmental stages (and similar for larvae, pupae, adults, workers, adult queens

(hibernating or active), active adult queens (i.e. not in hibernation), adult males and the total

colony size (i.e. all Bees of the Colony, including brood (but not offspring queens or males

that already have left the colony):

 set allEggs sum [number] of Bees with [colonyID = whoCol and stage = "egg"]

 set allLarvae sum [number] of Bees with [colonyID = whoCol and stage = "larva"]

 set allPupae sum [number] of Bees with [colonyID = whoCol and stage = "pupa"]

 set allAdults sum [number] of Bees with [colonyID = whoCol and stage = "adult"]

 set allAdultWorkers sum [number] of Bees

with [colonyID = whoCol and caste = "worker" and stage = "adult"]

 set allAdultQueens sum [number] of Bees

with [colonyID = whoCol and caste = "queen" and brood? = false]

 set allAdultActiveQueens sum [number] of Bees

with [colonyID = whoCol and caste = "queen" and activity != "hibernate"

 and brood? = false]

 set allAdultMales sum [number] of Bees

with [colonyID = whoCol and caste = "male" and brood? = false]

75

 set colonysize sum [number] of Bees with [colonyID = whoCol]

 ifelse allAdultWorkers > 0 ; calculate larvaWorkerRatio if adult workers are present

 [set larvaWorkerRatio allLarvae / allAdultWorkers]

 [set larvaWorkerRatio NotSetHigh]

 set colonyWeight_mg sum [number * weight_mg] of Bees with [colonyID = whoCol]

The queen switches to lay haploid instead of diploid eggs on the day of the colonies' switch

point (Duchateau & Velthuis 1988). Colonies may switch with a daily probability

(DailySwitchProbability) if they are in the eusocial phase (i.e. worker bees are or were

present) and the ratio of larvae:worker bees is below a certain threshold

(LarvaWorkerRatioTH):

 if switchPointDate = NotSetHigh ; i.e. the colony/queen hasn't switched to lay

; haploid eggs

 [

 if eusocialPhaseDate < NotSetHigh ;.. but adult workers are (or were) present

 and larvaWorkerRatio < LarvaWorkerRatioTH ;.. and enough worker bees are present

 ; rel. to larvae

 [

 if random-float 1 <= DailySwitchProbability ; then the colony may switch to

 [set switchPointDate ticks] ; the produce haploid eggs

]

]

The colonies' competition point (when worker start to lay eggs themselves but also eat eggs

produced by nestmates resulting in very high brood mortality) is determined in the reporter-

procedure CompetitionPointDateREP, if 1.) it wasn't determined already, 2.) the colony is in

the eusocial phase and 3.) the queen production day (i.e. when diploid larvae are raised as

queens) is already set. Colonies beyond the competition point are shown topsy-turvy:

 if competitionPointDate = NotSetHigh ; i.e. if CP is not determined yet..

 and eusocialPhaseDate < NotSetHigh ; but colony is in eusoc. phase

 and queenProductionDate < NotSetHigh ; and queen product. day is defined

 [set competitionPointDate CompetitionPointDateREP]

 if ticks >= competitionPointDate [set heading 180]

; colony symbol is turned on its head after CP

Finally the colony signs and labels, providing information on the interface on size and state of

the colony, are updated. Before colonies without any bees are removed (die), the grid cell

(NetLogo "patch") they are located updates its records on number of males

(nMalesProduced), queens (nQueensProduced) and colonies (nColonies) ever produced at

this location. If the switch KeepDeadColonies? is set false (default: true), then DeadCols are

removed from the simulation. (This has no effect on the model outcome - except of changing

the series of pseudo-random numbers - nor does it strongly affect the computation time).

; LABELS & SIGNS:

 set label colonysize

 if count Bees with [colonyID = whoCol and caste = "queen" and mated? = true] = 0

 [set queenright? false]

 ifelse count Bees with [colonyID = whoCol] = 0

 [

 ; to diplay the production of reproductives on the map..

 let malesHere totalMalesProduced ; ... the numer of adult males..

 let queensHere totalQueensProduced ; .. and adult queens ever produced by

 ; this dying colony..

 ask patch-here ; (info saved in NetLogo patch = grid cell)

 [

 set nMalesProduced nMalesProduced + malesHere ; .. is added to the total

; number of males..

 set nQueensProduced nQueensProduced + queensHere ; and queens ever produced

 ; here at this Netlogo patch

 set nColonies nColonies + 1 ; ..and the total colonies here

76

]

 let EndSeasonDate [seasonStop] of onespecies speciesIDcolony

 ifelse day >= EndSeasonDate

 [set ColonyDeathsEndSeason ColonyDeathsEndSeason + 1]

 [set ColonyDeathsNoBees ColonyDeathsNoBees + 1]

 DieProc "Colony: No adults or brood left in this colony!"

; colony dies, as no bees are left

]

 [

 set colonyAge colonyAge + 1 ; surviving colonies age by 1 day

]

]

 if KeepDeadColonies? = false and Day = 1 [ask DeadCols [die]]

; dead colonies can be removed from the simulation with the new year

end

CompetitionPointDateREP

Purpose: determines the date of a colonies' competition point

Called by: UpdateColoniesProc

Asking agents: colonies

Calling: none

Description

The competition point is calculated, following Duchateau & Velthuis 1988 with the equation

derived from their Fig. 6. It is driven by the production of queens and happens at latest 45

days after emergence of the first worker bees.

to-report CompetitionPointDateREP

 ; determines the date of a colonies' competition point

 let compDate NotSetHigh

 let x queenProductionDate - eusocialPhaseDate

 let y 0.7 * x + 15.5 ; from Duchateau & Velthuis 1988, Fig. 6

 let latestCPafter_d 45

 set compDate round (eusocialPhaseDate + y)

 if compDate - eusocialPhaseDate > latestCPafter_d

 [set compDate eusocialPhaseDate + latestCPafter_d]

 report compDate

end

UpdateColonyStoreBarsProc

Purpose: daily update of the colonies' nectar and pollen store display

Called by: UpdateMorning_Proc

Asking agents: none

Calling: none

77

Description

The storeBars are located on the interface underneath the colony they belong to and their

length (size) represents the relative amount of nectar and pollen stored in comparison to a

theoretical ideal store. A size factor is calculated as current amount of food stored divided by

an "ideal" amount of food stored:

to UpdateColonyStoreBarsProc

 ask storeBars

 [

 let nectarSizeFactor 0

 let pollenSizeFactor 0

 ifelse colony storeColonyID = nobody

 [die] ; storeBars die here (and not in DieProc as not a biological agent)

 [

 ask colony storeColonyID

 [

 set nectarSizeFactor energyStore_kJ / (idealEnergyStore_kJ + 0.00001)

; + 0.00001 to avoid division by zero

 set pollenSizeFactor pollenStore_g / (idealPollenStore_g + 0.00001)

 if nectarSizeFactor > 1 [set nectarSizeFactor 1]

 if pollenSizeFactor > 1 [set pollenSizeFactor 1]

]

]

 if store = "Nectar"

 [set size maxSize * nectarSizeFactor]

 if store = "Pollen"

 [set size maxSize * pollenSizeFactor]

]

end

The "ideal" values are calculated in the reporter procedures StimForagingNectarREP and

StimForagingPollenREP and are based on the amount of food that is approximately required

within a certain number of days.

NeedNectarPollenLarvaeTodayProc

Purpose: calculates for each colony how much nectar and pollen is required today to feed the

larvae

Called by: Go

Asking agents: none

Calling: MaxWeightGainToday_mg_REP

Description

All bees with stage = "larva" in each colony are addressed. Their need for pollen is calculated

from the maximal weight they can gain today (determined in the reporter-procedure

MaxWeightGainToday_mg_REP) times a pollenToBodymassFactor factor times the cohort

size (number). This is summed up in the local variable pollenNeedMyColony_g over all larvae

cohorts of the colony and saved in the colony variable pollenNeedLarvaeToday_g. The

78

colonies' energy needs for the larvae (energyNeedToday_kJ) are then the product of the pollen

needs and the global variable EnergyRequiredForPollenAssimilation_kJ_per_g.

to NeedNectarPollenLarvaeTodayProc ; calculates how much nectar and pollen is

; approximately required today to feed the larvae

 ask colonies

 [

 let myColony who

 let pollenNeedMyColony_g 0 ; no pollen need so far

 ; address the larvae of this colony:

 ask bees with [stage = "larva" and colonyID = myColony]

 [set pollenNeedMyColony_g pollenNeedMyColony_g ; pollen need summed up here..

 + number ; calculated from cohort size ..

 * ((MaxWeightGainToday_mg_REP who)

; times max. possible gain in weight..

/ ([pollenToBodymassFactor] of OneSpecies speciesID))

;..translated into pollen

 / 1000] ; units: mg -> g

 set pollenNeedLarvaeToday_g pollenNeedMyColony_g

 set energyNeedToday_kJ

 pollenNeedLarvaeToday_g * EnergyRequiredForPollenAssimilation_kJ_per_g

]

end

MaxWeightGainToday_mg_REP

Purpose: calculates a larva's maximal weight gain during 24 hrs

Called by: FeedLarvaeProc, NeedNectarPollenLarvaeTodayProc

Asking agents: Bees (larva)

Calling: none

Input: myID

Description

The weight gain of a single larva is calculated by multiplying its current weight with a

species-specific weight gain factor minus the current weight. Larvae reaching a caste specific

maximal weight stop growing:

to-report MaxWeightGainToday_mg_REP [myID]

 let maxWeightGain_mg 0 ; actual max. weight gain not determined yet

 let memoQPupationMax [devWeight_Q_PupationMax_mg] of OneSpecies speciesID

 ; the max. pupal weight of a queen

 let memoWPupationMax [devWeightPupationMax_mg] of OneSpecies speciesID

 ; the max. pupal weight of a worker

 ask bee myID

 [

 let myGrowthFactor [growthFactor] of OneSpecies speciesID

; growth factor depends on the species

 set maxWeightGain_mg (weight_mg * myGrowthFactor) - weight_mg

; i.e. a larva's max. weight gain today

 ; if the maximum new weight is greater than the pupation max, reduce maxWeightGain

 ; to difference between pupation max and current weight:

 if caste = "queen" and weight_mg + maxWeightGain_mg > memoQPupationMax

 [set maxWeightGain_mg memoQPupationMax - weight_mg] ; for queens

 ; .. and for worker (or still undefined) larvae:

79

 if (caste = "worker" or caste = "undefined" or caste = "male")

and weight_mg + maxWeightGain_mg > memoWPupationMax

 [set maxWeightGain_mg memoWPupationMax - weight_mg]

]

 report maxWeightGain_mg

end

ActivityProc

Purpose: determines the activity (resting, egg laying, nursing, nectar or pollen foraging) of a

worker or queen bee

Called by: Go

Asking agents: bees (workers and non-hibernating queens)

Calling:

 StimEgglayingREP

 StimForagingNectarREP

 StimForagingPollenREP

 StimNursingREP

EgglayingProc

BroodIncubationProc

ForagingProc

Description

In this procedure, the bees repeatedly decide on the tasks they perform during the day. The

main activities are "egglaying", "nursing", "nectarForaging" and "pollenForaging". Decisions

are made via a stimulus-threshold approach in combination with ranking the task according to

their importance for the colony. The activity of bees not engaging in a task is set to "resting".

There are some more activities, which are not part of this procedure like "hibernate" (set in

QueensLeavingNestProc) when young queens overwinter, "nestConstruction" (set in

NestSitesSearchingProc) when freshly emerged queens have found a nesting site and are

about to create a new colony and a number of foraging activities, defining the sub-tasks (like

"searching", "collectNectar", "bringingNectar" etc

At the beginning, the activity of a bee is set to "resting". Then the bees' colony is addressed to

determine the stimuli in this colony for egg laying, nectar foraging, pollen foraging and

nursing (each calculated in a reporter procedure: StimEgglayingREP,

StimForagingNectarREP, StimForagingPollenREP, StimNursingREP).

to ActivityProc

 let break_s 0.5 * 3600 ; time a bee spents resting before potentially becoming

; active again

 set activity "resting"

 if colonyID >= 0 ; only colony members can angage in tasks

 [

 ask Colony colonyID ; the stimuli in a bees' colony are determined

 [

 set stimEgglaying StimEgglayingREP

 set stimNectarForaging StimForagingNectarREP

 set stimPollenForaging StimForagingPollenREP

 set stimNursing StimNursingREP

]

80

If a stimulus is higher than the bees' threshold for this task, her activity is set to this task. The

order in which stimuli and threshold are compared is based on the rank of the task. Tasks are

ranked from lowest to highest priority, starting with the ones that have the least impact on the

colony. Activity can be re-set immediately afterwards to another task if the stimulus is higher

than the threshold and therefore tasks of lower rank will only be performed when the

thresholds for the higher priority tasks are not met.

Order:

1. egg laying (eggs are less valuable than larvae or pupae)

2. nursing (lack of nursing will delay development but not quickly kill brood)

3. pollen foraging (lack of pollen would kill larvae)

4. nectar foraging (depleted nectar stores would kill the whole colony)

 ; if a colony-specific stimulus exceeds the individual threshold,

 ; "activity" of the bee is set to this particular task,

 ; tasks are ordered by their importance:

 if [stimEgglaying] of Colony colonyID > thEgglaying [set activity "egglaying"]

 if [stimNursing] of Colony colonyID > thNursing [set activity "nursing"]

 if [stimPollenForaging] of Colony colonyID > thForagingPollen

[set activity "pollenForaging"]

 if [stimNectarForaging] of Colony colonyID > thForagingNectar

[set activity "nectarForaging"]

As an example, if the stimuli for nursing and nectar foraging both exceeded the bees'

thresholds, than her activity would be "nectarForaging".

The activity of a bee is then written in her activityList ("REST", "EGG", "NURSE", "P-FOR",

"N-FOR") and the procedure for this task (EgglayingProc, BroodIncubationProc, or

ForagingProc (for nectar and pollen) is called. Note that cuckoo bees neither engage in

foraging nor in brood care:

 if speciesName = "Psithyrus" and (activity = "nursing" or activity = "pollenForaging"

 or activity = "nectarForaging")

 [set activity "resting"] ; cuckoo bees don't work!

 if activity = "resting" [set activityList lput "REST" activityList

 set personalTime_s personalTime_s + break_s

]

 if activity = "egglaying" [set activityList lput "EGG" activityList

 EgglayingProc

]

 if activity = "nursing" [set activityList lput "NURSE" activityList

 BroodIncubationProc

]

 if activity = "pollenForaging"

 [set activityList lput "P-FOR" activityList

 ForagingProc

]

 if activity = "nectarForaging"

 [set activityList lput "N-FOR" activityList

 ForagingProc

]

end

If none the stimuli exceeded the bee's threshold, then the activity remains "resting", no task

related procedure is called and the local variable break_s is added to the bees'

personalTime_s, reflecting the time a bee is resting.

81

StimEgglayingREP

Purpose: calculates the stimulus for egg laying within a colony

Called by: ActivityProc

Asking agents: Colonies

Input: none

Description

The stimulus for egg laying is set to 0, but can be changed to 1, if either enough pollen is

present but no eggs or larvae or if at least one worker bee is present:

to-report StimEgglayingREP

 let egglayingStim 0 ; egg stimulus is 0, unless..

 ; ..pollen stores are ok and no eggs or larvae are present..

 if ((pollenStore_g > [minPollenStore_g] of oneSpecies speciesIDcolony

and (allEggs + allLarvae) = 0))

 or allAdults > 1 ; ..or if at least 1 worker is present

 [set egglayingStim 1] ; ..then egg stimulus is 1

 report egglayingStim

end

StimForagingNectarREP

Purpose: calculates the stimulus for nectar foraging within a colony

Called by: ActivityProc

Asking agents: Colonies

Input: none

Description

The stimulus to forage nectar (nectarStim) results from a comparison of the actual energy

store with an "ideal" energy store (idealEnergyStore_kJ) which takes the estimated energy

consumption of larvae (energyNeedToday_kJ), a number of days the stores are supposed to

last (storeSize_d), a minimal energy store (minNectarStore_kJ) and a correction factor

(idealEnergyFactor) into account. Depending on whether or not the stimulus exceeds

nectarStimTH, it is then either set to 1 or 0.

As there is little understanding about the decision making of real bees, the procedures to

determine stimuli and thresholds do not actually reflect biological processes but instead are

the result of a heuristic approach, testing the model with various versions and

parameterisations to maximise the population size. The chosen implementation leads to

reasonable colony growth and population dynamics.

to-report StimForagingNectarREP ; asked by colony

 let storeSize_d 5

 let minNectarStore_kJ 20

 let nectarStimTH 0.005 ; heuristically determined

 let idealEnergyFactor 6 EnergyFactorOnFlower

 set idealEnergyStore_kJ IdealEnergyFactor * energyNeedToday_kJ

* storeSize_d + minNectarStore_kJ

82

 let nectarStim (idealEnergyStore_kJ - energyStore_kJ) / idealEnergyStore_kJ

; if the stimulus is low, it is set to 0, otherwise to 1:

 ifelse nectarStim > NectarStimTH

 [set nectarStim 1]

 [set nectarStim 0]

 ; foraging only during daytime:

 if (Daytime_s < Sunrise_s)

 or (Daytime_s > Sunrise_s + DailyForagingPeriod_s)

 [set nectarStim 0]

 report nectarStim

 end

StimForagingPollenREP

Purpose: calculates the stimulus for pollen foraging within a colony

Called by: ActivityProc

Asking agents: Colonies

Input: none

Description

The stimulus to forage pollen (pollenStim) results from a comparison of the actual pollen store

with an "ideal" pollen store (idealPollenStore_g) which takes the estimated pollen

consumption of larvae (pollenNeedLarvaeToday_g), a number of days the stores are supposed

to last (storeSize_d) and a minimal pollen store (minPollenStore_g) into account. Depending

on whether or not the stimulus exceeds pollenStimTH, it is then either set to 1 or 0.

to-report StimForagingPollenREP ; asked by colony

 let storeSize_d 5

 let pollenStimTH 0.005 ; heuristically determined

 set idealPollenStore_g pollenNeedLarvaeToday_g * storeSize_d

+ [minPollenStore_g] of oneSpecies speciesIDcolony

 if idealPollenStore_g < 0

[AssertionProc "Negative idealPollenStore_kJ! (StimForagingPollenREP)"]

 let pollenStim (idealPollenStore_g - pollenStore_g) / idealPollenStore_g

 ifelse pollenStim > pollenStimTH

 [set pollenStim 1]

 [set pollenStim 0]

 if (Daytime_s < Sunrise_s) or (Daytime_s > Sunrise_s + DailyForagingPeriod_s)

 ; foraging only during daytime

 [set pollenStim 0]

 report pollenStim

 end

StimNursingREP

Purpose: calculates the stimulus for nursing within a colony

Called by: ActivityProc

Asking agents: Colonies

Input: none

83

Description

If the energy required for incubation today (incubationRequiredToday_kJ), which is the

average energy required per day for an individual (devQuotaIncubationToday_kJ) times the

brood (allEggs + allLarvae + allPupae) is larger than the incubation actually received today

(summedIncubationToday_kJ), then the stimulus to nurse (nursingStim) is set to 1 or

otherwise to 0.

to-report StimNursingREP

 let nursingStim 0

 let incubationRequiredToday_kJ [devQuotaIncubationToday_kJ]

 of Onespecies speciesIDcolony

* (allEggs + allLarvae + allPupae) ; approx. incubation required for

; whole brood nest today

 set nursingStim 0

 if incubationRequiredToday_kJ > summedIncubationToday_kJ [set nursingStim 1] ; bees

; will try to incubate brood nest, until requirements for today are fulfilled

 report nursingStim

end

EgglayingProc

Purpose: creates a batch of new eggs

Called by: ActivityProc

Asking agents: Bees (workers and non-hibernating queens)

Calling: EggsParameterSettingProc

Description

After defining some local variables, the number of cohorts (local variable newCohorts

representing the new eggs) and their cohort size is determined. If the colony variable

cohortBased? is true, then only one cohort is produced and the number of bees in this cohort

(beesInCohort) is set to batchsize of the species. If cohortBased? is false (i.e. it is an

individual-based colony), then the number of cohorts is set to batchsize of the species and

beesInCohort is 1.

to EgglayingProc

 let mother caste ; to distinguish queen and worker laid eggs

 let newCohorts 1 ; for cohort based cols (will later be changed in case of IBM cols)

 let beesInCohort [batchsize] of OneSpecies speciesID ; for cohort based cols (will

 ; later be changed in case of IBM cols)

 let eggWeight [devWeightEgg_mg] of OneSpecies speciesID

 let pollenToMass [pollenToBodymassFactor] of OneSpecies speciesID

 if [cohortBased?] of colony colonyID = false ; i.e. IBM colonies..

 [

 set newCohorts [batchsize] of OneSpecies speciesID ; .. number of "cohorts" =

; batchSize, as each "cohort" contains only a single bee (as IBM colony)..

 set beesInCohort 1 ; .. with only 1 bee in each

]

84

If enough energy and pollen is stored in the colony, new bees (N = newCohorts) are created,

using the NetLogo hatch command, where the new agent inherits all variables from its

"parent" (in this case the egg laying bee).

If the mother is the queen, then the eggs can be haploid or diploid. If the colony has reached

the switching point to produce reproductives then queen laid eggs are haploid, and will

develop into males otherwise her eggs are diploid. Diploid bees may develop into workers or

queens, depending on their individual development and the state of the colony. However, if

they are homozygous and SexLocus? is true, then they become males (see

Development_LarvaeProc and DetermineCaste_REP). Worker laid eggs are always haploid.

Then the procedure EggsParameterSettingProc is called, which re-sets the bees' variables:

if [pollenStore_g] of colony colonyID > pollenCost_g and

 [energyStore_kJ] of colony colonyID > energyCost_kJ

[; eggs can only be laid, if enough energy and pollen is present!

 hatch newCohorts ; "hatch" command, as "create" is not possible in a turtle context

 [

 ifelse mother = "queen"

 [; queens can produce male and female offspring:

 ifelse ticks > [switchPointDate] of colony colonyID

; after the switch point, only males are produced

 [set ploidy 1] ; 1: haploid male

 [set ploidy 2] ; 2: diploid bee (worker, queen or diploid male)

]

 [; workers can only produce male offspring:

 set ploidy 1 ; 1: haploid male

]

 EggsParameterSettingProc beesInCohort ; calls the procedure

; EggsParameterSettingProc and transfers the local variable beesInCohort

]

Finally, costs in terms of energy and pollen consumption are calculated and the queen's

personalTime_s is updated:

 ; Pollen cost is total mass of laid eggs * the conversion of pollen to bee body mass

 ; Energy cost is amount needed by female to facilitate replacement lost pollen

 let pollenCost_g beesInCohort * eggWeight * pollenToMass / 1000

 let energyCost_kJ pollenCost_g * EnergyRequiredForPollenAssimilation_kJ_per_g

 ; Remove costs from store

 ask colony colonyID

 [

 set pollenStore_g pollenStore_g - pollenCost_g

 set energyStore_kJ energyStore_kJ - energyCost_kJ

]

]

set personalTime_s personalTime_s + 24 * 3600 ; i.e. no further

; action on that day, personalTime_s will be reset on next morning!

 end

EggsParameterSettingProc

Purpose: sets parameter values for new eggs

Called by: EgglayingProc

Input: beesInCohort (i.e. batchsize of the addressed bumblebee species)

85

Asking agents: Bees (workers and non-hibernating queens)

Calling: ThresholdLevelREP

Description

Those parameters that are different in an egg from its adult mother are reset here (remember

that eggs, created with the "hatch" command, inherited all parameter values of their mother).

The allelesList, which represents a bee's genome, receives randomly one (of the two) alleles

of its mother's allelesList. Diploid eggs, laid by a mated queen, also receive the (single) allele

present in the spermathecaList of their mother. Thresholds for nectar and pollen foraging, egg

laying and nursing are set to values defined in ThresholdLevelREP.

to EggsParameterSettingProc [beesInCohort]

 ; sets parameter values for new eggs

 ; alleles of the egg:

 let shiftDrawnCohorts 1 ; (1) to show cohorts above the colony

 let myAllelesList []

 set myAllelesList fput one-of allelesList myAllelesList ; egg gets one allele from

 ; its mother

 set allelesList myAllelesList

 set caste "undefined" ; castes: "undefined", "queen", "worker", "male"

 ifelse ploidy = 1 ; haploid males

 [

 set color violet

 set caste "male"

]

 [; females and diploid males:

 ...

 set color blue

 set allelesList fput one-of spermathecaList allelesList ; diploid bees get

 ; another allele from their father/spermatheca

 if SexLocus? = true ; if alleles refer to the sex locus..

 and item 0 allelesList = item 1 allelesList ; .. and bee is homozygous..

 [set caste "male"] ; .. it becomes a diploid male!

]

 set spermathecaList [] ; eggs haven't mated yet..

 set size CohortSymbolSize

 set shape "halfline"

 __set-line-thickness 0.5

 set heading 0

 set number beesInCohort

 set TotalBeesEverProduced TotalBeesEverProduced + number

 set activity "resting"

 set adultAge 0

 set brood? true

 set broodAge 0 ; set to 0 as eggs are created with the "hatch" command

 set cumulTimeEgg_d 0 ; Set to 0, not mother's value

 set cumulTimeLarva_d 0 ; Set to 0, not mother's value

 set cumulTimePupa_d 0 ; Set to 0, not mother's value

 set cropVolume_myl 0 ; now based on weight, has to be set on emergence

 set pollenPellets_g 0 ; now based on weight, has to be set on emergence

 set currentFoodsource -1 ; not set yet

 set nectarsourceToGoTo -1 ; not set yet

 set pollensourceToGoTo -1 ; not set yet

 set stage "egg" ; egg, larva, pupa, adult

 set mated? false

 set thEgglaying ThresholdLevelREP "eggLaying" "egg"

 set thForagingNectar ThresholdLevelREP "nectarForaging" "egg"

 set thForagingPollen ThresholdLevelREP "pollenForaging" "egg"

 set thNursing ThresholdLevelREP "nursing" "egg"

 set activityList []

 set knownMasterpatchesNectarList []

 set knownMasterpatchesPollenList []

 set weight_mg [devWeightEgg_mg] of OneSpecies speciesID

 ;;; set colonyID ... no need to re-set!

 set cumulIncubationReceived_kJ 0

86

 set emergingDate NotSetLow

 set expectation_NectarTrip_s 0

 set expectation_PollenTrip_s 0

 set glossaLength_mm 0

 ;;; set mtDNA ... no need to re-set!

 set nectarLoadSquadron_kJ 0

 set personalTime_s 0

 set pollenForager? false

 set pollenLoadSquadron_g 0

 ;;; set speciesID ... no need to re-set!

 ;;; set speciesName ... no need to re-set!

 ; location of egg cohort on the interface is relative to its colony's location:

 set xcor [xcor] of Colony colonyID

 - [devAgeEmergingMin_d / 10] of OneSpecies speciesID

 set ycor [ycor] of Colony colonyID + shiftDrawnCohorts

 ifelse ShowCohorts? = false

 [hide-turtle]

 [show-turtle]

 ask colony colonyID [set totalEggsProduced totalEggsProduced + beesInCohort]

end

BroodIncubationProc

Purpose: determines how much energy for brood incubation is provided by a "nursing" bee

Called by: ActivityProc

Asking agents: bees (workers and non-hibernating queens)

Calling: none

Calculating incubation:

We derived the duration of a single heating activity from Heinrich (1979). His Fig. 5.2 is

showing 144 temperature recordings (each lasting 10 minutes) of a single, brood incubating

queen (B. vosnesenskii) over 24 hrs. We identified 20 heating periods covered by ca. 96

recordings. Hence, the total total time spent on incubation was 96 * 10 min. = 960 minutes per

day or 960 * 60 / 20 = 2880s of incubation per heating period. Silvola (1984) suggests a B.

terrestris queen spends about 10 kJ/day on incubation. Assuming the mean weight of a B.

terrestris queen is 0.8g (Beekman et al. 1998) then the energy provided from heating bees is

10kJ / 0.8g = 12.5 kJ/g. Assuming 960 minutes incubation per day, then 2.17 * 10-7 kJ of heat

can be produced by 1 mg heating bees per second.

Description

Based on the mass (weight_mg) of the incubating bee (cohort) and the time spent on

incubation (heatingPeriod_s), it is calculated how much energy the brood receives from this

incubation event in total (heatProvided_kJ).

This incubation energy is then equally distributed over the brood (heatProvidedPerBrood_kJ)

HeatProvidedPerBrood_kJ is summed up over time in each brood cohort

(cumulIncubationReceived_kJ), which is one factor that determines when this individual (or

cohort) advances into the next developmental stage. SummedIncubationToday_kJ keeps track

of the total investment of a colony in brood incubation. The energy spent on incubation is then

subtracted from the colony's energy store and personalTime_s for the incubating bee is

increased by heatingPeriod_s.

87

to BroodIncubationProc

 let heatingPeriod_s 2880 ; time spent on incubation - ca. 48 min. between foraging

flights of incubating queen, Heinrich, p. 92, Fig. 5.2

 let incubationEnergy_kJ_per_mg_s 0.000000217013888 ; kJ per mg heating bee-mass per

; second (calculation see above)

 let heatProvided_kJ heatingPeriod_s * incubationEnergy_kJ_per_mg_s

* weight_mg * number ; [kJ] energy released by

; heating bee (cohort) during an incubation phase

 let heatProvidedPerBrood_kJ 0

 if [allEggs + allLarvae + allPupae] of Colony colonyID > 0

 [; amount of energy brood receives per individual:

 set heatProvidedPerBrood_kJ

 heatProvided_kJ

 / [allEggs + allLarvae + allPupae] of Colony colonyID]

 let memoColonyID colonyID

 ask bees with [colonyID = memoColonyID

 and (stage = "egg" or stage = "larva" or stage = "pupa")]

 ; the brood now receives the energy, which is summed up in cumulIncubationReceived_kJ

 [set cumulIncubationReceived_kJ

 cumulIncubationReceived_kJ + heatProvidedPerBrood_kJ]

; energy spent for heating is subtracted from colonies' energy stores

 ask Colony colonyID

 [

 set summedIncubationToday_kJ summedIncubationToday_kJ + heatProvided_kJ

 set energyStore_kJ energyStore_kJ - heatProvided_kJ

]

 set personalTime_s personalTime_s + heatingPeriod_s ; heating takes some time..

end

ForagingProc

Purpose: records the foraging activities and calls the other foraging procedures

Called by: ActivityProc

Asking agents: bees (workers and non-hibernating queens)

Calling:

 Foraging_searchingProc

 Foraging_collectNectarPollenProc

 Foraging_costs&timeProc

 Foraging_unloadingProc

Description

The global variable TotalForagingTripsToday keeps track of a day's total number of foraging

trips from all colonies.

If a bee's activity is "pollenForaging" then pollenForager? is set true, and currentFoodsource

(the foodsource the bee will be visiting) is set pollensourceToGoTo (determined in

Foraging_PatchChoiceProc).

If a bee's activity is "nectarForaging" then pollenForager? is set false, and currentFoodsource

is set nectarsourceToGoTo.

The activity of bees without a foodsource to go (i.e. if currentFoodsource < 0) is set to

"searching", otherwise the bee's activity is to either "collectPollen" or "collectNectar". All

changes of their activity is logged in their activityList.

88

Then the procedures dealing with the detailed processes of foraging are called:

Foraging_searchingProc, Foraging_collectNectarPollenProc, Foraging_costs&timeProc,

and Foraging_unloadingProc.

to ForagingProc

 set TotalForagingTripsToday TotalForagingTripsToday + number

 ifelse activity = "pollenForaging" ; if bee decided to collect pollen..

 [

 set pollenForager? true ; .. it becomes a pollen forager..

 set currentFoodsource pollensourceToGoTo

]

 [

 set pollenForager? false ; or otherwise a nectar forager

 set currentFoodsource nectarsourceToGoTo

]

 ifelse currentFoodsource < 0 ; i.e. currentFoodsource does not refer to

; an existing food source

 [

 set activity "searching"

 set activityList lput "S" activityList

]

 [

 ifelse pollenForager? = true

 [

 set activity "collectPollen"

 set activityList lput "cP" activityList

]

 [

 set activity "collectNectar"

 set activityList lput "cN" activityList

]

]

 Foraging_searchingProc ; unexperienced foragers search new flower patch

 set activityList lput (word "(" currentFoodsource ")") activityList

 Foraging_collectNectarPollenProc ; succesful scouts and experienced Foragers

 ; gather nectar

 Foraging_costs&choiceProc ; energy costs for flights and trip duration

 Foraging_unloadingProc ; ..and unload their crop & increase colony's honey store

 if (pollenLoadSquadron_g + nectarLoadSquadron_kj) > 0

 [AssertionProc "Bee carries pollen or nectar after unloading! (ForagingProc)"]

end

Foraging_searchingProc

Purpose: determines if a scout bee (activity = "searching") finds a foodsource

Called by: ForagingProc

Asking agents: bees (workers and non-hibernating queens)

Calling:

DetectionProbREP

Foraging_bestLayerREP

Foraging_SortKnownPatchesListREP

Description

89

Only bees with activity = "searching" are addressed in this procedure. After defining some

local variables, the location of the bee's colony is saved (local variables xcol, ycol).

Depending on whether the bee is searching for nectar or pollen, masterpatchesWith(Nectar or

Pollen)layersInFlowerAndRangeList is saved in the local variable

myMasterpatchesWithFoodList. This list contains the ID/who of "masterpatches" representing

a flower patch where at least one flower species (foodsource) currently provides the forage

type the bee is after.

 to Foraging_searchingProc
; foragers with activity = "searching" may find a food source, other foragers

; (activity: collect nectar or pollen) don't do anything here

 if activity = "searching"

 [

 let chosenMasterpatch -1 ; bee hasn't found a food source yet

 let myMasterpatchesWithFoodList []

 let xcol NotSetHigh ; saves the location of the bee's colony to determine the

 ; detection probability

 let ycol NotSetHigh

 let pollenFor false

 if pollenForager? = true [set pollenFor true]

 ask colony colonyID

 [

 set xcol xcor

 set ycol ycor

 ifelse pollenFor = true

 [set myMasterpatchesWithFoodList

masterpatchesWithPollenlayersInFlowerAndRangeList]

; only masterpatches are considered, otherwise, detection prob. would

increase with the number of flowerspecies at a patch!

 [set myMasterpatchesWithFoodList

masterpatchesWithNectarlayersInFlowerAndRangeList]

]

The list of flower patches offering the wanted forage (myMasterpatchesWithFoodList) is then

shuffled and for each item of the list (ID/who of a "masterpatch") it is determined randomly

whether or not its flower patch is detected by the bee. The probability to be detected is

calculated in DetectionProbREP, based on the distance of the patch to the colony. In case of a

detection, the local variable chosenMasterpatch is set to the current item (i.e. to who (the ID)

of the "masterpatch" detected). As all items of the list are addressed, several detections may

occur but only the flower patch detected last is then the chosen one:

; (if activity = "searching"...):

 foreach shuffle myMasterpatchesWithFoodList ; shuffled only once, not every time a

 ; new item is addressed!

 [

 if random-float 1 < DetectionProbREP ? xcol ycol ; all items in list are

 ; addressed, hence chosenMasterpatch may be set several times - only last patch

 ; detected is the patch chosen!

 [set chosenMasterpatch ?] ; this is a masterpatch that has at least

 ; 1 layer currently providing the forage the bee is searching for

]

If a flower patch was detected (i.e. if chosenMasterpatch >= 0) then the bee is going to

exploit the most profitable foodsource ("layer") within this flower patch. This is determined in

Foraging_bestLayerREP, and the bee's currentFoodsource is set to who (ID) of this most

profitable foodsource.

The bee's knownMasterpatchesPollen(Nectar)List is then updated by adding

chosenMasterpatch, its activity is set to "collectPollen" ("collectNectar") and logged in its

activityList:

 ifelse chosenMasterpatch >= 0 ; if the bee has found a patch:

90

 [

 set currentFoodsource Foraging_bestLayerREP chosenMasterpatch ; the bees new

 ; food source is then the best layer at that patch (based on handling time)

 ; (only sources actually providing the food the bee is after are considered)

 ifelse currentFoodsource >= 0

 [

 ifelse pollenForager? = true

 [

 set knownMasterpatchesPollenList

fput chosenMasterpatch knownMasterpatchesPollenList

; food source is added to the list of known pollen patches

 set knownMasterpatchesPollenList

Foraging_SortKnownPatchesListREP knownMasterpatchesPollenList

; the list is now sorted again by distances,

; with duplicates being removed

 set activity "collectPollen"

 set activityList lput "cP" activityList]

 [

 set knownMasterpatchesNectarList

fput chosenMasterpatch knownMasterpatchesNectarList

; food source is added to the bees' list of known nectar patches

 set knownMasterpatchesNectarList

Foraging_SortKnownPatchesListREP knownMasterpatchesNectarList

; the bees' list is now sorted again by distance,

; with duplicates being removed

 set activity "collectNectar"

 set activityList lput "cN" activityList

]

]

In (usually) rare cases, it may happen that a bee finds a "masterpatch" but no nectar or pollen

is offered anymore at any of the "layers" (foodsources belonging to this flower patch), as it

was visited by (other) bees and already depleted earlier this day. In this case - but also when

no "masterpatch" was found in the first place - the bee will return empty (activity =

"returningEmpty") with currentFoodsource = -1:

 [

 ; bee found a patch but with 0 nectar or pollen (because this foodsource

; was visited by bees and depleted today)

 set activity "returningEmpty"

 set activityList lput "rE0" activityList ; rE0: to distiguish from unsuccessful

; scout who haven't found a masterpatch in the first place

]

]

 [

 ; otherwise, if bee does not find a patch at all:

 set activity "returningEmpty"

 set activityList lput "rE" activityList

]

]

 if activity = "searching"

[AssertionProc "Bee is still searching! (Foraging_searchingProc)"]

end

Foraging_SortKnownPatchesListREP

Purpose: removes duplicates in list of known foodsources and sorts it by distances of

masterpatches and the bee's colony

Asking agents: bees with activity = "searching"

Called by: Foraging_searchingProc

Input: knownPatchesList

91

Description

This reporter-procedure receives a list of foodsources (knownPatchesList). Duplicates (i.e.

foodsources represented several times) in the list are removed and then the list is ordered by

the distances of the foodsources to the colony of the scout bee, starting with the closest

foodsource.

to-report Foraging_SortKnownPatchesListREP [knownPatchesList]

; removes duplicates in list and sorts it by distances of masterpatches

; and the bee's colony

 let newList []

 set knownPatchesList remove-duplicates knownPatchesList ; duplicates are removed

 ask Colony colonyID ; this is the colony of the scouting bee

 [set newList sort-by [distance (Foodsource ?1) < distance (Foodsource ?2)]

knownPatchesList] ; (division by SCALING_NLpatches/m is not necessary here!)

 report newList

end

DetectionProbREP

Purpose: calculates the detection probability of a patch, based on its distance to the colony of

the searching bee.

Asking agents: bees

Called by: Foraging_searchingProc

Input: patchWho, xcol, ycol

Description

The distance between the colony location and the location of the centre of the foodsource is

calculated (unit: NetLogo gridcells) and divided by SCALING_NLpatches/m to translate it

into meter of real distance (dist_m). This distance is then reduced by the radius (radius_m) of

the foodsource and saved as relevantDistance_m (>= 0m). The detection proability (detProb)

is then calculated as suggested by Becher et al. (2016), with Lambda_detectProb being an

input set by the user. This allows the user to make detection probabilities dependent on the

structure of the landscape. If the foodsource is beyond the maximal foraging range (global

variable ForagingRangeMax_m) it can't be detected (detProb = 0):

to-report DetectionProbREP [patchWho xcol ycol]

 let dist_m 0

 let patchRadius_m -999

 ; calculation of the distance between Foodsource and Colony:

 ask Foodsource patchWho

 [

 set dist_m (distancexy xcol ycol) / SCALING_NLpatches/m

 set patchRadius_m radius_m

]

 ; calculation of the detection probability, based on the distance

 ; (see BEESCOUT model, Becher et al. 2016, Ecological Modelling):

 let relevantDistance_m dist_m - patchRadius_m

; the "relevant" distance is the distance to the edge of the field,

; i.e. dist_m (to centre) - patchRadius_m

 if relevantDistance_m < 0 [set relevantDistance_m 0] ; no negative distances!

92

 let detProb e ^ (Lambda_detectProb * relevantDistance_m)

 if relevantDistance_m > ForagingRangeMax_m

[set detProb 0] ; patch is beyond the colonies foraging range

 report precision detProb 10

end

Foraging_collectNectarPollenProc

Purpose: collection of nectar or pollen at a certain patch by a foraging bee

Called by: ForagingProc

Asking agents: bees (workers and non-hibernating queens)

Calling: none

Description

Bees with activity "collectPollen" (i.e. successful scouts) or activity "expForagingP" (i.e.

experienced pollen foragers continuing to exploit a foodsource previously visited) will gather

a pollen load from the foodsource, their activity is changed to "bringingPollen" and their

activityList is updated. The amount of pollen collected is removed from the foodsource and

the visit is counted in the foodsource variable cumulPollenVisits. If not enough pollen for a

full pollen load is left at the patch, the bees will only collect as much pollen as available. If no

pollen at all is left, their activity is set to "returningEmpty":

to Foraging_collectNectarPollenProc

; foragers with activity = "collectPollen" or activity = "expForagingP" OR

; activity = "collectNectar" or activity = "expForagingN" can gather food from

; a food source. No other bees are addressed

 if activity = "collectPollen" or activity = "expForagingP"

 [

 ; does patch still have any pollen?:

 ifelse [pollen_g] of Foodsource currentFoodsource > 0

 [; the forager will then be bringing pollen:

 set pollenLoadSquadron_g min list ; takes the smaller value of an

 ; ad hoc created

;list with two items: 1st: max. pollen bee (cohort) can carry, 2nd: pollen left at

patch.

 (pollenPellets_g * number) ; 1st: max. pollen bee (cohort) can carry

 ([pollen_g] of Foodsource currentFoodsource) ; 2nd: pollen left at patch

 set activity "bringingPollen"

 set activityList lput "P" activityList ; activity log

 ; amount of pollen at the patch is reduced

 let memoNumber number

 let memoPollenLoad pollenLoadSquadron_g

 ask Foodsource currentFoodsource ; visited food source is addressed

 [

 set pollen_g pollen_g - memoPollenLoad ; and the pollen removed

 set cumulPollenVisits cumulPollenVisits + memoNumber

; all pollen visits at patch, ever

]

]

 [

 set activity "returningEmpty"

93

 set activityList lput "Ep" activityList ; activity log

]

]

In a similar way, gathering nectar takes place. If nectar is present at the foodsource, the bee

fills her crop with either the maximal volume she can carry or the amount of nectar left at the

foodsource (nectar_myl), whatever is lower. The energy (nectarLoadSquadron_kJ) of the

collected nectar is calculated from the volume (cropvolume_myl multiplied by number, the

number of bees in the cohort) and the sugar concentration (nectarConcentration_mol/l).

Activity is set to "bringingNectar" and the activityList is updated, the nectar volume collected

is removed from the foodsource, and the visit is counted (cumulNectarVisits) at the patch. If

no nectar is available at the patch anymore, the bees return empty:

 if activity = "collectNectar" or activity = "expForagingN"

 [

 ; does patch still have any nectar?:

 ifelse [nectar_myl] of Foodsource currentFoodsource > 0

 [; the forager will then be bringing nectar:

 let nectarRemoved min list ; takes the smaller value of an ad hoc created list

 ; with two items: 1st: max. nectar a bee (cohort)

; can carry, 2nd: nectar left at patch.

 (cropvolume_myl * number) ; 1st item: max. nectar a bee (cohort) can carry

 ([nectar_myl] of Foodsource currentFoodsource) ; 2nd item: max. pollen

; a bee (cohort) can carry

 set nectarLoadSquadron_kJ nectarRemoved * EnergySucrose_kJ/mymol

* [nectarConcentration_mol/l] of Foodsource currentFoodsource

 ; set the nectar energy load with the amount removed

 set activity "bringingNectar"

 set activityList lput "N" activityList

 ; amount of nectar at the patch is reduced:

 let memoNumber number

 ask Foodsource currentFoodsource

 [

 set nectar_myl nectar_myl - NectarRemoved

 set cumulNectarVisits cumulNectarVisits + memoNumber

; all nectar visits at patch, ever

]

]

 [

 ; if NECTAR foodsource is EMPTY:

 set activity "returningEmpty"

 set activityList lput "En" activityList ; "Empty nectar"

]

]

end

Foraging_costs&choiceProc

Purpose: calculates mortality, duration and energetic costs of foraging trip

Called by: ForagingProc

Asking agents: bees (workers and non-hibernating queens)

Calling:

DieProc

Foraging_PatchChoiceProc

Description

94

Mortality risk and energetic costs of a foraging trip depends on the duration or covered

distance of the trip. For bees returning empty, the distance covered by an (unsuccessful)

search trip is set to the species-specific value searchLength_m. The energetic costs are not

paid by the foraging bee but by its colony instead and are calculated from the search length

multiplied with the species' energetic flight costs per meter (flightCosts_kJ/m) and the number

of bees represented by this cohort (number). The duration is calculated from the distance

covered and the flight speed (flightVelocity_m/s). The probability of a bee to survive the

foraging trip is the probability to survive a single second of foraging (1 -

MortalityForager_per_s) to the power of the trip duration [s]. The risk of death is then 1 - the

probability of survival. ForagingMortalityFactor (set on GUI, default value: 1) allows the

user to easily modify the foraging mortality.

to Foraging_costs&choiceProc ; costs in time, energy and mortality

; first bees with activity = "returningEmpty" and then bees with activity =

; "bringingNectar" or activity = "bringingPollen" are addressed to calculate time

; and energy spent on the trip. Finally Foraging_PatchChoiceProc is called, as

; the future patch/flowerspecies choice is based on the time spent on the trip.

 let persTimeSave personalTime_s ; the current time

 let saveNumber number ; number of individuals, this cohort/forager agent represents

 let saveWeight_mg weight_mg ; save variable for weight of individual/s

 let saveFlightCosts_kJ/m/mg [flightCosts_kJ/m/mg] of OneSpecies speciesID

 ; Test for errors:

 if not member? caste ["worker" "queen"]

 [AssertionProc (word stage " " caste " " who " shouldn't be foraging

 (Foraging_costs&timeProc)")]

 if saveFlightCosts_kJ/m/mg < 0

 [AssertionProc "saveFlightCosts local variable not set (Foraging_costs&timeProc)"]

; EMPTY BEES:

 if activity = "returningEmpty"

 [

 ; nectar store in the colony is reduced to reflect the energy consumed

 ; during the trip:

 let tripDuration_s 0

 ask Colony colonyID

 [

 set energyStore_kJ energyStore_kJ

- ([searchLength_m] of OneSpecies speciesIDcolony

* saveFlightCosts_kJ/m/mg * saveNumber * saveWeight_mg)

set tripDuration_s [searchLength_m] of OneSpecies speciesIDcolony

 / [flightVelocity_m/s] of OneSpecies speciesIDcolony

]

 set personalTime_s personalTime_s + tripDuration_s ; some time has passed..

 ; a Bee dies during the foraging trip, unless she survives every single second:

 let survivalChance (1 - MortalityForager_per_s * ForagingMortalityFactor)

; probability to survive a single second of the foraging trip

 ; ^ tripDuration_s ; ... to survive EACH second of the trip

 let mortalityRisk 1 - survivalChance ; risk to die = 1 - probability to survive

 if random-float 1 < mortalityRisk [DieProc "foraging: empty"] ; does bee die?

]

If bees were successful in collecting nectar or pollen, then the energetic costs are calculated

by doubling the distance to the foodsource they visited (multiplied by flight costs per meter)

and adding the energy spent within the patch. This energy spend within a flower patch is

calculated from the handling time multiplied by the flight speed (i.e. resulting in a distance)

and a factor (EnergyFactorOnFlower) which reduces the energy as bees spend some time

sitting on flowers. Again, cohort size (number) is taken into account. The bees'

personalTime_s is updated, and the survival of the bees is determined as described above.

Finally, Foraging_PatchChoiceProc is called to determine if the bees switch to another

foodsource.

; SUCCESSFUL FORAGERS:

95

 ; energy consumption of successful foragers:

 let handlingTime_s 0

 if activity = "bringingNectar" or activity = "bringingPollen"

 [

 if activity = "bringingNectar"

 [

 set handlingTime_s HandlingTime_s_REP currentFoodsource pollenForager?

 set activity "expForagingN"

 set activityList lput "Xn" activityList

]

 if activity = "bringingPollen"

 [

 set handlingTime_s HandlingTime_s_REP currentFoodsource pollenForager?

 set activity "expForagingP"

 set activityList lput "Xp" activityList

]

 let memoPatch currentFoodsource

 let tripDuration_s 0

 ask Colony colonyID

 [

 set energyStore_kJ energyStore_kJ -

 (

 2 * distance (Foodsource memoPatch)

/ SCALING_NLpatches/m ; bees have to fly to the patch and back,

 ; distance [NLpatches] / Scaling = [m]

 ; plus distances they fly within the patch,

 ; but reduced by rests on flowers

 + handlingTime_s

 * [flightVelocity_m/s] of OneSpecies speciesIDcolony

 * EnergyFactorOnFlower ; [kJ] = [m * kJ/m + kJ/m * s * m/s]

)

 * saveFlightCosts_kJ/m/mg * saveWeight_mg ; flight costs (kJ) per m,

 ; dependent on the bees' weight

 * saveNumber ; multiplied by number of bees in the cohort

 set tripDuration_s (2 * distance (Foodsource memoPatch)

 / SCALING_NLpatches/m

 / [flightVelocity_m/s] of OneSpecies speciesIDcolony)

+ handlingTime_s

]

 set personalTime_s personalTime_s + tripDuration_s ; some time has passed..

 ; MORTALITY:

 ; probability to survive a single second of the foraging trip:

 let survivalChance (1 - MortalityForager_per_s * ForagingMortalityFactor)

 ^ tripDuration_s ; ... to survive EACH second of the trip

 ; ForagingMortalityFactor (set on GUI) allows to easliy modify foraging mortality

 let mortalityRisk 1 - survivalChance ; risk to die = 1 - probability to survive

 if random-float 1 < mortalityRisk [DieProc "foraging: N or P forager"]

 set activityList lput (word "HT:" precision handlingTime_s 1) activityList

]

 if personalTime_s - persTimeSave <= 0

 [AssertionProc "No time - or negative time - passed for this bee!

 (Foraging_costs&timeProc)"]

 Foraging_PatchChoiceProc personalTime_s - persTimeSave ; the bee makes a choice about

 ; where to forage based on the trip duration

end

Foraging_PatchChoiceProc

Purpose: determines if bees are still happy with their current foodsource (based on the

duration of the trip). If not, they will either switch to the best "layer" (flower species) at

their current flower patch or - if they already forage at the best "layer" (flower species),

they will switch to another flower patch ("layergroup") they know or search for a new one

Called by: Foraging_costs&choiceProc

Asking agents: bees (workers and non-hibernating queens)

96

Calling: Foraging_bestLayerREP

Input: currentTripDuration_s

Rationale & terminology:

In the ODD protocol we speak of real world forage habitats as "flower patches" and

implement them in the model via foodsources. As each foodsource represents only a single

flower species, semi-natural habitat patches with a large number of different flower species

have to be implemented by several foodsources. In this case, the first foodsource of such a

semi-natural habitat patch created in the Setup procedure will be used to store some statistics

concerning the flower patch as a whole. This first foodsource is hence called a "masterpatch".

We sometimes refer to foodsources belonging to semi-natural habitat patch also as "layers"

(as they can be imagined as being stacked up on each other at the location of the flower

patch). When scouting bees find a flower patch they detect the whole flower patch (i.e. all

foodsources at this location) and memorise the ID of the respective masterpatch (saved in

their knownMasterpatchesNectar(Pollen)List list). However, for the actual nectar and pollen

collection, they only exploit a specific foodsource within this flower patch, representing a

specific flower species. Bees can switch between foraging trips (but not within) from one

foodsource to another at the same flower patch, but they can also move to a flower patch at a

different location.

The ID (who) of "masterpatches" saved in the bee's knownMasterpatchesNectar(Pollen)List

are ordered by the distance of the food patch to the bee's colony, i.e. the first item in the list

refers to a flower patch closer to the colony as the second item in the list etc.. We assume that

the foraging distance results from a trade-off between foraging close enough to the colony to

save time and energy and far enough to access high quality and quantity resources (as closer

patches might have already been depleted by the colony). When a bee quits exploiting her

current flower patch and decides to re-visit another, but already known flower patch, she will

pick a flower patch either closer to the colony than the current patch (i.e. any of those listed in

knownMasterpatchesNectar(Pollen)List before her current patch) or the flower patch that is

just a bit further away (i.e. the one that is listed just behind her current patch). If no such

flower patch exists, the bee will search for new foodsources during the following trip. The

decision of whether or not the current foodsource is abandoned depends on the actual duration

of the foraging trip in comparison to the expectation of the bee.

Description

When Foraging_PatchChoiceProc is called by Foraging_costs&choiceProc, it gets the

duration of the calling bee's foraging trip as input (currentTripDuration_s). At the beginning

of the procedure, some local variables are defined:

 to Foraging_PatchChoiceProc [currentTripDuration_s]

 ; determines if bees are still happy with their current food source (based on the

 ; duration of the trip). If not, they will either switch to the best

 ; layer/flowerspecies at the

 ; current patch or - if they already forage at the best layer/flowerspecies, they

 ; will switch to another patch/'layergroup' they know or search for a new one

 ; (note: expectation_Nectar/PollenTrip_s is 0 for a novice forager, hence they are

 ; likely to search new patches until they get more experienced)

 ; Ref: Wiegmann et al 2003, Physiology & Behavior 79 (2003) 561– 566

 let preferenceClosePatchesProb 0.9 ; heuristically determined to result in

 ; highest numbers of hibernating queens

 let happy? true ; defines whether or not a bee is still happy with

 ; her current food source

 let gotoNewLayergroup? false ; whether or nat the bee is going to exploit

97

 ; a different flower patch

 let bestLayer -1 ; ID (who) of best food source in the current flower patch.

 ; As long as the bee is happy, it doesn't matter which foodsource is the best layer

 let myExpectation_s expectation_NectarTrip_s ; expectation of a bee about

 ; the duration of the trip

 let myKnownMasterpatchesList knownMasterpatchesNectarList

 let searchProbBase 0.1

 if pollenforager? = true

 ; some changes if a bee is a pollen forager and not a nectar forager:

 [

 set myExpectation_s expectation_PollenTrip_s

 set myKnownMasterpatchesList knownMasterpatchesPollenList

]

 let myMasterpatchID -1

 let myCurrentPatchPosition -1

Bees returning empty will always search a new flower patch (i.e. gotoNewLayergroup? is set

true), whereas bees who were able to collect nectar or pollen base their decision about

continuing with their current foodsource on the duration of the foraging trip. This decision is

made randomly, with the probability being the sum of a base probability to search

(searchProbBase) and a degree of "unhappiness" with the current foodsource, which results

from a comparison of the trip duration with the expected duration of the trip. The new

expectation for the duration of the next trip are then calculated as the mean of the current

expectation and the current trip duration.

; the longer a trip takes in comparison to a bees' expectation, the higher is the

; probability to become unhappy. Expectations are then recalculated as the mean of the

; duration of current trip and the previous expectation

 ifelse activity = "returningEmpty"

 [set gotoNewLayergroup? true] ; unsuccessful bees always search for

; a new flower patch/'layergroup'

 [

 set myMasterpatchID [masterpatchID] of foodsource currentFoodsource

 if position myMasterpatchID myKnownMasterpatchesList = false

[AssertionProc ("No number for myMasterpatchID (Foraging_PatchChoiceProc)")]

 ; the "position" (in the list) of the currently used 'layergroup'

 ; in the myKnownMasterpatchesList:

 set myCurrentPatchPosition position myMasterpatchID myKnownMasterpatchesList

 ; NeLogo command "position": "On a list, reports the first position of item

 ; in list, or false if it does not appear."

 if myCurrentPatchPosition = false [set myCurrentPatchPosition -1] ; to avoid an

 ; error if myMasterpatchID is not part of the myKnownMasterpatchesList

 ; determine whether or not a bee becomes unhappy with her current foodsource:

 let unhappyProb (currentTripDuration_s - myExpectation_s) / currentTripDuration_s

 ; bee compares her expectations on trip duration with the acutal duration

 if unhappyProb < 0 [set unhappyProb 0] ; no negative probability

 ; the probability to search a new patch then depends on searchProbBase

; and her degree of unhappiness:

 if random-float 1 < (searchProbBase + unhappyProb)

 [set happy? false] ;

 let newExpectation (myExpectation_s + currentTripDuration_s) / 2

; new expectation take duration of current and previous trips into account

 ifelse pollenforager? = true ; the new expectations are saved..

 [set expectation_PollenTrip_s newExpectation] ; as expect. for pollen trips

 [set expectation_NectarTrip_s newExpectation] ; .. or for nectar trips

]

If bees are no longer happy with their current foodsource (i.e. if happy? is false) the bee's

activity is set to "returningUnhappyP(N)" and it may switch to a more profitable foodsource

("layer") within this flower patch. The "best" (most profitable) foodsource is determined in

the reporter-procedure Foraging_bestLayerREP. If the bee is not currently using the best

foodsource of the flower patch (bestLayer), she then switches to the best (i.e.

currentFoodsource is set to bestLayer). If it turns out that is already foraging at the best

foodsource of that flower patch (or "layergroup"), then gotoNewLayergroup? is set true and

the bee will abandon the current flower patch (though she still remembers it and might return

to it some time later).

98

 if happy? = false

 [

 set activityList lput ":(" activityList ; sad smiley added to activityList

 ifelse pollenforager? = true

 [set activity "returningUnhappyP"]

 [set activity "returningUnhappyN"]

 set bestLayer Foraging_bestLayerREP currentFoodsource

 ifelse bestLayer = currentFoodsource

 [set gotoNewLayergroup? true] ; if bee is already foraging from

; the best layer, it will search for a completely now patch/'layergroup'

 [set currentFoodsource bestLayer] ; .. otherwise it will stay

; at the current patch but switch to the best foodsource/flowerspecies here

]

If a bee decides to abandon its current flower patch and re-visit another, already known flower

patch, it is determined whether she goes to a patch closer to the colony as the current patch

(with the probability preferenceClosePatchesProb) or one (a little) further away.

MyCurrentPatchPosition defines the location where the ID (who) of the current flower patch

(or more precisely, of the "masterpatch" of the layergroup, representing this flower patch) is

stored in the list myKnownMasterpatchesList. The items of this list are ordered by the distance

of the flower patches they are representing to the colony, starting with the closest ones (note

that the first item in the list has the position 0, the second 1 etc.). If the bee goes to a patch

closer to the colony, a random position (between -1 and myCurrentPatchPosition - 1) is

chosen. The item at this position defines the ID of the new flower patch. If the position is -1,

no flower patch is chosen and the bee will become a scout and search for a new patch in her

next foraging trip.

If the bee goes to a flower patch further away from the colony, the position on the

myKnownMasterpatchesList is not randomly picked but is myCurrentPatchPosition + 1. If

myCurrentPatchPosition already is the last item of the list, no flower patch is chosen and the

bee will also become a scout in her next foraging trip.

 if gotoNewLayergroup? = true

 [

 set activityList lput "..." activityList

 let newPatchPosition -999

 ; the new patch has a similar distance to the colony as the old patch,

 ; but patches closer to the colony are preferred (preferenceClosePatchesProb = 0.6)

 ifelse random-float 1 < preferenceClosePatchesProb

 [set newPatchPosition random (myCurrentPatchPosition + 1) - 1]

 ; a random position < current position, includ. 0 and -1 (-1 results in search

 ; of a new flower patch. Prob. decreases, the more patches are known)

 [set newPatchPosition myCurrentPatchPosition + 1]

 ifelse newPatchPosition < 0 or newPatchPosition >= length myKnownMasterpatchesList

 [

 set currentFoodsource -1 ; bees will search for a

;completely new flower patch

]

 [set currentFoodsource

Foraging_bestLayerREP item newPatchPosition myKnownMasterpatchesList]

 ; bee goes to a flower patch it already knows and chooses

 ; the best foodsource (layer) there

]

 ifelse pollenforager? = true

 [set pollensourceToGoTo currentFoodsource] ; the (new) current foodsource will

 ; be used for the next pollen foraging trip

 [set nectarsourceToGoTo currentFoodsource] ; the (new) current foodsource will

 ; be used for the next nectar foraging trip

end

For example:

Let pollenforager? be true and activity be "expForagingP"

Let knownMasterpatchesPollenList be [7 21 15 9 12 26] and hence the local variable

myKnownMasterpatchesList will then also be [7 21 15 9 12 26]

99

Let myMasterpatchID be 9 and currentFoodsource be 10.

Let expectation_PollenTrip_s and hence also myExpectation_s be 100 [s]

Let currentTripDuration_s be 150 [s].

This describes a sucessful pollen forager who knows six flower patches where pollen is

available. She currently exploits foodsource 10 wich belongs to a flower patch represented by

the "masterpatch" 9. As her activity is not "returningEmpty" she might continue exploiting

foodsource 10 in future. MyCurrentPatchPosition is 3 (9 (= the masterpatch ID) is the 4th item

in myKnownMasterpatchesList hence its position is 3 (as counting in Netlogo lists starts with

0)). UnhappyProb is (150 - 100) / 150 = 0.333.

Let the random number be smaller than searchProbBase (0.1) + 0.333 and hence happy? is

set false. NewExpectation (and hence expectation_PollenTrip_s) is then (100 + 150) / 2 = 125

[s].

The bee's new activity is now "returningUnhappyP" and she might switch to another flower

species (i.e. to another foodsource) at the same flower patch. Assuming bestLayer, determined

in Foraging_bestLayerREP, is 10 - i.e. the foodsource the bee is already exploiting - then

gotoNewLayergroup? is set true and the bee will switch to another flower patch.

To determine her new flower patch, a random integer number between [-1..2] is drawn. If the

result is 1, then the ID (who) of the "masterpatch" representing the flower patch is 21 (item 1

i.e. the second item in myKnownMasterpatchesList [7 21 15 9 12 26]). Assuming there a 5

flower species available at this flower patch then it is represented by 5 foodsources (with who

= 21, 22, 23, 24 and 25). The resulting most profitable foodsource, determined in

Foraging_bestLayerREP, may be 23, then the bee's currentFoodsource and

pollensourceToGoTo is set to 23 and this will be the foodsource visited on her next pollen

foraging trip.

If the decision of the bee would be to visit a flower patch further away, then it would go to

one of the foodscources represented by masterpatch 12.

Foraging_bestLayerREP

Purpose: reports most profitable foodsource ("layer") within the currently used flower patch,

based on minimal handling time

Asking agents: bees (workers and non-hibernating queens)

Called by: Foraging_searchingProc, Foraging_PatchChoiceProc

Calling: HandlingTime_s_REP

Input: myCurrentFoodsource

Description

For each foodsource ("layer") of the flower patch currently used by the bee, it is checked

whether it offers the forage type (nectar or pollen) the bee is searching. If it does, the current

handling time is calculated in the reporter-procedure HandlingTime_s_REP (note that

handling time increases with depletion of the foodsource). The foodsource with the shortest

handling time is memorised (memoBestPatch) and then reported:

to-report Foraging_bestLayerREP [myCurrentFoodsource]

100

; reports most profitable foodsource ("layer") within the currently used flower patch,

; based on minimal handling time

 let memoBestHandlingtime notSetHigh ; to store the shortest handling time so far

 let memoBestEEF notSetLow

 let memoBestPatch -1

 let myBeeID who

 let distanceColonyFoodpatch_m 0 ;; distance (same for all layers!) will be set now:

 ask colony colonyID

 [set distanceColonyFoodpatch_m ; distance between the colony and the food patch

distance (Foodsource myCurrentFoodsource) ; the distance in NetLogo patches

/ SCALING_NLpatches/m] ; div. by scling => distance in m

foreach [layersInPatchList] of foodsource myCurrentFoodsource ; for each foodsource

; of the bees flower patch, the handling time is calculated

 [

 let currentLayer ?

 if pollenforager? = true and [pollen_g] of foodsource currentLayer > 0

 ; only patches that actually provide pollen are considered

 [

 ask bee myBeeID

 [

 ; handling time is determined:

 let handlingTime_s HandlingTime_s_REP currentLayer pollenforager?

 if handlingTime < memoBestHandlingtime ; and if it is the shortest so far..

 [

 set memoBestPatch currentLayer ; the ID of this foodsource..

 set memoBestHandlingtime handlingTime ; and the handling time are saved

]

]

]

 if pollenforager? = false and [nectar_myl] of foodsource currentLayer > 0

; only patches that actually provide nectar are considered

 [

 ask bee myBeeID

 [

 ; handling time is determined:

 let handlingTime_s HandlingTime_s_REP currentLayer pollenforager?

 let energyCostsThisLayer_kJ ; energy needed to exploit this layer:

 (

 2 * distanceColonyFoodpatch_m ; bees fly to and return from food patch

 ; plus distances they fly within the patch,

 ; but reduced by rests on flowers:

 + handlingTime_s

 * [flightVelocity_m/s] of OneSpecies speciesID ; [s] * [m/s] = [m]

 * EnergyFactorOnFlower

)

 * [flightCosts_kJ/m/mg] of OneSpecies speciesID * weight_mg

 ; flight costs (kJ) per m, dependent on the bees' weight[mg]

 * number ; [m] * [kJ/m/mg] * [mg] => [kJ]

 ; energy gained when exploiting this layer:

 let energyGainThisLayer_kJ cropvolume_myl

 * EnergySucrose_kJ/mymol ; [ul] * [kJ/umol] => [kJ/mol * l]

 * [nectarConcentration_mol/l] of Foodsource currentLayer

 ; [kJ/mol * l] * [mol/l] => [kJ]

 ; energetic efficiency of exploiting this layer:

 let eef (energyGainThisLayer_kJ - energyCostsThisLayer_kJ)

 / energyCostsThisLayer_kJ

 if eef > memoBestEEF ; if it is the energetically best so far..

 [

 set memoBestPatch currentLayer ; ..the ID of this foodsource..

 set memoBestHandlingtime handlingTime ; ..and the handling time are saved

]

]

]

]

 report memoBestPatch ; this might be negative (-1), if no foodsource was found!

end

HandlingTime_s_REP

Purpose: calculates the time a bee needs to spend in a food patch to collect a full nectar load

101

Asking agents: bees (workers and non-hibernating queens)

Called by: Foraging_costs&timeProc

Calling: none

Input: myPatch, pollenPatch?

Description & Rationale

The calculation of the handling time for nectar collection mainly follows a model by Harder

(Harder 1983). It is based on the weight [mg] of the bee, its glossa length [mm] and the

corolla depth [mm] and nectar volume [μl] of the flower.

The only change made to Harder's model was to also take into account that with the bees

using a flower patch, more and more flowers will be depleted. We hence consider the degree

of depletion. As this may result for almost completely emptied patches in unrealistically high

handling times, we also define a maximal handling time (maxHandlingTime_s).

When the reporter-procedure is called, two variables are transferred, the first one (myPatch)

defining the ID (who) of the foodsource and the second one (pollenPatch?) whether the

handling time for nectar or for pollen is asked for.

First, some local variables are created. MaxHandlingTime_s is derived from honeybees (and

hence likely overestimating the maximal handling time for bumblebees). FillingLevel

describes the current amount of the forage available at the patch relative to the possible

maximum on that day. If pollenPatch? is false, handlingTime_s will be calculated on the basis

of nectar availability, flower shape, and the bees' proboscis length and hence fillingLevel is set

to nectar_myl divided by nectarMax_myl:

to-report HandlingTime_s_REP [myPatch pollenPatch?] ; called by bee

; calculates the time [s] to gather of full load of nectar or pollen

; for nectar: based on Harder 1983: Oecologia 57:274-280

 let maxHandlingTime_s 60 * 60 ; approx. max. from Ings et al. 2006, Fig. 1; Journal of

Applied Ecology, 43,940–948; also comparable to data from Fig. 6 in Stelzer et al 2010,

PloS One, 5(3), e9559

 let handlingTime_s -999 ; will be re-set to correct value below

 let fillingLevel 0 ; amount of food (nectar or pollen) currently at the patch relative

 ; to its max. value for today, (correct value calculated below)

 ifelse pollenPatch? = false

 ; NECTAR FORAGING:

 [

 ask foodsource myPatch

 [

 if nectarMax_myl > 0

 [set fillingLevel nectar_myl / nectarMax_myl]

]

Then the equations provided by Harder (1983) in his Fig. 4 are implemented. First, local

variables are created for the parameters required, with the first letters of the parameter name

referring to the respective identifier in Harder 1983 (where applicable). V_nectarVolume_myl

is the amount of nectar available in a single flower in microlitre. Ta_accessTime_s describes

the time [s] required to enter and leave a flower (Harder 1983, eq. 7). Ti_ingestionTime_s is

the time required to consume the nectar provided by the flower (Harder 1983, eq. 8).

102

 ; Harder 1983, Fig. 4:

 let W_beeWeight_g weight_mg / 1000

 let G_lengthGlossa_mm glossaLength_mm

 let C_CorollaDepth_mm [corollaDepth_mm] of Foodsource myPatch

 let V_nectarVolume_myl [nectarFlowerVolume_myl] of Foodsource myPatch

 let Ta_accessTime_s 0.3 + 0.04 * C_CorollaDepth_mm ; time to access a flower

 let numerator log (V_nectarVolume_myl + 1) 10

 let num 0.3 * W_beeWeight_g ^ 0.3333 * G_lengthGlossa_mm

 let base (1.41 - C_CorollaDepth_mm / G_lengthGlossa_mm)

 if base < 0.001 [set base 0.001] ; as 0 ^ -0.4 is not valid

 ; (in calculation of local variable den, see below)

 let den (base ^ -0.4) - 0.3 * Ta_accessTime_s

 let denominator log (num / den + 1) 10

 let Ti_ingestionTime_s numerator / denominator

Harder calculates the total probing time as the sum of access time and ingestion time.

However, this describes only how long it takes a bee to empty a single flower and does

neither take the density of flowers, nor the proportion of already emptied flowers, or the bees'

crop size into account. We therefore calculate handlingTimePerFlower_s the following way:

we add the average time to fly from one flower to the next (interFlowerTime_s, a foodsource

specific parameter provided in the input file FlowerspeciesFile) to Ta_accessTime_s and then

divide by fillingLevel to account for the proportion of flowers already emptied. Then

Ti_ingestionTime_s, the time to take up the nectar in the flower, is added:

 let handlingTimePerFlower_s maxHandlingTime_s ; handling time set to maximal value..

 if fillingLevel > 0 ; avoid division by 0 ; .. unless there is nectar available,

 ; then it is recalculated (if the new value is lager than maxHandlingTime_s,

 ; it will be set back to maxHandlingTime_s at the end of this procedure)

 [

 set handlingTimePerFlower_s (

 (

 [interFlowerTime_s] of Foodsource myPatch

; the time to travel to the next flower

 + Ta_accessTime_s

; + the time to test whether it contains nectar

)

 / fillingLevel ; divided by the filling level to

 ; account for depletion of the patch

)

 + Ti_ingestionTime_s ; + time to actually load the nectar,

 ; once a filled flower is found

]

The total time spent in the flower patch is then handlingTimePerFlower_s times the number

of flowers needed to to fill the bees' crop:

 let flowersVisited 1 ; at least one flower has to be visited..

 if V_nectarVolume_myl < cropvolume_myl ; but ususally more than one flower is needed:

[set flowersVisited (cropvolume_myl / V_nectarVolume_myl)]

 set handlingTime_s handlingTimePerFlower_s * flowersVisited ; the time to find a flower and

 ; empty it is then multiplied by the number of flowers, needed to fill the crop

]

If pollenPatch? is true, handlingTime_s is calculated on the basis of the pollen availability at

the foodsource. As to our knowledge no theoretical method is available to calculate handling

times for pollen collection which takes bee- and flower species into account, this procedure is

very simplified. Parameterisation is based on poppy flowers (Raine & Chittka 2007) and is

likely to be different for other flower species. The proportion of flowers still offering pollen

on that day (FillingLevel) is set to pollen_g divided by pollenMax_g. The calculation of the

actual handling time is then equivalent to the one for nectar collection, as described above.

103

 ; POLLEN FORAGING:

 [

 let timeInFlowers_s 257.4 ; time bee spents in flower(s) to collect 1 pollen load, derived

 ;(for poppy flowers) from Raine & Chittka 20072007,

 ; Tab. 1, "Number of flowers visited"

 ; times "Mean flower handling time/ s" (mean of all three bouts)

 let flowersNeededForPollenLoad 58 ; Raine & Chittka 2007, Tab. 1

 ; "Number of flowers visited" (mean of all 3 bouts)

 ask foodsource myPatch ; get the filling level for this foodsource:

 [

 ifelse pollenMax_g > 0

 [set fillingLevel pollen_g / pollenMax_g]

 [set fillingLevel 0] ; (this should actually never be the case)

]

 ifelse fillingLevel > 0

 [

 set handlingTime_s [interFlowerTime_s] of Foodsource myPatch ; the time to travel

 ; to the next flower

 * flowersNeededForPollenLoad ; times the number of flowers

 ; needed to be visited

 / fillingLevel ; divided by the filling level

 ; to account for depletion of the patch

 + timeInFlowers_s ; plus the time to actually collect the

 ; pollen, once a flower with pollen is found

]

 [set handlingTime_s maxHandlingTime_s]

] ; end: if pollen forager

if handlingTime_s > maxHandlingTime_s [set handlingTime_s maxHandlingTime_s]

report handlingTime_s

end

Foraging_unloadingProc

Purpose: bees store their nectar or pollen loads in the colony

Called by: ForagingProc

Asking agents: Bees (workers and non-hibernating queens)

Calling: none

Description

Successful nectar foragers (i.e. bees with activity "expForagingN" or "returningUnhappyN")

transfer the energy they are carrying to a colony's nectar stores (energyStore_kJ), successful

pollen foragers (i.e. bees with activity "expForagingP" or "returningUnhappyP") add their

load to the colony's pollen store (pollenStore_g). The loads of the bees is then set to 0 and

their activityList and personal time are updated:

to Foraging_unloadingProc

 ; successful foragers (irrespective whether they are happy or not) unload

 ; their nectar or pollen load

 ifelse activity = "expForagingN" or activity = "expForagingP"

or activity = "returningUnhappyN" or activity = "returningUnhappyP"

 [

 let nectarIncrease nectarLoadSquadron_kJ

 let pollenIncrease pollenLoadSquadron_g

104

 ask Colony colonyID ; load is added to the colony's stores:

 [

 set energyStore_kJ energyStore_kJ + nectarIncrease

 set pollenStore_g pollenStore_g + pollenIncrease

]

 ifelse activity = "expForagingN" or activity = "returningUnhappyN"

 [set activityList lput (word "N+:" precision nectarIncrease 2) activityList]

 [set activityList lput (word "P+:" precision pollenIncrease 4) activityList]

 set nectarLoadSquadron_kJ 0

 set pollenLoadSquadron_g 0

 set personalTime_s personalTime_s + [timeUnloading] of OneSpecies speciesID

]

 [; make sure bees with other activities don't carry nectar or pollen:

 if nectarLoadSquadron_kJ + pollenLoadSquadron_g > 0

 [AssertionProc "Bee did not unload nectar or pollen in Foraging_unloadingProc!"

]

]

end

QueensLeavingNestProc

Purpose: young queens leave the colony, mate and hibernate

Called by: Go

Asking agents: none

Calling: DieProc

Description

Young, adult queens that haven't left their colony yet (i.e. bees with stage "adult", caste

"queen", mated? false and colonyID not set to -1) leave the colony to mate with a single male

and then hibernate immediately.

The young queen mates with a single, randomly chosen adult, haploid or diploid male of the

same species and saves his allelesList in her spermathecaList (Note that in bumblebees

(unlike e.g. honeybees), diploid male brood can develop into adults (Duchateau et al. 1994),

however, queens mated with a diploid male are not able to establish a colony (Duchateau &

Marien 1995). We hence remove queens mated with diploid males during hibernation (in

QueensLeavingNestProc)). If no adult males are available, the queen still mates (if the switch

UnlimitedMales? is set true (default)), but her spermathecaList is set to a random, negative

integer number between -1 and -nForeignAlleles, representing a male from outside the

simulated world. The queen's colonyID is set to -1 as she has left her mother colony and hasn't

founded her own colony so is currently not a member of any colony. Mated? is set true and

activity becomes "hibernate", i.e. she won't be involved in any activities until she emerges

next spring. If UnlimitedMales? is false queens die if no males are available for mating on

that day.

to QueensLeavingNestProc

 ; young queens leave the colony, mate and hibernate:

 ask Bees with [stage = "adult" and caste = "queen" ; young (unmated), adult queens

 and mated? = false and colonyID != -1] ; still in a colony..

 [

 let memoSpecies speciesID

 ifelse count bees with [caste = "male" and stage = "adult"

and speciesID = memoSpecies] > 0 ; if suitable males are present..

 [

 let newAlleleList [] ; .. the queen will mate with one..

 ask one-of bees with [caste = "male" and stage = "adult"

105

and speciesID = memoSpecies] ; mating with a haploid

; or diploid(!) adult male of the same species,

 [set newAlleleList allelesList] ;

 set spermathecaList newAlleleList ; male alleles are saved in the spermatheca

]

 [; if no males present queen mates with a male from "outside":

 if UnlimitedMales? = false [DieProc "Queen: no mating"]

 ; if queen's can't mate, they are removed

 let foreignAllele -1 * (random N_ForeignAlleles) - 1

; random integer number: -1, -2, ... -N_ForeignAlleles

 set spermathecaList fput foreignAllele spermathecaList

 if length spermathecaList > 1

[AssertionProc "Assertion violated in QueensLeavingNestProc:

 too many alleles here!"]

]

 set mated? true ; queen is now mated

 set thEgglaying ThresholdLevelREP "eggLaying" "QueenInitiationPhase"

; queen is now ready to lay eggs (though she won't before hibernation!)

 set size QueenSymbolSize

 set shape "circle"

 set color red

 set activity "hibernate"

; queen hibernates and be active untile she emerges in spring

 set colonyID -1 ; queen is no longer member of a colony

 if length spermathecaList = 2 [DieProc "Queen: mating with diploid male"]

 ; queens mating with diploid male are removed from the simulation as they are

 ; not able to establish a colony (Duchateau & Marien 1995)

]

end

FeedLarvaeProc

Purpose: determines how much nectar and pollen is fed to larvae in each colony, calculates

the resulting weight gain of the larvae and updates the colony stores

Called by: Go

Asking agents: none

Calling: MaxWeightGainToday_mg_REP

Description

We assume that larvae have a diet that balances the intake of protein (pollen) and

carbohydrate (nectar) (e.g. Simpson & Raubenheimer 2006, Pirk et al. 2010, Stabler et al.

2015). We first calculate the pollen consumption to determine the weight gain of a larva and

then derive the amount of energy required to assimilate the consumed proteins.

The procedure is called after all of today's foraging has been taking place and before the

development of brood and adults.

First the relative amounts of nectar and pollen that the worker bees are prepared to feed to the

brood (relativePollenToBeFed, relativeEnergyToBeFed) is calculated by dividing actual

nectar and pollen store by the "ideal" nectar and pollen stores of the colony

(idealPollenStore_g, idealEnergyStore_kJ). These "ideal" values are calculated in the reporter

procedures StimForagingNectarREP and StimForagingPollenREP and are based on the

amount of food that is approximately required within a certain number of days. The resulting

"relative" amounts of food to be fed have to be between 0 and 1.

106

 to FeedLarvaeProc

 ask colonies

 [

 let myColony who

 ; RELATIVE AMOUNTS TO BE FED:

 let relativePollenToBeFed 0 ; may be updated below

 let relativeEnergyToBeFed 0

 ; This will be set based on how large the stores are relative to the ideal stores

 ; (these have already been filled through foraging today)

 if idealPollenStore_g * idealEnergyStore_kJ > 0 ; i.e. if both > 0

 [

 set relativePollenToBeFed pollenStore_g / idealPollenStore_g

 set relativeEnergyToBeFed energyStore_kJ / idealEnergyStore_kJ

 ; set values to be bound by 0 1. Added bound by 0 because values can be lower

 ; if the energyStore is negative (this is okay, because

 ; the colony will die at the start of the next tick). Negative values lead to

 ; energy being taken from the larvae and added back to the store.

 set relativePollenToBeFed median (list 0 1 relativePollenToBeFed)

 set relativeEnergyToBeFed median (list 0 1 relativeEnergyToBeFed)

]

As pollen and nectar consumption of the larvae are not independent of each other, we define

the limiting factor (growthLimitingFactor) as relativePollenToBeFed or

relativeEnergyToBeFed, whatever is smaller.

 ; So set the growth limiting factor as the lowest of either relativeEnergy

 ; or relativePollen based on Liebig's law of the minimum, larval growth is assumed

 ; to be limited by only one factor:

 let growthLimitingFactor relativePollenToBeFed

 if relativeEnergyToBeFed < relativePollenToBeFed ; amount of nectar fed is adjusted to

 ; the amount of pollen fed

 [set growthLimitingFactor relativeEnergyToBeFed]

The actual amount of pollen fed to an individual larva is then the amount of pollen it would

need for maximal growth multiplied by growthLimitingFactor. This maximal weight gain is

calculated in the reporter-procedure MaxWeightGainToday_mg_REP and depends on the

larva's current weight and a species-specific factor that describes how efficient a bee is to

transform pollen into body mass (pollenToBodymassFactor):

 ; ACTUAL FEEDING OF EACH INDIVIDUAL LARVA:

 let totalPollenFedToday_g 0 ; sums up the total amount of pollen a colony feeds

 ; to the larvae

 ask bees with [stage = "larva" and colonyID = myColony]

 [

 ; Calculate pollen gained based on conversion to max weight gain adjusted by

 ; limiting factor

 ; amount of pollen fed to a single larva (no "number" here as it refers to amount

 ; an individual larva gets)

 let pollenReceivedToday_mg growthLimitingFactor * ((MaxWeightGainToday_mg_REP who)

 / ([pollenToBodymassFactor] of OneSpecies speciesID))

 if pollenReceivedToday_mg > [pollenStore_g] of colony myColony * 1000

; to avoid negative pollen stores

 [

 set pollenReceivedToday_mg [pollenStore_g] of colony myColony * 1000

 if pollenReceivedToday_mg < 0 [set pollenReceivedToday_mg 0] ; in case of negative

; pollen stores, larvae are not fed at all!

]

Then the weight of the larva is increased, according to the amount of pollen consumed and its

pollenToBodymassFactor. The amount of pollen consumed in the colony is summed up,

taking the cohort size (number) of each agent representing a larva into account:

 ; Update the larva's weight

107

 let oldWeight_mg weight_mg

 set weight_mg weight_mg + pollenReceivedToday_mg

* [pollenToBodymassFactor] of OneSpecies speciesID

 if weight_mg < 0 [AssertionProc "BUG in FeedPOLLENProc"]

 if weight_mg < oldWeight_mg [AssertionProc "BUG in FeedPOLLENProc: WeightLoss"]

 ; Update the total pollen to be taken from the store by the number of indivuals

 ; in the cohort

 set totalPollenFedToday_g totalPollenFedToday_g

 + (number * ((weight_mg - oldWeight_mg)

 / [pollenToBodymassFactor] of OneSpecies speciesID))

 / 1000

; multiplied by "number" here as it refers to the total costs for the colony

]

Finally, it is calculated how much energy is required by the larvae to assimilate to pollen they

have consumed and then the colonies pollen and nectar stores are updated:

 ; Update the total energy required to assimilate th pollen consumed:

 let totalEnergyFedToday_kJ totalPollenFedToday_g

 * EnergyRequiredForPollenAssimilation_kJ_per_g

 ; REMOVING RESOURCES FROM THE STORE

 set pollenStore_g pollenStore_g - totalPollenFedToday_g

 if pollenStore_g < 0 [type "negative pollen store! Ticks: " show ticks]

 set energyStore_kJ energyStore_kJ - totalEnergyFedToday_kJ

 ; (negative energy store wouldn't matter as it results in the death

 ; of the colony the next morning (in UpdateColoniesProc))

]

]

end

QueenProductionDateProc

Purpose: determines for each colony the date when it starts to produce queens

Called by: Go

Asking agents: none

Calling: none

Description

The procedure determines if the colony variable queenProduction? is set true and - if this is

the case - calculates the date (queenProductionDate) when the first eggs destined to become

queens (may) have been laid. Once queenProduction? is true, female larvae of a certain age

(dev_larvalAge_QueenDetermination_d) may develop into queens instead of workers. As

dev_larvalAge_QueenDetermination_d refers only to the time a bee spends as larva and does

not take the egg period into account, these larvae may differ in their broodAge. Following

Duchateau & Velthuis 1988, we assume that queen-destined eggs are not laid earlier than

QueenDestinedEggsBeforeSP_d (5d) before the colony's switch point (switchPointDate). If

today is the first time step when female larvae may develop into queens instead of workers

(i.e. if queenProduction? is going to be set from false to true today), then the day when the

first batch of queen-destined eggs have been laid is today's time step minus the age of these

larvae. If actually larvae of the right larval-age are present today their age (broodAge) can be

directly accessed and queenProductionDate can be accurately calculated. However, to

determine queenProductionDate even if no larvae of the right age are present, an average

108

development time for eggs (averageCumulTimeEgg_d) needs to be assumed and

timeEggToLarvalAgeAtQueenDetermination is then calculated as averageCumulTimeEgg_d

plus dev_larvalAge_QueenDetermination_d. Hence, queenProduction? may be set true, if

today's time step (ticks) minus timeEggToLarvalAgeAtQueenDetermination is larger or equal

the colony's switch point date (switchPointDate) minus QueenDestinedEggsBeforeSP_d.

However, also sufficient worker bees relative to the the number of larvae need to be present in

the colony (i.e. larvaWorkerRatio has to be smaller than LarvaWorkerRatioTH (set to 3) to

allow queen production. Only if both criteria are fullfilled, queenProduction? is set true, and

queenProductionDate is set to the date when these queen-destined eggs have been laid.

to QueenProductionDateProc

 ; for B. terrestris, based on Duchateau & Velthuis 1988 - no data for other species!

 ask colonies

 [

 let memoColony who

 let averageCumulTimeEgg_d 7 ; average duration of egg phase (in the model!): 6-7d

 ; set to 7 as this results in better sex ratio

 let timeEggToLarvalAgeAtQueenDetermination ; time as egg + time as larvae

averageCumulTimeEgg_d

+ [dev_larvalAge_QueenDetermination_d] of OneSpecies speciesIDcolony ; i.e.

 ; ca. 7+3=10d for B. terrestris

; (only) if larvae of the right age are present,

; timeEggToLarvalAgeAtQueenDetermination can be directly determined from their

; brood age (in this case, the previous value is overwritten):

 if any? bees with [stage = "larva"

 and colonyID = memoColony

 and cumulTimeLarva_d = [dev_larvalAge_QueenDetermination_d]

of OneSpecies speciesID]

 [set timeEggToLarvalAgeAtQueenDetermination

 max [broodAge] of bees

 with [stage = "larva"

 and colonyID = memoColony

 and cumulTimeLarva_d = [dev_larvalAge_QueenDetermination_d]

 of OneSpecies speciesID]]

 ; asking for "max" in case there are 2 larval cohorts of

 ; dev_larvalAge_QueenDetermination_d age but different broodAges

 ; (because younger cohort has developed quicker as eggs).

 ; This should not happen in the current version,

 ; but might be the case in a future version.

 if queenProduction? = false

 and ticks - timeEggToLarvalAgeAtQueenDetermination ; this is the date when

; the larvae which are today at the queen determination stage

; were laid as eggs

 >= switchPointDate - QueenDestinedEggsBeforeSP_d ; "queen eggs" are laid

 ; QueenDestinedEggsBeforeSP_d (5d) before switchpoint at earliest

 and larvaWorkerRatio < LarvaWorkerRatioTH

 ; ..but also the L:W ratio on that day has to be below LarvaWorkerRatioTH (= 3)

 [

 set queenProduction? true ; female larvae can now develop into queens

 set queenProductionDate ticks - timeEggToLarvalAgeAtQueenDetermination ; ..these

 ; larvae were laid (as eggs) on the day queenProductionDate

]

]

end

DevelopmentProc

Purpose: ageing and development of brood stages and adults

Called by: Go

Asking agents: none

109

Calling:

 Development_Mortality_AdultsProc

 Development_PupaeProc

 Development_LarvaeProc

 Development_EggsProc

Description

The bees age by one day (increasing broodAge for brood or adultAge for adults) and their

graphic representations on the interface move one step to the right. Details of the development

are covered by sub-procedures, depending on the developmental stage of the bee:

Adults bees undergo a behavioural development in Development_Mortality_AdultsProc,

pupae are dealt with in Development_PupaeProc, larvae in Development_LarvaeProc and

eggs in Development_EggsProc).

to DevelopmentProc

 ask bees

 [

 let whoCol colonyID

 ifelse stage = "adult"

 [

 set adultAge adultAge + 1

 if adultAge > 700 [AssertionProc "Assertion violated: Bee with 2 hibernations!"]

 if brood? = true [AssertionProc "Assertion violated (DevelopmentProc)"]

 Development_Mortality_AdultsProc

]

 [

 set broodAge broodAge + 1

 if brood? = false ["Assertion violated(DevelopmentProc)"]

 if stage = "pupa" [Development_PupaeProc]

 if stage = "larva" [Development_LarvaeProc whoCol]

 if stage = "egg" [Development_EggsProc]

]

 if xcor + StepWidth < max-pxcor and mated? = false

; move graphic representation of bees on GUI

 [set xcor xcor + StepWidth]

]

end

Development_Mortality_AdultsProc

Purpose: Worker bees die whenreaching their maximal age and queens update the activity

thresholds when the colony enters the social phase.

Called by: DevelopmentProc

Asking agents: bees (with stage = "adult")

Calling:

DieProc

ThresholdLevelREP

Description

110

Adult worker bees and males die, when they reach their maximal age (MaxLifespanWorkers ,

MaxLifespanMales). The thresholds for nectar foraging, pollen foraging, nursing and egg

laying of mother queens change, when their colony enters the social phase. The new

thresholds are set in ThresholdLevelREP. A daily mortality risk

(MortalityAdultsBackground_daily) can be applied to all adult bees, but under default

conditions its value is set to 0, as adult mortality within the nest is negligible in real

bumblebees (Plowright and Jay 1968) and adult mortality outside the nest is addressed

elsewhere in the model.

to Development_Mortality_AdultsProc

 if caste = "worker" ; behavioural development workers

 [

 if adultAge > [maxLifespanWorkers] of OneSpecies speciesID

[DieProc "Worker: adultAge > maxLifespanWorkers"]

]

 if caste = "male" ; death of adult males after max lifespan

 [

 if adultAge > MaxLifespanMales [DieProc "Male: adultAge > MaxLifespanMales"]

]

 if caste = "queen" and mated? = true and colonyID >= 0

 and [allAdultWorkers] of colony colonyID > 0 ; if colony is in the social phase

 [

 set thForagingNectar ThresholdLevelREP "nectarForaging" "QueenSocialPhase"

 set thForagingPollen ThresholdLevelREP "pollenForaging" "QueenSocialPhase"

 set thNursing ThresholdLevelREP "nursing" "QueenSocialPhase"

 set thEgglaying ThresholdLevelREP "eggLaying" "QueenSocialPhase"

]

 if MortalityAdultsBackground_daily > 0 ; MortalityAdultsBackground_daily = 0

 and random-float 1 > MortalityAdultsBackground_daily

 [DieProc "Adult bee: mortality in colony"]

end

Development_PupaeProc

Purpose: determines if pupae develop into adults and emerge

Called by: DevelopmentProc

Asking agents: bees (with stage = "pupa")

Calling:

CropAndPelletSizeREP

ThresholdLevelREP

ProboscisLengthREP

Description

The procedure addresses bees separately with caste = "worker", "male" or "queen". If the

caste specific criteria to develop into adults are fulfilled (i.e. pupae have a certain age and

sufficient incubation received (devAgeEmergingMin_d and devIncubationEmergingTH_kJ for

workers and males, or devAge_Q_EmergingMin_d and devIncubation_Q_EmergingTH_kJ for

queens), then they develop into adults. In this case, stage is set to "adult", brood? to false, and

the thresholds for the four tasks are re-set (ThresholdLevelREP) in workers and queens.

111

The proboscis length (glossaLength_mm) is determined in ProboscisLengthREP and

cropvolume_myl and pollenPellets_g in CropAndPelletSizeREP.

to Development_PupaeProc ; procedure checks if pupae develop into adults

 set cumulTimePupa_d cumulTimePupa_d + 1 ; ; potential ouput (time spent as pupa)

 if caste = "worker"

 [

 ; Development factors pupae: age & incubation:

 if cumulIncubationReceived_kJ >= [devIncubationEmergingTH_kJ]

 of OneSpecies speciesID

 and broodAge >= [devAgeEmergingMin_d] of OneSpecies speciesID

 [

 set stage "adult"

 set brood? false

 set color black

 let newWorkers number ; saves the cohort size

 set TotalAdultsEverProduced TotalAdultsEverProduced + number

 ask colony colonyID [set totalAdultsProduced totalAdultsProduced

 + newWorkers]

 ask colony colonyID [set totalWorkersProduced totalWorkersProduced

 + newWorkers]

 set cropvolume_myl CropAndPelletSizeREP "nectar"

 set pollenPellets_g CropAndPelletSizeREP "pollen"

 set thEgglaying ThresholdLevelREP "eggLaying" "worker"

 set thForagingNectar ThresholdLevelREP "nectarForaging" "worker"

 set thForagingPollen ThresholdLevelREP "pollenForaging" "worker"

 set thNursing ThresholdLevelREP "nursing" "worker"

 set glossaLength_mm ProboscisLengthREP

]

]

Similarly for males, but no crop volume, size of pollen pellets or proboscis length are

calculated:

 ; NOTE: in bumblebees (B. terrestris) diplod males develop into (sterile)

 ; adults (Duchateau et al. 1994)

 ; (dipl. males can also mate but these queens are not able to establish a colony

 ;(Duchateau & Marien 1995) and are removed (in QueensLeavingNestProc)

 if caste = "male" ; MALE PUPAE - might develop into adult males

 [

 if cumulIncubationReceived_kJ >= [devIncubationEmergingTH_kJ]

 of OneSpecies speciesID

 and broodAge >= [devAgeEmergingMin_d] of OneSpecies speciesID

 [

 set brood? false

 set stage "adult"

 set color green

 let newMales number

 set TotalAdultsEverProduced TotalAdultsEverProduced + number

 set TotalAdultMalesEverProduced TotalAdultMalesEverProduced + number

 ask colony colonyID

 [

 set totalAdultsProduced totalAdultsProduced + newMales

 set totalMalesProduced totalMalesProduced + newMales

]

]

]

For queens, the date of emergence from hibernation (emergingDate) is determined randomly

around a species-specific mean (emergingDay_mean) ± standard deviation (emergingDay_sd)

but be within the coming season.

The global variable QueensProducingColoniesList keeps track of all colonies that ever

produced queens and is updated, as well as the statistics of the bee's colony

(totalQueensProduced, totalAdultsProduced).

 if caste = "queen" ; QUEEN PUPAE - might develop into adult queens

 [

112

 if cumulIncubationReceived_kJ >= [devIncubation_Q_EmergingTH_kJ]

 of OneSpecies speciesID

 and broodAge >= [devAge_Q_EmergingMin_d] of OneSpecies speciesID

 [

 let yearEndSeason (365 * ceiling (ticks / 365))

+ [seasonStop] of OneSpecies speciesID ; prevent bees from setting

 ; emergingDate past the end of season

 let yearStartSeason (365 * ceiling (ticks / 365))

;start season is 365 * the current year

 while [emergingDate <= yearStartSeason OR emergingDate > yearEndSeason]

; add start season to the while statement

 [set emergingDate (365 * ceiling (ticks / 365)) ; emerging from

; hibernation next year on day "emergingDay_mean" (+- s.d.)

 + round random-normal [emergingDay_mean] of OneSpecies speciesID

 [emergingDay_sd] of OneSpecies speciesID] ; SD

 set stage "adult"

 set brood? false

 set color red

 let newQueensProduced number

 if not member? colonyID QueensProducingColoniesList

 [set QueensProducingColoniesList

lput colonyID QueensProducingColoniesList]

 set TotalAdultsEverProduced TotalAdultsEverProduced + number

 set TotalAdultQueensEverProduced TotalAdultQueensEverProduced + number

 ask colony colonyID

 [

 set totalQueensProduced totalQueensProduced + newQueensProduced

 set totalAdultsProduced totalAdultsProduced + newQueensProduced

]

 set cropvolume_myl CropAndPelletSizeREP "nectar"

 set pollenPellets_g CropAndPelletSizeREP "pollen"

 set thEgglaying ThresholdLevelREP "eggLaying" "youngQueen"

 set thForagingNectar ThresholdLevelREP "nectarForaging" "youngQueen"

 set thForagingPollen ThresholdLevelREP "pollenForaging" "youngQueen"

 set thNursing ThresholdLevelREP "nursing" "youngQueen"

 set glossaLength_mm ProboscisLengthREP

]

]

 if caste = "undefined"

 [AssertionProc "Assertion violated: undefined caste! (Development_PupaeProc)"]

end

ProboscisLengthREP

Purpose: calculate the length of the proboscis from the weight of the bee

Asking agents: bees

Called by: CreateInitialQueensProc, Development_PupaeProc

Calling: none

Input: none

Description

The length [mm] of a proboscis is calculated from a bee's weight [mg], assuming a linear

relationship between weight and proboscis length. Minimal and maximal weights

(devWeightPupationMin_mg, devWeight_Q_PupationMax_mg) and minimal and maximal

proboscis lengths (proboscis_min_mm, proboscis_max_mm) are species-specific parameters

113

(note that the minimal weight refers to a worker bee but the maximal weight to a queen). The

slope is calculated as the difference between maximal and minimal proboscis length divided

by the difference of maximal and minimal weight. The actual proboscis length is then the

minimal length plus the difference between actual bee weight and minimal weight times the

slope.

to-report ProboscisLengthREP

 let minWeight_mg [devWeightPupationMin_mg] of oneSpecies speciesID

 let maxWeight_mg [devWeight_Q_PupationMax_mg] of oneSpecies speciesID

 let minLength_mm [proboscis_min_mm] of oneSpecies speciesID

 let maxLength_mm [proboscis_max_mm] of oneSpecies speciesID

 let slope (maxLength_mm - minLength_mm) / (maxWeight_mg - minWeight_mg)

 let proboscisLength_mm minLength_mm + (weight_mg - minWeight_mg) * slope

 if weight_mg < minWeight_mg or weight_mg > maxWeight_mg

[AssertionProc ("Wrong bee weight in ProboscisLengthREP Min")]

 report proboscisLength_mm

end

Development_LarvaeProc

Purpose: determines if larvae develop into a pupae

Called by: DevelopmentProc

Asking agents: bees (with stage = "larva")

Calling: DetermineCaste_REP

Input: whoCol (who of the calling bee's colony)

Description

Larvae increase the duration of their larval age (cumulTimeLarva_d) by one day. If their

larval age reaches dev_larvalAge_QueenDetermination_d and their caste is still "undefined",

the reporter-procedure DetermineCaste_REP is called to determine on basis of the larva's

weight and the situation of its colony whether it develops into a worker or a queen.

If a larva meets all the caste and species-specific requirements for pupation (incubation

received, age and weight), stage is set "pupa" and totalPupaeProduced is updated by the

cohort size of the bee.

to Development_LarvaeProc [whoCol]

 ; procedure checks if larvae develop into pupa. Development factors larva: age,

 ; incubation and weight - option to develop into queen!

 set cumulTimeLarva_d cumulTimeLarva_d + 1 ; time spent as larva is increased by 1d

 if caste = "undefined" and cumulTimeLarva_d = [dev_larvalAge_QueenDetermination_d]

of OneSpecies speciesID ; age of determination is

 ; independent of of time spent as egg

 [

 set caste DetermineCaste_REP whoCol ; this reporter-procedure determines the caste

 if caste = "queen" [set color orange]

 if caste = "undefined"

 [AssertionProc "Assertion violated: undefined caste! (Development_LarvaeProc)"]

]

114

 if caste = "worker" or caste = "male" ; larvae develop into pupae as soon as they

 ; 1) received enough incubation, and 2) they are old enough and 3.) heavy enough

 and cumulIncubationReceived_kJ >= [devIncubationPupationTH_kJ]

of OneSpecies speciesID

 and broodAge >= [devAgePupationMin_d] of OneSpecies speciesID

 and weight_mg >= [devWeightPupationMin_mg] of OneSpecies speciesID

 [

 set stage "pupa"

 set color brown

 if ploidy = 1 [set color grey - 2]

 let memoNumber number

 ask colony colonyID [set totalPupaeProduced totalPupaeProduced + memoNumber]

]

 if caste = "queen" ;

 and cumulIncubationReceived_kJ >= [devIncubation_Q_PupationTH_kJ]

of OneSpecies speciesID

 and broodAge >= [devAge_Q_PupationMin_d] of OneSpecies speciesID

 and weight_mg >= [devWeight_Q_PupationMin_mg] of OneSpecies speciesID

 [

 set stage "pupa"

 set color red

 let memoNumber number

 ask colony colonyID [set totalPupaeProduced totalPupaeProduced + memoNumber]

]

end

DetermineCaste_REP

Purpose: determines if a female larvae develops into a worker or a queen

Asking agents: bees (with stage = "larva" and caste = "undefined")

Called by: Development_LarvaeProc

Input: whoCol

Description

Female larvae develop into workers, unless both an individual and a colony criterion to

develop into a queen, are fulfilled: 1) the larvae needs to have a certain, minimal weight

(dev_Q_DeterminationWeight_mg) and the colony needs to be ready for queen production

(i.e. queenProduction? is true). (Note that dev_Q_DeterminationWeight_mg is set to 0 (i.e. is

always fulfilled) as, at least in B. terrestris, increased feeding is not the cause but the

consequence of a larvae developing into a queen (Pereboom et al. 2003) while for other

species we are lacking data).

to-report DetermineCaste_REP [whoCol]

 let mycaste "worker" ; bee will develop into a worker, unless it becomes a queen

 ; it will be a queen if individual weight (1) and colony conditions (2) for becoming

 ; a queen are both fulfilled:

 if (weight_mg >= [dev_Q_DeterminationWeight_mg] of OneSpecies speciesID ; (1)

 and [queenProduction?] of colony whoCol = true) ; (2)

 [set mycaste "queen"]

 report mycaste

end

115

Development_EggsProc

Purpose: determines if eggs develop into a larvae

Called by: DevelopmentProc

Asking agents: bees (with stage = "egg")

Calling: none

Description

A larva hatches from an egg (i.e. stage is set to "larva") when it has received at least a certain

species-specific amount of energy from incubation (devIncubationHatchingTH_kJ) and is of

devAgeHatchingMin_d days age or older. The colony variable totalLarvaeProduced keeps

track of all larvae produced in this colony as a potential output of simulation runs.

to Development_EggsProc ; procedure checks if eggs develop into larvae

 if cumulIncubationReceived_kJ >= [devIncubationHatchingTH_kJ] of OneSpecies speciesID

 and broodAge >= [devAgeHatchingMin_d] of OneSpecies speciesID

 [

 set stage "larva"

 set color white

 if ploidy = 1 [set color yellow] ; male larvae are represented by yellow bars

 ; on the interface

 let memoNumber number

 ask colony colonyID [set totalLarvaeProduced totalLarvaeProduced + memoNumber]

]

end

MortalityBroodProc

Purpose: determines mortality of brood stages

Called by: Go

Asking agents: none

Calling: DieProc

Description

If brood does not develop into the next stage within a certain time frame (e.g. because of lack

of incubation) it dies.

The species-specific maximal ages are: for eggs: devAgeHatchingMax_d, for larvae

devAgeEmergingMax_d (or devAge_Q_EmergingMax_d for queen larvae) and

devAgeEmergingMax_d for pupae (or devAge_Q_EmergingMax_d for queen pupae). We

assume that worker and male brood show a similar development (e.g. Cnaani et al. 2002 for

B. impatiens).

116

Eggs die, if their age (broodAge) exceeds the species-specific maximal age for hatching

(devAgeHatchingMax_d):

to MortalityBroodProc

 ask bees

 [

 let memoNumber number

 if stage = "egg" and broodAge > [devAgeHatchingMax_d] of OneSpecies speciesID

 [

 ask colony colonyID [set eggDeathsIncubation eggDeathsIncubation + memoNumber]

 DieProc "Egg: broodAge > devAgeHatchingMax_d"

]

Queen larvae die, if they are older than devAge_Q_PupationMax_d, all other larvae die after

the age of devAgePupationMax_d. To determine the cause of larval mortality as a potential

output of a simulation run, the larvae's relative weight and relative amount of incubation it

has received is calculated, with the lower one of both being the cause of its death. The number

of larvae died due to insufficient weight (larvaDeathsWeight) or insufficient incubation

(larvaDeathsIncubation) is tracked by the colonies.

 if stage = "larva"

 [

 if ((caste = "worker" or caste = "male" or caste = "undefined")

and broodAge > [devAgePupationMax_d] of OneSpecies speciesID)

 or (caste = "queen" and broodAge > [devAge_Q_PupationMax_d]

 of OneSpecies speciesID)

 [

 ; Get relative incubation and weights (relative to minimum target required

; for developing into the next stage).

 let relativeIncub (cumulIncubationReceived_kJ

/ [devIncubationPupationTH_kJ] of OneSpecies speciesID)

 let relativeWeight -1

 ifelse caste = "queen"

 [

 set relativeWeight (weight_mg / [devWeight_Q_PupationMin_mg]

 of OneSpecies speciesID)

 set relativeIncub (cumulIncubationReceived_kJ

/ [devIncubation_Q_PupationTH_kJ] of OneSpecies speciesID)

]

 [

 set relativeWeight (weight_mg / [devWeightPupationMin_mg]

 of OneSpecies speciesID)

 set relativeIncub (cumulIncubationReceived_kJ

 / [devIncubationPupationTH_kJ] of OneSpecies speciesID)

]

 ; Record the outputs: number of bees that die due to

; relative weight/incubation received is less than 1

 if relativeWeight < 1 AND relativeWeight < relativeIncub

 [ask colony colonyID

 [set larvaDeathsWeight larvaDeathsWeight + memoNumber]

]

 if relativeIncub < 1 AND relativeIncub < relativeWeight

 [ask colony colonyID

 [set larvaDeathsIncubation larvaDeathsIncubation + memoNumber]]

 if relativeWeight >= 1 AND relativeIncub >= 1 [assertionProc "Neither Weight

or Incubation reason for death: MortalityBroodProc (1)"]

 DieProc "Larva: broodAge > max. pupation age"

]

]

Worker or male pupae die, if their age is above devAgeEmergingMax_d and queen pupae die

if they are older than devAge_Q_EmergingMax_d (there are no pupae with "undefined"

caste). Again, the causes of pupal deaths (pupaDeathsWeight, pupaDeathsIncubation) are

tracked by the colonies:

 if stage = "pupa"

117

 [

 if caste = "undefined"

[assertionProc "Pupa with undefined caste (MortalityProc)!"]

 if ((caste = "worker" or caste = "male")

and broodAge > [devAgeEmergingMax_d] of OneSpecies speciesID)

 or (caste = "queen" and broodAge > [devAge_Q_EmergingMax_d]

 of OneSpecies speciesID)

 [

 ask colony colonyID ;as pupae are not fed, they died due to lack of incubation

 [set pupaDeathsIncubation pupaDeathsIncubation + memoNumber]

 DieProc "Pupa: broodAge > max. emerging age"

]

]

After a colony passed its competition point we assume that all eggs die as they are consumed

by worker bees (Duchateau & Velthuis 1988):

 if colonyID >= 0 and ticks > [competitionPointDate] of Colony colonyID

; development of eggs into larvae only possible before CP! (Duchateau & Velthuis 1988)

 [

 if stage = "egg"

 [

 ask colony colonyID [set broodDeathsCP broodDeathsCP + memoNumber]

 DieProc "Egg: CP!"

]

]

]

end

BadgersOnTheProwlProc

Purpose: determines if a colony is dug up and killed by a badger

Called by: Go

Asking agents: none

Calling: DieProc

Description

Bumblebee colonies within the home range (foragingRange_m) of a badger may be destroyed

and all bees killed. The probability for this to happen is calculated from the daily probability a

badger comes across the nest (encounterProb) and the probability that the nest is then

detected an dug up (digUpProb) by the badger. The nectar and pollen stores of the colony are

then set to 0 and all bees die:

to BadgersOnTheProwlProc

 let foragingRange_m 735 ; estimated from Kruuk & Parish, J.Zool.,Lond.(1982) 196,31-39

; Tab. 1: territory: ca. 170ha, hence radius ca. 735m

 let encounterProb 0.19 ; probability to come across the nest; Kowalczyk et al 2006,

 ; Wildlife Biology 12(4):385-391. 2006

 ; Tab1, DR% (daily range as % of total home range: 19+-18;

 let digUpProb 0.1 ; probability to perceive nest and dig it up - ARBITRARY VALUE

 ask Badgers

 [

 let memoX xcor

 let memoY ycor

118

 ask colonies with [distancexy memoX memoY < SCALING_NLpatches/m * foragingRange_m]

 [

 if random-float 1 < encounterProb * digUpProb

 [

 set energyStore_kJ 0

 set pollenStore_g 0

 set color red

 let victimColonyID who

 let memobroodDeaths 0

 ask bees with [colonyID = victimColonyID]

 [

 if brood? [set memobroodDeaths memobroodDeaths + number]

 DieProc "Colony killed by badger!"

]

 set broodDeathBadger broodDeathBadger + memobroodDeaths

]

]

]

end

OutputDailyProc

Purpose: Updates plots and weather symbols

Called by: Go

Asking agents: none

Calling: PlottingProc

Description

Some global variables keeping track of the number of queens, foodsources, colonies etc. to be

shown on NetLogo "monitors" on the interface are updated.

For each 'generic' plot on the interface, the procedure PlottingProc is called. PlottingProc

requires as input the plot addressed (e.g. "plot 1") and which output is to be shown on the plot.

The output is specified by the user via a Netlogo "Chooser" on the interface associated to the

plot (e.g. "N colonies").

Then the weather symbols, showing today's foraging period are updated: the sign with shape

= "sun" is only shown, if foraging is possible (i.e. if DailyForagingPeriod_s > 0), the sign

with shape = "cloud" is shown, if the daily foraging period is less than 4 hours.

to OutputDailyProc

 with-local-randomness ; allows changing switching off plots without

; changing the sequence of random numbers

 [

 random-seed ticks ; local random seed, only valid within this procedure

 set TotalIBMColonies count colonies with [cohortBased? = false]

 set TotalQueens sum [number] of Bees with [caste = "queen"]

 set TotalMatedQueens sum [number] of Bees with [caste = "queen" and mated? = true]

 set TotalUnmatedQueens sum [number] of Bees with [caste = "queen" and mated? = false]

 set TotalHibernatingQueens sum [number] of Bees with [activity = "hibernate"]

 set TotalColonies count colonies

 set TotalBeeAgents count bees

 set TotalMales sum [number] of Bees with [caste = "male"]

 set TotalActiveBees length ActiveBeesSortedList

119

 ifelse count bees with [brood? = false and caste = "worker"] > 0

 [set meanWorkerWeight_mg mean [weight_mg] of bees

with [brood? = false and caste = "worker"]]

 [set meanWorkerWeight_mg 0]

 ifelse count bees with [brood? = false and caste = "queen"] > 0

 [set meanQueenWeight_mg mean [weight_mg] of bees

with [brood? = false and caste = "queen"]]

 [set meanQueenWeight_mg 0]

 ifelse count bees with [brood? = false] > 0

 [set meanAdultWeight_mg mean [weight_mg] of bees with [brood? = false]]

 [set meanAdultWeight_mg 0]

 set ColonyDensity_km2 TotalColonies /

 (

 (((max-pycor - EdgeTop) - (min-pycor + EdgeBottom))

 * ((max-pxcor - EdgeRight) - (min-pxcor + EdgeLeft)))

 / (Scaling_NLpatches/m * Scaling_NLpatches/m * 1000000)

)

 if ShowPlots? = true

 [

 PlottingProc "plot 1" GenericPlot1 ; PlottingProc is called repeatedly..

 PlottingProc "plot 2" GenericPlot2

 PlottingProc "plot 3" GenericPlot3

 PlottingProc "plot 4" GenericPlot4

 PlottingProc "plot 5" GenericPlot5

]

 if ShowWeather? = true

 [

 ask Signs with [shape = "sun"]

 [

 ifelse DailyForagingPeriod_s > 0

 [show-turtle set label precision (DailyForagingPeriod_s / 3600) 1]

 [hide-turtle set label " "]

] ; "sun" sign is shown, whenever there is an opportunity to forage

 ask Signs with [shape = "cloud"]

 [

 ifelse DailyForagingPeriod_s < (4 * 3600)

 [show-turtle]

 [hide-turtle]

] ; "cloud" sign is shown, whenever there is less than 4 hrs of foraging possible

]

]

end

PlottingProc

Purpose: Plotting output as specified by the user

Called by: OutputDailyProc

Input: plotname, plotChoice

Asking agents: none

Calling: none

Description

The specified (plotname) plot is addressed and the output chosen is shown. The procedure

lists all output options and then calculates the graphs.

120

to PlottingProc [plotname plotChoice]

 set-current-plot plotname

 if plotChoice = "Foodsources sizes (histogram)"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "N "

 set-plot-pen-mode 1 ; 1: bars

 set-plot-pen-color black

 set-plot-pen-interval 1

 histogram [size] of Foodsources

]

 if plotChoice = "Matrilines (histogram)" ; NOTE: this plot does NOT correct

 ; for "number" (cohort size), hence IBM colonies will be overrepresented!

 [

 set-plot-x-range 0 140

 create-temporary-plot-pen "mtGene"

 set-plot-pen-mode 1 ; 1: bars

 set-plot-pen-color black

 set-plot-pen-interval 0.1

 histogram [mtDNA] of bees with [caste = "queen"]

]

 if plotChoice = "Genepool (histogram)" ; NOTE: this plot does NOT correct

; for "number" (cohort size), hence IBM colonies will be overrepresented!

 [

 let genepool []

 ask bees with [caste = "queen"]

 [

 foreach allelesList

 [set genepool fput ? genepool]

 foreach spermathecaList

 [set genepool fput ? genepool]

]

 set-plot-x-range 0 140

 create-temporary-plot-pen "alleles"

 set-plot-pen-mode 1 ; 1: bars

 set-plot-pen-color black

 set-plot-pen-interval 0.1

 histogram genepool ;

]

 if plotChoice = "Colony sizes (histogram)" and count Colonies > 0 ; NOTE: this plot does

; NOT correct for "number" (cohort size), hence IBM colonies will be overrepresented!

 [

 if (max [colonysize] of Colonies > 0)

 [

 set-plot-x-range 0 10

 set-plot-x-range 0 max [colonysize] of Colonies

 create-temporary-plot-pen "N "

 set-plot-pen-mode 1 ; 1: bars

 set-plot-pen-color black

 set-plot-pen-interval 20

 histogram [colonysize] of Colonies

]

]

 if plotChoice = "Bee weights [mg] (histogram)" ; NOTE: this plot does NOT correct

; for "number" (cohort size), hence IBM colonies will be overrepresented!

 [

 create-temporary-plot-pen "queens"

 set-plot-pen-color red

 set-plot-x-range 0 1500

 set-plot-y-range 0 40

 set-plot-pen-mode 1 ; 1: bars

 set-plot-pen-interval 50

 histogram [weight_mg] of bees with [brood? = false and caste = "queen"]

 create-temporary-plot-pen "workers"

 set-plot-pen-color black

 set-plot-pen-mode 1 ; 1: bars

 set-plot-pen-interval 50

 histogram [weight_mg] of bees with [brood? = false and caste = "worker"]

 create-temporary-plot-pen "males"

 set-plot-pen-color green

 set-plot-pen-mode 1 ; 1: bars

121

 set-plot-pen-interval 50

 histogram [weight_mg] of bees with [brood? = false and caste = "male"]

]

 if plotChoice = "N colonies"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "Cols"

 plotxy ticks count Colonies

]

 if plotChoice = "Species N colonies"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "B_terrestris"

 set-plot-pen-color yellow

 plotxy ticks count colonies with [shape = "b_terrestris"]

 create-temporary-plot-pen "B_lapidarius"

 set-plot-pen-color black

 plotxy ticks count colonies with [shape = "b_lapidarius"]

 create-temporary-plot-pen "B_pascuorum"

 set-plot-pen-color brown

 plotxy ticks count colonies with [shape = "b_pascuorum"]

 create-temporary-plot-pen "B_hortorum"

 set-plot-pen-color green

 plotxy ticks count colonies with [shape = "b_hortorum"]

 create-temporary-plot-pen "B_pratorum"

 set-plot-pen-color orange

 plotxy ticks count colonies with [shape = "b_pratorum"]

 create-temporary-plot-pen "B_hypnorum"

 set-plot-pen-color blue

 plotxy ticks count colonies with [shape = "b_hypnorum"]

]

 if plotChoice = "Foraging period max. [hrs]"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "max. foraging"

 plotxy ticks DailyForagingPeriod_s / 3600

]

 if plotChoice = "Foraging trips daily"

 [

 ; set-plot-x-range 0 10

 create-temporary-plot-pen "N trips total"

 plotxy ticks TotalForagingTripsToday

]

 if plotChoice = "Food available"

 [

 ; set-plot-x-range 0 10

 create-temporary-plot-pen "Nectar_l"

 set-plot-pen-color yellow

 plotxy ticks NectarAvailableTotal_l

 create-temporary-plot-pen "Pollen_kg"

 set-plot-pen-color red

 plotxy ticks PollenAvailableTotal_kg

]

 if plotChoice = "Total adults"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "Adults"

 plotxy ticks TotalAdults

]

 if plotChoice = "Species total adults"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "B_terrestris"

122

 set-plot-pen-color yellow

 plotxy ticks sum [number] of bees

 with [speciesName = "B_terrestris" and brood? = false and colonyID > 0]

 create-temporary-plot-pen "B_lapidarius"

 set-plot-pen-color black

 plotxy ticks sum [number] of bees

 with [speciesName = "B_lapidarius" and brood? = false and colonyID > 0]

 create-temporary-plot-pen "B_pascuorum"

 set-plot-pen-color brown

 plotxy ticks sum [number] of bees

 with [speciesName = "B_pascuorum" and brood? = false and colonyID > 0]

 create-temporary-plot-pen "B_hortorum"

 set-plot-pen-color green

 plotxy ticks sum [number] of bees

with [speciesName = "B_hortorum" and brood? = false and colonyID > 0]

 create-temporary-plot-pen "B_pratorum"

 set-plot-pen-color orange

 plotxy ticks sum [number] of bees

with [speciesName = "B_pratorum" and brood? = false and colonyID > 0]

 create-temporary-plot-pen "B_hypnorum"

 set-plot-pen-color blue

 plotxy ticks count bees

with [speciesName = "B_hypnorum" and brood? = false and colonyID > 0]

 create-temporary-plot-pen "Psithyrus"

 set-plot-pen-color red

 plotxy ticks sum [number] of bees

with [speciesName = "Psithyrus" and brood? = false and colonyID > 0]

]

 if plotChoice = "Species total adult queens"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "B_terrestris"

 set-plot-pen-color yellow

 plotxy ticks sum [number] of bees

with [speciesName = "B_terrestris" and brood? = false and caste = "queen"]

 create-temporary-plot-pen "B_lapidarius"

 set-plot-pen-color black

 plotxy ticks sum [number] of bees

with [speciesName = "B_lapidarius" and brood? = false and caste = "queen"]

 create-temporary-plot-pen "B_pascuorum"

 set-plot-pen-color brown

 plotxy ticks sum [number] of bees

with [speciesName = "B_pascuorum" and brood? = false and caste = "queen"]

 create-temporary-plot-pen "B_hortorum"

 set-plot-pen-color green

 plotxy ticks sum [number] of bees

with [speciesName = "B_hortorum" and brood? = false and caste = "queen"]

 create-temporary-plot-pen "B_pratorum"

 set-plot-pen-color orange

 plotxy ticks sum [number] of bees

with [speciesName = "B_pratorum" and brood? = false and caste = "queen"]

 create-temporary-plot-pen "B_hypnorum"

 set-plot-pen-color blue

 plotxy ticks sum [number] of bees

with [speciesName = "B_hypnorum" and brood? = false and caste = "queen"]

 create-temporary-plot-pen "Psithyrus"

 set-plot-pen-color red

 plotxy ticks sum [number] of bees

with [speciesName = "Psithyrus" and brood? = false and caste = "queen"]

]

 if plotChoice = "Species hibernating queens"

 [

 set-plot-x-range 0 10

123

 create-temporary-plot-pen "B_terrestris"

 set-plot-pen-color yellow

 plotxy ticks sum [number] of bees

with [speciesName = "B_terrestris" and brood? = false

and caste = "queen" and activity = "hibernate"]

 create-temporary-plot-pen "B_lapidarius"

 set-plot-pen-color black

 plotxy ticks sum [number] of bees

with [speciesName = "B_lapidarius" and brood? = false

and caste = "queen" and activity = "hibernate"]

 create-temporary-plot-pen "B_pascuorum"

 set-plot-pen-color brown

 plotxy ticks sum [number] of bees

with [speciesName = "B_pascuorum" and brood? = false

and caste = "queen" and activity = "hibernate"]

 create-temporary-plot-pen "B_hortorum"

 set-plot-pen-color green

 plotxy ticks sum [number] of bees

with [speciesName = "B_hortorum" and brood? = false

and caste = "queen" and activity = "hibernate"]

 create-temporary-plot-pen "B_pratorum"

 set-plot-pen-color orange

 plotxy ticks sum [number] of bees

with [speciesName = "B_pratorum" and brood? = false

and caste = "queen" and activity = "hibernate"]

 create-temporary-plot-pen "B_hypnorum"

 set-plot-pen-color blue

 plotxy ticks sum [number] of bees

with [speciesName = "B_hypnorum" and brood? = false

and caste = "queen" and activity = "hibernate"]

 create-temporary-plot-pen "Psithyrus"

 set-plot-pen-color red

 plotxy ticks sum [number] of bees

with [speciesName = "Psithyrus" and brood? = false

and caste = "queen" and activity = "hibernate"]

]

 if plotChoice = "Hibernating queens"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "N "

 plotxy ticks sum [number] of bees with [activity = "hibernate"]

]

 if plotChoice = "Egg laying"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "period"

 ifelse ShowInspectedColony? = true

 [

 ifelse count colonies with [who = InspectTurtle] = 1

 [plotxy ticks [allEggs] of Colony InspectTurtle]

 [clear-plot]

]

 [plotxy ticks (TotalEggs)]

]

 if plotChoice = "Stores: honey [ml] & pollen [g]"

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "honey"

 set-plot-pen-color yellow

 ifelse count Colonies = 0

 [plotxy ticks 0]

 [

 ifelse ShowInspectedColony? = true

 [

 ifelse count colonies with [who = InspectTurtle] = 1

 [plotxy ticks [energyStore_kJ] of Colony InspectTurtle / EnergyHoney_kJ/ml]

124

 [clear-plot]

]

 [plotxy ticks (mean [energyStore_kJ] of Colonies) / EnergyHoney_kJ/ml]

]

 create-temporary-plot-pen "pollen"

 set-plot-pen-color orange

 ifelse count Colonies = 0

 [plotxy ticks 0]

 [

 ifelse ShowInspectedColony? = true

 [

 ifelse count colonies with [who = InspectTurtle] = 1

 [plotxy ticks [pollenStore_g] of Colony InspectTurtle]

 [clear-plot]

]

 [plotxy ticks (mean [pollenStore_g] of Colonies)]

]

]

 if plotChoice = "Colony structures"

 [

 ifelse ShowInspectedColony? = true

 [

 ifelse count colonies with [who = InspectTurtle] = 1

 [

 set-plot-x-range 0 10

 create-temporary-plot-pen "Eggs"

 set-plot-pen-color blue

 plotxy ticks [allEggs] of Colony InspectTurtle

 create-temporary-plot-pen "Larvae"

 set-plot-pen-color yellow

 plotxy ticks [allLarvae] of Colony InspectTurtle

 create-temporary-plot-pen "Pupae"

 set-plot-pen-color brown

 plotxy ticks [allPupae] of Colony InspectTurtle

 create-temporary-plot-pen "Workers"

 set-plot-pen-color black

 plotxy ticks [allAdultWorkers] of Colony InspectTurtle

 create-temporary-plot-pen "Males"

 set-plot-pen-color green

 plotxy ticks [allAdultMales] of Colony InspectTurtle

 create-temporary-plot-pen "Queens"

 set-plot-pen-color red

 plotxy ticks [allAdultQueens] of Colony InspectTurtle

]

 [clear-plot] ; plot is cleared after the previous 'inspected colony' has died

]

 [; if ShowInspectedColony? = FALSE:

 set-plot-x-range 0 10

 create-temporary-plot-pen "Eggs"

 set-plot-pen-color blue

 plotxy ticks TotalEggs

 create-temporary-plot-pen "Larvae"

 set-plot-pen-color yellow

 plotxy ticks TotalLarvae

 create-temporary-plot-pen "Pupae"

 set-plot-pen-color brown

 plotxy ticks TotalPupae

 create-temporary-plot-pen "Workers"

 set-plot-pen-color orange

 plotxy ticks TotalAdultWorkers

 create-temporary-plot-pen "Males"

 set-plot-pen-color green

 plotxy ticks TotalAdultMales

 create-temporary-plot-pen "Queens"

 set-plot-pen-color black

 plotxy ticks TotalAdultQueens

]

]

 if plotChoice = "Switchpoints"

 [

 set-plot-x-range 0 50

 create-temporary-plot-pen "SP"

 set-plot-pen-color black

 set-plot-pen-mode 1

125

 histogram [switchPointDate - eusocialPhaseDate] of Colonies

with [eusocialPhaseDate + switchPointDate < NotSetHigh]

]

 if plotChoice = "Sex ratio"

 [

 set-plot-y-range 0 1

 create-temporary-plot-pen "M:F"

 set-plot-pen-color black

 set-plot-pen-mode 0

 if TotalAdultQueens > 0

 [

 plot TotalAdultMales / TotalAdultQueens

]

]

end

DrawCohortsProc

Purpose: Shows the cohorts of each colony on the interface

Called by: Go

Asking agents: none

Calling: none

Description

For each colony, the number of bees of the same age (local variable cohortSize) is determined

(with exception of the mother queen). These bees are presented as lines (shape = "halfline")

on the interface and the length of the line (size) reflects the number of bees in this age group:

to DrawCohortsProc

 ask colonies

 [

 let whoCol who ; saves colony ID

 if count Bees with [colonyID = whoCol and shape = "halfline"] > 0

 ; make sure there are some bees that can be addressed

 [

 let currentAge 0 ; defines which age cohort is now addressed

 let maxAge 1 + [broodAge + adultage] of

 max-one-of Bees with [colonyID = whoCol and shape = "halfline"]

 [broodAge + adultage]

 repeat maxAge ; to address all cohorts in this colony

 [

 let cohortSize sum [number] of Bees

 with [broodAge + adultage = currentAge

 and colonyID = whoCol

 and shape = "halfline"] ; i.e. not the mother queen

 ask Bees with [broodAge + adultage = currentAge

 and colonyID = whoCol

 and shape = "halfline"

]

 [set size cohortSize * CohortSymbolSize] ; length of line reflects cohort size

 set currentAge currentAge + 1 ; the next cohort to be addressed is 1 day older

]

]

]

end

126

AssertionProc

Purpose: causes a simulation run to stop once an assertion in the code has been violated

Called by: only called, if an assertion is violated. Assertions are placed in a large number of

procedures and reported-procedures.

Asking agents: none

Calling: none

Input: message

Description

The procedure is called whenever an assertion is violated. In this case, a message is shown in

the NetLogo "Command center" on the interface, specifying what caused the error. This

message is then also saved in the global variable AssertionMessage, to be accessible when

running Bumble-BEEHAVE in combination with the R software. AssertionViolated is then

set true which will cause a user message to pop up and stop the simulation run at the

beginning of the next time step.

to AssertionProc [message]

 show message

 set AssertionMessage message

 set AssertionViolated true

end

ActivityListButton

Purpose: Shows the logged activities of all adult bees as output in the "Command Center"

(Interface)

Called by: Button ("Activity List")

Asking agents: none

Calling: none

Description

All adult bees are addressed, sorted by their species (speciesID), ID (who) of their colony and

their own ID (who). For each bee, a line is printed on the "Command Centre" (Netlogo

Interface), showing the species, the caste, the ID's of the colony and the bee, the age of the

bee, and then the list of the logged activities.

to ActivityListButton

type "day: " type day print " (species caste colony bee age activities) "

; adult bees within a colony are sorted by "speciesID " then "colonyID" and then by "who":

foreach sort-on [speciesID * 1000000000000000 + colonyID * 10000000 + who]

 bees with [stage = "adult" and colonyID >= 0]

 [ask ?

 [

 type speciesName type " "

127

 if caste = "worker" [type "W" type " "]

 if caste = "queen" and mated? = true [type "Q" type " "]

 if caste = "queen" and mated? = false [type "q" type " "]

 if caste = "male" and mated? = false [type "M" type " "]

 type colonyID type " "

 type who type " "

 type adultAge type " "

 print activityList]]

end

DefaultProc

Purpose: Sets the input options on the interface to the default parameter values

Called by: Button ("Default")

Asking agents: none

Calling: none

Description

Sets all input options on the interface to the default parameter values, except for

RAND_SEED, which remains unchanged.

to DefaultProc

 ;;; set RAND_SEED 1

 set AbundanceBoost 1

 set B_hortorum 0

 set B_hypnorum 0

 set B_lapidarius 0

 set B_pascuorum 0

 set B_pratorum 0

 set B_terrestris 500

 set Backgroundcolour 5

 set ChooseInputFile "BBH-T_Suss1.txt"

 set ChooseInputMap "BBH-I_Suss1.png"

 set COLONIES_IBM 0

 set FlowerspeciesFile "BBH-Flowerspecies_Suss.csv"

 set FoodSourceLimit 25

 set ForagingMortalityFactor 1

 set ForagingMortalityModel "high"

 set GenericPlot1 "Species total adult queens"

 set GenericPlot2 "Species N colonies"

 set GenericPlot3 "Food available"

 set GenericPlot4 "Colony structures"

 set GenericPlot5 "Species total adults"

 set Gridsize 500

 set INPUT_FILE "BBH-T_Suss1.txt"

 set InputMap "BBH-I_Suss1.png"

 set InspectTurtle 1

 set KeepDeadColonies? true

 set Lambda_detectProb -0.005

 set MapAreaIncluded "complete"

 set MasterSizeFactor 1

 set MaxHibernatingQueens 10000

 set MinSizeFoodSources? TRUE

 set N_Badgers 0

 set N_Psithyrus 0

 set RemoveEmptyFoodSources? TRUE

 set SexLocus? false ; true

 set ShowCohorts? true

 set ShowDeadCols? false

128

 set ShowFoodsources? true

 set ShowGrid? false

 set ShowInspectedColony? false

 set ShowMasterpatchesOnly? false

 set ShowNests? true

 set ShowPlots? true

 set ShowQueens? true

 set ShowSearchingQueens? true

 set ShowWeather? true

 set SpeciesFilename "BBH-BumbleSpecies_UK_01.csv"

 set StopExtinct? true

 set UnlimitedMales? true

 set Weather "Constant 8 hrs"

 set WinterMortality? true

 set X_Days 90

end

VersionTestProc

Purpose: runs the model under defined conditions to check for changes made to the code

Called by: Button ("Version Test")

Asking agents: none

Calling:

 DefaultProc

 Setup

Description

After calling DefaultProc, the initial number of badgers and initial queens for all bumblebee

species (including Psithyrus) is set to a value larger 0. The Setup is called and the model runs

for 2 years. The local variable testValue is calculated from a number of bees and foodsources,

and compared to the value of the local variable expectedValue, which is set to the result

expected. A user message then pops up to inform the user whether the code (or one of the

input files) has or probably has not changed. Note that only changes resulting in different

numbers of bees (or foodsources) after two years can be detected.

to VersionTestProc ; to test whether the model was changed

 ; value expected, if the model hasn't changed:

 let expectedValue 8560

 DefaultProc

 set RAND_SEED 1

 set B_hortorum 20

 set B_hypnorum 20

 set B_lapidarius 20

 set B_pascuorum 20

 set B_pratorum 20

 set B_terrestris 100

 set N_Psithyrus 20

 set N_Badgers 5

 Setup

 repeat 2 * 365

 [

 Go

129

 if AssertionViolated = true

 [

 ask patches [set pcolor red]

 stop

]

]

 let testValue TotalBeesEverProduced + TotalHibernatingQueens

+ TotalMales + TotalAdultWorkers + TotalFoodSources

 type testValue type " Difference: " print testValue - expectedValue

 ifelse testValue = expectedValue

 [user-message

"No deviation detected from the pulished version of Bumble-BEEHAVE (2017)"]

 [user-message "CHANGES MADE TO THE MODEL OR INPUT FILES!"]

end

REFERENCES

Alford, D. V. "A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in

southern England." The Journal of Animal Ecology (1969a): 149-170.

Alford, D. V. "Studies on the fat-body of adult bumble bees." Journal of Apicultural Research

8.1 (1969b): 37-48.

Alford, D. V. (1975). Bumblebees, Davis-Poynter, London.

Becher, M. A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P. J., & Osborne, J. L. (2014).

BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore

multifactorial causes of colony failure. Journal of Applied Ecology, 51(2), 470-482.

Becher, M. A., Grimm, V., Knapp, J., Horn, J., Twiston-Davies, G., & Osborne, J. L. (2016).

BEESCOUT: A model of bee scouting behaviour and a software tool for characterizing

nectar/pollen landscapes for BEEHAVE. Ecological Modelling, 340, 126-133.

Beekman, M., Stratum, P., & Lingeman, R. (1998). Diapause survival and post‐diapause

performance in bumblebee queens (Bombus terrestris). Entomologia experimentalis et

applicata, 89(3), 207-214.

Beye, M., Hasselmann, M., Fondrk, M. K., Page, R. E., & Omholt, S. W. (2003). The gene

csd is the primary signal for sexual development in the honeybee and encodes an SR-type

protein. Cell, 114(4), 419-429.

Bloch, G., & Hefetz, A. (1999). Regulation of reproduction by dominant workers in

bumblebee (Bombus terrestris) queenright colonies. Behavioral Ecology and Sociobiology,

45(2), 125-135.

Brian, A. D. (1957). Differences in the flowers visited by four species of bumble-bees and

their causes. The Journal of Animal Ecology, 71-98.

Cnaani, J., Borst, D. W., Huang, Z. Y., Robinson, G. E., & Hefetz, A. (1997). Caste

determination in Bombus terrestris: differences in development and rates of JH

biosynthesis between queen and worker larvae. Journal of Insect Physiology, 43(4), 373-

381.

130

Cnaani, J., Robinson, G. E., Bloch, G., Borst, D., & Hefetz, A. (2000a). The effect of queen-

worker conflict on caste determination in the bumblebee Bombus terrestris. Behavioral

Ecology and Sociobiology, 47(5), 346-352.

Cnaani, J., Robinson, G. E., & Hefetz, A. (2000b). The critical period for caste determination

in Bombus terrestris and its juvenile hormone correlates. Journal of Comparative

Physiology A, 186(11), 1089-1094.

Cnaani, J., Schmid-Hempel, R., & Schmidt, J. O. (2002). Colony development, larval

development and worker reproduction in Bombus impatiens Cresson. Insectes Sociaux,

49(2), 164-170.

Dornhaus, A., Chittka, L. (2001). Food alert in bumblebees (Bombus terrestris): possible

mechanisms and evolutionary implications. Behavioral Ecology and Sociobiology, 50(6),

570-576.

Dornhaus, A., Chittka, L. (2004). Information flow and regulation of foraging activity in

bumble bees (Bombus spp.). Apidologie, 35(2), 183-192.

Duchateau, M. J., & Marien, J. (1995). Sexual biology of haploid and diploid males in the

bumble bee Bombus terrestris. Insectes Sociaux, 42(3), 255-266.

Duchateau, M. J., & Velthuis, H. H. W. (1988). Development and reproductive strategies in

Bombus terrestris colonies. Behaviour, 107(3), 186-207.

Duchateau, M. J., Velthuis, H. H., & Boomsma, J. J. (2004). Sex ratio variation in the

bumblebee Bombus terrestris. Behavioral Ecology, 15(1), 71-82.

Duchateau, M. J., Hoshiba, H., & Velthuis, H. H. W. (1994). Diploid males in the bumble bee

Bombus terrestris. Entomologia experimentalis et applicata, 71(3), 263-269.

Dramstad, W. E. (1996). Do bumblebees (Hymenoptera: Apidae) really forage close to their

nests?. Journal of Insect Behavior, 9(2), 163-182.

Free, J. B. (1955a). The collection of food by bumblebees. Insectes Sociaux, 2(4), 303-311.

Free, J. B. (1955b). The division of labour within bumblebee colonies. Insectes sociaux, 2(3),

195-212

Goulson, D. (2010). Bumblebees: behaviour, ecology, and conservation. Oxford University,

Oxford.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J. et al. (2006) A

standard protocol for describing individual-based and agent-based models. Ecological

Modelling, 198, 115–126.

Grimm, V., Berger, U., DeAngelis, D.L., Polhill, G., Giske, J. & Railsback, S.F. (2010) The

ODD protocol: a review and first update. Ecological Modelling, 221, 2760–2768.

Harder, L. D. (1983). Flower handling efficiency of bumble bees: morphological aspects of

probing time. Oecologia, 57(1-2), 274-280)

131

Harder, L. D. (1985). Morphology as a predictor of flower choice by bumble bees. Ecology,

66(1), 198-210.

Heinrich, Bernd. Bumblebee economics. Harvard University Press, 1979.

Holm, S. N. (1966). The utilization and management of bumble bees for red clover and alfalfa

seed production. Annual review of entomology, 11(1), 155-182.

Holm, S. N. (1972). Weight and life length of hibernating bumble bee queens (Hymenoptera:

Bombidae) under controlled conditions. Insect Systematics & Evolution, 3(4), 313-320.

Honk, C. V., Röseler, P. F., Velthuis, H. H. W., & Hoogeveen, J. C. (1981). Factors

influencing the egg laying of workers in a captive Bombus terrestris colony. Behavioral

Ecology and Sociobiology, 9(1), 9-14.

Ings, T. C., Ward, N. L., & Chittka, L. (2006). Can commercially imported bumble bees out‐
compete their native conspecifics?. Journal of Applied Ecology, 43(5), 940-948.

Inouye, D. W. (1980). The effect of proboscis and corolla tube lengths on patterns and rates of

flower visitation by bumblebees. Oecologia, 45(2), 197-201.

Irwin, R. E., Bronstein, J. L., Manson, J. S., & Richardson, L. (2010). Nectar robbing:

ecological and evolutionary perspectives. Annual Review of Ecology, Evolution, and

Systematics, 41, 271-292.

Knight, M. E., Martin, A. P., Bishop, S., Osborne, J. L., Hale, R. J., Sanderson, R. A., &

Goulson, D. (2005). An interspecific comparison of foraging range and nest density of four

bumblebee (Bombus) species. Molecular Ecology, 14(6), 1811-1820.

Kowalczyk, R., Zalewski, A. & Bogumiła, J (2006). "Daily movement and territory use by

badgers Meles meles in Białowieża Primeval Forest, Poland." Wildlife Biology 12(4): 385-

391.

Kruuk, H, & Parish, T. (1982) Factors affecting population density, group size and territory

size of the European badger, Meles meles." Journal of Zoology 196(1), 31-39.

Lihoreau, M., Raine, N. E., Reynolds, A. M., Stelzer, R. J., Lim, K. S., Smith, A. D., ... &

Chittka, L. (2012). Radar tracking and motion-sensitive cameras on flowers reveal the

development of pollinator multi-destination routes over large spatial scales. PLoS Biol,

10(9), e1001392.

Lopez‐Vaamonde, C., Raine, N. E., Koning, J. W., Brown, R. M., Pereboom, J. J. M., Ings, T.

C., ... & Bourke, A. F. G. (2009). Lifetime reproductive success and longevity of queens in

an annual social insect. Journal of Evolutionary Biology, 22(5), 983-996.

Moerman, R., Vanderplanck, M., Roger, N., Declèves, S., Wathelet, B., Rasmont, P., ... &

Michez, D. (2015). Growth rate of bumblebee larvae is related to pollen amino acids.

Journal of Economic Entomology, 109, 25–30.

132

Moerman, R., Vanderplanck, M., Fournier, D., Jacquemart, A. L., & Michez, D. (2017).

Pollen nutrients better explain bumblebee colony development than pollen diversity. Insect

Conservation and Diversity. doi: 10.1111/icad.12213

Morse, D. H. (1986). Predatory risk to insects foraging at flowers. Oikos, 46(2), 223-228.

Núñez, J. A. (1966). Quantitative Beziehungen zwischen den Eigenschaften von Futterquellen

und dem Verhalten von Sammelbienen. Journal of Comparative Physiology A: 53(2), 142-

164.

Núñez, J. (1970). The relationship between sugar flow and foraging and recruiting behaviour

of honey bees (Apis mellifera L.). Animal Behaviour, 18, 527-538.

Osborne, J. L., Martin, A. P., Shortall, C. R., Todd, A. D., Goulson, D., Knight, M. E., ... &

Sanderson, R. A. (2008a). Quantifying and comparing bumblebee nest densities in gardens

and countryside habitats. Journal of Applied Ecology, 45(3), 784-792.

Osborne, J. L., Martin, A. P., Carreck, N. L., Swain, J. L., Knight, M. E., Goulson, D., ... &

Sanderson, R. A. (2008b). Bumblebee flight distances in relation to the forage landscape.

Journal of Animal Ecology, 77(2), 406-415.

Peat, J., & Goulson, D. (2005). Effects of experience and weather on foraging rate and pollen

versus nectar collection in the bumblebee, Bombus terrestris. Behavioral Ecology and

Sociobiology, 58(2), 152-156.

Pereboom, J. J. M., Velthuis, H. H. W., & Duchateau, M. J. (2003). The organisation of larval

feeding in bumblebees (Hymenoptera, Apidae) and its significance to caste differentiation.

Insectes Sociaux, 50(2), 127-133.

Plowright, R. C., & Jay, S. C. (1968). Caste differentiation in bumblebees (Bombus Latr.:

Hym.) I.—The determination of female size. Insectes Sociaux, 15(2), 171-192.

Raine, N. E., & Chittka, L. (2007). Pollen foraging: learning a complex motor skill by

bumblebees (Bombus terrestris). Naturwissenschaften, 94(6), 459-464.

Reilly, L. A., & Courtenay, O. (2007). Husbandry practices, badger sett density and habitat

composition as risk factors for transient and persistent bovine tuberculosis on UK cattle

farms. Preventive Veterinary Medicine, 80(2), 129-142.

Ribeiro, M. D. F., Velthuis, H. H. W., Duchateau, M. J., & Van der Tweel, I. (1999). Feeding

frequency and caste differentiation in Bombus terrestris larvae. Insectes Sociaux, 46(4),

306-314.

Rodd, F. H., Plowright, R. C., & Owen, R. E. (1980). Mortality rates of adult bumble bee

workers (Hymenoptera: Apidae). Canadian Journal of Zoology, 58(9), 1718-1721.

Sanderson, R. A., Goffe, L. A., & Leifert, C. (2015). Time‐series models to quantify short‐
term effects of meteorological conditions on bumblebee forager activity in agricultural

landscapes. Agricultural and Forest Entomology, 17(3), 270-276.

133

Schmickl, T., & Crailsheim, K. (2007). HoPoMo: A model of honeybee intracolonial

population dynamics and resource management. Ecological Modelling, 204(1), 219-245.

Schmid-Hempel, P., & Heeb, D. (1991). Worker mortality and colony development in

bumblebees, Bombus lucorum (L.)(Hymenoptera, Apidae). Mitt. Schweiz. Entomol. Ges,

64, 93-108.

Schmid-Hempel, P., Kacelnik, A., & Houston, A. I. (1985). Honeybees maximize efficiency

by not filling their crop. Behavioral Ecology and Sociobiology, 17(1), 61-66.

Schmid-Hempel, R., & Schmid-Hempel, P. (2000). Female mating frequencies in Bombus

spp. from Central Europe. Insectes Sociaux, 47(1), 36-41.

Seeley, T.D. (1994) Honey bee foragers as sensory units of their colonies. Behavioral Ecology

and Sociobiology, 34, 51-62.

Seeley, T. D. (1995). The wisdom of the hive. Cambridge.

Silvola, J. (1984). Respiration and energetics of the bumblebee Bombus terrestris queen.

Holarctic ecology, 7, 177-181.

Simpson, S. J., & Raubenheimer, D. (2012). The nature of nutrition: a unifying framework.

Australian Journal of Zoology, 59(6), 350-368.

Stelzer, R. J., Chittka, L., Carlton, M., & Ings, T. C. (2010). Winter active bumblebees

(Bombus terrestris) achieve high foraging rates in urban Britain. PLoS One, 5(3), e9559.

Stelzer, R. J., Raine, N. E., Schmitt, K. D., & Chittka, L. (2010). Effects of aposematic

coloration on predation risk in bumblebees? A comparison between differently coloured

populations, with consideration of the ultraviolet. Journal of Zoology, 282(2), 75-83.

Stout, J. C., Allen, J. A., & Goulson, D. (2000). Nectar robbing, forager efficiency and seed

set: bumblebees foraging on the self incompatible plant Linaria vulgaris

(Scrophulariaceae). Acta Oecologica, 21(4), 277-283.

Tasei, J. N., Moinard, C., Moreau, L., Himpens, B., & Guyonnaud, S. (1998). Relationship

between aging, mating and sperm production in captive Bombus terrestris. Journal of

Apicultural Research, 37(2), 107-113.

Pirk, C. W., Boodhoo, C., Human, H., & Nicolson, S. W. (2010). The importance of protein

type and protein to carbohydrate ratio for survival and ovarian activation of caged

honeybees (Apis mellifera scutellata). Apidologie, 41(1), 62-72.

Stabler, D., Paoli, P. P., Nicolson, S. W., & Wright, G. A. (2015). Nutrient balancing of the

adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential

amino acids. Journal of Experimental Biology, 218(5), 793-802.

Winston, M. L. (1987). The biology of the honey bee. Harvard University Press.

134

	Becher et al 2024 ICAD Suppl Mat.pdf
	Becher et al SupplMat 2 Visual Guide - Understanding BEE-STEWARD
	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

	Becher et al SupplMat 3 Bumble-BEEHAVE - Model Description
	Bumble-BEEHAVE – Model Description
	1. PURPOSE
	2. ENTITIES, STATE VARIABLES, AND SCALES
	I. ENVIRONMENT
	Grid cells
	Food patches
	Weather
	Badgers

	II. BEES
	Bumblebees
	Bumblebee species
	Bumblebee colonies

	III. INTERFACE
	Signs and storebars
	State variables & global variables

	3. PROCESS OVERVIEW AND SCHEDULING
	SETUP
	GO
	Daily update
	Tasks and activities
	Egg laying
	Nursing
	Foraging
	Searching
	Collecting nectar and pollen
	Foraging costs, mortality and patch choice
	Unloading

	Mating and hibernation of young queens
	Feeding larvae and weight gain
	Timing of queen and male production
	Development and mortality
	Predation by badgers
	Output and update of interface

	4. DESIGN CONCEPTS
	Basic principles
	Emergence
	Adaption
	Objectives
	Learning
	Prediction
	Sensing
	Interaction
	Stochasticity
	Collectives
	Observation

	5. INITIALISATION
	6. INPUT DATA
	Definition of bumblebee species: SpeciesFilename
	Definition of foodsources: Input_File
	Definition of forage plant species: FlowerspeciesFile
	Map of modelled area: InputMap

	7. SUBMODELS
	Bumblebee biology, life cycle and general rationales
	Hibernation and winter mortality
	Searching nests
	Colony initiation
	Brood care and brood development
	Production of males and queens
	Foraging

	SETUP
	ParametersProc
	CreateSpeciesProc
	CreateFoodsourcesProc
	MergeHedgesProc
	CreateLayersProc
	CreateBadgersProc
	CreateInitialQueensProc
	ThresholdLevelREP
	CreateSignsProc
	GO
	NextActiveBeeREP
	UpdateMorning_Proc
	DateRep
	Foraging_PeriodREP
	UpdateSeasonalEventsProc
	DieProc
	UpdateFoodsourcesProc
	EmergenceNewQueensProc
	WintermortalityProbREP
	NestSitesSearchingProc
	NestSiteFoodSourceREP
	PsithyrusNestSearchProc
	CreateColoniesProc
	PatchesInRangeProc
	FoodsourcesInFlowerAndRangeProc
	UpdateColoniesProc
	CompetitionPointDateREP
	UpdateColonyStoreBarsProc
	NeedNectarPollenLarvaeTodayProc
	MaxWeightGainToday_mg_REP
	ActivityProc
	StimEgglayingREP
	StimForagingNectarREP
	StimForagingPollenREP
	StimNursingREP
	EgglayingProc
	EggsParameterSettingProc
	BroodIncubationProc
	ForagingProc
	Foraging_searchingProc
	Foraging_SortKnownPatchesListREP
	DetectionProbREP
	Foraging_collectNectarPollenProc
	Foraging_costs&choiceProc
	Foraging_PatchChoiceProc
	Foraging_bestLayerREP
	HandlingTime_s_REP
	Foraging_unloadingProc
	QueensLeavingNestProc
	FeedLarvaeProc
	QueenProductionDateProc
	DevelopmentProc
	Development_Mortality_AdultsProc
	Development_PupaeProc
	ProboscisLengthREP
	Development_LarvaeProc
	DetermineCaste_REP
	Development_EggsProc
	MortalityBroodProc
	BadgersOnTheProwlProc
	OutputDailyProc
	PlottingProc
	DrawCohortsProc
	AssertionProc
	ActivityListButton
	DefaultProc
	VersionTestProc

	REFERENCES

