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Abstract: This paper proposes a two-level control strategy based on a super-twisting sliding-mode
algorithm (STA) to optimally allocate power imbalances in shipboard microgrids (SMGs) while
achieving frequency regulation. The strategy employs an STA observer to estimate the unknown
power load demand imbalances in finite time. This estimate is then passed to an online high-level
optimal control framework to periodically determine the optimal sequence of power reference
values for each energy storage device (ESS), minimising the operational cost of the SMG. The online
optimised power reference values are interpolated and passed to the low-level STA control strategy
to control the output power of each ESS. The efficacy of the proposed methods is demonstrated
through numerical simulations conducted on a prototypical model of an SMG equipped with two
ESSs, namely batteries and fuel cells with associated hydrogen storage.

Keywords: control systems; electrical power systems; energy systems; microgrids; observers;
optimisation; simulation; variable structure systems

1. Introduction

As per the International Maritime Organisation (IMO), maritime greenhouse gas emis-
sions increased 9.6% from 2012 to 2020, with a potential growth of 50–250% by 2050 without
further reductions [1]. Stakeholders and researchers are advancing the hybridisation of the
maritime sector to achieve decarbonisation, integrating time-varying renewable sources,
such as wind turbines and photovoltaic panels (PV), with Energy Storage Devices (ESSs),
such as batteries, flywheels, supercapacitors, and fuel cells (FCs) [2]. It is worth specifying
that in a system where hydrogen tanks are connected to FCs, the setup constitutes an
ESS. Shipboard microgrids (SMGs) manage power from these zero-emission sources but
face challenges in harsh maritime environments compared to terrestrial conditions [3].
SMGs on vessels with changing routes see a more fluctuating power demand [3,4], and the
availability of renewable energy varies by location and conditions [3]. An efficient power
allocation system optimising ESS operations is vital to handle uncertain SMG loads [3].

Numerous methods for managing load demands in SMGs can be found in the existing
literature. In [5], a detailed survey has been conducted, summarising current solutions and
limitations to regulate the speed and voltages and also optimise the ESS costs in SMGs.
A comprehensive review of nonlinear control strategies that can stabilise SMGs has been
discussed in [6]. A novel controller design for load frequency control (LFC) in SMGs is
presented in [7], where the gain of a linear state feedback control has been optimally tuned
to handle measurement delays. A more comprehensive stability analysis of LFC in SMGs
has been investigated in the presence of larger measurement delays in [8]. Power imbalance
allocation represents a crucial procedure aimed at restoring the nominal frequency of an
energy system. Its objective is to optimally distribute the unbalanced power demand
among various energy sources [9]. This process typically involves real-time measurement
or estimation of power demand and resolution of an optimisation problem to determine
the optimal value for the setpoints of power generation [10].
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Various solutions for solving optimal energy management problems in microgrids are
available in the literature (see [11] and the references therein). Nonetheless, the conception
of an optimal solution to allocate power imbalance in SMGs is still an unexplored research
gap, as clearly stated in the recent survey [5]. The idea of incorporating optimal power
imbalance allocation within load frequency control has been explored in relevant research
articles, such as [12,13]. However, the aforementioned approach cannot be easily applied
in the context of SMGs due to the intrinsically different topology of the two systems.

Sliding-mode control has been an active field of research for decades due to its ro-
bustness to matched uncertainties and its ability to achieve finite-time convergence be-
haviours [14]. The so-called super-twisting sliding-mode algorithm (STA) has been shown
to be a powerful SM control and observation technique [15]. The STA is capable of remov-
ing the chattering effect typical of the conventional SM algorithm and does not require
any information on the derivative of the output [16]. The STA has been used successfully
for a number of engineering applications, such as robotics [17] and microgrids [18]. SM
control techniques have been successfully applied in conjunction with model predictive
control (MPC) architectures to optimally solve trajectory tracking problems in mechanical
systems [19]. Only a few relevant works in the literature have exploited this idea with
application to microgrids and energy networks. For example, in [20], a high-level MPC
scheme generated the power reference for a low-level suboptimal sliding-mode controller
(2-SOSM) for microgrids with distributed generator units and ESSs. A similar approach
was proposed in [21] and specifically designed for a single photovoltaic energy source.

1.1. Main Contribution

In this article, we present an innovative two-level control strategy that effectively ad-
dresses the optimal allocation of power imbalances within SMGs while ensuring frequency
regulation. Our approach is versatile and can be applied to SMGs that feature any number
of N ESSs. Drawing inspiration from STA principles, we develop an observer that accurately
estimates the unknown The optimal sequence is interpolated to create a continuous-time
reference profile for each ESS, which is communicated to the decentralised low-level STA
controller. These controllers regulate the output power of the ESSs to reach the optimal
set-point in a finite time. The interpolation architecture integrating the high-level imbalance
allocator with the low-level STA controller is pivotal to ensure the existence and the reach of
the sliding mode for ESSs. Our proposal stands out from existing solutions in the literature.
Most significantly, existing solutions focus predominantly on predefined SMG setups with
specific known ESSs and components [5,7,22]. On the contrary, we propose a generalised
approach that can be tailored to different SMGs. Furthermore, frequency regulation in
SMGs has been performed solely on a single-layer control strategy [7]. On the contrary, our
scheme introduces a novel two-level control strategy, combining the STA algorithm with a
finite-time disturbance estimator and an online optimal power imbalance allocator, which
is a novel approach that has not been explored in the existing literature. The use of the STA
for unknown power demand estimation and ESS output power regulation force the SMG to
stay in the so-called sliding mode. This behaviour of the system enables us to formulate an
optimisation problem in the form of linear programming, which is much simpler to solve
and is characterised by a faster convergence than the conventional optimisation problems
formulated in the literature [9].

1.2. Notation and Power Sign Convention

The notation adopted in this paper is standard. For a given scalar signal x, the
expression x̂ denotes its estimate, while sign(x) denotes the sign function. For a given
discrete-time signal x, the expression x[k] denotes its value sampled at the time instant tk,
while x̂[i | k] denotes an estimate for x at the time instant ti = tk + iτO (where τO is the
sampling time and i is a positive integer): the estimate is therefore determined based on
knowledge of x at the current time instant tk. The symbol 1 denotes a column vector of
appropriate dimensions with all entries equal to 1. The symbol Diag(xi) denotes a diagonal
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matrix with its entries xi. The symbol Col(xi) denotes a column vector with its entries xi.
The power at the ESS terminals is positive if generated by the ESS, while it is negative if
absorbed by the ESS to recharge. The power load demand at the synchronous machine
terminal is positive if consumed. Table 1 presents the list of symbols and variables adopted
in the article for the system description of the SMG.

Table 1. List of symbols and variables adopted in the article.

Symbol Physical Meaning and Measurement Unit

xgi (t) ESS output power (p.u.)

x⋆gi
(t) ESS output power optimal reference (p.u.)

xsi (t), x̂si [k]
ESS energy storage level and its discrete time
prediction (p.u. s)

ugi (t) ESS low-level control (p.u.)

d f , d̂ f Power load demand and its estimate (p.u.)

x f (t) Frequency deviation (p.u.)

1.3. Structure of the Paper

The rest of this article is structured as follows: Section 2 presents a description of the
considered SMG system, Section 3 formulates the objectives to solve, Section 4 presents the
problem’s solution and a stability analysis proof, Section 5 describes numerical simulations
to validate our scheme, and Section 6 concludes the paper.

2. System Description

This section presents the reader the fundamentals of SMG, including the architecture
of the system considered and the compact state-space representation.

2.1. SMG Architecture

As depicted in Figure 1, the topology considered for the SMG is made up of an
interconnection of a set of N of ESS in parallel as in [6]. ESSs provide the total power to
the type of synchronous machine that is ultimately in charge of delivering the required
mechanical power torque to the propeller shaft [23].

2.2. Modes of Operation

Let the cardinality of N be defined as #N := N, where N is a positive integer. We
partition the set N into two subsets such that N = Nr

⋃ Nc, #Nr := Nr, #Nc := Nc, Nr +
Nc = N. The set Nr comprises all ESSs that allow for a recharge opportunity during SMG
operations (such as batteries, flywheels, and supercapacitors). On the contrary, the set Nc
comprises all ESSs that do not allow recharging but only energy consumption (such as
fuel cells, wind turbines, photovoltaic panels, etc.). For each ESS, we associate two state
variables, which are its output power xgi (t) and its energy storage variable xsi (t). The
following physical constraints are imposed on xsi (t):

xsi (t) ∈ [0, xM
si
], i = 1, . . . , N (1)

where xM
si

is a known positive scalar that imposes the maximum value of the energy that
can be stored in the i-th ESS. The output power xgi (t) satisfies:

xgi (t) ∈
{
[−pmi , pMi ] if ESSi ∈ Nr

[0, pMi ] if ESSi ∈ Nc
(2)

For each ESSi, we introduce the positive maximum output power constant pMi , and, if
ESSi ∈ Nc, also its maximum recharging power constant pmi [23].
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Figure 1. The considered architecture for the SMG, with the depiction of the low-level STA observer and
the local low-level STA controllers, along with the high-Level optimal power imbalance allocator.

2.3. State-Space Representation
2.3.1. ESS Modelling

We adopt the following state-space representation of each ESSi with the associated
initial conditions:

ẋgi (t) = −agi xgi (t) + bgi

(
ugi (t) + dgi (t)

)
(3)

xgi (0) = xgi0

ẋsi (t) = −xgi (t), xsi (0) = xci0 (4)

where agi and bgi are two unknown and positive constants. The control variable ugi (t) has to
be designed and it is generated by the low-level STA ESS controller, as shown in Figure 1.

Assumption 1. The exogenous signal dgi (t) represents a source of disturbances that act on the
dynamics of ESSs.

Equation (4) tracks the variation in energy consumption. Following our convention
of power sign, when xgi (t) > 0, it reduces xsi (t) according to the energy storage decrease
principles.

Remark 1. Note that a number of works in the literature [6,9,20,23] have adopted the first-
order linear-time invariant dynamical representation in (3), which is classically used to model the
dynamical behaviours of ESSs to design a model-based control strategy for frequency regulation.
The system in (3) describes the dynamical behaviour of a variety of ESSs, such as BESS, fuel cells,
flywheels, and supercapacitors [23]. To enhance the robustness and applicability of the SMG model,
we have integrated the concept of bounded disturbance, denoted as dgi (t), which is an exogenous
signal that accounts for external factors and influences the dynamics of the ESS.
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2.3.2. SMG Synchronous Machine Modelling

The SMG synchronous machine is typically modelled by using the well-established
swing equation [7], which can be written in the general form as:

ẋ f (t) = −r f x f (t) + 1⊤xg(t)− d f (t), (5)

x f (0) = x f 0

where the scalar variable x f (t) represents the frequency deviation of the synchronous
machine, the term 1⊤xg(t) is the sum of all the output powers from the ESSs, the scalar
signal d f (t) is the unknown power load demand, x f 0 is the initial condition for x f (t), and
r f is a known positive scalar representing the primary droop control coefficient.

Remark 2. Note that in the present study we have not included voltage dynamics during load
fluctuations at the synchronous machine level. The frequency deviation of SMGs is mainly deter-
mined by the active power, while the voltage is affected by the reactive power [23]. This can be
mathematically proven following the steps reported in [24], where it can be derived that:

∆P(t) = γ1

∫ t

0
x f (τ)dτ (6a)

∆Q(t) = γ2∆V(t) (6b)

where ∆P(t), ∆Q(t) represent the variation of active and reactive power, respectively, γ1, γ2 are
positive constants, and ∆V(t) is the voltage variation at the synchronous machine terminals. A basic
decoupler, as proposed in [24], can also be used to ensure conditions (6a) and (6b) to further solve
more advanced control problems, such as power imbalance allocation or LFC problems. Therefore,
SMG control can be divided into two different problems. The first is the control of active power and
frequency, known as load frequency control (LFC). The second is the regulation of reactive power
and voltage. This article focusses only on LFC. This is a conventional approach that is generally
adopted in the literature [6,22,23].

2.3.3. Compact Representation

It is possible to derive the following compact state-space representation of the en-
tire SMG.
SMG Model:

ẋg(t) = Agxg(t) + Bg

(
ug(t) + dg(t)

)
, (7a)

xg(0) = xg0

ẋs(t) = −xg(t), xs(0) = xc0 (7b)

ẋ f (t) = −r f x f (t) + 1⊤xg(t)− d f (t), (7c)

x f (0) = x f 0

where xg(t) := Col(xgi (t)), ug(t) := Col(ugi (t)), dg(t) := Col(dgi (t)). The matrix Bg :=
Diag(bgi ), and Agi := Diag(−agi ) is Hurwitz. The state-space constraints (1), (2) can be
rewritten in a vectorial form as:

xg(t) ∈ Xg, (8a)

xs(t) ∈ Xs. (8b)

where Xg, Xs are hyper-rectangles of RN .
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3. Problem Formulation

The three objectives we are solving in this manuscript are as follows.

Objective 1 (Load Demand Estimation). Estimate in a finite time t f the unknown load
demand d f , where t f is a known positive constant.

Objective 2 (Optimal Power Imbalance Allocation). Determine the optimal continuous-time
reference x⋆g(t) for the output power for each ESS by solving an optimisation problem based on the
principle of the receding horizon [25].

Objective 3 (ESS Power Regulation). Enforce the condition

xg(t) = x⋆g(t) (9)

in a finite time tg, where tg is a known positive constant.

The power imbalance allocator is tasked with solving a high-level optimal allocation
problem, which determines the optimal value x⋆g(t) for the output power of each ESS.
Inspired by [19,26], we separate the timescale between the low- and high-level control
strategies by defining a series of instants of time:

tk = tk−1 + τO (10)

where tk is a generic instant of time, and τO is the sampling time for the high-level scheme.
The aim is to determine the optimal sequence of power references within the time window
[tk, tk + τD) by minimising a finite-horizon objective, where τD is the finite horizon. We
define the positive integer

ND := τD/τO (11)

and d̂ f as an estimate for d f .

Remark 3. The relationship between τO and τD involves a trade-off between optimisation perfor-
mance and computational complexity or hardware capabilities.

To achieve the above objectives, the following assumption is imposed.

Assumption 2. We assume that:

(A1) The first time derivative of dgi(t) is bounded with an a priori known bound, that is, |ḋgi(t)| < ∆dg .
(A2) The signal d f (t) remains constant d f (t) = d f where d f is an unknown positive constant. It is

common practise to assume that the power load requirement remains constant when designing
control strategies for power systems and microgrids [18]. This is required to guarantee the
reach of the (optimal) equilibrium point.

(A3) To ensure that the optimal power imbalance allocation is feasible, we assume that

max(d f ) < 1⊤pM, (12)

where pM := Col(pMi ). Furthermore, there is always a sufficient level of energy storage
given the initial condition, and a time horizon Ts, such that

1⊤xs0 < 1⊤pMTs (13)

(A4) The power imbalance allocator relies on a time scale separation principle [19,25] imposed by
the condition

τO ≫ max(tg, t f ), (14)

where τO, tg, t f are defined as above.
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4. Problem Solution and Stability Analysis

This section presents the reader with the solution we propose in this manuscript to
address the three objectives mentioned above, and a stability analysis of our scheme is
also performed. To regulate the frequency deviation to zero, the following condition, in a
discrete-time fashion, must hold:

0 = −r f x f [k] + 1⊤xg[k]− d̂ f (15a)

0 = 1⊤xg[k] + d̂ f (15b)

From (15a) and (15b), it is clear that x f [k] = 0. To solve Objective 2, a simplified Energy
Management System (EMS) discrete time predictive model will be used, which is:

x̂s[0 | k] = xs[k] (16a)

x̂s[j + 1 | k] = x̂s[j | k]− x̂g[j | k]τO, ∀j (16b)

0 = 1⊤ x̂g[j | k]− d̂ f , ∀j. (16c)

To solve the three objectives stated in Section 3, we propose the following scheme
composed of three architectures:

Low-Level STA Controller:

σg(t) := xg(t)− x⋆g(t) (17a)

ug(t) := ug1(t) + ug2(t) (17b)

ug1(t) := Col(−α1i |σgi (t)|
1
2 sign(σgi (t))) (17c)

u̇g2(t) := Col(−α2i sign(σgi (t))) (17d)

Low-Level STA Observer

e f (t) := x̂ f (t)− x f (t) (18a)

˙̂x f (t) = −r f x f (t) + 1⊤xg(t)

−β1|e f (t)|
1
2 sign(e f (t)) + w f (t) (18b)

ẇ f (t) = −β2sign(e f (t)) (18c)

d̂ f = −w f (t) (18d)

High-Level Optimal Power Imbalance Allocator:{
xg

⋆[j | k]
}ND

j=1 := S⋆[k] (19a)

S⋆[k] = argmin
S⋆ [k]

ND

∑
j=1

c⊤c x̂g[j | k] (19b)

x⋆g(t) := F
(
S⋆[k], t

)
, tk ≤ t < tk + τO

s.t.
x̂s[0 | k] = xs[k]

x̂s[j + 1 | k] = x̂s[j | k]− x̂g[j | k]τO
1⊤ x̂g[j | k] = d̂ f

x̂g[j | k] ∈ Xg
x̂s[j | k] ∈ Xs


∀j (19c)

The positive constants α1i , α2i in (17c) and (17d) are α1i = 1.5
√

∆hi
, α2i = 1.1∆hi

,
where ∆hi

is a known positive constant [27]; x̂ f (t) is an estimate of x f (t); β1, β2 in
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(18b)–(18d) are positive design constants; and the vector matrix cc := Col(cci ), cc ∈ RN

represents the unit cost of consumption associated with each ESS. Note that the condition
x̂s[0 | k] = xs[k] in equation (19c) initialises the prediction series of x̂s with the measurement
of the actual consumption at the instant tk. This initialisation serves as a starting point for
iteratively solving the online optimisation problem. Inspired by the principle of receding
horizon, we only pass the interpolated reference x⋆g(t)to the low-level controllers only for
the first τO seconds, as per (19c), where F(·) represents the interpolating function. This
principle is visually represented and illustrated in Figure 2, where a single i-th component
of xg(t) is considered for graphical representation.

Optimal Power Imbalance Allocator: 

̂df

From the Low-level STA Observer

Figure 2. A visual interpretation of the optimised interpolated reference x⋆g(t) generated iteratively
using the high-level optimal power imbalance allocator. The representation focusses on the i-th scalar
component of x⋆g(t).

The main key finding of this article is stated in the following Theorem:

Theorem 1. Under Assumptions 1 and 2, the following conditions hold:

(I) The low-level STA observer is capable of estimating the unknown load power demand d f in a
finite time t f .

(II) Provided that each entry of the unit cost vector cc satisfies

cci ̸= ccn (20)

∀i = 1, . . . , N,

∀n = 1, . . . , N,

s.t. i ̸= n

where i, n are positive distinct integers, at each iteration, there exists a unique optimal sequence
S⋆[k] solving the optimisation problem (19a)–(19c).

(III) The low-level STA controllers are capable of driving xg(t) to x⋆g(t) in a finite time tg and of
dynamically tracking its smooth evolution over time.

Proof. Proof of Part (I)—Solving Objective 1: We subtract (5) from (18b), and the STA
observer error dynamics hold:

ė f (t) = −β1|e f (t)|
1
2 sign(e f (t)) + w f (t) + d f (21a)

ẇ f (t) = −β2sign(e f (t)) (21b)
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If we introduce an auxiliary error variable e f 2(t) := w f (t) + d f , we write the error
system as:

ė f (t) = −β1|e f (t)|
1
2 sign(e f (t)) + e f 2(t)

ė f 2(t) = −β2sign(e f (t))
(22)

The system in (22) is finite-time stable ∀β1, β2 > 0 [27], which means that the condi-
tions e f = e f 2 = 0 hold in a finite time t f . When e f2 = 0, an accurate estimate d̂ f for d f

can be extracted in real time from the observer variable d̂ f = −w f (t). Note that the STA
observer can also estimate online the non-constant power load demand d f (t), provided

that |ḋ f (t)| < ∆ f . This is achieved by tuning the two gains β1 = 1.5
√

∆ f , β2 = 1.1∆ f [27] .

Proof of Part (II)—Solving Objective 2
Under Assumption 2(A3), at every time instant tk, there is always a feasible solution

S [k] that satisfies the constraint (19c). We now prove that if cc satisfies (20) at each iteration,
there exists a unique optimal S⋆[k] that solves the optimisation problem. Since constraints
(19c) create a bounded region, the minimum of the objective function exists within this
region. By exploiting the constraint on power imbalance 1⊤ x̂g[j | k] = d̂ f , we can express
an arbitrarily chosen n-th component of x̂g[j, k] as

x̂gn [j | k] = d̂ f − 1⊤ x̂g−n [j | k] (23)

where the vector x̂g−n ∈ RN−1 is built from x̂g[i | k] by removing the n-th entry. If we
substitute (23) into the cost function (19b), we can rewrite the high-level optimal power
imbalance allocator problem in a simpler form as:

S⋆[k]=argmin
S⋆ [k]

ND

∑
j=1

(
(cc − ccn 1)⊤ x̂g[j | k] + ccn d̂ f

)
(24)

s.t.
x̂s[0 | k] = xs[k]

x̂s[j + 1 | k] = x̂s[j | k]− x̂g[j | k]τO
x̂g[j | k] ∈ Xg
x̂s[j | k] ∈ Xs

∀j (25)

Let us isolate the individual j-th contribution of the cost function

J(x̂g[j | k]) := (cc − ccn 1)⊤ x̂g[j | k] + ccn d̂ f (26)

Suppose, for the sake of contradiction, that there are two distinct solutions x̂(1)g [j | k]

and x̂(2)g [j | k], both minimising the objective function (26). Since the minimum exists, both

J(x̂(1)g [j | k]) and J(x̂(2)g [j | k]) have the same minimum value, which means that

(cc − ccn 1)⊤
(
x̂(1)g [j | k]− x̂(2)g [j | k]

)
= 0 (27)

As x̂(1)g [j | k] and x̂(1)g [j | k] are distinct,

∃i : x̂(1)gi [j | k] ̸= x̂(2)gi [j | k] (28)

However, since cc satisfies (20), to enforce (27), we need to ensure

(cci − cccn )
(
x̂(1)gi [j | k]− x̂(2)gi [j | k]

)
= 0 (29)

This can only be possible if

x̂(1)gi [j | k] = x̂(2)gi [j | k] (30)
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which clearly contradicts (28); therefore, x̂(1)g [j | k] must coincide with x̂(2)g [j | k], which
proves the uniqueness of the minimum. Therefore, it is always possible to find a minimum
x⋆g[j | k] for J(x̂g[j | k]) using linear programming [28].

Two situations can occur:

(a) If during the time horizon of τD seconds, the evolution of x̂s[j | k] does not breach any
of its associated constraints as per (19c), then the minimum x⋆g[j | k] for J(x̂g[j | k]) will
also minimise the overall cost function (19b). A series S⋆[k] composed of ND identical
references will be generated and interpolated via the interpolator (19c).

(b) If at a generic m-th step, the boundaries for the energy storage x̂s[m | k] are reached,
these can be reflected by constraining the associated output powers to be equal to zero,
hence obtaining a different hyper-rectangle redefining the boundaries of x̂g[m | k] and
finding another single minimum for the cost function. A series S⋆[k] composed of ND
nonidentical references will be generated and interpolated via the interpolator (19c).

Proof of Part (III)—Solving Objective 3
We show that our STA controller drives xg(t) towards an interpolated reference x⋆g(t)

in finite time tg. To derive a suitable state-space representation to analyse the stability, we
introduce the error variable

σg2(t) := Agσg(t) + Bgu2g(t) + Bgdg(t) + ẋ⋆g(t), (31)

which yields

σ̇g(t) = σg2(t) + Bgug1(t) (32a)

σ̇g2(t) = h(σg(t)) + Bgu̇g2(t) (32b)

Each i-th component of the system (32a) and (32b) is in the form

σ̇gi (t) = σg2i (t)− Bgi α1i |σgi (t)|
1
2 sign(σgi (t)) (33a)

σ̇g2i (t) = hi(σgi (t))− Bgi α2i sign(σgi (t)) (33b)

The system (33a) and (33b) is in the standard form of the perturbed STA algorithm [27].
Under Assumption 2 and given Ag Hurwitz, the matched disturbance hi(σgi (t)) is com-
posed of a sum of bounded terms by direct calculation and is therefore bounded, which
means that |hi(σgi (t))| < ∆hi

, where ∆hi
is an a priori known positive constant. If [27]

α1i = 1.5
√

∆hi
α2i = 1.1∆hi

(34)

the system (33a) and (33b) reaches the origin in a finite time tg, guaranteeing the achieve-
ment of Objective 3. When the system (33a) is restricted to stay on the sliding surface σgi (t),
the STA control action compensates in real time the influence of the matched disturbance
hi(σgi (t)) and therefore remains completely insensitive to the disturbance dgi (t) and to
possible bounded and known variations of x⋆g(t).

The aforementioned arguments prove the Theorem.

Remark 4. If there exists at least a unit cost ccm such that cci = ccn , it implies that the objective
function assigns the same weight or importance to different decision variables. This, in turn, leads
to the existence of multiple solutions that achieve the same minimum objective function value. In
other words, the uniqueness of the solution is compromised, as there may be alternative solutions
with identical objective values.

Remark 5. The use of interpolation is mandatory to combine the effect of high- and low-level loops.
For the existence of the sliding mode, it is necessary to ensure that the optimal generated reference
x⋆g(t) is differentiable with respect to time. In this article, we use the STA controller; the first and
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second time derivative of σg(t) must exist [29]. Therefore, a quadratic spline should be generated
from the discontinuous optimal series.

Remark 6. Note that in this article, we separately analysed the stability of the three schemes
according to the following conditions: the matrix Ag is Hurwitz and any variation in x⋆g is
considered as a matched bounded disturbance by the STA low-level controller; the convergence of the
STA observer is decoupled from the STA low-level controller by virtue of the underlying structure of
the dynamics of the SMG system.

5. Simulation

We consider an SMG composed of N = 2 ESSs, that is, a BESS (numbered ESS1),
which belongs to the subset Nr and an FC (numbered ESS2) which belongs to the subset
Nc. We consider an SMG of 1 (MW) rated power, which is also set to be the base power
for the per unit (p.u) parameters. We set pm1 = pM1 = 0.575 (p.u.), pM2 = 0425 (p.u.),
xM

s1
= 0.575 (p.u.h), xM

s2
= 0.44 (p.u.h). These parameters are selected in accordance with

the data made available via the acknowledged Innovate UK grant with industry partners.
We employ widely accepted model parameters found in the existing literature [2] for the
representation of the SMG state space, which are ag1 = −10, ag2 = −3.87, bg1 = 10,
bg2 = 3.87, r f = 0.60. We consider ∆h = ∆ f = 10, and we set the parameters of the
STA controllers as α11 = α12 = 4.74, α21 = α22 = 11.00. The unit costs of consump-
tion are selected as cc1 = 0.60, cc2 = 0.40. The STA observer design constants are set as
β1 = 4.74, β2 = 11.00. We numerically estimate the values for tg and t f following the
methodology presented in [27], obtaining tg = t f = 0.15 s. The STA observer and con-
trollers are implemented in a MATLAB-Simulink environment using the Euler method with
an integration step of 0.1 milliseconds. The simulations run for a duration of Tsim = 1200 s.
If we consider (14), max(tg, t f ) = 0.15 s, then τO ≫ 0.15. Therefore, the power imbalance
allocator scheme is executed with a sampling time of τO = 10 seconds. The optimisation
problem (19a)–(19c) is implemented using the dedicated MATLAB Optimisation Toolbox
and the algorithm Fmincon Sequential Quadratic Programming (SQP). Figure 3 shows an
extract of the implementation of the MATLAB-Simulink code of the strategy proposed in
this paper, following the architecture in Figure 1. In particular, the technical values of the
considered SMG are given, along with the MATLAB R2023b functions architecture of the
two-level control strategy.

We consider four scenarios:

• Scenario PI: an arbitrarily defined power imbalance allocator is imposed to determine
the power reference for each ESS, i.e., x⋆g := κd̂ f , κ := [κ1, κ2]

⊤, κ1 = pM1 , κ2 = pM1

Furthermore, during this scenario, each ESS is regulated via conventional PI controller.
• Scenario PIO: during which our optimal power imbalance allocator is utilised, and

each ESS is regulated via PI controllers. The proportional and integral gains for the PI
controllers are set equal to -1.

• Scenario SM: the arbitrary power allocator defined in the scenario PI is used and each
ESS is regulated via STA controllers.

• Scenario SMO: the proposal of this paper, where the optimal power imbalance alloca-
tor is used in conjunction with STA controllers.

We define the integral metric:

J :=
∫ Tsim

0
J(xg(τ)) dτ (35)

which represents the total operational cost of the SMG within the simulation time horizon.
Figure 4 shows the results of the simulation carried out. In Scenario PI, there is

an arbitrarily defined power split and the frequency deviation is acceptably regulated,
whilst the operational cost is not minimised. If we use our optimal power imbalance
allocator together with standard PI control (Scenario PIO), we can achieve an important
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cost reduction; however, the frequency deviation is still only acceptably regulated (see
the frequency deviation figure of Scenario PIO). By virtue of the STA property, we can
ensure excellent frequency regulation in Scenario SM and also minimise the operational
cost in Scenario SMO. This scenario, which represents the proposal of this article, shows
excellent speed regulation properties while reducing the total operational cost J by 22%.
In this scenario, when load demand is low, ESS2 is used to charge ESS1. Note that in
scenario SM, as there is no high-level scheme with the associated interpolation architecture
communicating changes in load demand, the frequency deviation always remains equal to
zero. On the other hand, in the SMO scenario, we observe a small frequency deviation only
when the unknown load power demand d f varies over time. These frequency deviations
are much smaller than the one obtained in Scenario PIO, which demonstrated the better
performance of the STA algorithm compared to the PI algorithm. To further compare the
scenarios analysed, it is worth noting that Scenario PIO and Scenario SMO are characterised
by identical cost J . Nevertheless, the low-level STA controllers adopted in Scenario SMO
better track the optimal reference when compared to standard PI controllers. This fact can
be observed by analysing the frequency deviation x f in scenario PIO and SMO.

The excellent performance of the STA-based algorithms is summarised in Figure 5. It
is possible to see that condition d̂ f = d f is enforced in less than 0.20 s and is maintained
throughout the simulation horizon. As also proven in the paper, σg(t) converges to zero in
finite time, guaranteeing that xg(t) tracks the optimal time-varying reference x⋆g(t).

Optimal Power Imbalance Allocator Definition

H2

Battery Energy Storage


Fuel Cells +

Hydrogen Tank


DC Bus

700 V


Inverter

Synchronous Machine


1 MW
 Propeller Shaft


pM1 = 575 kW
xM

s1 = 575 kWh

pM2 = 425 kW
xM

s2 = 440 kWh

Speed Sensor


̂df

Low-level STA Observer Eq. (18a)-(18d)

xf(t)

β1 = 4.74 β2 = 11.00

Constraints: Eq. (19c)

Low-level STA Controllers:  
Eq. (16a)-(16d)

ug1

ug2

α11 = 4.74 α12 = 11.00

α11 = 4.74 α12 = 11.00

SMG System

Load Demand 

using Real Data

df(t)

x⋆
g1(t) x⋆

g2(t)

High-level Optimal Power Imbalance Allocator Code, run online with sampling time 0.1 seconds

Spline interpolation

EMS Model: Eq. (19c) Cost Function: Eq. (19b) 

Figure 3. A schematic of the considered SMG composed of a BESS and a FC. The technical details of
the nominal power-energy storage capacity of the SMG are also reported. An extract of the MATLAB-
based code implementation of the low-level STA observer, of the optimal power imbalance allocator,
and of the low-level STA controllers are also illustrated.
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Figure 4. From Left to right: Time histories of the power balance with xg1 , xg2 , xg3 ; the frequency
deviation x f ; the consumption variables xc1 and xc2 ; and the cost metric J for the four scenarios PI,
PIO, SM, and SMO in each row of the figure.

Figure 5. (Top): Time histories of the power load demand d f and its estimate d̂ f obtained via the
proposed STA observer, with a zoomed view during the first 0.25 s to show the convergence in finite
time. (Bottom): Time histories of ||σg||2 during the first 0.25 s and time histories of the ESS output
power x⋆g(t) and its actual value xg(t).
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5.1. Sensitivity Analysis

In order to further assess the performance of the Scenario SMO, two sensitivity analy-
ses are conducted, which examine, respectively, changes to the controllers and observer
gains and to the power load demand.

5.1.1. Sensitivity Analysis 1

Sensitivity Analysis 1 investigates the impact of variations in the design parameters of
both the low-level STA observer and the low-level STA controllers. The adjustments focus
on the gains, modified as follows:

α̃11 = χα11

α̃12 = χα12

α̃21 = χα21 (36)

α̃22 = χα22

β̃1 = χβ1

β̃2 = χβ2

Here, ˜ denotes the scaled gain, and the scaling factor χ ranges from 0.8 to 1.2. Fol-
lowing the insights in [27], the convergence time TSTA—the time of the STA algorithm
for both controllers and observer—achieves sliding motion proportional to

√
χ, as is also

numerically demonstrated in Figure 6. Notably, the proof of Theorem 1 confirms that
sliding motion is maintained for gain adjustments within the specified range, thus ensuring
system stability under both under- and over-tuning conditions.

Gain Increase

Power Increase

Power Increase

Sensitivity Analysis 1:  Controller Gains Variations: Sensitivity Analysis 2:  Power Variations:

Finite-time 
convergence 

decreases 

Gain Increase

Finite-time 
convergence 

decreases 

Figure 6. Two sensitivity analyses of the algorithm proposed in this paper. (Sensitivity Analysis
1): Time histories of d f and their estimates when the gains beta1, β2 are scaled and the numerical
evaluation of the finite-time convergence. Time histories of ||σ||2 of the low-level STA controllers
when the gains α1i , α2i are scaled and the impact of the finite-time convergence. (Sensitivity Analysis
2): Time histories of the frequency deviation x f when the power demand d f is scaled. Time histories
of the ESS output power xg(t) when the power demand is scaled.
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5.1.2. Sensitivity Analysis 2

This sensitivity analysis considers variations in the power load demand d f as follows:

d̃ f = χd f (37)

where d̃ f is a scaled version of d f , and the scaling factor χ ranges from 0.8 to 1.2 as above.
From Figure 6, it is possible to appreciate that the proposed scheme is also still able to
optimally allocate the power imbalance between the BESS and the FC under such conditions.
The simulation also reveals that the small frequency oscillations, which are caused by
the time-varying feature of the power demand, are not sensibly affected by the scaling
of d f .

Remark 7. Note that, in the event of communication failures in measuring the state vector
xs(t), Scenario PI and Scenario SM can be used to still achieve frequency regulation via the
arbitrarily defined power imbalance allocator defined above. In such a scenario, the low-level STA
controllers are still capable of maintaining stable operations on the SMG but without minimising
the operational costs.

6. Conclusions

This paper has introduced an original two-level control strategy for SMGs, with a focus
on optimising power allocation and achieving precise asymptotic frequency regulation.
Drawing inspiration from the STA, we have integrated a state observer into our system
to rapidly estimate power load demand imbalances. Our online optimal methodology
has been designed to establish power references for individual ESSs, while decentralised
low-level STA control guarantees finite-time reference tracking. The evidence from our
extensive numerical simulations highlighted the exceptional ability of our proposal to
regulate frequency with precision and significantly reduce operational costs. This paper
lay the foundation for future high-impact research directions. A first expansion can be
centred on the ship platoon scenarios, where multiple SMGs collaborate under suitable
communication protocols to achieve common optimisation objectives. A second expansion
can be focussed on experimental validation through application to more complex SMGs,
utilising a real setup provided by our industry partners. These two prospects underscore
the importance and applicability of our proposal, promising significant advancements in
this research field.
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