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Abstract

Optimisation problems involving multiple objectives are commonly
found in real-world applications. The existence of conflicting objectives
produces trade-offs where a solution can be better with respect to one
objective but requires a compromise in the other objectives. In many
real-world problems the relationship between objectives is unknown
or uncertain, and it is common to find problems with non-conflicting
objectives. Understanding these relationships has been proven use-
ful in different ways. The search efficiency of a multi-objective opti-
misation algorithm can benefit if objectives that are not essential to
describe the Pareto-optimal front are omitted during the search proce-
dure. Analysts and decision makers might get a better understanding
about exiting synergies between the objectives, in turn facilitating the
decision-making process of identifying the best solution. One partic-
ular useful technique to capture the relationships between objective
functions is to rely on correlation measures. This chapter explores the
literature of finding correlations among objective functions in solving
multi-objective optimisation problems. Particularly, we focus on in-
novization and objective reduction approaches. We explain different
statistical correlation measures and also provide details of benchmark
and real-world optimisation problems solved by exploiting the corre-
lations. This chapter provides an insight in solving multi-objective
optimisation problems by considering the correlation among objective
functions.

1 Introduction

Many real-world optimisation problems involve several conflicting objectives.
These problems are termed as multi-objective optimisation problems. Sev-
eral methods including multi-objective evolutionary algorithms (MOEAs)
have been proposed and tested on numerous benchmark and real-world prob-
lems. Most of these methods do not consider correlations between objective

∗The author names are arranged alphabetically.
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functions. In many problems, it may happen that the objectives positively
or negatively correlate with each other. For instance, [11] presented a geom-
etry optimisation problem for a diffuser using computational fluid dynamics
(CFD) simulations where the two objectives were anti-correlated to a de-
gree due to the complex interactions between flow considerations and un-
usual shapes. These correlations between objective functions can be used as
additional information when solving a given multi-objective problem. For
instance, if two or more objectives are strongly correlated for any arbitrary
decision variable, we may keep only one representative objective when opti-
mising as knowing one of the objectives immediately permits us to deduce
the others for any solution, and thus reduce the complexity of solving the
overall problem.

It has been reported in the literature [29, 21] that the search ability
of several MOEAs deteriorates when the number of objectives in a multi-
objective optimisation problem increases beyond three objectives. Such
problems are known as many-objective optimisation problems (MaOPs). For
these problems, a particular class of MOEAs that relies on Pareto-dominance
for selection and preservation is severely affected. This is because, in higher
(i.e., four or more) dimensions, it is more likely that two solutions will be mu-
tually non-dominated. As such this measure cannot effectively discriminate
between solutions, and therefore MOEAs may stagnate due to the lack of
selection pressure. Furthermore, it is difficult to visualise high-dimensional
objective spaces [33]. While effective visualisation techniques exist in this
domain, decision making is still challenging. Another more fundamental is-
sue is the number of solutions required to represent the non-dominated set
with the same coverage, since this number increases exponentially with the
number of objectives. Hence, exploiting correlations between the objectives
for MaOPs is a promising avenue to explore, especially from the objective
reduction perspective.

In addition to tackling the challenges of MaOPs mentioned above, the
knowledge of correlations between the objectives and decision variables can
provide important insight into the nature of the problem at hand. In this
context, the innvovization techniques that aim to find correlations between
the decision variables and/or objective functions and exploit these in search
have been successfully applied to real-world optimisation problems [4].

Given the importance of correlations, it is no wonder that several ap-
proaches have been proposed to reduce the number of objectives and provide
insights into the problem. However, to the best of our knowledge, there is a
lack of a concise review of these techniques in the literature.

In this work, we review methods and approaches which have been used
to find correlations. The main contributions of this review are as follows:

1. We focus on data mining, objective reduction, and innovization method-
ologies using different types of correlation measures. We expect that
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practitioners and decision-makers (DMs), who wish to develop a deep
understanding of the problem at hand and select a solution with this
knowledge, would find this review useful.

2. We provide details of benchmark and real-world optimisation problems
that have been developed and used to test different methodologies in
this domain. The review of the existing problems can provide insights
on how the exploitation of correlations may be beneficial.

The rest of the chapter is organized as follows. In Section 2, we describe
several correlation measures that are commonly used in the fields of applied
sciences and numerical optimisation. The relationships between objectives,
namely conflict and harmony, and how these can be captured by correlation
measures is discussed in Section 3. Existing methodologies that exploit the
use of correlations in fields such as data mining, innovization and objective
reduction, are described in Section 4. In Section 5, we provide details of
existing benchmark problems, and one real-world problem, which have been
designed to exploit correlations either explicitly or implicitly.

2 Identifying correlations from data

Correlation is a statistical relationship that measures the degree to which a
pair of parameters change in relation to each other. If a correlation is positive
it implies that the values of both increase (or decrease) simultaneously. In
the case of a negative correlation, the direction of change in one is opposite
of the other.

The methods to quantify correlations from data are broadly used in
applied sciences and numerical optimisation. This is primarily because they
are a useful summary of the evidence or data, and may help identify and
explore structural characteristics of a problem at hand.

It is important to appreciate that although correlation coefficients are
useful indicators, misinterpretations and abuses of underlying assumptions
may yield meaningless results [26]. Therefore, caution should be taken to
ensure that a metric is appropriate within the context of the analysis.

In the rest of this section we discuss a range of popular correlation coef-
ficients.

2.1 Pearson’s correlation measure

One of the most widely used statistical correlation estimation measures is
Pearson’s correlation [27] for continuous random variables. Several variants
of the Pearson’s measure exist such as Pearson’s correlation distance and
weighted correlation coefficient.
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Considering a pair of random variables Y and Z, in this correlation mea-
sure, there are several assumptions made about the nature of these variables
and their relationships [17]:

1. The two variables are correlated and continuous.

2. The relationship is linear.

3. The joint distribution p(Y, Z) is Normal.

4. A pair of samples (yi, zi) ∼ p(Y,Z) is collected through independent
random sampling.

Now, if we have observed two vectors y = (y1, . . . , yn)> and z = (z1, . . . , zn)>,
we can measure the Pearson’s correlation for these observations as follows:

ρp(y, z) =
cov(y, z)

σyσz
=

n∑
i=1

(zi − z̄)(yi − ȳ)√
n∑
i=1

(zi − z̄)2
n∑
i=1

(yi − ȳ)2

, (1)

where cov(y, z) is the sample covariance for y and z, ȳ and z̄ are means of
the sampled vectors y and z respectively, and σy and σz are their standard
deviations.

Here, cov(y, z) =
∑n

i=1(zi − z̄)(yi − ȳ) is positive when, on average,
the signs (zi− z̄) and (yi− ȳ) agree more frequently with higher magnitude.

This is further normalised by the standard deviations σy = (
∑n

i=1(yi− ȳ)2)
1
2

and σz = (
∑n

i=1(zi − z̄)2)
1
2 . In other words, this measure is the product of

average distances from the mean of the samples, each normalised by the
associated standard deviations. As such this measure describes how two
vectors of samples are correlated with each other.

The value of Pearson’s correlation measure can vary in the range [−1, 1],
with −1 representing perfect negative correlation, and 1 representing perfect
positive correlation.

2.2 Spearman’s correlation measure

To deal with ordinal variables, i.e. discrete or categorical variables with a
clear order or ranking between choices, the Spearman’s or Kendall’s corre-
lation measure can be used. First, we discuss how Spearman’s measure [32]
work. This is a ranked correlation measured developed from Pearson’s cor-
relation (see [24] for a discussion on the topic). To apply this measure, the
samples are ranked (or sorted) in ascending order, first by yi, and then by
zi. This produces two ranking vectors: ry and rz. The correlation measure
is then computed based on these vectors:

ρs(y, z) =
cov(ry, rz)

σry , σrz
. (2)
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Essentially, by extracting the correlation coefficient from the rankings, we
avoid relying on Euclidean distances (as done in Pearson’s measure). This
is because we cannot assign such distances between ordinal variables.

If we assume that no intra-sample ties exists: ryi 6= ryj and rzi 6= rzj ,
∀i, j ∈ [1, n], then the measure can be computed as follows:

ρs(y, z) = 1−
6

n∑
i=1

(ryi − rzi )2

n(n2 − 1)
, (3)

where n is the number of observations. This is a robust measure of correla-
tions, and works well even if a few intra-sample ties exist.

The value of Spearman’s correlation measure can vary in the range
[−1, 1], with −1 representing perfect negative correlation, and 1 representing
perfect positive correlation.

2.3 Kendall’s correlation measure

Unlike the Pearson’s and Spearman’s correlation measures which are vari-
ance based approaches, the Kendall’s correlation measure [23] is a probabil-
ity based approach. Given a paired observation vectors y and z of size n
with the associated ranking vectors ry and rz, we can determine how many
times these rankings are concordant. We define a pair of ranks (ryi , r

z
i ) and

(ryj , r
z
j ) as concordant, when ryi < ryj then rzi < rzj , and when ryi > ryj then

rzi > rzj for any i < j. In other words, two rankings are concordant if the
sort order agrees in a pair of ranks. If these rank relationships are violated,
we call them discordant. With the number of concordant pairs Nc and the
number of discordant pairs Nd, the Kendall’s rank correlation measure is
defined as:

ρk(y, z) =
Nc −Nd(

n
2

) =
Nc −Nd

n(n−1)
2

, (4)

where the denominator represents the binomial coefficient is the number of
ways to choose 2 rankings form a set of n paired observations [1].

This is an estimation of the difference between the frequencies of pairs
being concordant and discordant. If the frequencies were the same, we get
a correlation of 0. If there are no concordant pairs, i.e. Nc = 0, then the
correlation is perfectly negative −1. For perfect positive correlation, we thus
require Nd = 0.

The original formulation does not consider ties, i.e. ryi = ryj and rzi = rzj
for any i < j. Agresti, in [2], modified the Kendall correlation to account
for tied ranks as:

ρk(y, z) =
Nc −Nd√

(Nc +Nd + Ty)(Nc +Nd + Tz)
, (5)

where Ty and Tz are the number of tied ranks in for the observations y and
z, respectively.
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2.4 Goodman & Kruskal’s correlation measure

Goodman and Kruskal introduced a third rank correlation measure in [16]
for problems where the number of tied ranks are small and can be ignored.
The measure is defined as:

ρgk(y, z) =
Nc −Nd

Nc +Nd
. (6)

This measure is directly considering the relative frequency difference between
concordant and discordant pairs.

All the above ranking measures can be used for continuous variables as
well: basically we would construct a rank vector for each observation and
compute the measures accordingly.

2.5 Cramér’s correlation measure

Cramér introduced a correlation measure for nominal variables, i.e. categor-
ical variables with no natural order between the choices, in [9]. In this case,
Y and Z can have multiple categories. Let, the set of possible categories for
Y be K, and for Z be L. The number of possible categories are ηy = |K|
and ηz = |L|. The association between y and z is thus:

ρc(y, z) =

√
χ/n

min(ηy, ηz)− 1
, (7)

where χ is the Pearson’s chi-squared statistic as follows:

χ2 =
∑
k∈K

∑
l∈L

(Nkl − N̄kl)
2

N̄kl
, (8)

where Nkl is the sample frequency of observing the pair (yi = k ∈ K, zi =
l ∈ L). N̄kl is the expected frequency, i.e. N̄kl = Nk?N?l/n, where Nk? and
N?l are the number of samples with y = k and z = l respectively.

Cramér’s correlation measure reduces to φ coefficient, φ = χ/
√
N , when

at least one of the variables becomes a binary variable (i.e ηy = 2 or ηz = 2).
The correlation for the nominal variables is usually measured between [0, 1].
This is because a lack of natural order (or ordinal relationship) between cate-
gories means that there is no directional change in correlations: observations
are either correlated to a degree or not.

2.6 Nonlinear correlation information entropy (NCIE)

The metrics discussed thus far are effective for identifying linear correlations.
Even though they are often used on non-linearly correlated data, they are
not as insightful. An alternative is nonlinear correlation information entropy
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for rankings, first proposed by Wang et al. in [38], and it can capture both
linear and nonlinear correlations.

The main idea is based on mutual information entropy. Given two dis-
crete random variables Y and Z, each with domains of K and L possibilities
respectively, it can be defined as:

I(Y, Z) = H(Y ) +H(Z)−H(Y, Z), (9)

where H(Y ) and H(Z) are the information entropy measures for Y and Z,
and H(Y,Z) is the joint entropy between Y and Z. These terms are defined
as follows:

H(Y ) = −
K∑
i=1

pi ln(pi), H(Z) = −
L∑
j=1

pj ln(pj),

H(Y, Z) = −
K∑
i=1

L∑
j=1

pij ln(pij). (10)

Here, pi is the probability of observing the ith option for Y (and pj has the
same interpretation for Z), and pij is the probability of observing both the
ith option for Y and the jth option for Z together.

The primary issue with the above is that the span of mutual information
is not guaranteed to be within the range [0, 1]. Therefore, Wang et al.
proposed the following modifications [38]: let, the paired observation vectors
y and z of size n, and their associated rankings ry and rz. Then, they divide
the ranks into b = d

√
ne rank grids, i.e. put the first set of b top ranked

individuals into first rank, the second set of b top ranked become members of
second rank, and so on. Now, they created a b×b rank grid, and place every
pair {yi, zi}i∈[1,n] in these grids by comparing them to the rank sequences ry

and rz. With this, the modified mutual information, also known as NCIE,
is defined as follows:

ρNCIE(y, z) = INCIE(y, z) = 2 +
b∑
i=1

b∑
j=1

nij
n

ln
(nij
n

)
, (11)

where, nij is the count of the number of samples in the (i, j) cell of the grid.
The nonlinear correlation metric ρNCIE varies between [0, 1], where 0

indicates minimum correlation and 1 indicates maximum correlation. Since,
ρNCIE does not indicate a direction, Wang et al. [37] considered the product
[sign (cov(y, z))×ρNCIE(y, z)] and thus derived a directional version of the
metric.

3 Conflict and harmony between objectives

We have so far described correlation measures for measuring the degree by
which two variables relate to one another, from a statistical point of view.
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In this section other relationships between objectives that are commonly
found in the multi-objective optimisation literature are described, and we
investigate how these relate to the correlation measures.

Two well studied relationships between objectives are conflict and har-
mony [28, 15]. It is common to consider all objectives in a multi-objective
optimisation problem to be in conflict, and in case they are all equally im-
portant, then multiple trade-off optimal solutions are likely to exist. On the
other hand, two objectives can be in harmony, meaning that an improve-
ment in one objective leads also to an improvement in the other. These
two dependency relationships are not mutually exclusive, and could change
across the Pareto front.

3.1 Definitions and metrics of conflict and harmony

Consider an hypothetical multi-objective optimisation problem with M ob-
jective functions, denoted by f(x) = (f1(x), f2(x), . . . , fM (x))>, that have
to be simultaneously minimised. The set of all realisable objective vectors is
Z and one element of this set is z = (z1, . . . , zM )> where z ∈ RM . Let ZR be
a particular region of interest in objective space with cardinality |ZR| = N
that may have been obtained by an MOEA such that ZR ⊆ Z.

Purshouse and Fleming [28] have categorised different relationships be-
tween objectives as either dependent or independent. In the dependent
case the relationships could be further categorised as either in conflict or in
harmony. They have also proposed several definitions with respect to the
aforementioned relationships, and we focus here in just two of them. Con-
sider two objective vectors za, zb ∈ ZR where a, b ∈ {1, . . . , N} and let (a, b)
denote a pair of instances such that a 6= b, then the definition are as follows:

Definition 3.1 (Conflict). There is evidence of conflict between objectives
i and j if the following condition is satisfied (zai < zbi ) ∧ (zaj > zbj). In case
@(a, b) such that the condition does not hold then there is no conflict. In
case ∃(a, b) then there is conflict, and there is total conflict if the condition
holds true ∀(a, b).

Definition 3.2 (Harmony). Levels of harmony are determined by the con-
dition (zai < zbi )∧ (zaj < zbj). In case @(a, b) such that the condition does not
hold then there is no harmony. In case ∃(a, b) then there is harmony, and
there is total harmony if the condition holds true ∀(a, b).

De Freitas et al. [15] have proposed metrics to quantify the relationships
of conflict and harmony. Depending how the objectives are normalised, the
conflict metrics are known as direct, max-min or non-parametric, and the
metric for harmony is inversely proportional to non-parametric conflict.

Let the objective vector corresponding to the ith objective be denoted
by żi ∈ RN , and let its maximum and minimum be denoted by użi and
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lżi , respectively. The solutions are ranked1 (sorted in ascending order) and
let ri ∈ NN be a vector of ranks corresponding to the ith objective. To
determine the conflict between two objectives each objective vector needs to
be normalised, and for the ith objective let the normalised vector be denoted
by z̈i ∈ RN . The measure of conflict between objectives i and j is given by

Cij = ‖z̈i − z̈j‖, (12)

where ‖•‖ is the absolute norm, and let the maximum value of the measure
be denoted by cmax. Depending on how the objective vectors are normalised
we can have the following types of conflict:

1. Direct: absolute difference between two objectives, which is only suit-
able if both objectives have the same units (or their values lie in the
same range). The normalised objective vectors are given by z̈i = żi−lżi
and cmax is not bounded.

2. Max-min: same as in direct but objectives values are normalised in the
range between 0 and 1. The normalised objective vectors are given by

z̈i =
żi−lżi
użi−lżi

and cmax = N .

3. Non-parametric: this metric operates on ranks between solutions with
respect to each objective and is equivalent to measuring the degree
to which lines cross in a parallel coordinates plot. The normalised
objective vectors are replaced by their ranks as given by z̈i = ri and
cmax =

∑N
i |2i−N − 1|.

The concept of harmony is not necessarily the opposite of conflict, but
harmony is inversely proportional to non-parametric conflict. Complete har-
mony happens when all solutions between two objectives have exactly the
same values. Based on non-parametric conflict, a measure of global harmony
that returns values that range from 0 (lowest level of harmony) and 1 (high
level of harmony) is given by

Hij = 1− Cij/cmax. (13)

3.2 Comparing conflict and harmony with correlation mea-
sures

Consider Figure 1, which shows four solution sets for a 2-objective problem,
and each solution set contains N = 30 solutions. The performance of the
solutions are shown on scatter plots in Figures 1a, 1b, 1c, 1d and also on
parallel coordinate plots in Figures 1e, 1f, 1g, 1h. Based on Definitions 3.1

1In the determination of the ranks, the ties are resolved by using the rank that causes
least conflict with the other objective being compared.
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and 3.2, f1 and f2 are in total conflict (Figures 1a and 1c), or are in to-
tal harmony (Figures 1b and 1d). In some cases the relationship between
f1 and f2 is linear (Figures 1a and 1b), and in other cases it is nonlinear
(Figures 1c and 1d). Our intention here is to analyse the effect that these
solution sets have on the Pearson and Kendall correlation measures, and as
well on the non-parametric metrics of conflict (Equation 12) and harmony
(Equation 13). For the Pearson correlation, the solutions are standardized
following the process explained below, and for the Kendall correlation mea-
sure we simply make use of the parallel coordinate plots, in that, discordance
produces crossing lines (implying conflict) whilst concordance does not (im-
plying harmony) (see Section 2.3 for more details).

To determine the Pearson correlation, two objective vectors ż1, ż2 ∈ RN
corresponding to f1 and f2, respectively, first need to be standardized. This
means that each vector is mean centered and needs to have unit standard
deviation, and let z̄1, z̄2 ∈ RN denote the standardized version of ż1 and
ż2, respectively. The Pearson correlation coefficient can be determined by

1
N−1 z̄>1 z̄2, which is equivalent to Equation 1. Consider the following obser-
vations:

1. Conflict linear: in Figure 1i the points are symmetrical with respect to
the origin, and when one objective is negative the other is positive, and
vice-versa. This means that the Pearson correlation will be negative,
and the coefficient is ρp(ż1, ż2) = −1. In Figure 1e all lines are crossing,
implying that the Kendall correlation coefficient is ρk(ż1, ż2) = −1.
The non-parametric measure of conflict gives C1,2/cmax = 1 and the
measure of harmony gives H1,2 = 0. The correlation measures indicate
that f1 and f2 are negatively correlated with maximum correlation
strength, and the non-parametric measures indicate conflict.

2. Harmony linear: in Figure 1j the points are symmetrical with respect
to the origin, and both objectives are either positive or negative. This
means that the Pearson correlation will be positive, and the coefficient
is ρp(ż1, ż2) = 1. In Figure 1f all lines are not crossing, implying
that the Kendall correlation coefficient is ρk(ż1, ż2) = 1. The non-
parametric measure of conflict gives C1,2/cmax = 0 and the measure
of harmony gives H1,2 = 1. The correlation measures indicate that f1
and f2 are positively correlated with maximum correlation strength,
and the non-parametric measures indicate harmony.

3. Conflict nonlinear: in Figure 1k the points are not symmetrical with re-
spect to the origin, and the obtained correlation coefficient is ρp(ż1, ż2) =
−0.9129. In Figure 1g all lines are crossing, implying that the Kendall
correlation coefficient is ρk(ż1, ż2) = −1. The non-parametric mea-
sure of conflict gives C1,2/cmax = 0 and the measure of harmony gives
H1,2 = 1. Although both correlation measures indicate that f1 and
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Figure 1: Solution sets for a two-objective problem showing cases of total
conflict and total harmony.

f2 are negatively correlated, the correlation strength obtained by the
Pearson correlation measure is lower than the Kendall measure. The
non-parametric measures indicate conflict.

4. Harmony nonlinear: in Figure 1l the points are not symmetrical with
respect to the origin, and the obtained correlation coefficient is ρp(ż1, ż2) =
0.9129. In Figure 1h all lines are not crossing, implying that the
Kendall correlation coefficient is ρk(ż1, ż2) = 1. The non-parametric
measure of conflict gives C1,2/cmax = 1 and the measure of harmony
gives H1,2 = 0. Although both correlation measures indicate that f1
and f2 are positively correlated, the correlation strength obtained by
the Pearson correlation measure is lower than the Kendall measure.
The non-parametric measures indicate harmony.

As shown by the above cases, both Pearson and Kendall correlation
measures are able to provide some indication about the relationship type
between two pairs of objectives. We have considered cases where the pairwise
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relationships between objectives is either in total conflict or in total harmony.
However, if the relationship is not linear then the Pearson correlation may
not be the most appropriate statistical measure, and the Kendall correlation
might be more suitable. We have also demonstrated for the same cases,
that the Kendall correlation measure is equivalent to the non-parametric
measures by De Freitas et al. [15], since both approaches are sensitive to the
existence of crossing lines in a parallel coordinate plot.

4 Exploiting correlations

Several techniques and approaches have been proposed and used to exploit
the correlations between objectives and/or decision variables. These meth-
ods are generally used for data mining, innovization and objective reduction.

4.1 Data mining

Bandaru et al. [5] detailed several data mining methods that can be used
to extract knowledge from the given data in solving multi-objective optimi-
sation problems. These methods are summarised in Table 1. These include:
descriptive statistics, visual data mining, and machine learning. Moreover,
the same authors have presented some examples of using such techniques on
multi-objective data sets.

In another study, Chiba et al. [7] used three data mining techniques: self-
organizing maps, functional analysis of variance and rough set theory and
applied them to solve an aerodynamic shape design optimisation problem
with multiple objectives. The problem had four objectives and 71 decision
variables related to the wing shape of a two-stage-to-orbit reusable vehicle.
The study showed that the self-organizing maps were able to provide the
correlation of different variables on the objective functions. On the other
hand, analysis of variance and rough set theory were able to tailored down
the number of decision variables.

4.2 Innovization

Solving real-world multi-objective optimisation problems not only aims to
find an approximation of Pareto optimal solutions, but also to decide in
favour of a single solution to be used in practice. However, in some cases,
e.g. dynamic changes in the importance of objectives during the search can
pose a challenge in decision-making. In such a scenario the objectives to be
optimised can be changed based on their relevance during the search pro-
cess. Therefore, it is important to exploit the existing correlations between
objectives and/or decision variables. The knowledge of such correlations can
be further used in the optimisation algorithm when solving a given problem.
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Table 1: Methods for data mining.

Descriptive Statistics

Central Tendency Variability Distribution type Correlation

Mean Standard Deviation Skewness Pearson
Median Quartiles Kurtosis Spearman

Kendall
Cramér

Visual Data Mining

Graphical Clustering Manifold Learning

Heat maps Biclustering Sammon Mapping
Pareto Race Hierarchical Isomaps
Prosection Method k-Means Clustering Self-Organizing Maps
Level Diagrams Kernel based or Den-

sity based
Proper Orthogonal de-
composition

Machine Learning

Supervised Unsupervised Beyond Learning

Decision Trees Rough Set Theory Randomization
Neural Networks Biclustering Ensemble Learning
Radial Basis Function Pattern Mining Multi-instance learn-

ing
Bayesian Networks Automated Inoviza-

tion
Semisupervised Learn-
ing

In real-world optimisation problems, a DM or an expert is usually in-
volved in formulating the problem and also to learn and gain insights. How-
ever, understanding a high-dimensional problem (both in objective and de-
cision spaces) can result in high cognitive load. Moreover, high-dimensional
problems raise the challenge of visualisation of solutions.

Addressing these challenges, Bandaru and Deb [4] proposed a frame-
work for automatic innovization. The main idea behind this methodology
is to use sophisticated data analysis methods, based on data-mining and/or
machine learning techniques, to identify important relationships between
decision variables and objectives. We illustrate a schematic of the innoviza-
tion methodology in Figure 2. The problem under study is described by
some mathematical models that can be implemented in a computer; it can
be a simple equation. An optimisation algorithm, in the present case an
MOEA, is then able to determine an approximation to the Pareto-optimal
front (POF) by taking into consideration the relationships between the de-
cision variables and the objectives. At the end, the DM, using data-mining
and/or machine learning techniques, is able to find correlations between all
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parameters involved in the system.
The efficacy of the framework is based on the ability to describe a par-

ticular relationship (or a design rule) with a product of N basis functions.
Here, each basis function combines any scalar function of the decision vari-
ables, objectives and constraints. For instance, a relationship for a vector z
(objective and/or decision vector) can be expressed as:

constant =
N∏
j=1

φ(z)
aijbij
j , (14)

where aij is a Boolean indicator that reflects the presence (aij = 1) or
absence (aij = 0) of the jth basis function, bij represents the powers of
contributions of the jth basis function towards the ith design rule, φ()j rep-
resents the jth basis function. The following equation is an example of such
relationship, where, for the problem under study, one of such relationships
can be defined as:

constant = x2.11 x−12 f0.51 (15)

With this, we can gather data on the estimated POF following several
runs of an MOEA. Then it is straightforward to analyse this data and iden-
tify significant relationships between parameters of interest. This insight
into various relationships between parameters may then be exploited based
on statistical ranking.

Figure 2: A schematic of an innovization method in solving a multi-objective
optimisation problem

4.3 Objective reduction

Objective reduction approaches have been exploited to counter the limita-
tions of existing MOEAs in dealing with MaOPs. These approaches attempt
to eliminate objectives that are not essential to describe the POF. If the num-
ber of objectives is reduced to three or less, it is often the case that MOEAs
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are well suited for solving such type of problems. In case the number of
objectives remains higher than three, it is still expected for any reduction
to improve the search efficiency of an optimiser, to reduce the number of
solutions required to provide a fair coverage across the POF, and to ease the
decision-making process (i.e. to reduce the cognitive load associated with
the process of selecting a solution).

Existing approaches operate on the objective vectors of the non-dominated
solutions that describe the POF, and the aim is to identify the smallest set of
conflicting objectives that generates the same POF as the original problem
formulation. When two objectives are not in conflict, these two objectives
share the same optimal solution, implying that there are no other trade-
off solutions where a gain in one objective leads to a sacrifice in the other.
Therefore, from each set of non-conflicting objectives all objectives but one
can be omitted without affecting the POF. The smallest set of conflicting
objectives is often termed as essential, while all objectives that can be omit-
ted without affecting the POF are termed as redundant. To identify the
essential objective set, existing objective reduction approaches rely on the
analysis of the Pareto-dominance structure, or on the interpretation of the
correlations between objectives.

In this section we review existing objective reduction approaches, cover-
ing those that rely on dominance (Section 4.3.1) and correlation structure
preservation (Section 4.3.2). We focus on how conflicting objectives are iden-
tified and which optimisation problems have these approaches been applied
to. Also, for those approaches that preserve the correlation structure, we
also discuss which correlation measures are employed, and the criteria used
to indicates whether two objectives are correlated or not.

4.3.1 Approaches that preserve the dominance structure

Brockhoff and Zitzler [6] have proposed an objective reduction approach
known as Dominance Relation Preservation (DRP) and as the name sug-
gests, it relies on the concept of dominance. Objectives are considered to be
redundant, as long as the dominance structure is preserved in case they are
omitted. The concept of dominance is often used by multi-objective optimi-
sation algorithms where two solutions are compared on whether one domi-
nates the other. For an arbitrary multi-objective problem with M objectives
consider the subset F ′ ⊆ F where the set F = {f1, . . . , fM} includes all ob-
jectives. Let za, zb ∈ RM be two objective vectors, za is said to dominate zb

if the following two conditions are satisfied2 (assuming minimisation):

1. za is no worse than zb in all objectives (i.e. zai ≤ zbi ∀i = 1, . . . ,M);
and

2This definition of dominance relationship between two solutions is sometimes referred
to as weak dominance relation.
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2. za is strictly better than zb in at least one objective (i.e. ∃i ∈ {1, . . . ,M}
s.t. zai < zbi ).

If any of the two conditions are violated, then it is said that za does not
dominate zb, and if either solution does not dominate the other then they
are said to be non-dominated. The effect of omitting objectives in the dom-
inance relation can be studied by considering only those objectives in the
subset F ′. Two objective subsets F1,F2 ⊆ F are said to be non-conflicting
if the same solutions remain dominated (or non-dominated), otherwise they
are said to be in conflict. By applying this relation to all possible objec-
tive subsets, it is possible to determine the smallest objective subset that
preserves the dominance structure of the original objective set. The au-
thors have also proposed an error measure and introduced the concepts of
δ-Minimum Objective Subset (δ-MOSS) and Minimum Objective Subset of
Size k with minimim error (k-EMOSS), in that:

1. δ-MOSS corresponds to a situation where a DM alows for a δ error,
and wants to know the smallest set of conflicting objectives, such that
the error incurred is less than or equal to δ;

2. k-EMOSS corresponds to a situation where a DM specifies a fraction
of the original number of objectives to be retained, and wishes to know
which objective set incurs the minimal error.

The δ error is zero when the dominance relations between F and F ′ are
identical, and in case it is desirable to further reduce the number of objec-
tives, then it indicates by how much the objective values have to be adjusted
by an additive term δ such that the corresponding dominance relations are
identical. DRP has been demonstrated by the authors on several bench-
mark problems, including DTLZ2, DTLZ5, DTLZ7 ([13]) (see Section 5.2.1
for a description), and a multi-objective variant of the knapsack problem. It
has also been applied to a real-world radar waveform problem ([19]) (more
details in Section 5.2.2).

Singh et al. [31] have proposed the Pareto Corner Search Evolutionary
Algorithm (PCSEA) to search for the corners of the POF, to which they
apply an objective reduction approach. The motivation is that generating a
representative set of the whole POF is difficult if the number of objectives
is too high, and that the boundaries of the POF (which are less difficult to
find) should aid in the accurate estimation of the true dimensionality of the
POF. The criterion used by this approach relies on the interpretation of the
ratio between the number of non-dominated solutions found in a reduced
objective set, and the number of non-dominated solutions found in entire
objective set. However, this requires the user to specify a threshold that is
used to indicate whether or not an objective is redundant, and the order on
which the objectives are omitted could lead to different essential objective
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sets. It is also required to conduct a search over the problem model for the
corner solutions (in this case by using a multi-objective evolutionary algo-
rithm) with a solution comparison criterion that promotes the corner solu-
tions. This differs from the other objective reduction approaches that apply
directly to the non-dominated solutions generated by an optimizer. PCSEA
has been demonstrated by the authors on several benchmark problems, in
particular on an extended version of the scalable DTLZ5 benchmark prob-
lem known as DTLZ5(I,M) ([12]), where the Pareto front is I-dimensional
(I < M) (more details in Section 5.2.1). It has also been applied to DTLZ2,
two variants of WFG3 ([18]), and two engineering design problems, a storm
drainage system problem ([25]) and the above radar waveform problem.

Yuan et al. [39] have proposed two objective reduction approaches based
on dominance relation preservation. The first relies on a bi-objective for-
mulation where the number of objectives and the error incurred due to the
reduction in the number of objectives, are posed as objectives. The second
is based on the work by [31] since it makes use of the ratio between the
number of non-dominated solutions found in a reduced objective set, and
the number found when entire objective set is used. These approaches have
been validated on DTLZ2, DTLZ5(I,M) and WFG3.

4.3.2 Approaches that preserve the correlation structure

The objective reduction approach proposed by Jaimes et al. [22] relies on the
Pearson correlation (Section 2.1) to identify conflicting objectives. The au-
thors have proposed a modified correlation coefficient given by 1− ρp which
takes values in the interval [0, 2]. Thus, a value of 2 indicates that the objec-
tives are negatively correlated, and a value of 0 indicates that the objectives
positively correlated. The authors have not defined a criterion (possibly
by using a threshold) that would indicate whether or not two objectives are
said to be correlated or not, based on the correlation coefficient. Instead, the
proposed approach quantifies the error incurred in case an objective is to be
omitted. The error quantification approach relies on a clustering technique,
where the objectives are grouped together into neighbourhoods of fixed sizes
based on their distance, measured by the correlation coefficient. When an
objective is omitted, the error corresponds to the biggest distance in that
neighbourhood. This approach has been demonstrated on DTLZ5(I,M).

Saxena et al. [30] proposed a machine learning based approach that
makes use of principal components analysis (PCA) and maximum variance
unfolding (MVU) techniques, leading to a linear and nonlinear algorithm.
The linear and nonlinear algorithms are know as L-PCA and NL-MVU-PCA,
respectively. The premise is that the essential objective set can be identi-
fied by transforming the high-dimensional data such that the correlation
structure is preserved, in a process where redundancies (or dependencies)
are minimised. PCA removes the second-order dependencies (variance and
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covariance) by performing eigenvalue decomposition on a correlation matrix
determined with respect to the objective vectors, revealing the principal
components. MVU removes higher order dependencies by learning a kernel
matrix to which PCA can be applied to, as opposed to the correlation matrix.
The process is analogous to unfolding a high-dimensional data manifold by
maximizing the Euclidean distance between points, while locally preserving
distances and angles between nearby points. The correlation between ob-
jectives is interpreted as follows. The first step is to construct a correlation
matrix by using the Pearson correlation coefficient applied to all pairwise
objective vectors. Then:

1. Along each principal component, the objectives are selected as follows.
The objective with the highest contribution by magnitude, and all
objectives with opposite sign are picked. If all objectives have the
same sign, then the two objectives with the top two contributions
by magnitude are picked. All objectives not picked at this stage are
interpreted as being non-conflicting.

2. The non-conflicting objectives identified in the previous step are omit-
ted from the correlation matrix. Based on this reduced correlation
matrix, a subset of correlated objectives is identified for each objec-
tive. This is to say that each objective is individually compared with
the others, and any two objectives are said to be correlated if:

(a) their correlation strength is equal to or higher than a correlation
threshold, and;

(b) if their correlation signs with respect to the other objectives (in-
cluding the non-conflicting ones identified in the previous step)
are the same.

A closed form expression exists to determine the correlation threshold.
This is based on the interpretation of the redundancy in a problem,
in that, a problem is said to be highly redundant if the first principal
component accounts for the majority of the variance. In contrast,
a problem is said to have low redundancy if the variance is equally
distributed amongst the principal components.

Based on the information provided by PCA, the authors have also derived
an error measure that can indicate how much error is incurred if the redun-
dant objectives are to be omitted. This error measure is different from the
DRP approach since it quantifies the variance that is left unaccounted if an
objective is omitted. Both L-PCA and NL-MVU-PCA have been validated
on several benchmark problems, including DTLZ1 to DTLZ4, DTLZ5(I,M),
and WFG3. The error measure has been operationalised to provide the δ-
MOSS and k-EMOSS analysis in [14], and also to generated a preference
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ranking between the objectives. The authors have demonstrated their ap-
proach on the above radar waveform problem.

Wang and Yao [37] have proposed to use a correlation measure based
on the information theory concept of mutual information, known as NCIE
(Section 2.6). This quantifies the nonlinear correlation between two vari-
ables, providing a score between 0 and 1, where 0 indicates no correlation
and 1 is total correlation. To indicate whether the correlation is positive
or negative, the NCIE is combined with the covariance. The score of this
modified NCIE takes values between -1 and 1, where -1 indicates total neg-
ative correlation, and 1 is total positive correlation. This approach starts
by constructing a correlation matrix, where the modified NCIE is applied to
each possible pair of objective vectors. The next step is to select the most
conflicting objective, which is the objective with the largest absolute sum of
its negative NCIEs to other objectives. Other objectives are interpreted as
being not essential, if they are positively correlated with the most conflict-
ing objective, and their strength of correlation is higher than a pre-defined
threshold. This approach has been validated on DTLZ5(I,M) and WFG3.

Yuan et al. [39], besides the two dominance relation preservation ap-
proaches mentioned above, they have also proposed another approach that
relies on the preservation of the correlation structure. This approach is in-
spired by [22] method, in that, instead of using the Pearson’s correlation
coefficient, the Kendall’s rank correlation (Section 2.3) is used instead. The
authors claim that this measure is sensitive to both linear and nonlinear
relationships. This approach has been validated on DTLZ2, DTLZ5(I,M)
and WFG3.

Following the above review, we summarise in Table 2 the correlation
measures used by the objective reduction approaches, and the criteria used
to identify the essential objective set are summarised in Table 3.

Table 2: Correlation measures used by objective reduction approaches

Reference Correlation measures

Jaimes et al. [22] Pearson (Section 2.1)
Saxena et al. [30] Pearson (Section 2.1)

Wang and Yao [37] NCIE (Section 2.6)
Yuan et al. [39] Kendall (Section 2.3)

5 Benchmarking and case studies

In the literature, only few studies exist in developing multi-objective opti-
misation benchmark problems with correlated objectives. These problems
can be broadly divided into two groups: one where we can explicitly impose
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Table 3: Criteria used by objective reduction approaches to identify the
essential objective set

Reference Criterion

Brockhoff and Zitzler [6] The smallest objective subset that pre-
serves the dominance structure.

Jaimes et al. [22] The smallest objective subset that incurs
in the lowest error tolerable by the user.
The error corresponds to the highest dis-
tance between objectives inside a neigh-
bourhood as determined by the correla-
tion coefficient.

Singh et al. [31] Ratio between the number of non-
dominated solutions found in a reduced
set and the number found in the original
set, combined with a user-defined thresh-
old.

Saxena et al. [30] Interpretation of the principal compo-
nents (first reduction), and interpretation
of the correlation matrix combined with
a data-derived threshold (second reduc-
tion).

Wang and Yao [37] Interpretation of the correlation matrix,
involving a user-defined threshold.

Yuan et al. [39] Two dominance structure based criteria
that involve the interpretation of the dom-
inance structure and the ratio between so-
lutions as defined in [31]. Also, a criterion
based on the correlation between objec-
tives that relies on the interpretation of
Kendall’s rank correlation.

a desired level of correlation, and other where the control of correlation is
implicit. We here review articles which focused on using and/or developing
such problems.

5.1 Explicit correlation

5.1.1 One-Max Problem

In [8], a continuous version of mapped One-Max problem with two objec-
tives for binary search spaces was introduced. The problem provided the
flexibility to control the correlation among objectives. The problem was
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defined as:
f = (f1, f2) = (n1(x), n2(y)), (16)

where n1(x) is the sum of all decision variables values in decision vector
x, n2(y) the sum of all variable values in y and y is the mapped version
of x i.e. yi = |xi −mapi|, i = 1, . . . , n, (n is number of decision variables).
The mapped value mapi ∈ [0, 1] is independent for each element in x and
was set by flipping a coin biased by the degree of correlation corr ∈ [−1, 1].
The corr parameter can be defined to introduce a desired correlation among
objectives. For instance, corr = 0 means no correlation, corr = −1 negative
correlation and corr = 1 means a positive correlation.

5.1.2 Multi-objective NK-Landscape Combinatorial Problems

The NK landscape methodology is a performance modelling approach for a
general class of systems; a concise introduction on the topic can be found in
[10].

The modelling paradigm considers a class of systems that has N compo-
nents, each with a number of discrete possibilities (usually restricted to two:
0 or 1) and a dependence on K other components (where 0 ≤ K ≤ N − 1).
A complete state vector x = (x1, . . . , xN )> consists of individual states. The
NK landscape is essentially a function f : x ∈ NN → R that maps the state
vector into a performance measure (or commonly referred to as fitness).
This can be defined as:

f(x) =
1

N

N∑
i=1

yi(x), (17)

where yi(·) is a function accounting for the contribution of the ith compo-
nent of x to the performance, and xi and K other components of x are active
for yi(x). Here, K may be used to control the inter-dependencies between
components, and usually a higher K results in more complex and ragged
performance landscapes. This construct allows the design and analysis of
successful algorithms for this class of problems in a controlled environment,
and it is particularly important as many real-world problems can be mod-
elled with this paradigm.

It is relatively straightforward to extend this concept to MaOPs. A
canonical multi-objective NK (MNK) landscape problem with M objectives
can be defined as follows:

max
x

f(x) = (f1(x), . . . , fM (x))>, (18)

where the jth objective function fj is an NK landscape performance func-
tion with a potentially distinct Kj . Here, the complexity is controlled with
K = (K1, . . . ,KM )>. This permits design and analysis of multi-objective al-
gorithms. Note that the component functions may now be denoted as yij(·)
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for the ith component and the jth objective function. Interested readers
should refer to the work of [3] for many key insights into the workings of
successful algorithms in this domain.

In this paper, we are interested in MaOPs with correlated objectives. Ex-
tending the ideas of MNK problems, [34] have proposed CMNK and ρMNK
test problems where the correlation between objectives may be precisely
controlled.

In CMNK, the central concept is to define a correlation structure between
the component functions yij for all i ∈ [1, N ] and j ∈ [1,M ]. In particular,
the pairwise correlation is defined as:

Cde = corr(yid, yie) ∈ [−1, 1], (19)

for all i ∈ [1, N ]. By definition, if d = e then Cde = 1. Naturally there
is a restriction of symmetry: Cde = Ced. This means the correlation is as
per a M ×M symmetric matrix C. They require C to be positive definite.
Note that the standard MNK problem can be easily derived from CMNK
by setting Cde = Ced = 0 when d 6= e.

In addition, [34] propose a restricted CMNK problem known as ρMNK
problems. This is a special case when Cde = Ced = ρ given that d 6= e. To
maintain the positive definiteness of the matrix, they suggest that ρ > −1

M−1 .
Therefore, it may not be possible to investigate all positive and negative
correlations in the range of [−1, 1] beyond two objectives.

It should be noted that the correlation structure is defined on the com-
ponent functions yij rather than between the objectives. However, they
provided a proof that shows that the expected correlation between a pair of
objectives is the same as the correlation defined in the relevant cell of the
correlation matrix C: E[corr(fd(x), fe(x))] = Cde. Thus, it is possible to
precisely control the correlations between the objectives in this class of test
problems.

Clearly, the correlation structure here is global, as in the correlation
between a pair of objectives is always constant. This suite of test problems
is therefore a restrictive set, but certainly allows us to explore different
characteristics of the interactions between solvers and landscapes.

For a detailed treatment of the nature of these problems, and successful
algorithms, please refer to [34, 35, 36].

5.2 Implicit correlation

5.2.1 DTLZ and WFG problems

DTLZ and WFG problems have been widely used in the literature to test
several multiobjective optimisation algorithms. They have also been used to
validate objective reduction approaches (see Section 4.3), especially DTLZ2,
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DTLZ5, DTLZ5(I,M) and WFG3. These problems are scalable in terms of
the number of objectives and also decision variables.

Consider the formulation for DTLZ2 in Equation 20 where the total
number of decision variables is given by N = M+k−1, and k is a parameter
that can be adjusted by the user to control the number of decision variables.
For POF all decision variables in the g function (i.e. xM to xM+k−1) are
fixed to 0.5, implying that g = 0, and the other decision variables (i.e. x1 to
xM−1) can take any value within their bounds. The latter set of variables
that are unconstrained in the POF are referred to as free variables.

Min. f1 = (1 + g)ΠM−1
i=1 cos(θi)

Min. fj=2:M−1 = (1 + g)ΠM−j
i=1 cos(θi) sin(θM−j+1)

Min. fM = (1 + g) sin(θi)

s.t. 0 ≤ xi ≤ 1, for i = 1, . . . ,M,

θi =
π

2
xi, for i = 1, . . . ,M − 1,

and g =
M+k−1∑
i=M

(xi − 0.5)2.

(20)

The number of free variables is given by M −1, implying that for M = 2
there is one free variable (θ1), for M = 3 there are two free variables (θ1 and
θ2), and so on. For M = 2 this implies that the POF is a one-dimensional
curve since there is only one degree of freedom provided by θ1, as pointed
out by the arrow in Figure 3a. For M = 3 the POF is a two-dimensional
surface where two degrees of freedom are provided by θ1 and θ2, one samples
across the horizontal plane and the other across the vertical one as depicted
in Figure 3b. For higher dimensions the POF is a hypersurface. Hence, two
conflicting objectives implies one free variable and a one-dimensional POF;
three conflicting objectives implies two free variables and a two-dimensional
POF; and this generalises to m ≤ M conflicting objectives which implies
m−1 free variables and a (m−1)-dimensional POF. In DTLZ2 m = M and
all objectives are equally conflicting, implying that they are not positively
correlated. Other DTLZ problems, such as DTLZ1, DTLZ3 and DTLZ4
also share the same property as pointed out in [30].

In DTLZ5 and DTLZ6, the problem can be reduced to only two con-
flicting objectives: fM−1 and fM . The rest of the objectives are positively
correlated (i.e. no conflict) with fM−1. Similarly, the POF for WFG3 de-
generated into a linear hyperplane such that the first M − 1 objectives are
perfectly correlated, while the last objective is in conflict with all other ob-
jectives. Although WFG3 has been proposed as a degenerate test problem
by [18], the Pareto front is actually not degenerated as argued by [20].

DTLZ5(I,M) is an extended version of DTLZ5. First described in [12],
this test problem has been used as a benchmark in the objective reduction
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Figure 3: Representation of the POF for the DTLZ2 problem.

literature given its ability to control the dimensionality of the POF by the
parameter I, such that I ≤M . This is achieved by restricting the number of
free variables and for this consider the problem formulation in Equation 21.
For POF the variables in the g function are fixed to 0.5, implying that
g = 0 and θi=I:M−1 = π

4 . The number of free variables is I − 1 implying
that dimensionality of the POF is I − 1. As a result, the first M − I + 1
objectives are perfectly correlated, while the rest are in conflict with every
other objective in the problem.

Min. f1 = (1 + g)ΠM−1
i=1 cos(θi)

Min. fj=2:M−1 = (1 + g)ΠM−j
i=1 cos(θi) sin(θM−j+1)

Min. fM = (1 + g) sin(θ1)

s.t. 0 ≤ xi ≤ 1, for i = 1, . . . ,M

g =
M+k−1∑
i=M

(xi − 0.5)2,

θi=1:I−1 =
π

2
xi, θi=I:M−1 =

π

4(1 + g)
(1 + 2gxi),

ci =
I−2∑
j=0

f2M−j + 2pif2i � 1, for i = 1, . . . ,M − I + 1,

p1 = M − 1 and pi=2:M−I+1 = (M − I + 2)− 2.

(21)

5.2.2 Radar waveform problem

The radar waveform problem, first described in [19], deals with the design
a of waveform for a Pulsed Doppler Radar. This type of radars are typically
used to equip an aircraft, and the primary aim is to locate and track other
aircrafts during an air-to-air role. For this, the radar needs to determine
the range and velocity, and to take into account that the target aircraft may
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travel at very high velocity (Mach 5 possible) and its location could be more
than 100 nautical miles away. The optimisation problem has a total of 9
objective functions, the first 8 are to be minimised, and the last one is to be
maximised. The physical meaning of each objective is as follows:

1. Median range/velocity extent of target before schedule is not decod-
able (f1/f2);

2. Median range/velocity extent of target before schedule has blind re-
gions (f3/f4);

3. Minimum range/velocity extent of target before schedule is not decod-
able (f5/f6);

4. Minimum range/velocity extent of target before schedule has blind
regions (f7/f8);

5. Time required to transmit total waveform (f9).

This real-world problem has been used as a benchmark problem, in par-
ticular to validate objective reduction approaches. This is due to the fact
that the author of this problem in [19] has revealed the expected correla-
tions between objectives, and also which objectives should be in conflict.
The following objective pairs that measure the range f1 & f3 and f5 & f7
are expected to be correlated. The same can be said about the following
objective pairs that measure the velocity, that is, f2 & f4 and f6 & f8. The
objectives that measure range and velocity are expected to be in conflict.

6 Summary

In this paper we have conducted a review focusing on approaches that em-
ploy knowledge extraction techniques (such as correlation measures) as a way
to facilitate the process of solving a multi-objective optimisation problem
(MOP). These approaches can be found in fields such as data mining, objec-
tive reduction and innovization. The knowledge is extracted from solutions
that have been generated by an MOEA due to their population-approach,
since multiple optimal solutions can be found in a single optimisation run.
The rationale for these approaches lies in the fact that developing a model for
an optimisation problem requires a lot of domain expertise, but knowledge
about the problem (e.g. relationships between the objectives and decision
variables) may not be available or simply cannot be treated as trivial, spe-
cially when dealing with models that are very complex. As these approaches
have demonstrated in this review, the knowledge extracted from an MOP
can be used to:
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1. Reduce the number of objectives which can counter the limitations of
Pareto-based MOEAs in generating a good approximation of the POF,
and facilitate the decision-making process;

2. Determine a rank between the decision variables based on some cri-
terion which can be used to reduce the dimensionality of the decision
space. This also can be used to facilitate the search and decision-
making processes.

In this review we have first described the correlation measures that are
broadly used in the fields of applied sciences and numerical optimisation.
We have shown that these are useful for indicating if two objectives are
either in conflict or in harmony. However, the presence of nonlinearity can
affect the accuracy of some of these measures (e.g. the Pearson correlation),
but others have shown to be more robust (e.g. the Kendall correlation).

Some correlation measures have been used in data mining alongside other
methods (e.g. central tendency and variance statistics, or even machine
learning approaches such as rough set theory). The same principles are
adopted in innovization where the focus is to provide a better understand-
ing of the problem to a designer or a practitioner, revealing information
that can be useful to the task of finding the most desirable solution by the
DM. In objective reduction many approaches rely on correlation measures
to determine which objectives can be eliminated without affecting the POF,
while others rely on the interpretation of the Pareto-dominance structure.
In particular, the criterion used by [30] and [37] can be used to indicate
whether or not two objectives are correlated by comparing their correlation
strength against some threshold. Other information that can be of interest
to a DM is how much error one incurs if one or more objectives are to be
omitted, as in [6, 22, 30]. Thereupon the information provided by an error
measure can be used to conduct the δ-MOSS and k-EMOSS analysis, and
even to derive a preference ranking between the objectives.

Besides the above approaches, this review has covered benchmarking and
case studies focusing on correlated objectives. Depending on how the corre-
lations are perceived, the problems have been categorised as either as explicit
or implicit. In the explicit case, it is possible to specify a desirable degree of
correlation between the objectives. This could be by tweaking a parameter
(e.g. One-Max problem) or by defining a correlation structure (e.g. CMNK
and ρMNK). In the implicit case, the correlations between objectives cannot
be prescribed (say by a user), but it is known which objectives are supposed
to be correlated. The latter type of problems have been extensively used in
the literature to validate objective reduction algorithms.

26



References

[1] H. Abdi. The kendall rank correlation coefficient. Encyclopedia of
Measurement and Statistics. Sage, Thousand Oaks, CA, pages 508–510,
2007.

[2] A. Agresti. Analysis of ordinal categorical data, volume 656. John
Wiley & Sons, 2010.

[3] H. E. Aguirre and K. Tanaka. Working principles, behavior, and perfor-
mance of moeas on mnk-landscapes. European Journal of Operational
Research, 181(3):1670 – 1690, 2007.

[4] S. Bandaru and K. Deb. Automated innovization for simultaneous
discovery of multiple rules in bi-objective problems. In International
Conference on Evolutionary Multi-Criterion Optimization, pages 1–15.
Springer, 2011.

[5] S. Bandaru, A. H. Ng, and K. Deb. Data mining methods for knowl-
edge discovery in multi-objective optimization: Part a-survey. Expert
Systems with Applications, 70:139–159, 2017.

[6] D. Brockhoff and E. Zitzler. Improving hypervolume-based multiob-
jective evolutionary algorithms by using objective reduction methods.
2007 IEEE Congr. Evol. Comput. CEC 2007, pages 2086–2093, 2007.

[7] K. Chiba, S. Jeong, Shinkyu Obayashi, and K. Nakahashi. Knowledge
discovery in aerodynamic design space for flyback–booster wing using
data mining. pages 1–18, 2006.

[8] T. Chugh, R. Allmendinger, V. Ojalehto, and K. Miettinen. Surrogate-
assisted evolutionary biobjective optimization for objectives with non-
uniform latencies. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO), pages 609–616, 2018.

[9] H. Cramér. Mathematical methods of statistics, volume 43. Princeton
university press, 1999.

[10] F. A. Csaszar. A note on how nk landscapes work. Journal of Organi-
zation Design, 7(1):15, 2018.

[11] S. Daniels, A. Rahat, G. Tabor, J. Fieldsend, and R. Everson. Auto-
mated shape optimisation of a plane asymmetric diffuser using com-
bined computational fluid dynamic simulations and multi-objective
bayesian methodology. International Journal of Computational Fluid
Dynamics, pages 1–16, 2019.

27



[12] K. Deb and D. Saxena. Searching for pareto-optimal solutions through
dimensionality reduction for certain large-dimensional multi-objective
optimization problems. In IEEE Congress on Evolutionary Computa-
tion (CEC), pages 3353–3360. IEEE, 07 2006.

[13] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems
for Evolutionary Multiobjective Optimization, pages 105–145. Springer
London, London, 2005.

[14] J. A. Duro, D. K. Saxena, K. Deb, and Q. Zhang. Machine learn-
ing based decision support for many-objective optimization problems.
Neurocomputing, 146:30 – 47, 2014. Bridging Machine learning and
Evolutionary Computation (BMLEC) Computational Collective Intel-
ligence.

[15] A. R. R. D. Freitas, P. J. Fleming, and F. G. Guimarães. Aggrega-
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