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Abstract

Magnetohydrodynamic kink waves naturally form as a consequence of perturbations to a structured medium, for
example, transverse oscillations of coronal loops. Linear theory has provided many insights into the evolution of
linear oscillations, and results from these models are often applied to infer information about the solar corona from
observed wave periods and damping times. However, simulations show that nonlinear kink waves can host the
Kelvin–Helmholtz instability (KHI), which subsequently creates turbulence in the loop, dynamics that are beyond
linear models. In this paper we investigate the evolution of KHI-induced turbulence on the surface of a flux tube
where a nonlinear fundamental kink mode has been excited. We control our numerical experiment so that we
induce the KHI without exciting resonant absorption. We find two stages in the KHI turbulence dynamics. In the
first stage, we show that the classic model of a KHI turbulent layer growing at ∝t is applicable. We adapt this
model to make accurate predictions of the damping of the oscillation and turbulent heating as a consequence of the
KHI dynamics. In the second stage, the now dominant turbulent motions are undergoing decay. We find that the
classic model of energy decay proportional to t−2 approximately holds and provides an accurate prediction of the
heating in this phase. Our results show that we can develop simple models for the turbulent evolution of a
nonlinear kink wave, but the damping profiles produced are distinct from those of linear theory that are commonly
used to confront theory and observations.

Unified Astronomy Thesaurus concepts: KHIs (1964); Solar coronal waves (1995); Solar coronal seismol-
ogy (1994)

1. Introduction

Observations show that the solar atmosphere is filled with
highly structured plasma forming loops and threads of material
tracing the magnetic field. A number of different phenomena
lead to oscillations of these structures in the direction transverse
to the field. A few examples are the flare-generated transverse
coronal loop oscillations (Aschwanden et al. 1999; Nakariakov
et al. 1999), the more prevalent small-scale disturbances in
active region loops (McIntosh et al. 2011), Doppler-shift
disturbances in extended regions of the solar corona (Tomczyk
et al. 2007), propagating transverse waves in prominences (Lin
et al. 2007; Schmieder et al. 2013), or the occurrence of
transverse waves generated from colliding plasma flows
(Antolin et al. 2018). A common interpretation has been given
to these oscillations, in terms of propagating or standing
transverse magnetohydrodynamic (MHD) kink waves (see,
e.g., Ruderman & Erdélyi 2009; Goossens et al. 2011;
Nakariakov et al. 2021, for comprehensive reviews).

The usual paradigm under which theoretical studies on MHD
kink waves have been carried out is that of waves modeled as
linear perturbations to an initial background state (Roberts 1983,
2000). Theoretical models for the damping of kink waves have
also focused mainly on the linear regime (Goossens et al.
1992, 2002; Ruderman & Roberts 2002; Goossens et al. 2006).
However, as evidenced by the catalogs compiled by Goddard &
Nakariakov (2016) and Nechaeva et al. (2019), many of the

observed kink oscillations have amplitudes that are large, and
their damping seems to depend on the oscillation amplitude. For
at least some of the observed oscillations, the nonlinearities
associated with the perturbations to the system are non-
negligible. This can lead to damping of the oscillations through
nonlinearities (e.g., Chen & Schuck 2007; Arregui 2021; Van
Doorsselaere et al. 2021).
A well-established result from analytical analysis and

numerical simulations is that plasma motions in a flux tube
undergoing a nonlinear kink oscillation can lead to the
development of the Kelvin–Helmholtz instability (KHI; see
e.g., Terradas et al. 2008; Antolin et al. 2014, 2015; Magyar &
Van Doorsselaere 2016) and the subsequent turbulence the
instability can induce (e.g., Hillier & Arregui 2019; Hillier
et al. 2020). In this case, the KHI is a parasitic instability that
grows on the shear flow that exists on the flanks of the
oscillating flux tube. If the instability can grow, it is then able
to develop nonlinearities, and if there is sufficient energy in the
flow, it can then develop turbulence (Hillier & Arregui 2019;
Hillier 2019). This turbulence can extract energy from an
oscillation, either providing a saturation mechanism for the
amplitude of the wave for a driven oscillation (Hillier et al.
2020) or leading to the damping of an impulsively excited
mode. The turbulence excited by the KHI is one that is
fundamentally different from MHD wave turbulence (e.g., van
Ballegooijen et al. 2011), where nonlinear MHD waves interact
to create a daughter wave of higher frequency. The key
difference is that even though both of these mechanisms use
large-scale oscillation as the energy source, in the wave
turbulence model, large-scale oscillation is also involved in
creating the energy cascade process. For Kelvin–Helmholtz
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turbulence, this is not the case, with the energy cascade being
related to the nonlinearities of an instability.

In this paper, we perform a detailed analysis of the evolution
of the KHI on the surface of an oscillating flux tube, identifying
how the turbulent dynamics result in two different phases of the
evolution of the amplitude of the oscillation of the tube. We
then develop an analytic model for the first stage of the
evolution of the flux tube. Here, we focus on the large-scale
response of the oscillating tube to the Kelvin–Helmholtz
turbulence, in particular, the damping of the oscillations and the
heating this creates. During the second phase of the dynamics,
we find that the turbulent energy dominates that of the wave
energy, so we develop a model only for this based on classic
models of decaying turbulence, using these to predict the
heating rate in the latter stage.

2. Simulations of Kink-wave-driven KHI and Related Wave
Damping

To build a model of wave damping through Kelvin–
Helmholtz turbulence, it is necessary to first identify the
fundamental processes occurring. To do this, we perform a 3D
ideal MHD simulation of a nonlinear kink oscillation that
develops the KHI. Through this, we aim to identify what it
means for the KHI to damp a kink wave and examine the
fundamental processes involved in the damping.

2.1. Simulation Setup

We perform this ideal MHD simulation of an impulsively
excited MHD kink wave using the MHD routines of the (PIP)
code (Hillier et al. 2016). We solve the evolution in 3D in a
Cartesian reference frame using the nondimensionalized ideal
MHD equations in conservative form, namely,
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which allows us to calculate the evolution of the primitive
variables, i.e the density (ρ), velocity field ( ( )v v v v, ,x y z

T= ),
pressure (P), and magnetic field (B), through the evolution of
the relevant conserved quantities. Note that in our normal-
ization, we have taken the magnetic permeability of a vacuum
inside B, meaning that the local Alfvén speed is given by
VA= |B|/ρ. These equations are solved using a fourth-order
central difference approximation for spatial derivatives (calcu-
lated on a uniform mesh) with a four-step Runge–Kutta time
integration. We have nondimensionalized the equations using a
characteristic coronal density (ρc), speed of sound (Cs), and
length scale (Lc).

Here, we do not include any explicit resistive or viscous
terms in the equations. Dissipation at some level is inherent in
the simulation, due to the finite grid size and the use of flux
limiters to smooth sharp structures. As the code is written in
conservative form, any extraction of energy from the flow or
magnetic field results in a corresponding increase in internal
energy (i.e., heating). This allows us to quantify the magnitude
of any heating that occurs in the simulation while being able to
run calculations in the least viscous, least resistive regime we
can achieve for the resolution.
The initial conditions are of a dense tube, aligned with the

direction of the magnetic field, which we then perturbed to
excite the fundamental kink mode of the system. The initial
density profile is given by
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with r x y2 2= + , R the radius of the tube, and ρi and ρe the
internal density of the tube and the external density. We take
R= 0.3, ρe= 1, and ρi= 3. The initial pressure is uniform
throughout the domain, taking a value of P(x, y, z)= 1/γ
(which gives an initial speed of sound of Cs= 1) and a
magnetic field of ( ) ( ) ( )B B B B, , 2 0,0,1x y z

T Tgb= = , with
β= 0.05. The calculations are performed in the domain of
x ä [−Lx, Lx], y ä [0, Ly], and z ä [0, Lz] with Lx= Ly= 1, and
Lz= 10. We use a grid size of Δx= 0.005, Δy= 0.0025, and
Δz= 0.1. The anisotropic resolution is chosen to obtain the
highest resolution of the structures in the x–y plane, with
greater emphasis on the y-direction to help the growth of the
initial instability. This anisotropic resolution in the x–y plane
will result in an anisotropic numerical diffusion of turbulent
structures, where the diffusion associated with the larger grid
scale will likely dominate the diffusion of the system, as
structures are rotated in that plane by the turbulent motions.
This tube is perturbed with a lateral perturbation velocity to the
tube in the form of
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to excite the fundamental kink mode of the system. We use a
value of V0= 0.2. We also set the y- and z-components of the
velocity to zero (i.e., vy= vz= 0).
We set the boundaries of our domain to be either periodic or

possessing symmetries. The boundaries at x=−Lx and x= Lx
are set to be periodic. The boundaries at y= 0 and Ly are
symmetric boundaries such that the magnetic field is imposed
on the (x, z)-plane, as is the flow. This implies that vy= By= 0
on the boundary and ∂vx/∂y= ∂vz/∂y= ∂Bx/∂y=∂Bz/∂y=
∂ρ/∂y= ∂P/∂y= 0. The z-boundaries are symmetric, with the
magnetic field penetrating the boundary with the imposed
symmetries on the magnetic and flow field being of those of a
node (vx= vy= vz= 0 and ∂Bx/∂z= ∂By/∂z= ∂Bz/∂z=
∂ρ/∂z= ∂P/∂z= 0 at z= 0) and anti-node (Bx= By= vz= 0
and ∂vx/∂z= ∂vy/∂z= ∂Bz/∂z= ∂ρ/∂z= ∂P/∂z= 0 at z= 0
at z= Lz).
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2.2. Evolution of the Kink Wave and Its Damping through KHI-
induced Turbulence

Having been subject to its initial kick, as explained in the
previous subsection, the tube begins to oscillate. The wave
excited is (or at least dominated by) a fundamental kink mode
with a frequency of ωkink= 0.53 (calculated from linear theory in
the long-wavelength limit), resulting in the dense tube oscillating
back and forth. For our initial conditions, we set a sharp
boundary in density between the tube and the external medium
(see Equation (7)). Therefore, these oscillations are not subject to
resonant damping, which requires a continuous nonuniform
variation of density such that the fundamental kink mode has its
frequency in the Alfvén continuum (Van Doorsselaere et al.
2004; Goossens et al. 2006). However, as the natural state for
these oscillations is for a strong shear flow to develop between
the tube and the external medium (Sakurai et al. 1991; Goossens
et al. 1992), the boundary of the oscillating tube becomes
unstable to the KHI (Terradas et al. 2008; Antolin et al.
2014, 2015; Magyar & Van Doorsselaere 2016).

Figure 1 shows the evolution of the density of the cross
section of the tube at the apex of the wave (the x–y plane at
z= Lz). These snapshots are taken every 3.2 units of time to
show the evolution of the oscillation at approximately every
quarter period. As the oscillations proceed, we can clearly see
the development of Kelvin–Helmholtz roll-ups on the top of the
tube. After approximately the first quarter period (t= 3.2), the
instability starts to grow, though the scales associated with this
(and with that, the area of the cross section of the tube that has
been disturbed by the development of the instability) are small.
As the wave continues to oscillate, the Kelvin–Helmholtz

vortices become larger, and with this, the area of the cross
section that has been disturbed by the turbulence continues
increasing. Ultimately, the vast majority of the tube becomes
part of the turbulent layer.
Examining this in further detail, Figure 2 shows the temporal

evolution of the area of the cross section of the tube at the apex
(normalized by the initial value) for different density thresh-
olds. We plot the densities ρ� 2.7 (shown by the red line),
ρ� 1.89 (shown by the black line), and ρ� 1.1 (shown by the
blue line). The area shown by the red curve acts as a proxy for
the area that has not been disturbed by the Kelvin–Helmholtz-
induced turbulence. It is clear that once KHI develops, there is
a clear evolution of the material that is initially part of the kink
oscillation of the tube but then joins the mixing layer. Once the
undisturbed area of the tube at the apex becomes about 20% of
its initial area, we can see that the decrease in the size of the
tube core slows. The area of the material with ρ� 1.89 stays
approximately constant over time. This is an important result as
it is connected to the model of Hillier & Arregui (2019), where
for the density contrast used in this calculation, the density
value of ρ= 1.89 is predicted to be an area conserving
threshold, so it is predicted to show no evolution.
Looking back at Figure 1, we can see by eye that the total

displacement of the tube, at least as measured by the
displacement along the x-axis, does not appear to show a
strong decay with time. We can see this somewhat clearer in
Figure 3, which shows the spatial evolution of vx at y= 0 and
z= Lz over time. The blue and red colors show the positive and
negative velocities, respectively. Until a time of t≈ 44, the
magnitude of the displacement and the magnitude and

Figure 1. Contour plots of the density distribution in the (x, y)-plane taken at z = Lz showing the time evolution of the KHI on the surface of the oscillating flux tube.
Time is given in units of the sound crossing time. Color contours show densities between a lower value of 0.99 and an upper value of 3.01.
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coherency of the velocity field do not show any drastic change.
However, after that time, corresponding to where the decrease
in area for the density threshold of ρ� 2.7 is clearly reduced in
Figure 2, there is a complete change in the dynamics with clear
reductions in the lateral displacement of the tube and a velocity
field that is less coherent and of smaller magnitude.

The temporal evolution of the velocity field in the plane of
the apex provides further details on the evolution from coherent
oscillations to turbulent motions. Figure 4 shows the evolution
of vx in the plane at the apex of the oscillation (z= Lz). In this
plot, we have added two black lines to approximately denote
the inner and outer edges of the turbulent layer using the
density thresholds of ρ= 2.7 and 1.1, respectively. Though this
is more pronounced initially, throughout the evolution, the x
velocity for the region inside the inner black line (i.e., the core
of the tube) is relatively coherent at all times. However, in the
turbulent layer (i.e., the region between the two black lines),
there is more significant fluctuation around the average motion.
This includes local speed-ups in the flow, which are a common
feature of Kelvin–Helmholtz roll-ups (e.g., Hasegawa et al.
2006) and other turbulent structuring. The coherent component
of motions in the turbulent layer clearly does not have to move
with the core of the tube, where sometimes they both move in
the same direction, but sometimes they move in opposite
directions.

We can quantify the difference in the velocity field between
the core and the layer by looking at the rms values of the x
velocity and the y derivative of the x velocity in each of the
regions. By dividing the former by the latter, we can get an
approximation of the length scale over which the flow is
evolving. In the core, this value is consistently around 10,
implying the average variation of the flow occurs on scales
larger than the core. However, for the mixing layer, this value
is ∼0.02, consistent with a flow varying over small length
scales.

There is one question that Figure 4 (along with Figures 1 and
3) elicits related to measuring how the wave damps. We can see
that, at least for the first few periods, the core of the tube
undergoes coherent oscillations, but the entire evolution of the
tube takes into account the turbulent layer, which is growing

over time, has more incoherent motions, and a coherent
component of the motions that moves differently to the core.
Therefore, it is necessary to ask, How do we measure the
coherent motions of the loop? And are all these measures
the same?
Clearly, the way we measure the bulk motion is by

determining how we view the change in the amplitude of the
oscillation over time. We can see this very aspect in Figure 5,
where the displacement of the center of mass in the x-direction
has been calculated in three slightly different ways, resulting in
very different displacements measured. For the solid black line,
the displacement in the 2D plane at the apex for all the material
above a density threshold of ρ� 1.62 is displayed. The solid
red line denotes a similar calculation, but for a density
threshold of ρ� 1.1, and the blue line denotes a density
threshold of ρ� 2.7. We can see that initially, the amplitude of
the oscillation, as given by the maximum and minimum
displacements, decreases monotonically for all cases. However,
for the different density thresholds the rate at which the
amplitude reduces (and the form of the envelope giving the
damping of the oscillating profile) clearly differs. We can also
see that there is a clear period drift for the cases with lower
thresholds compared to the ρ� 2.7 curve. After t≈ 44, the
oscillations are difficult to distinguish in the lower threshold
curves, but are clear and consistent in the ρ� 2.7 curve, which
captures the motion of the core of the tube.
Panel (a) in Figure 6 shows the kinetic energy distribution at

the apex of the loop (i.e., z= 10), and panel (b) shows the
magnetic energy at the footpoint of the loop (z= 0). There are
three important pieces of information that can be taken from
this. First, the density thresholds are reasonably accurate at
capturing the extent of the turbulent layer at the apex, but not at
the footpoint. This can be understood dynamically as the KHI
grows at the apex, with flows that transport the density field.
These flows, often vortical, will excite waves that travel along
the magnetic field and stress the magnetic field at the footpoint.
However, the fixed boundary means that there are no flows to
move the mass. So, at the footprint the density thresholds there
do not correspond to the width of the turbulent layer (it is more
the magnetic mapping from the apex to the footpoint that
would provide this). Second, it can be seen that at this time, the
energy is greater in the mixing layer than the core, and the
energy fluctuations in the mixing layer are of small scale (as
expected from the length scale analysis presented above).
Third, the area with turbulent kinetic energy seems to be
slightly larger than the region of turbulent magnetic energy, but
this is balanced by the turbulent magnetic energy generally
having a larger magnitude.
Ultimately, this leads us to a fundamental question, How do

we quantify the damping of a kink oscillation when the loop
develops a growing turbulent layer? The standing kink wave
is a coherent oscillation of a dense tube aligned with the
magnetic field. The damping of these oscillations, when
considering linear wave theory, should be the same wherever
it is measured, not heavily dependent on how the tube is being
measured. Clearly something different is happening in this
simulation where not only the amplitude but the period of the
oscillations measured is a function of the density threshold
used to calculate the evolution of the amplitude of the center
of mass.
Another key aspect of this simulation is that there are two

clear phases of the dynamics. The initial period of damping

Figure 2. Normalized area of the cross section of the tube at the apex with
ρ � 2.7 (red line), ρ � 1.89 (black line), and ρ � 1.1 (blue line).
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oscillations is connected to the growth of a turbulent layer,
followed by the later stage when the cross section of the tube is
almost completely turbulent, and the growth of the layer has
almost been completely arrested. In the next two sections, we

present models for these two phases by developing and
combining aspects of the models in Hillier & Arregui (2019)
and Hillier et al. (2023), and benchmarking the predictions of
the model with key aspects of the simulated evolution.

Figure 3. Contour plot of the x velocity in the x–t plane at y = 0 and z = Lz. Blue (red) colors show positive (negative) values. The color contour is only given for
regions with ρ � 1.62.

Figure 4. x-component of the velocity in the x–y plane at z = Lz. Colors correspond to the same velocities as used in Figure 3. Black lines show the ρ = 1.1 and
ρ = 2.7 transition. Snapshots are taken at the same time as those shown in Figure 1.
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3. Modeling the Development of a Turbulent Layer Around
an Oscillating Tube

In this section we develop a formulation to describe the
evolution of the kink oscillation into a turbulent tube, i.e., the
first stage of the damping as described in the previous section.
A model for key aspects of the second stage will be presented
in Section 4.

The first stage of the damping process occurs as the turbulent
layer on the boundary grows. This process exchanges
momentum from inside and outside the tube, manifesting as
the originally coherent oscillations of the tube developing a
more incoherently moving outer layer, with a coherently
moving inner region. This can be seen in Figure 5, where the
oscillations of the center of mass for the material with a density
greater than 1.1 have an amplitude decaying faster than the
material with a density greater than 2.7.

In this regime, we can expect the jump in velocity across the
turbulent layer to stay relatively constant because the velocity
at the center of the tube (as evidenced by Figure 3) remains at
approximately the same magnitude until t≈ 44. If we consider
a simpler flow, i.e., a non-oscillating hydrodynamic shear layer,
it is well known that for a constant jump in velocity across the
layer, the thickness (h) of the turbulent layer grows as (e.g.,
Winant & Browand 1974)

( )h Vt, 9mixb= D

where βmix is a constant for a given mixing layer, but the
particular value will depend on the density contrast of the layer
(Baltzer & Livescu 2020). Using a dimensional analysis of the
model proposed in Hillier & Arregui (2019) and developed in
Hillier et al. (2023), we propose that the mixing layer grows as

( )
( )h C Vt

1

2
, 10i e

i e
1

1 4r r
r r

=
+

D

where C1 is a constant of between ∼0.1 and ∼1. Through
comparison with mixing in hydrodynamic shear flows, the
value of C1 is expected to be in the range of C1 = 0.3

(Baltzer & Livescu 2020) to 0.5 (Brown & Roshko 1974), as
discussed in Hillier et al. (2023). To determine an appropriate
value for the mixing constant C1 for this problem, we further
examine the mixing in this section. By doing this, we can then
use this model of an expanding shear layer, combined with
information on the structure of the shear layer taken from Hillier
& Arregui (2019), to calculate the rate at which mass and
momentum are transferred into or out of the oscillating loop and
with that how the oscillation damps.
Before making these comparisons, it is necessary to measure

the magnitude of the shear flow across the turbulent layer, as
this is what drives the KHI-induced turbulence. Figure 7 shows
the shear flow at the surface of the tube measured at x= 0 and
z= Lz at t= 11.6 (blue line) and t= 18 (red line). The velocity
is reformulated such that the value is positive at y= 0 for easy
comparison. Two dashed horizontal lines are added at vx= 0.15
and −0.05 to show the approximate values of the flow inside
the dense tube and outside the tube. This implies that the
magnitude of the shear flow is ΔV≈ 0.2. We can see that
locally the shear may appear to be larger than this value, but
this is a consequence of the KHI vortices driving local speed-
ups in the flow (e.g., Hasegawa et al. 2006), which can be seen
in Figure 4, and not a change in the large-scale velocity shear
that feeds the turbulence.
Some consideration has to be given to the fact that this is an

oscillatory flow, and as such, will not have the same magnitude
of shear flow at any given time. We hypothesize that as the
turbulent motions drive the growth in layer width, the rms of
the speed of the shear flow is the appropriate value to use;
therefore, we redefine h with a factor of 1 2 ,

( )
( )h C Vt

1

2
. 11i e

i e
1

1 4r r
r r

=
+

D

Figure 5. Plot of the evolution of the amplitude of the displacement of the
center of mass of the tube in the x-direction over time. The three curves are
shown for the center of mass calculated for density thresholds of ρ � 1.1 (red),
ρ � 1.62 (black), and ρ � 2.7 (blue).

Figure 6. Kinetic energy at the apex of the loop (panel (a)) and magnetic
energy at the footpoint (panel (b)) at t = 35.2. White lines show the density
contour for ρ = 1.1 and 2.7.
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Note that this is not strictly necessary as the constant C1 will
have to be calculated and the value calculated will just scale up
or down based on the numerical constants included in the
model. To make the value of C1 as close to unity as possible
(i.e., explicitly including as many of the physical processes that
determine its value as possible), we include this factor here.

3.1. Mass Evolution

In Section 2.2, to study the evolution of the tube oscillations,
we examined the center-of-mass motions of the system based
on the given density thresholds (e.g., Figure 5). However, these
different thresholds result in changes in the mass over time, so
the first important step is to determine how the mass above a
given threshold evolves with time.

For this model, the actual details of the wave dynamics are
not very important for the construction of the model. Therefore,
we chose to take a rectangular cross section of length 2R and
initial height H= Rπ/4 to model the initial cross section of the
tube to simplify the calculation of the evolution of the
dynamics in the analytical model. The simple justification for
this is that this maintains the cross-sectional area, mass,
momentum, and kinetic energy of the tube, while making
analytic progress easier. Figure 8 gives a diagrammatic
representation of the model of the cross section of the tube
(panel (b)) and its evolution as a consequence of the growth of
mixing layers (panel (c)). With the model geometry and
following the self-similar argument, we can predict the
evolution of the total mass as

( ) ( )
dm

dt

d

dt
m h R2 , 12T

T
= D

r r
r r

>
>

where m
Tr r> is the mass above a given density threshold, and

m
T

D r r> is the change in mass above that density threshold for a
mixing layer of unit width as predicted by the model of Hillier
& Arregui (2019).

Based on the model predictions of Hillier & Arregui (2019),
m

T
D r r> is a constant in time; therefore, our model becomes

( )
( )

dm

dt
m RC V2

1

2
. 13i e

i e
1

1 4
T

T

r r
r r

= D
+

D
r r

r r
>

>

Using the model of Hillier & Arregui (2019), we can calculate
the value of m

T
D r r> . This is done by first calculating the initial

mass of the dense region before mixing by multiplying the
density of the high-density region (for our simulations ρ= 3)
by the fraction of a unit length that would have been occupied
by this dense phase pre-mixing (i.e., the amount the mixing
layer has moved and changed into the original height of the
tube area). Then, we integrate the density component of the
model of Hillier & Arregui (2019) over a unit length from the
density threshold value to the maximum density value (in this
case, 3). This is plotted in Figure 9 for different thresholds for
the initial density contrast of our simulation. We can see that
for a threshold that is both small enough and greater than 1, the
mass will grow with time, but for larger thresholds, there is a
loss of mass. The value where the mass evolution is roughly
neutral, i.e., m 0

T
D =r r> , is ρT= 1.62. Equation (13) can be

integrated to give

( ) ( )
( )

( )m t m m RC Vt0 . 14i e

i e
1

1 4

T T T

r r
r r

= + D
+

Dr r r r r r> > >

To confirm that Equation (14) gives the expected evolution of
the mass, we compare the evolution of the mass for three
different density thresholds from the simulation with compar-
isons to the predicted evolution given by Equation (14).
Figure 10 shows the evolution of the mass at the apex for three
density thresholds: ρT= 1.1 (blue line), ρT= 1.62 (black line),
and ρT= 7 (red line). The dashed lines represent the predicted
evolution curves for these three thresholds (during this initial
regime of the evolution) using C1= 0.3, which was determined
by fitting by eye to the ρT= 1.1 lines. The value of C1 found
here (C1= 0.3) is in the range of the values found in
hydrodynamic simulations/experiments (Brown&Roshko 1974;
Baltzer & Livescu 2020).
Overall the simulated curves follow the predicted linear

trend. It is clear that though there is some evolution in the total
mass for the density threshold of ρT= 1.62, this is a sufficiently
accurate threshold to use to maintain an approximately constant
mass in the calculation of the velocity of the center of mass.
The other two curves show the large variation in mass that can
occur when different thresholds are employed. The reason the
ρT= 1.62 threshold shows some evolution could be due to
errors in applying this Cartesian model for the mixing to this
more complex geometry, with the extreme density thresholds
(that capture either almost all or almost none of the mixing
layer mass) likely to be less sensitive to this effect as the
mapping between the mass associated with the density value in
the two geometries is probably more accurate, though further
work is needed on this. Other, well-established reasons,
unrelated to the mixing process, like the ponderomotive force
driving mass accumulation at the apex of the loop (e.g.,
Terradas & Ofman 2004), exist as a potential alternative
explanation. Though our calculations show that the mass
accumulation at the apex by the ponderomotive force can only
account for 0.3% of the total mass evolution, it is at a level
where it can be treated as insignificant. It is worth noting that

Figure 7. Variation of vx with y for t = 11.6 (blue line) and t = 18 (red line).
The sign of vx is set such that it is positive at y = 0 for easy comparison.
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the density threshold of ρT= 1.89, which is predicted to be area
conserving by the model of Hillier et al. (2019), is
approximately area conserving for the duration of the
simulation (as evidenced in Figure 2)

One consequence of having determined the value of C1 is
that it allows an upper bound for the time this model holds to
be determined. That is to say, we can calculate the time when
the mixing layer has become large enough that all of the initial
cross section of the tube is predicted to be engulfed in the
turbulent mixing layer. Using the asymmetry of the mixing
layer predicted by Hillier et al. (2019), the entire cross section

of the tube should become turbulent when

( ) ( )h t H, 15e

i e

r

r r+
=

where as stated previously H is half the initial height used for
the rectangular approximation of the tube given as H= πR/4.

Figure 8. Schematic explaining the mixing model. Panel (a) shows the cross section of the tube with radius R, and the purple arrows show the direction of the
oscillations of the tube. Panel (b) shows the geometric manipulation of the cross section of the tube used to formulate the analytic model with the width of the now
rectangular cross section kept at 2R and the height set as 2H with the value of H set to conserve the cross-sectional area. Panel (c) shows how the development of two
Kelvin–Helmholtz mixing layers that are growing over time and each has height h (delimited by the red arrows).

Figure 9. Values of m
T

D r r> for different values of ρT. Figure 10. Evolution of the mass of material at the apex of the tube found
above three different density thresholds, with ρT = 1.1 shown in blue,
ρT = 1.62 shown in black, and ρT = 2.7 shown in red. The dashed lines
represent the predicted value of the evolution using C1 = 0.3 with the colors
corresponding to the appropriate density threshold.
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This implies that at a time of

( )
( )t

H

V

2

0.3
44.5, 16i e

i e

2

1 4 3 4

r r

r r
=

D

+
=

the entire tube would have become turbulent, and therefore, the
model of a growing turbulent layer is invalid. This predicts that
a second stage of the dynamics must have been reached by this
time, which is exactly what is seen in Figure 3.

3.2. Momentum Evolution

Following on from the model of the mass evolution, we can
develop a similar (though slightly more complex) model for the
evolution of the momentum. To do this, we split the momentum
above a given density threshold into two components: (1) the
momentum held in the material still corresponding to the original
tube (Mcore), and (2) the momentum injected into the mixing
layer (ML). This is the same concept as has been used for the
modeling of the mass evolution, but with the added complexity
that the momentum changes sign as the system undergoes its
natural oscillations. The combination of a global oscillation at
the kink frequency with the momentum extraction/injection
process acts to make the momentum extraction (from the core) or
injection (into the layer) oscillatory. Therefore, the forcing in the
system driving the change in momentum is oscillatory, meaning
that it is natural to attempt to approximate this system by a
forced linear oscillator.

First, to model the evolution of the momentum in the core,
we know that the core of the tube is oscillating at the frequency
of the kink wave (ωkink), and the momentum extraction is
driven by the shear flow dynamics, which extract momentum at
the same frequency. Therefore, we need to look at the case
where the forcing occurs at the same frequency (i.e., resonant
frequency) as the natural oscillations of the system. This can be
stated in equation form as

( ) ( )dM

dt
I F t2 cos , 17core

kink
2

core core kinkw w= - -

i.e., a forced linear oscillator where the system is being forced
at a resonant frequency. Here, Mcore is the momentum of the
core. We define Icore such that dI dt Mcore core= and a forcing
(Fcore ) are given by

( )F RM
dh

dt
2 , 18core 0 =

with M0 the initial momentum density given by

( )M V , 19i i0 r=

where Vi is the speed of the dense material. In this case,
Vi= 0.15 as can be seen in Figure 7. That is to say,
Equation (19) gives the rate at which momentum is lost from
the core as a consequence of the mixing layer growing at a
constant rate.

Equation (17) has the solution of

( ) ( ) ( )

( ) ( )

I t A t B t

F
t t

sin cos

sin . 20

core kink kink

core

kink
kink


w w

w
w

= +

-

If we follow our initial assumption that the forcing term is in
phase with the oscillations, this implies that B Fcore kink

2 w= - ,

which leads to

( )
¯

( ) ( )

( ) ( )

I t
M

t
F

t

F
t t

sin cos

sin . 21
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kink
kink
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kink
2 kink
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kink
kink




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w
w

w

w
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-

This leads to the evolution of the momentum of the core
following

⎜ ⎟
⎛

⎝

⎞

⎠
¯ ( )

( )
( )

M RHM t
H

Vt2 cos 1
0.3

2
.

22

i e

i e
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2
w

r r

r r
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+
D

To model the momentum injected into the mixing layer
requires more subtlety. Unlike the mass evolution, the
momentum is not a positive definite quantity; it oscillates
around zero, so the sign of the momentum injected into the
mixing layer changes periodically. In addition, the local field
lines in the mixing layer have their own characteristic
frequency of oscillation (i.e., Alfvén frequencies), which can
be different from that of the frequency with which momentum
is being injected.
The simple model we put forth to explain how the

momentum in the mixing layer develops is based again on a
forced linear oscillator, but this time the characteristic
frequency of the oscillation of the layer and that of the core
are not assumed to be the same. We consider a single,
representative Alfvén frequency for the mixing layer (a
composite Alfvén frequency or kink frequency of the layer)
based on the turbulent motions coupling all the different
regions of the layer, allowing it to develop oscillations at a
single representative frequency. As the model of Hillier &
Arregui (2019) proposes, the representative density of the layer
is i er r . Therefore, the simple estimate of the nondimensional
frequency would be ( )B i eA

1 4w r r= . However, as the inverse
of the square root of a mean is not the same as the mean of the
inverse of a square root, we calculate the latter from the model
of the density distribution across the layer from Hillier &
Arregui (2019) and use this to calculate the approximate Alfvén
frequency of the mixing layer (ωA≈ 0.6). Here, we model the
entire layer as a single forced nonlinear oscillator with
momentum ML. Mathematically, the evolution of the momen-
tum would be modeled as

( ) ( )dM

dt
I F t2 cos , 23L
L LA

2
kinkw w= - -

where the forcing is occurring at the kink frequency (ωkink). We
define IL such that dIL/dt = ML and FL is the forcing term
related to the rate at which momentum is added into the mixing
layer from the external regions. This is given by

( )
( )F M C VR, 24L

i e

i e
1

1 4
 r r

r r
=

+
D

with M the momentum injection calculated from the model of
Hillier & Arregui (2019) over a region of unit thickness. The
precise calculation is given by

⎜ ⎟
⎛

⎝

⎞

⎠
( )

( )

( )
M

V
dy0.15 . 25e

i e y

y
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max

ò
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The term in the bracket gives the mean velocity of the mixing
layer in the rest frame of the simulation. This is then multiplied
by the integral of the density between the two density limits of
interest across the predicted average density profile of the
mixing layer model of Hillier & Arregui (2019) for a layer with
a width of unit length.

Equation (23) leads to the well-known solution (in the case
that the characteristic Alfvén frequency of the layer is not the
same as the kink frequency of the tube)

( )( ) ( ) ( ) 26I A t B t
F

tsin cos
2

cos .L
L

A A
A
2

kink
2 kink


w w

w w
w= + +

-

If we take that at t= 0, we have IL= 0, and this implies that

( )B
F2

. 27L

A
2

kink
2



w w
= -

-

Equation (26) can be differentiated to give the momentum
evolution in the mixing layer as
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We then have A=ML(0)/ωA giving
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Figure 11 shows a comparison between the predicted
momentum and kinetic evolution of the core of the tube
(Mcore) and the mixing layer (ML) compared with the simulation
results. What is presented here is not a fit, but is the solution
from an initial value problem compared with the results from
the 3D simulations. This model clearly captures the key
features of the evolution.

Going further, we can simplify Equation (29) by taking
ML(0)= 0 and examining the case where ωA− ωkink is small.
By setting ωD= (ωA− ωkink)/2 and ωS= (ωA+ ωkink)/2,
which means ωA= ωS+ ωD and ωkink= ωS− ωD, we have

( ) (( ) )

( ) (( ) ) ( )

M
F

t

F
t

2
sin

2
sin . 30

L
S D

S D
S D

S D

S D
S D
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w w
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w w

w w

»
+

+

-
-

-

This can be expanded out through double-angle formulas to
give

( )
(( )( ( ) ( ) ( ) ( ))
( )( ( ) ( ) ( ) ( ))) 31

M
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t t t t
t t t t
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L
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Taking that ωD= ωS, this can again be simplified to

( ) ( )) ( )M
F

t tcos sin . 32L
D

S D



w
w w»

This implies that we expect our momentum in the mixing layer
to oscillate with a frequency of ωS inside an envelope that
evolves as ( )tsin Dw .
Our result above implies that we can refine our prediction for

when this initial phase of the dynamics will end. The model we
have put forth for this period of the dynamics is that of the
oscillations in the core of the tube driving the motions.
However, it is clear from panel (b) of Figure 11 (showing the
kinetic energy evolution of the core, mixing layer bulk
motions, and the turbulent fluctuations) that we reach a time
where assuming that the core of the tube holds the majority of
the kinetic energy associated with coherent motions no longer
holds. At a time of t≈ 33, the energy of the coherent motions
of the mixing layer becomes greater than that of the energy of

Figure 11. Comparison of the model and the simulation for (a) the evolution of
the momentum and (b) the kinetic energy associated with the bulk motions of
the oscillating tube. The black lines show the distribution for the material with
ρ > 2.7 for the simulation (solid) and model (dashed). The red lines show the
evolution for the quantities where 1.1 < ρ < 2.7 for the simulation (solid) and
model (dashed).
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the oscillations of the core. So, even without including the
energy of the turbulent motions we can see that our assumption
that the core energetically dominates the dynamics only holds
for a limited time. This switch from the core to the layer
dominating the energetics might explain why the model is less
accurate once we reach a time of t≈ 40.

3.3. Predicted Evolution of Amplitude and Velocity Amplitude
of the Wave Motions

With a prediction of the evolution for both the momentum
and mass above a given density threshold of the oscillation, a
measure of the velocity of the oscillation of the center of mass
can be estimated. This can be formulated mathematically as

( )







V

v da

da

M

m
, 33

x

CoM, T

T

T

T

T

ò

ò

r

r
= =r r

r r

r r

r r

r r

with ρT the threshold density used and a the area of the
integration. That is, the integral of the density-weighted velocity
divided by the integral of the density gives the density-weighted-
average velocity of the oscillation, but this is just the momentum
divided by the mass. As both m

Tr r and M
Tr r have direct

predictions, as shown in the previous subsections, we can use
these to subsequently predict VCoM, Tr r .
Panels (a) and (c) of Figure 12 show the temporal evolution

of the velocity of the center of mass for just the core of the tube
at its apex (panel (a)) and when the mixing layer is also
included (panel (c)). Unsurprisingly, given the accuracy of the
evolution of the momentum and mass up until a time of t≈ 40,
these panels show that the model is a good representation of the
simulation results.
A measure of the evolution of the velocity of the loop at the

apex over time can be used to make a prediction for the
evolution of the position of the apex of the loop (i.e., the wave

Figure 12. Comparison of the model and the simulation of the velocity amplitude of the center of mass (panels (a) and (c)) and the amplitude of the oscillatory motions
of the center of mass (panels (b) and (d)). Panels (a) and (b) show the temporal evolution for the material with ρ � 2.7, and panels (c) and (d) show the temporal
evolution for the material with ρ � 1.1. The solid lines represent calculations from the simulation, and the dashed lines represent VCoM, Tr r (panels (a) and (c)) or

A
Tr r (panels (b) and (d)).
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amplitude) over time. Then, by integrating VCoM, Tr r over time,
we can make a subsequent prediction for the evolution of the
amplitude ( A

Tr r ) of

( )

( ) ( )
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
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Due to the nonlinear system, we are studying, though
dimensionally the same, the A

Tr r defined above is different
from the amplitude of the center of mass, which is defined as

( )




A
xda

da
. 35CoM, T
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ò

r

r
=r r

r r

r r

This difference in the formulation is very important to consider
when comparing results for a nonlinear system, as differing
formulations will lead to some differences in results. This can
be seen in panels (b) and (d) of Figure 12, where when looking
only at the core of the tube (with its simpler evolution), the
model prediction for the evolution of the amplitude ( A

Tr r ) is a
reasonable representation of the amplitude of the center of mass
from the simulation ( ACoM, Tr r ). However, in panel (d), there is
a much greater decrease in the amplitude of the center of mass
(not seen in the velocity of the center of mass) compared to the
model.

3.4. Bounding the Heating Rate in the First Phase of the
Dynamics

An important question, especially in terms of how the results
of this paper may impact our understanding of wave heating of
the solar corona is whether we can predict the heating rates in
the simulation using the Kelvin–Helmholtz turbulence model.
As we have performed an ideal MHD simulation, we do not
have any explicit heating terms from which to calculate this,
but the numerical dissipation will (due to the use of a
conservative scheme) result in energy lost from the kinetic and
magnetic energies being added to the internal energy.
Combined with the choice of boundary conditions, which
means energy cannot leave the simulation domain, this gives us
some measure of the dissipative heating from the turbulence.
The black line in Figure 13 shows the increase from the initial
value of the total internal energy over time. At the end of this
phase (around t∼ 40), we find a total internal energy increase
in the simulation volume that is ≈0.1% of the initial internal
energy of the simulation domain.

To predict the rate at which the internal energy increases
(i.e., a heating rate), first, we need to estimate how the
magnitude of the turbulent energy (both in the velocity and the
magnetic fields) held in the mixing layer evolves over time. To
do this, we need to account for all the energy that has not been
previously accounted for in Section 3.2, i.e., energy not in the
bulk motions of the layer.

This energy can be distributed into three categories:
turbulent energy, energy in the variation of the mean, and
energy lost by the forcing of the mixing layer not being
resonant with the layer’s natural frequency. The first of these is
simple to understand. It is the energy that is predicted to be in

turbulent fluctuations by the model of Hillier & Arregui (2019).
The total energy of this component is calculated as (Hillier &
Arregui 2019)

( )
( ) ( )E V Rh t L

1

16
2 , 36i e

i e
zturb 2

2r r
r r

=
+

D

where a factor of 1/2 has been introduced as a consequence of
integrating along the loop assuming the velocity of the shear
depends on z as ( ( ))z Lsin 2 zp . The second of these is not seen
as turbulent energy by Hillier & Arregui (2019), but has to do
with the mean flow having a distribution across the mixing
layer. This enters the calculations here as the mixing layer is no
longer moving with the shear driving but is drifting out of
phase. As such, it is not clear how much of the energy we
expect to be in the mean variation is kept there and how much
might be released for further turbulence. The total energy of
this component is calculated as

( )E E . 37meandist turb»

Finally, we have the energy that is lost by forcing the mixing
layer to be at a frequency different from its natural oscillatory
frequency. This is just the difference between the energy of the
bulk motions of the mixing layer when they are forced at the
kink frequency and forced at the natural frequency of the layer.
This difference is more pronounced for larger density contrasts,
highlighting a greater potential for heating in those situations.
As this calculation would have already taken into account the
cross-sectional area, this would be multiplied by Lz to give the
total energy Eforce.
The total possible energy in the turbulence in the mixing

layer can then be calculated by summing these three, i.e.,
Etot= Eturb+ Emeandist+ Eforce. The evolution of Etot is shown
by the dashed red line in Figure 13. This can be used as an
expected upper limit from turbulent heating in the simulation.
We can add more nuance to these arguments. We should

expect a time delay between energy being brought into the

Figure 13. Change in internal energy (solid black line) with predicted slope
based on the model of turbulent heating as the Reynolds number tends to
infinity (solid red line) and the predicted upper limit of the heating rate (dashed
red line).
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mixing layer and its dissipation after a turbulent cascade. To
model this, we can use the approximate self-similarity of the
turbulent energy cascade, which implies that the fluctuations in
velocity at a given length scale (l) scale as ( )l l0

1 3µ , where l0
is the largest scale of the turbulent cascade or integral length
scale (Kolmogorov 1941). Assuming that the turbulent cascade
involves the standard nonlinear process where energy is passed
from one scale to a scale of half that size and that the turbulence
cascades to infinitesimal scales (the Reynolds and magnetic
Reynolds numbers are tending to infinity) leads to the
following estimate of the dissipation time τdiss (e.g., Onsager
1949)
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where the subscript denotes the level in the cascade and
τeddy= l0/v0 is the large-scale vortex turnover time. This leads
us to estimate that at any given time, the energy that has been
brought into the mixing layer and has formed part of the
turbulent fluctuations, τeddy/τdiss= 1/2.7 of the energy, will
have been dissipated, leaving 1.7/2.7 as part of the turbulence.

This leads to an estimation of a lower bound for the heating
rate of (Eturb+ Eforce)/2.7. This is shown by the red solid line
in Figure 13. Overall the two bounds we derive do provide
bounds for the growth of the internal energy of the simulation.
The fact that this is closest to the upper bound may imply that
the turbulent energy is very efficiently dissipated (in much less
than 2.7 turnover times), or more likely, as the energy from the
initial kick is not all trapped in the oscillation, some extra
heating is occurring.

4. Modeling the Dissipation of Energy in the Second Phase
of the Dynamics

Having developed a model to explain the evolution of the
first phase, we now turn our attention to the second phase of the
dynamics. The key characteristic of this regime that we use to
guide the model is that the energy of the dynamics is dominated
by the turbulent component (see Figure 14 after t≈ 40). It is
also important to note that as no further energy is input into the
system and without an energy source, the turbulence will decay
over time (again, see Figure 14 after t ≈ 40). Therefore, we
focus on developing a model for the decay of the turbulence.

To model the decay of the turbulence, we no longer consider
the energy of the oscillations and restrict our arguments solely
to the evolution of the turbulence. This simplification makes
the model we propose for understanding the rate at which the
turbulence decays to be that of simple decaying turbulence, and
independent of the oscillatory dynamics. The model we use is
based on those first proposed by Taylor (1935) and
Kolmogorov (1941), where the turbulent transport takes the
turbulent energy held at large scales to smaller scales until it is
dissipated. This can be understood simply by the nonlinear
turbulent transport through spatial scales, which can be
approximated by

· ( )v
dE

dt
E , 39turb

turb turb= - 

where Eturb is the energy held in the turbulent fluctuations of
the velocity and magnetic field and vturb are the turbulent
motions that transport the energy to smaller scales.

The right-hand side of Equation (39) can be approximated by
using the rms of the turbulent motions (vrms) and the largest
length scale of the turbulence (also known as the integral length
scale) and further by connecting to the energy of the turbulent
fluctuations to get (e.g., Kolmogorov 1941; Onsager 1949)
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where ( ( ) )v E A t2 i erms turb r r» (following Hillier & Arregui
2019) is an estimate of the connection between the rms velocity of
the turbulent motions and the turbulent energy with A(t) the
area of the turbulent region and L(t) the integral length scale
of the turbulent motions. Figure 2 shows that at late times, the
area of the turbulent region is approximately constant,
implying that A(t) is constant (which we denote as A0). If
the area is not changing, then we can also assume that the
integral length scale L(t) is also constant, which we denote as
l0 following Section 3.4.
Separating the variables in Equation (40) and then integrat-

ing leads to the following integral equation:

( )
( )

( )
E dE

C

l A
dt
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t t E t

1
, 42turb

0 0
1 2 2a

=
- + -

with

( )C

l A

2
. 43

e i0 0
a

r r
=

Based on the area of the mixing layer shown in Figure 1, we
take A0 to be an annulus with outer radius of 0.45 and inner
radius of 0.15. This leads to a length scale l0, which we take
to be the difference between the inner and outer radius

Figure 14. Kinetic energy of the x-component of the velocity at the apex of the
oscillation for the core of the tube (black line), the coherent motions of the
mixing layer calculated from the mean density and density-weighted velocity
of the layer (red line), with the energy of everything left, i.e., the incoherent,
turbulent motions (blue line).
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of 0.3. For dynamical consistency, we take that the unknown
constant C has the value D/2.7 where 2.7 comes from the
cascade time for Kolmogorov turbulence (see Section 3.4),
i.e., C= D/2.7= 0.3/2.7. This then gives

( )D

l A2.7

1

2
. 44

e i0 0
a

r r
=

The simple implication of this model is that the turbulent
energy should decay at late times ∝t−2. This is a classic result
of decaying turbulence with a fixed length scale of the large-
scale motions (e.g., Taylor 1935; Oberlack 2002; Sagaut &
Cambon 2018). Figure 15 shows a comparison between the
theoretically predicted decay and that shown for the kinetic
energy in the simulation at the apex of the tube using a value of
D= 0.6, which is twice the value of the constant C1 found in
the first stage of the dynamics. Note that α has been multiplied
by a factor of 4 3 because we predict that the total kinetic
energy will be 4/3 greater than the kinetic energy in the x-
direction. This can be inferred from the model of Hillier &
Arregui (2019) due to the approximate equipartition between
the energy found in the component of the flow varying about
the mean velocity of the layer for a shear flow and the turbulent
component of the flow. Overall, the match shown in Figure 15
between the model and simulation results is good, though
this only over a relatively short time range making stronger
statements difficult.

If the energy of the turbulence is decaying, the reason for
this is that the energy held in the turbulent fluctuations is
being dissipated. Therefore, we can expect the decay of the
turbulence to directly connect to heating. If the turbulent
energy goes down, this should directly correspond to the same
level of increase in thermal energy. To make progress, we
assume the turbulent energy (taking the turbulent energy to be
the sum of turbulent kinetic energy and turbulent magnetic
energy) decay is uniform along the flux tube. Figure 16 shows
the distributions of the turbulent kinetic and magnetic energies

along the tube at two times. From this, we can see that, roughly
speaking, the magnitude of the total turbulent energy is
approximately constant along the tube at both times, implying
an approximately constant decay along the tube. Making this
assumption means we can integrate E(t0)− Eturb over the
length of the tube, and this gives the amount of energy
dissipated. To take into account the fluctuations in the velocity
(and with that magnetic field) in the y-direction, we multiply
E(t0)− Eturb by 4/3 and again take the same factor of 4 3 in
α. The comparison between the relative increase in internal
energy of the model and the simulation is shown in Figure 17,
with the black line giving the simulation results and the red line
that of the model (the model is only shown after a time of

Figure 15. Plot of the normalized turbulent energy against modified time. The
black line shows the results of the simulation and the red line the predicted
decay from the model.

Figure 16. Plot of the normalized turbulent energy in the x and y components
of the magnetic field (red line) and velocity field (blue line) and their total
(black line) against z calculated in a tube aligned with z with radius 0.45. The
solid lines represent t = 60 and the dashed lines t = 80.

Figure 17. Evolution of total thermal energy over time (black line). Model of
the expected increase in thermal energy as a consequence of heating due to the
decay of turbulence is shown by the red line. Note that the red line is only
plotted for t � 42.
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t= 42 for which it was derived). The model clearly provides a
reasonable representation of the evolution implying that the key
physical concepts that are needed to understand the increase in
thermal energy of the simulation have been included in the
model.

5. Summary and Discussion

In this paper, we have investigated the dynamics of a
nonlinear kink wave excited in a flux tube. The numerical study
was designed to capture the fundamentals of the system we are
interested, i.e., kink oscillations of coronal loops, while
maintaining sufficient simplicity and conserving energy in the
domain to make our analysis straightforward. The oscillating
tube develops the KHI on its surface, developing a turbulent
layer. It is the growth of this turbulent layer that characterizes
the first stage of the dynamics in the simulation. Once the layer
became sufficiently large and became the dominant source of
kinetic energy, the dynamics transitioned to a second stage
characterized by the decay of the turbulent energy in an
annulus around the much reduced core of the loop. We
presented simplified analytic models to explain key aspects of
these two stages.

The first stage of the dynamics is characterized by the growth
of a turbulent layer that grows until most of the cross section of
the tube is turbulent. To model this evolution, we combined
together the mixing models of Hillier & Arregui (2019) and
Hillier et al. (2023) to create new models for how the mass and
momentum (and as a consequence, energy, wave velocity,
wave amplitude, and heating) evolve over time. This model
made some clear predictions about when this stage has to end.
As this transition is linearly proportional to the magnitude of
the shear flow, we would naturally expect that this stage
finishes sooner for highly nonlinear waves.

A fundamental aspect of the model for this stage of the
evolution is the self-similar evolution of the turbulent layer.
This model was developed for steady hydrodynamic shear flows,
e.g., Winant & Browand (1974). However, in this study, we
have a strong magnetic field, an oscillating flow, and a curved
boundary. In spite of these departures from the base model, the
self-similar evolution can still be clearly distinguished. This
implies that this is a robust physical mechanism that could occur
in flows in many systems with strong magnetic fields. As the
self-similar model comes from dimensional analysis of the
system, it inherently has unknown constants associated with it.
For the case presented in this paper, the constant we determined
was consistent with previous hydrodynamic studies of shear
layer mixing. However, a broader parameter survey is necessary
to determine if this constant has some as yet unknown
dependency on the system that is as yet not built into the model.

In the second stage of the evolution, as the energy of the
turbulent motions dominates the energy of the coherent wave
motions, the model we propose to understand this phase
focuses on the decay of this turbulent energy. This model
provides a good prediction of the temporal decay of the
turbulent energy of the simulation. This allows for a reasonable
prediction of the heating in the simulation, due to this turbulent
decay to be estimated. One key aspect of this model is we
assume that the characteristic length scale of the turbulence
remains fixed. However, the growth of the turbulent area
shown by the difference between the blue and red lines in
Figure 2 implies that even after t≈ 50, the area does increase.

This could imply that there is also some growth in the largest
scale of the turbulence in the layer over time. This would
change the exponent of the power law of the turbulent decay
(e.g., Kolmogorov 1941; Oberlack 2002). Clearly, the
simulated energy evolves at close to ∼t−2, but it would be
interesting to explore how including an evolving length scale
improves the modeling of the system.
With both phases of dynamics, what is striking about the

models proposed is that they both are taken almost directly
from their hydrodynamic equivalents without major revision,
due to the presence of strong magnetic fields. We have
implicitly used the magnetic fields in both phases, mainly by
assuming that Alfvén waves are traveling back and forth along
the magnetic field to connect turbulent fluctuations in one
region in z to other regions in z. In the first phase, this implies
that the influence of the mixing at the apex is felt throughout
the full length of the tube, creating fluctuations in velocity and
magnetic field all along the tube, and allowing the coherent
oscillations of the mixing layer to develop. For the second
phase, this connection means that we assume turbulence has
developed along the full length of the tube and assume that the
magnitude of the turbulent energy (whether it is in turbulent
kinetic energy or turbulent magnetic energy) is the same along
the tube, due to the magnetic field connecting regions along z.
This assumption allows us to calculate heating rates for the
system.
Another consequence of the magnetic field is it makes the

turbulent motions highly anisotropic (with KHI swirls being
highly elongated along the z-direction; e.g., Antolin et al.
2018), giving quasi-2D-like behavior. This may imply that the
value of the constant C1 should be nearer to 0.5 than the value
of ∼0.3 we have found for the first phase of the dynamics.
However, we know that some of the energy of the turbulence is
held in magnetic fluctuations, which will reduce the magnitude
of the turbulent motions, slowing mixing. Assuming that there
is equipartition between the energy of fluctuations in the
velocity and magnetic field, this would correspond to a factor
of 1 2 in Equation (11), which would increase the value
found for C1 by 2 . Taking that the velocity of the shear is
maximal at the apex and zero at z= 0 because of the nature of
the MHD kink wave under study, this would again put another
factor of 1 2 in Equation (11) and another subsequent
increase in the value found for C1 by 2 . Therefore, in some
sense, part of the effect of the magnetic field on the turbulence
model is found in the value of the constant C1.

5.1. Resonant Absorption and Its Lack of Consequence in Our
Simulations

For the simulations presented in this paper, as with many
others of KHI turbulence developing from oscillations of tubes
with thin boundaries (Terradas et al. 2008; Magyar & Van
Doorsselaere 2016), the turbulent mixing broadens the tube
boundary. This makes the density profile of the tube to be one
where resonant layers (Goossens et al. 1992) would exist for a
linear wave perturbation. Therefore, it may be expected that
resonant absorption could develop in the tube once mixing has
made a clear boundary layer between the inside and outside of
the tube. However, we find no evidence of a resonant layer
forming in the mixing layer at any point in our simulation, and
to explain the evolution of the turbulence in our simulation, our
model does not need to invoke resonant absorption at all.
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Beyond the visual lack of a resonant layer, both panels of
Figure 11 show that the momentum and energy of the core of
the tube are accurately accounted for by the model we propose.
This can only be the case if the only change in the momentum
and kinetic energy of the core is because the turbulent layer is
eroding the core. If there were significant energy transfer from
the core to the external layer through resonant absorption, these
predictions would overestimate the momentum and kinetic
energy of the core. Though we cannot rule out local field lines
in the mixing layer resonantly absorbing some energy from the
core of the tube, this means that if it is there, this process is
dynamically unimportant.

So why is resonant absorption not present (or if it is,
dynamically unimportant)? The simple answer is that the
development of turbulence naturally inhibits the formation of a
resonant layer. There are two explanations as to why we should
not expect it to develop. First, the KHI turbulence is constantly
driving changes in the local conditions of the mixing layer,
meaning that the resonant field lines are constantly changing, and
through the swirling motion of the turbulence, field lines with
different Alfvén speeds are locked together and unable to freely
move (which inhibits them from developing their own oscilla-
tions). Second (or another way of looking at this), is that
turbulence at small scales can act to have a diffusion effect at
larger scales (e.g., Taylor 1922). We can infer that there would be
a strongly enhanced magnetic diffusion felt by the tube in the
mixing layer as a consequence of turbulent motions (see turbulent
magnetic diffusion in mean-field dynamo models Brandenburg
et al. 2023). As the efficacy of resonant absorption is greatly
reduced in the presence of strong diffusion, it can be understood
that turbulence would work to suppress the development of a
resonant layer. It is worth noting that the magnitude of the
turbulent diffusion scales with the magnitude of the velocity of the
shear. Therefore, smaller shear flows will produce less turbulent
diffusion and at a sufficiently small magnitude, may allow the
resonant absorption process to manifest.

To understand which will be dominant, resonant absorption
or the KHI, we can consider the timescales of the system. In the
initial evolution, if the KHI timescale is much shorter than that of
resonant absorption, e.g., with thin boundary layers or large
amplitudes of the velocity of the waves, then the KHI will likely
grow, and at no time will resonant absorption be important.
However, in the converse situation, e.g., with large boundary
layers or small amplitudes of the waves, then resonant absorption
will dominate leading to the development of a resonant layer.
However, this resonant layer is KHI unstable (e.g., Terradas et al.
2008; Antolin et al. 2015), which will drive turbulence that can
end the resonant absorption process.

There is, however, one further point to consider. The
oscillation of the mixing layer (where a resonant layer could
develop) appears to no longer be that of the original kink
oscillation. This is its own oscillation being forced by
momentum injection into the layer by mixing. Its frequency
is not the kink frequency of the system but a hybrid of that
frequency and the kink frequency of the layer itself. Therefore,
it is likely that any resonant process would be associated with
this new oscillation of the mixing layer and not that of the
initial kink oscillation. If this is the case, then the growth of the
KHI would completely remove the possibility of resonant
absorption of the global kink mode from the system, only
allowing energy to be absorbed from large-scale motions of
the mixing layer to local resonances, which would preclude

resonant absorption as a damping mechanism once the KHI
mixing layer has developed.

5.2. Why Is This Model Different from the Other “KHI”
Damping Model?

The model presented by Van Doorsselaere et al. (2021) is
labeled in their work as damping by the KHI. However, the
model presented in this paper and their model have vastly
different formulations, with very different dependencies on the
density contrast (and in the case of the model in this paper, two
distinct regimes). This leads to the question, How can two
different formulations be modeling the same physical phenom-
enon? The model presented in this paper is developed from
direct analysis of the turbulence created by the KHI, and as
shown by the comparison in Hillier et al. (2020) and Section 2,
gives results that are consistent with those found in simulations
of loop oscillations that develop the KHI.
The model presented in Van Doorsselaere et al. (2021) used

the linear eigenfunction for a kink wave and then prescribed a
nonlinear amplitude to the oscillation. By integrating the wave
oscillation over one period they could calculate the energy
extraction rate through these nonlinearities. As they only study
the particular wave mode associated with the kink wave, no
other modes are excited in the system. This means that there is
no perturbation to seed the linear growth of the KHI, and as a
consequence, there can be no Kelvin–Helmholtz turbulence.
That is to say, the model they calculated does not allow for the
growth of the KHI, so it cannot have any damping through
Kelvin–Helmholtz turbulence.
This leads to the question, What is the nature of the

nonlinear damping investigated in Van Doorsselaere et al.
(2021)? The initial conditions of their model are not an exact
solution of the nonlinear equations (unlike a linear Alfvén wave
in incompressible nonlinear MHD). Therefore, the kink wave
(characterized by a wavenumber k0 and azimuthal wave mode
m= 1) does work on the neighboring Fourier mode (in this
case, with wavenumber k= 2k0 and azimuthal wavenumber
m= 2). As with any forcing problem, the energy will be
trapped in that wave mode efficiently if the forcing (which
occurs at twice the kink frequency), and the wave mode being
forced are resonant (this is the basis of any wave turbulence
argument, e.g., Goldreich & Sridhar 1995). This is clearly a
different mechanism for KHI damping of a kink wave, as
presented in this paper, highlighting that when considering
nonlinear mechanisms for wave damping, there are many
different ways these nonlinearities can manifest.

5.3. Heating Rates and the Implications for Coronal Heating

One of the important predictions of the models present here is
the heating rates from both stages of the evolution. To make this
comparison, we need to compare the characteristic heating rate of
the simulation with the cooling time for comparable coronal
plasma. The cooling time for the solar corona (based on a number
density of 109 cm−3) is τcool∼ 103 s. In the units of time in our
simulation (i.e., sound crossing times), if we assume a loop
length of 1010 cm and a speed of sound of 1.2× 107 cm s−1, the
dimensional cooling time becomes 24τ. As this is an exponential
decay, it is the equivalent of a reduction in thermal energy by a
factor of ( )1 exp 1 . Note that this ignores the losses through
thermal conduction to the chromosphere and so should be taken
merely as a crudely representative value.
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For the heating, we can see from Figure 13, at t≈ 40 the
internal energy had increased by a value of ∼0.018. This gives
a rate of increase of internal energy of 0.00045. By dividing the
total internal energy at the start of the simulation divided by

( )exp 1 by this number, we get a heating time of ∼104 τ, which
is significantly larger than the cooling time of 24 τ. Therefore,
even though the kink wave in this simulation is a relatively
nonlinear perturbation (with the initial kick of 20% of the speed
of sound), the heating rates found are significantly smaller than
those needed to balance radiative losses. The low heating rates
we find in our simulation are consistent with those found by
Howson et al. (2017), where explicit viscosity and magnetic
resistivity were included.

5.4. A Corollary on Coronal Seismology

The work presented in this paper leads to a very important
corollary about the damping of kink waves in the solar
atmosphere. It is standard to fit either exponential, or in some
cases, Gaussian damping envelopes to the observed decay of loop
oscillations (e.g., Nechaeva et al. 2019). However, these damping
envelopes are fundamentally connected to linear wave theory.

The work presented in Sections 3.2 and 3.3 highlights how
KHI turbulence produces nonlinear wave damping. The wave
damping envelope for this nonlinear mechanism has a different
functional form from that of the linear damping profiles. Even
more importantly, exactly how the tube motions are measured
changes the damping envelope that is measured. This implies that
when measuring the damping of kink waves from observations of
the solar corona, it is important to consider more than just linear
damping envelopes to understand the evolution.
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