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The entanglement entropy of a black hole and that of its Hawking radiation are expected to follow the so-
called Page curve: After an increase in line with Hawking’s calculation, it is expected to decrease back to
zero once the black hole has fully evaporated, as demanded by unitarity. Recently, a simple system-plus-
bath model has been proposed which shows a similar behavior. Here, we make a general argument as to
why such a Page-curve-like entanglement dynamics should be expected to hold generally for system-plus-
bath models at small coupling and low temperatures, when the system is initialized in a pure state far from
equilibrium. The interaction with the bath will then generate entanglement entropy, but it eventually has to
decrease to the value prescribed by the corresponding mean-force Gibbs state. Under those conditions, it is
close to the system ground state. We illustrate this on two paradigmatic open-quantum-system models, the
exactly solvable harmonic quantum Brownian motion and the spin-boson model, which we study
numerically. In the first example we find that the intermediate entropy of an initially localized impurity is
higher for more localized initial states. In the second example, for an impurity initialized in the excited
state, the Page time—when the entropy reaches its maximum—occurs when the excitation has half
decayed.
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Introduction. Entanglement has become an object of
intense study in diverse fields from quantum information
to quantum many-body and black-hole physics. A central
result is that the von Neumann entropy of subregions in the
ground state of many-body Hamiltonians with local inter-
actions grows like the surface area of the subregion and
not its volume [1]. Computational matrix-product app-
roaches [2] use such entanglement properties for efficient
simulation of quantum systems, from quantum many-body
systems [3] to non-Markovian open quantum systems [4].
Another important result is that the entanglement entropy
of ergodic systems out of equilibrium generically grows
linearly until it saturates at a value given by the volume law
for excited states [5–7]. From this perspective, the behavior
of the entropy of black holes is unusual.
By considering quantum fields in curved spacetimes,

Hawking found that black holes can evaporate by emitting
thermal radiation, thus associating a temperature propor-
tional to the inverse mass to black holes [8]. This, together
with an associated entropy proportional to the area of
the event horizon [9], makes certain laws of black hole

mechanics look like the laws of thermodynamics [10]. By
considering the situation in which matter in a pure state
undergoes gravitational collapse to form a black hole and
then evaporates according to Hawking’s semiclassical
calculation, one finds that a pure state evolves into a mixed
state in a closed system, which stands in stark contrast to
the unitarity of time evolution in quantum mechanics. This
is the so-called black hole information paradox [11]. If
unitarity were to hold for quantum gravity, instead of a
linear increase of entropy according to Hawking’s calcu-
lation, the curve describing the entropy should bend down
and decrease back to zero once the black hole has fully
evaporated, so that the final state remains pure [12]. The
resulting curve is called the Page curve. Recently [13,14],
tremendous progress has been made calculating this
behavior semiclassically, using so-called quantum extremal
surfaces [15,16], first developed in the context of the
AdS/CFT correspondence [17].
Recently [18], a relatively simple solvable system-plus-

bath model [19,20] has been proposed, which shows Page-
curve-like entanglement dynamics. The entanglement
entropy is examined as a function of time and not as a
function of subsystem size, as often studied in quantum
many-body systems [12,21–24]. Similar observations have
been made for the system-bath mutual information [25] and
the entanglement negativity [26] of open quantum systems.
Furthermore, in [18] a more general argument was made,
that such an entanglement dynamics is generally expected
when the resulting open dynamics forces the system into a
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low-dimensional subspace of its Hilbert space. In the
example given, the fermionic system empties out.
Here we make an argument that the condition suggested

in [18] can be generically realized for open quantum
systems weakly coupled to an environment at low temper-
ature. When initialized in a pure far-from-equilibrium state,
the ensuing nonequilibrium dynamics will be accompanied
by a high entanglement entropy production. Under our
conditions, however, one can expect that the impurity will
eventually settle down to a state close to its ground state,
which carries a low entanglement entropy. The entanglement
entropy as a function of time will therefore qualitatively look
like the Page curve. We will corroborate and illustrate this
on paradigmatic open-system models, namely, the exactly
solvable harmonic quantum Brownian motion [27–31] and
the spin-boson model [32–37], which we study numerically.
The main ingredient of our argument is the so-called

mean-force Gibbs state [38–40], which amounts to the
reduced state of the global system-bath canonical equilib-
rium state. It is conjectured [40] that open quantum systems
in large enough thermal baths generically approach this
steady state. The physical picture behind this is the follow-
ing. As the environment is much larger than the impurity, the
state of the impurity is just a perturbation to the global
equilibrium and the dynamics essentially consists of the
return to equilibrium of the global system, in line with the
eigenstate thermalization hypothesis [41–44]. Under our
conditions, that is, weak coupling and low temperature,
the mean-force Gibbs state is close to the local ground state
and thus carries low von Neumann entropy.

Entanglement dynamics. We study the entanglement
dynamics for an impurity, the system, embedded in an
environment, the bath. The total Hamiltonian for such a
problem takes the form commonly studied in the open
quantum systems literature:

H ¼ HS þHB þHI; ð1Þ

where the subscripts S, B and I stand for system, bath and
interaction, respectively. Here, and in what follows, oper-
ators will be denoted by boldface symbols. Considering the
situation where the probe is initialized in a pure state ρ0 and
the environment is in its ground state (which we assume to
be nondegenerate), the global product state is also pure.
Despite the global state remaining pure under the dynamics
generated by the Hamiltonian in Eq. (1), the subsystems
(impurity and environment) get entangled as they interact.
We quantify this by the entanglement entropy, i.e., the von
Neumann entropy S of the subsystems given by

S ¼ −trðρ log ρÞ: ð2Þ

The entanglement entropy of the system and that of its
complement (the bath) are the same. Generically, for large

systems avoiding recurrence, it is expected that the entan-
glement entropy rises with time and reaches a plateau
asymptotically [5–7].
On the other hand, when the bath is much larger than the

system, it is generically expected that the open system
reaches a steady state given by the so-called mean-force
Gibbs state [38–40]

τMF ¼
trB e−βH

tr e−βH
; ð3Þ

where β is the inverse temperature of the bath. This is the
expectation as long as no symmetries lead to conserved
quantities constraining the system dynamics. Here, and in
what follows, we work in natural units, i.e., ℏ ¼ kB ¼ 1.
This means that the system reaches a state which looks like
the reduction of the system-bath equilibrium at the temper-
ature of the bath. Our environment being in its ground state,
this means that we expect a steady state for the impurity
taking the form τMFðT ¼ 0Þ ¼ trBjΩihΩj, where jΩi is the
global ground state.
At very weak coupling between system and bath, as

commonly assumed in thermodynamics and, more gener-
ally, whenever the coupling is given by a surface term,
while the system and bath energies are given by large
volume terms, the mean-force ground state can be approxi-
mated well by the system ground state j0i, i.e.,
ρSðt → ∞Þ ¼ trBjΩihΩj ≃ j0ih0j. The entanglement en-
tropy, therefore, must be close to the one of the local
ground state, which we assume to be nondegenerate. This
means the entanglement entropy must be close to zero.
Importantly, this has to hold for arbitrary initial states, in
particular states far from equilibrium whose dissipative
dynamics result in large entropy production.
Putting our pieces together we have the following

picture: Impurity and environment start at a pure state
with zero entanglement entropy. The entanglement entropy
can increase substantially as they interact during the non-
equilibrium dynamics. At long times the entanglement
entropy needs to reach the value of the mean-force state,
which is close to zero. In between it has to decay, therefore
qualitatively following the Page curve.
The above is very similar to evaporation of AdS

black holes. This is usually facilitated by coupling them,
via a surface term, to an auxiliary CFT in the vacuum
state [13]. Those are essentially the conditions we have
described here.
In the following we study the entropy dynamics quanti-

tatively on concrete models. Despite working with small
coupling, we do this without using weak coupling master
equations [45–47] prevalent in the open quantum systems
literature, as they are not applicable at such low temper-
atures [19]. In particular we do not assume Markovianity.
Instead we work with exact solutions.
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Harmonic quantum brownian motion. The first example is
the exactly solvable harmonic quantum Brownian motion,
i.e., a harmonic oscillator linearly coupled to a continuum
of harmonic oscillators. This model can, for example,
describe a Bose polaron in a condensate [48]. The system
Hamilton reads

HS ¼
1

2
ω2
Rx

2 þ 1

2
p2; ð4Þ

where we have set the mass to 1. The bath Hamiltonian is
given by

HB ¼
X

μ

ω2
μmμx2μ=2þ p2μ=ð2mμÞ; ð5Þ

the most common model for the environment in the open
quantum systems literature. Such an environment could
represent the electromagnetic field or phonons in a crystal.
Finally the coupling between system and bath is given by

HI ¼ x ⊗
X

μ

gμxμ: ð6Þ

The effect of the bath on the system can be encoded via the
spectral density JðωÞ ¼ π

P
μ g

2
μ=ð2mμωμÞδðω − ωμÞ. We

choose the common Ohmic spectral density with Lorentz-
Drude cutoff given by

JðωÞ ¼ γω

1þ ðω=ΛÞ2 : ð7Þ

This spectral density is linear for frequencies much smaller
than the cutoff Λ and decays for larger frequencies. Other
choices of spectral densities would lead to qualitatively
similar results. We choose the frequency ωR in Eq. (4) to
cancel out the distortion due to the bath with regard to the
oscillator frequency ω0 by setting

ω2
R ¼ ω2

0 þ Δω2; ð8Þ

where the counterterm frequency is given by Δω2 ¼
2
π

R
∞
0 dωJðωÞ=ω. Such a counterterm naturally arises in

many systems of interest [28]. For our spectral density it
evaluates to Δω2 ¼ γΛ.
Initializing the bath in a thermal state, which is Gaussian,

we exploit the fact that the Hamiltonian is quadratic in
positions and momenta, thus generating a Gaussianity-
preserving dynamics [49]. That is, for Gaussian initial
conditions with vanishing first moments, the covariances
σxx ¼ hx2i, σxp ¼ 1

2
hxpþ pxi and σpp ¼ hp2i fully char-

acterize the state of the impurity. We collect the covariances
in the matrix

Σ ¼
�
σxx σxp

σxp σpp

�
: ð9Þ

In Supplemental Material [50] we give details on the exact
dynamics of the model.
For Gaussian states we can express the von Neumann

entropy, Eq. (2), as [51]

S¼
�
λþ 1

2

�
log2

�
λþ 1

2

�
−
�
λ−

1

2

�
log2

�
λ−

1

2

�
; ð10Þ

where λ is the symplectic eigenvalue of the state. This is
calculated as the absolute value of the eigenvalues fiλ;−iλg
of the matrix product ΣΩ, with the symplectic matrix

Ω ¼
�

0 1

−1 0

�
: ð11Þ

We consider impurity initial states which are Gaussian
wave packets highly localized at the origin. We will
quantify the position variance as σxx ¼ δ and the momen-
tum variance σpp ¼ 0.52=δ and take σxp ¼ 0. Those are
pure states and saturate the Heisenberg inequality. The
environment is initialized in its ground state. The global
state is pure and therefore the von Neumann entropy is
just the entanglement entropy. In Fig. 1 we show the
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FIG. 1. The entanglement entropy S of the oscillator impurity
as a function of time starts at zero, as the impurity is initialized in
a pure state, for a localized wave packet with width δ ¼ 1=100
(solid blue line) and δ ¼ 1=1000 (dashed orange line). The
interaction entangles the impurity with the environment, which is
initially at zero temperature. Their entanglement entropy peaks
at an intermediate time. The more localized the initial state,
the higher the intermediate peak of the entanglement entropy.
Regardless of initial state, the mean-force Gibbs state is ap-
proached at long times, which, for weak coupling, is close to the
local ground state. As in the Page curve, the entanglement
entropy thus has to decrease; here, it saturates close to zero.
In the inset the initial state is the local ground state, the maximum
of the entanglement entropy (dot-dashed green line) still reaches
an intermediate maximum, but it is just slightly higher than the
final value, as the dynamics is not very far from equilibrium,
seen by the fidelity F with the local ground state staying close to
one (dotted red line). The parameters are ω0 ¼ 1, γ ¼ 0.001
and Λ ¼ 10.
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entanglement entropy, calculated by Eq. (10), as a function
of time. We observe that the entropy starting from zero as
the impurity is initialized in a pure state, reaches a
maximum at intermediate times due to the interaction
and then decays back to the entropy of the mean-force
Gibbs state, a value close to zero. The intermediate peak of
the entanglement is higher, the more localized the initial
state is. Here, even if initialized in the local ground state
and staying close to it, the intermediate peak is slightly
higher than the final value. The closeness is calculated by
the Uhlmann fidelity, which can easily be calculated for
Gaussian states [52].
In Fig. 2 we study the robustness of the entropy

dynamics of the impurity against changes of parameters,

by varying the environment temperature and coupling
strength. In the case of nonzero temperature, the global
state is not pure and the von Neumann entropy is therefor
not just the entanglement entropy. We observe that for low
temperatures the qualitative behavior of the entropy as a
function of time stays the same but changes when the
temperature becomes larger. At high enough temperature,
the entropy of the impurity does not decay to a value close
to zero but continues to grow and saturate at a higher value.
Again for an environment initially in its ground state,
changing the strength of the interaction leaves the quali-
tative picture unchanged, as long as it stays small. The
lower the coupling, the lower the final value of the entropy.
Reducing the strength of the interaction, the final value of
the entanglement entropy can get arbitrarily close to zero.

Spin-boson model. We now turn our attention to a case
study for which no exact solution is available—the spin-
boson model, i.e., a two-level system coupled to the conti-
nuum of harmonic oscillators. This model can, for example,
describe an exciton interacting with phonons [53]. The
system Hamiltonian in this case reads

HS ¼
1

2
ϵσz; ð12Þ

and the coupling between system and bath is given by

HI ¼ σx ⊗
X

μ

gμxμ; ð13Þ

where the σα are the Pauli matrices. Like in the previous
example the bath is given by Eq. (5) and the spectral density
by Eq. (7). As the impurity couples to the environment via
σx, for which σ2x ¼ 1, no counterterm is needed as there is
no distortion of the system’s potential [38,39,54,55].
We turn to numerical methods to solve the dynamics;

namely, we use the numerically exact hierarchical equa-
tions of motion (HEOM) approach [56,57]. We use the
QuTiP-BoFiN implementation [58], which is integrated in
the QuTiP platform [59,60]. To numerically calculate the
dynamics using HEOM we have to truncate two expan-
sions. One is the Matsubara expansion of the bath corre-
lation function in an exponential series; we call the number
of retained terms Nk. The other is the level of the hierarchy
for the auxiliary density operators, which we call NC. To
speed up convergence, the Tanimura terminator has been
used [58]. Our calculations have converged for Nk ¼ 30
and NC ¼ 2, which we confirmed by comparing against
calculations with higher Nk and NC.
The two-level impurity is initialized in the pure excited

state with density matrix ρ0 ¼ j1ih1j and the environment
in a thermal state at a temperature close to zero. The latter
is done for computational reasons, as for lower temper-
atures the computations are numerically more demanding.
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FIG. 2. Top: the entropy of the oscillator impurity, initialized
in a localized wave packet with width δ ¼ 1=100, reaches an
intermediate maximum not just at absolute zero, i.e., T ¼ 0
(solid blue line), but also when the bath is initialized at a finite,
but low temperature, here T ¼ 0.5 (dashed orange line) and T ¼ 1
(dot-dashed green line). Bottom: dependence of the entropy
dynamics on the strength of the coupling, for γ ¼ 0.001 (solid
blue line), γ ¼ 0.05 (dashed orange line) and γ ¼ 0.1 (dot-dashed
green line). The overall qualitative features of the curve do not
change. The value of the entropy at the intermediate peak is of the
same order for the different coupling strengths. In contrast, the
weaker the coupling, the closer to zero is the asymptotic value.
The other parameters are as in Fig. 1.
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The von Neumann entropy is therefore not just the
entanglement entropy, as the global state is not pure.
In Fig. 3 we show the von Neumann entropy, Eq. (2), as a

function of time. We observe that the entropy, starting from
zero as the impurity is initialized in a pure sate, reaches a
maximum at intermediate times and then decays back to a
value close to zero. No off-diagonals in the impurity energy
basis are generated during the time evolution. The pop-
ulation of the excited state, also shown in the figure, mono-
tonically decays to its final value. The time at which the
impurity has an equal population in the excited state and
ground state is when the entropy reaches its maximum and
starts to decay, i.e., the Page time. The entropy at this time
is the maximum possible entropy for a two-level system,
i.e., ln(2).
In Fig. 4 we study the parameter dependence of the

entropy dynamics of the impurity by varying the environ-
ment temperature and the coupling strength. We observe
that for lower temperatures the final value of the entropy is
closer to zero. As the global state is also closer to being
a pure state, the von Neumann entropy is closer to the
entanglement entropy. Similarly, the lower the coupling
between impurity and environment, the lower the final
value of the entropy. At the Page time, the entropy reaches
the maximum allowed value for a two-level system for all
coupling strengths.

Conclusion. In this paper we studied the entropy dynamics
of quantum impurities weakly coupled to an environment
close to the absolute zero. We gave a general argument why
the entropy as a function of time should qualitatively look
like the Page curve when the impurity is initialized in a
pure state far from equilibrium. For two paradigmatic open-
system models, we quantitatively illustrated this effect
without making any approximations. We found that, for
a localized oscillator impurity, the entanglement entropy
show a Page-curve-like behavior, with the peak value of the
entropy depending on how localized the impurity initially
was. For a two-level impurity initialized in the excited state
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FIG. 3. The entropy S (solid blue line) of a two-level impurity
as a function of time. The impurity is initialized in the excited
state; the bath is at a temperature close to zero. No off-diagonals
of the reduced state in the impurity energy basis are generated in
the dynamics and the excited state population P1 (dashed orange
line) monotonically decays. Therefore the Page time corresponds
to the time at which the ground state and the excited state are
equally populated (dotted red lines). The entropy of this state is
the maximum possible value for a two-level system, i.e., ln(2).
In the long time limit the entropy converges to the entropy of the
mean-force Gibbs state (dot-dashed green line), which is close to
zero, thus behaving qualitatively like the Page curve. If initialized
in the impurity ground state, the entanglement entropy ap-
proaches is final value without an intermediate peak (not shown).
The parameters are ϵ ¼ 1, γ ¼ 0.001, Λ ¼ 10 and T ¼ 0.2.
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FIG. 4. Top: the entropy of the two-level impurity, again
initialized in the excited state, as a function of time at different
environment temperatures, i.e., T ¼ 0.2 (solid blue line), T ¼
0.25 (dashed orange line) and T ¼ 0.3 (dot-dashed green line)
behaves qualitatively the same and reaches the maximum entropy
as long as the temperature is low enough; only the asymptotic
values are different. The lower the temperature, the closer to
zero the asymptotic value. Bottom: dependence of the entropy
dynamics on the overall strength of the coupling to the environ-
ment, here by varying the parameter γ, for γ ¼ 0.001 (solid blue
line), γ ¼ 0.0015 (dashed orange line) and γ ¼ 0.002 (dot-dashed
green line). For smaller coupling the excited state decays slower,
leading to a later peak in entropy and the asymptotic value gets
closer to zero, as shown in the inset. The other parameters are
as in Fig. 3.
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we found that the entropy at the Page time reaches the
maximally possible value independently of coupling
strength, when the excitation has half decayed. Further,
we found the effect robust to changes in coupling strength
as long as the overall coupling stays small and even for
small nonzero temperatures of the environment.
The systems considered here are simple enough to study

in detail. In particular, a discretized approximation of the
environment could be followed for the whole evolution.
This gives a possibility to study of how the environment
becomes more pure after the Page time and retains a
memory of the system initial state. The study of such
simple toy models might therefore open up new paths to
study analogs to the purification of the Hawking radiation
after the Page time.

Furthermore, the conditions under which our findings
hold are very general and should be suitable for exper-
imental realization. In particular, the studied models are
commonly realized in cold atoms and solid state
physics.

The data that support the findings of this study are
available from the author upon reasonable request.
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[2] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete,
Rev. Mod. Phys. 93, 045003 (2021).

[3] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[4] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B.W.

Lovett, Nat. Commun. 9, 3322 (2018).
[5] P. Calabrese and J. Cardy, J. Stat. Mech. 2005, P04010

(2005).
[6] W.W. Ho and D. A. Abanin, Phys. Rev. B 95, 094302 (2017).
[7] H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
[8] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[9] J. D. Bekenstein, Lett. Al Nuovo Cimento Ser. 2 4, 737 (1972).

[10] R. M. Wald, Living Rev. Relativity 4, 6 (2001).
[11] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and

A. Tajdini, Rev. Mod. Phys. 93, 035002 (2021).
[12] D. N. Page, Phys. Rev. Lett. 71, 3743 (1993).
[13] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield,

J. High Energy Phys. 12 (2019) 063.
[14] G. Penington, J. High Energy Phys. 09 (2020) 002.
[15] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602

(2006).
[16] S. Ryu and T. Takayanagi, J. High Energy Phys. 08 (2006)

045.
[17] J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[18] S. Kehrein, arXiv:2311.18045.
[19] H.-P. Breuer and F. Petruccione, The Theory of Open

Quantum Systems (Oxford University, New York, 2002).
[20] U. Weiss, Quantum Dissipative Systems, 3rd ed. (World

Scientific, Singapore, 2008).
[21] P. Calabrese and J. Cardy, J. Phys. A 42, 504005 (2009).
[22] P. Łydżba, M. Rigol, and L. Vidmar, Phys. Rev. Lett. 125,

180604 (2020).
[23] E. Bianchi, L. Hackl, and M. Kieburg, Phys. Rev. B 103,

L241118 (2021).
[24] E. Bianchi, L. Hackl, M. Kieburg, M. Rigol, and L. Vidmar,

PRX Quantum 3, 030201 (2022).

[25] K. Ptaszyński and M. Esposito, Phys. Rev. E 106, 014122
(2022).

[26] K. Ptaszynski and M. Esposito, Phys. Rev. B 109, 115408
(2024).

[27] A. Caldeira and A. Leggett, Physica (Amsterdam) 121A,
587 (1983).

[28] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374
(1983).

[29] P. Hänggi and G.-L. Ingold, Chaos 15, 026105 (2005).
[30] A. Lampo, M. A. Garcia-March, and M. Lewenstein,

Quantum Brownian Motion Revisited: Extensions and
Applications (Springer, Cham, 2019).

[31] S. M. Barnett, J. D. Cresser, and S. Croke, Phys. Scr. 99,
025109 (2024).

[32] N. Lambert, S. Ahmed, M. Cirio, and F. Nori, Nat.
Commun. 10, 3721 (2019).

[33] N. Boudjada and D. Segal, J. Phys. Chem. A 118, 11323
(2014).

[34] Y. Yang and C.-Q. Wu, Europhys. Lett. 107, 30003 (2014).
[35] A. Purkayastha, G. Guarnieri, M. T. Mitchison, R. Filip, and

J. Goold, npj Quantum Inf. 6, 27 (2020).
[36] M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys. 115,

2991 (2001).
[37] F. B. Anders, R. Bulla, and M. Vojta, Phys. Rev. Lett. 98,

210402 (2007).
[38] J. D. Cresser and J. Anders, Phys. Rev. Lett. 127, 250601

(2021).
[39] G. M. Timofeev and A. S. Trushechkin, Int. J. Mod. Phys. A

37, 2243021 (2022).
[40] A. S. Trushechkin, M. Merkli, J. D. Cresser, and J. Anders,

AVS Quantum Sci. 4, 012301 (2022).
[41] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[42] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[43] A. P. Luca D’Alessio, Yariv Kafri, and M. Rigol, Adv. Phys.

65, 239 (2016).
[44] C. Gogolin and J. Eisert, Rep. Prog. Phys. 79, 056001

(2016).

JONAS GLATTHARD PHYS. REV. D 109, L081901 (2024)

L081901-6

https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1103/PhysRevB.95.094302
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/bf02757029
https://doi.org/10.12942/lrr-2001-6
https://doi.org/10.1103/RevModPhys.93.035002
https://doi.org/10.1103/PhysRevLett.71.3743
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1023/A:1026654312961
https://arXiv.org/abs/2311.18045
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevLett.125.180604
https://doi.org/10.1103/PhysRevLett.125.180604
https://doi.org/10.1103/PhysRevB.103.L241118
https://doi.org/10.1103/PhysRevB.103.L241118
https://doi.org/10.1103/PRXQuantum.3.030201
https://doi.org/10.1103/PhysRevE.106.014122
https://doi.org/10.1103/PhysRevE.106.014122
https://doi.org/10.1103/PhysRevB.109.115408
https://doi.org/10.1103/PhysRevB.109.115408
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1016/0003-4916(83)90202-6
https://doi.org/10.1063/1.1853631
https://doi.org/10.1088/1402-4896/ad1902
https://doi.org/10.1088/1402-4896/ad1902
https://doi.org/10.1038/s41467-019-11656-1
https://doi.org/10.1038/s41467-019-11656-1
https://doi.org/10.1021/jp5091685
https://doi.org/10.1021/jp5091685
https://doi.org/10.1209/0295-5075/107/30003
https://doi.org/10.1038/s41534-020-0256-6
https://doi.org/10.1063/1.1385562
https://doi.org/10.1063/1.1385562
https://doi.org/10.1103/PhysRevLett.98.210402
https://doi.org/10.1103/PhysRevLett.98.210402
https://doi.org/10.1103/PhysRevLett.127.250601
https://doi.org/10.1103/PhysRevLett.127.250601
https://doi.org/10.1142/S0217751X22430217
https://doi.org/10.1142/S0217751X22430217
https://doi.org/10.1116/5.0073853
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001


[45] E. B. Davies, Commun. Math. Phys. 39, 91 (1974).
[46] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. (N.Y.) 17, 821 (1976).
[47] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[48] A. Lampo, S. H. Lim, M. A. García-March, and M.

Lewenstein, Quantum 1, 30 (2017).
[49] A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States

in Quantum Information, Napoli Series on Physics and
Astrophysics (Bibliopolis, Napoli, 2005).

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevD.109.L081901 for details on the exact
solution of the dynamics of the oscillator impurity.

[51] T. F. Demarie, arXiv:1209.2748.
[52] H. Scutaru, J. Phys. A Math. Gen. 31, 3659 (1998).

[53] A. Nazir and D. P. S. McCutcheon, J. Phys. Condens. Matter
28, 103002 (2016).

[54] F. Cerisola, M. Berritta, S. Scali, S. A. R. Horsley, J. D.
Cresser, and J. Anders, arXiv:2204.10874.

[55] L. A. Correa and J. Glatthard, arXiv:2305.08941.
[56] Y. Tanimura and R. Kubo, J. Phys. Soc. Jpn. 58, 101 (1989).
[57] Y. Tanimura, J. Chem. Phys. 153, 020901 (2020).
[58] N. Lambert, T. Raheja, S. Cross, P. Menczel, S. Ahmed, A.

Pitchford, D. Burgarth, and F. Nori, Phys. Rev. Res. 5,
013181 (2023).

[59] J. Johansson, P. Nation, and F. Nori, Comput. Phys.
Commun. 183, 1760 (2012).

[60] J. Johansson, P. Nation, and F. Nori, Comput. Phys.
Commun. 184, 1234 (2013).

PAGE-CURVE-LIKE ENTANGLEMENT DYNAMICS IN OPEN … PHYS. REV. D 109, L081901 (2024)

L081901-7

https://doi.org/10.1007/BF01608389
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.22331/q-2017-09-27-30
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L081901
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L081901
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L081901
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L081901
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L081901
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L081901
http://link.aps.org/supplemental/10.1103/PhysRevD.109.L081901
https://arXiv.org/abs/1209.2748
https://doi.org/10.1088/0305-4470/31/15/025
https://doi.org/10.1088/0953-8984/28/10/103002
https://doi.org/10.1088/0953-8984/28/10/103002
https://arXiv.org/abs/2204.10874
https://arXiv.org/abs/2305.08941
https://doi.org/10.1143/JPSJ.58.101
https://doi.org/10.1063/5.0011599
https://doi.org/10.1103/PhysRevResearch.5.013181
https://doi.org/10.1103/PhysRevResearch.5.013181
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019

