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ABSTRACT. This paper examines the intricate dynamics of the Logistic map involving impulsive forces

that depend on the state. The conditions of stability and border-collision bifurcation (BCB) of periodic

orbits are presented. The two-parameter dynamical regions and the two-parameter bifurcation diagram

of the system with respect to the system parameter and the strength of impulsive force are constructed.

The periodic tongues are given to show that the BCB is critical for the dynamics of the Logistic map with

state-dependent impulsive forces. Finally, the bifurcation curves are provided to disclose the mechanisms

of several bifurcation scenarios closely related to the BCB, including the period increment scenario and

the period-adding scenario.

1. Introduction

State hopping of a system due to external perturbation is common in nature [1, 2]. For such a per-

turbation, it is usually assumed to be applied abruptly in the form of impulse [3]. Impulsive perturbation

could degrade system performance and severely cause the system to lose stability. Therefore, the stability

analysis and the controller synthesis problems of these systems have drawn considerable attention from

researchers (see, e.g., [4]). In particular, the dynamical behaviors of continuous systems with periodic

impulsive forces [5] or state-dependent impulsive forces [6] have been studied extensively. On the other

hand, considerable attention has been devoted to studying the behavior of discrete systems that expe-
∗This paper is submitted to the special issue “On Modeling, Analysis and Synthesis of Nonsmooth Dynamical Systems”

of the journal “Discrete and Continuous Dynamical Systems Series S” for publication. 2020 Mathematics Subject Classifi-

cation. Primary: 39A28; Secondary: 93C27. Key words and phrases. Logistic map, impulse, periodic orbit, border-collision

bifurcation, period-adding scenario. This work is partially supported by the Fundamental Science (Natural Science) Foun-

dation of the Jiangsu Higher Education Institutions of China (Grant No. 23KJA120004). Corresponding author: Haibo

Jiang.

1



rience periodic impulsive forces due to their wide range of applications, including biology and internet

congestion control, e.g., [7–10]. In [7], the dynamical intricacies of a single-species discrete population

model with stage structure and birth pulses were examined. Liu et al. [8] suggested an impulsive control

method for controlling bifurcations and chaos in an internet congestion control system. In [9,10], Jiang et

al. explored the intricate dynamics of the Logistic map through the incorporation of periodic impulsive

forces. It is noted that the above studies are all for the discrete systems with periodic impulsive forces,

but to the best of our knowledge, there have been limited investigations on the discrete systems subject

to state-dependent impulsive forces. However, the impulsive forces usually depend on the states of the

discrete systems in engineering applications. This paper aims to gain an in-depth insight into the discrete

systems with state-dependent impulsive forces by using the Logistic map as an example and studying

how the state-dependent impulsive force affects its dynamics.

Robert May initially examined the Logistic map in [11], which is a straightforward quadratic map

exhibiting diverse dynamics, and it has been extensively examined by various researchers in subsequent

studies across different fields, including population projection, environmental ecology, and secure mes-

saging [12–14]. In [14], Bischi et al. examined the dynamics of a fishery model that incorporates a

non-continuous on-off harvesting strategy into a Logistic model. Indeed, the Logistic map involving im-

pulsive forces is a discontinuous map where one may come across border-collision bifurcation (BCB).

When an invariant set (e.g., a fixed point or a periodic orbit), meets a discontinuity boundary, BCB will

happen, and there could be a significant alteration in its overall behavior, such as shifting from a fixed

point to a periodic orbit or a chaotic attractor [15,16]. Feigen [15] initially examined and referred to the

C-bifurcation as BCB while exploring the bifurcations in piecewise smooth systems. Subsequently, Nusse

and Yorke [16] coined the phrase BCB to describe the bifurcations linked to the boundary points. The

literature has documented reports on BCB in one-, two-, three- and n- dimensional piecewise smooth

systems [17–26]. In [21], Gardini et al. investigated the codimension-2 border-collision bifurcations in

one-dimensional discontinuous piecewise smooth maps. In [22], Avrutin et al. studied various invari-

ant sets and bifurcation structures of a class of one-dimensional piecewise monotone maps defined on

two partitions. Panchuk et al. investigated the bifurcation phenomenon, including BCB of a class of

two-dimensional non-smooth maps using the first return map in [26].

Very recently, nonlinear maps, including memristive maps, have received much attention since their

broad applications [27–31]. In [27], Muni and Banerjee presented some three-dimensional maps to il-

lustrate bifurcation scenarios of mode-locked periodic orbits and the closed invariant curves. Bao et

al. examined the initial-dependent dynamics of a class of there-dimensional memristive maps in [28].

In [29], Li et al. explored the complex dynamic behaviors of a class of memristive Rulkov maps. Bao et

al. demonstrated the complex dynamics of a class of two-dimensional memristive maps under the sine

transform in [30]. In [31], Li et al. studied the problem of offset boosting and controllability of nonlinear

maps.
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This paper aims to investigate the complex behavior of the Logistic map, which experiences impulsive

perturbations dependent on its state. The main contributions of this paper are as follows: (1) The

mathematical model of the Logistic map involving impulsive forces is presented. (2) The BCB of periodic

orbits is examined by creating the two-parameter bifurcation diagrams of the map. (3) Several bifurcation

scenarios related to the existence of BCB are demonstrated.

The remaining portion of this document is organized in the following manner. In Section 2, we

formulate the mathematical model of the Logistic map with state-dependent impulsive forces. In Section

3, the conditions of stability and BCB of periodic orbits are given. In Section 4, one- and two-parameter

bifurcation diagrams of the Logistic map with state-dependent impulsive forces are presented, and several

bifurcation scenarios related to the BCB of periodic orbits are investigated. In Section 5, several findings

are presented.

2. System model

Consider the Logistic map written as the following difference equation

x(k + 1) = rx(k)(1− x(k)) (1)

where x(k) ∈ [0, 1] (k = 0, 1, 2, ...) denotes the system state and r is a system parameter.

Assuming that the Logistic map (1) is disturbed by an impulsive force when its state x is less than the

fixed value h, we can express the difference equation of the Logistic map perturbed by the state-dependent

impulsive force as x(k + 1) = rx(k)(1− x(k)) x(k) > h,

∆x(k + 1) = x(k + 1)− x(k) = α x(k) ≤ h,
(2)

where 0 < h < 1 and 0 < α < 1 − h determine the strength of the impulsive force. The system (2) can

be written as x(k + 1) = rx(k)(1− x(k)) x(k) > h,

x(k + 1) = x(k) + α x(k) ≤ h.
(3)

The system (3) contains one breakpoint, but it is not continuous at this breakpoint, which is different

from the system studied in [17].

3. Fixed points and periodic orbits

Denoting fR(x) as rx(1− x) and fL(x) as x+α, we can differentiate fR(x) and fL(x) with respect

to x as fR
x (x) = r(1 − 2x) and fL

x (x) = 1, respectively. We use R (if xi > h) and L (if xi ≤ h) as

the symbolic representations of the period-n orbit with periodic points x1, x2, · · · , xn. For example, a
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period-3 orbit with periodic points x1 ≤ h, x2 > h, and x3 > h can be represented by LR2. This section

focuses on examining fixed points and periodic orbits of the system (3).

When x ≤ h, there is no solution for the equation x = fL(x) = x + α if α > 0, so any fixed point

does not exist. When x > h, from x = fR(x) = rx(1 − x), we can obtain either x = 0 or x = 1 − 1
r .

When x = 1 − 1
r > h, i.e. r > 1

1−h , there is a fixed point x∗ = 1 − 1
r . Since fR

x (x∗) = 2 − r, it can be

inferred that the fixed point x∗ is stable when 1
1−h < r < 3. At r = 3, fR

x (x∗) = 2− r = −1, so the fixed

point x∗ becomes unstable, and a period-2 orbit emerges via a period-doubling bifurcation. By applying

the formula x = (fR)(2)(x) = fR(fR(x)), we can derive the period-2 points, x∗∗(1) and x∗∗(2). As the

parameter r increases, a period-4 orbit may exist through the period-doubling bifurcation followed by

a cascade of period-doubling bifurcations resulting in chaos. Fig.1 (a) depicts the bifurcation diagram

of the Logistic map with state-dependent impulsive forces calculated for r ∈ [1.25, 4] with h = 0.2 and

α = 0.4, and Fig. 1 (b) displays the bifurcation diagram of the Logistic map without state-dependent

impulsive forces. From Fig. 1, the dynamics of the Logistic map with state-dependent impulsive forces

is the same as the one without state-dependent impulsive forces if the trajectory does not go across the

discontinuity boundary x = h. However, when one point of the trajectory goes across the discontinuity

boundary x = h, the inconsistency of the dynamics, e.g., the length of periodic windows and the chaotic

range, occurs.

Fig. 1. (Colour online) One-parameter bifurcation diagrams of the Logistics map (a) with and (b) without

state-dependent impulsive forces calculated for r ∈ [1.25, 4], h = 0.2, α = 0.4. The discontinuity boundary

x = 0.2 is marked by a dashed magenta line.

There are many types of periodic orbits for specific parameters. Firstly, we consider the period-2

orbit with the symbolic representation LR. Suppose that x∗
L, x

∗
R are periodic points, from x∗

L = fR(x∗
R)

and x∗
R = fL(x∗

L), we have x∗
L = fR(fL(x∗

L)) and the stability condition can be written as

|fR
x (fL(x∗

L))× (fL
x (x

∗
L))| < 1

The BCB happens when a periodic point comes into contact with the discontinuity boundary. Since
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the Logistic map is quadratic, finding a general analytical expression for the periodic orbits is difficult.

However, the proposed method can be employed to numerically determine the existence, stability, and

BCB of the periodic orbits, e.g., Newton’s method [32].

For example, we can consider the period-n orbit with the symbolic representation LRn−1, which is

called the primal periodic orbit, and its periodic points are given as x1, x2, · · · , xn, where x1 ≤ h and

xi > h, i = 2, · · · , n. The existence condition of this orbit can be expressed as x2 = fL(x1), x3 = fR(x2),

· · · , xn = fR(xn−1), and x1 = fR(xn). The stability condition can be written as

|fR
x (xn)× · · · × fR

x (x2)× fL
x (x1)| = |fR

x (xn)× · · · × fR
x (x2)| < 1

When a periodic point touches the discontinuity boundary x = h, it will result in BCB.

Likewise, for the period-n orbit with the symbolic representation Ln−1R which is also known as the

primal periodic orbit, and its periodic points are written as x1, x2, · · · , xn, where xi ≤ h and xn > h,

i = 1, · · · , n − 1. The existence condition of this orbit can be expressed as x2 = fL(x1), x3 = fL(x2),

· · · , xn = fR(xn−1), and x1 = fL(xn). The stability condition can be written as

|fR
x (xn)× fL

x (xn−1) · · · × fL
x (x2)× fL

x (x1)| = |fR
x (xn)| < 1

When a periodic point touches the discontinuity boundary x = h, it will result in BCB.

The following section will conduct numerical simulations for the periodic orbits and study their

different bifurcation scenarios in detail.

4. Bifurcation of periodic orbits

4.1. Bifurcation structure

To demonstrate the complex dynamics of the system (3) concerning the parameters, the so-called

“following the attractor” method [33] was used to generate the dynamical regions. The dynamical regions

of the system (3) in the parameter plane (r, α) calculated for h = 0.2 are presented in Fig. 2, where Fig.

2(a) and (b) show the dynamical regions calculated as the branching parameters increase and decrease,

respectively. Different colors mark the regions of different stable periodic orbits, and the regions of these

orbits are usually called periodicity regions (or periodicity tongues according to their shapes). The regions

of the periodic orbit whose period is larger than 16 and the chaotic orbit are indicated by grey. The

following study will focus on three special bifurcation scenarios marked by A, B, and C in Fig. 2. In

the region of A, period-2 and period-4 orbits are recorded, and they may coexist with a fixed point. The

period increment scenario with coexisting attractors is observed in the region of B. The period-adding

scenario without coexisting attractors is recorded in the region of C. Since BCB exists, the phenomena

of coexisting attractors take place. The coexisting attractors can usually be found by increasing and

decreasing branching parameters. Thus, the system (3) exhibits different dynamics in some regions

containing coexisting attractors in Fig. 2.
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Fig. 2. (Colour online) Dynamical regions of the system (3) in the parameter plane (r, α) calculated for

h = 0.2 by numerical simulations as the branching parameters (a) increase or (b) decrease. Different

colors indicate the regions for different periodic orbits, and the number of periods can be referred to as

the numbers listed in the legend. The regions for the periodic orbit whose period is larger than 16 and

the chaotic orbit are shown in grey.

4.2. Period-doubling bifurcation with coexisting attractors

The one-parameter bifurcation diagram of the system (3) by varying the parameter r ∈ [0, 1.5] and

keeping the parameters h = 0.2, α = 0.75 is shown in Fig. 3(a), and a zoom up of the bifurcations in

the shaded area of Fig. 3(a) is presented in Fig. 3(b). From Fig. 3, a period-2 orbit with the symbolic

representation LR is recorded for r ∈ [0, 1.303). The period-4 orbit with the symbolic representation

LRLR occurs through a period-doubling bifurcation when r equals 1.303. As the parameter r increases,

the period-4 orbit ends at r = 1.312 due to a border-collision bifurcation. A fixed point is recorded for

r ∈ [1.25, 1.5], which coexists with the period-2 and the period-4 orbits for r ∈ [1.25, 1.312). As the

parameter r decreases, the border-collision bifurcation of the fixed point can be observed when r equals

1.303. Fig. 4 depicts the Cobweb diagrams of the period-2 orbit at r = 1.25 and the period-4 orbit at

r = 1.305.

Fig. 5 presents the bifurcation diagrams of the system (3) by varying the parameter r within the

range of [0, 1.5] and fixing the parameters h = 0.2, α = 0.6 and α = 0.64. Fig. 5(b) shows that the

period-2 orbit disappears at r = 1.477 via a BCB, and the fixed point is left. The fixed point coexists with

the period-2 orbit for r ∈ [1.25, 1.477). As the parameter α decreases, this coexistence regime entirely

disappears, as shown in Fig. 5(a), so that only a BCB from the period-2 orbit to the fixed point is

observed.
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Fig. 3. (colour online) (a) One-parameter bifurcation diagram of the system (3) constructed for varying

the parameter r ∈ [0, 1.5], and h = 0.2, α = 0.75. (b) One-parameter bifurcation diagram in the shaded

range in Fig. 3(a). The discontinuity boundary x = 0.2 is marked by a dashed magenta line, and red

dots show coexisting attractors.
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Fig. 4. (colour online) Cobweb diagrams showing the iterates of the system (3) calculated for h = 0.2,

α = 0.75, (a) r = 1.25, and (b) r = 1.305. The discontinuity boundary x = 0.2 is shown by a dashed

magenta line.
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Fig. 5. (colour online) One-parameter bifurcation diagram of the system (3) constructed for varying the

parameter r ∈ [0, 1.5], and h = 0.2, (a) α = 0.6, (b) α = 0.64. The discontinuity boundary x = 0.2 is

marked by a dashed magenta line, and red dots show coexisting attractors.

4.3. Period increment scenario with coexisting attractors

The period increment scenario with coexisting attractors is recorded in the region of B in Fig. 2.

Such bifurcation is illustrated in Fig. 6 by varying the parameter r within [0, 1.5] while keeping the

parameter h at 0.2 and the parameter α at 0.4. Fig. 6 displays some regions where two periodic orbits

coexist. For r ∈ [0, 0.833], the system (3) exhibits a period-2 orbit with the symbolic representation LR.

The Cobweb diagram of the period-2 orbit calculated for r = 0.4 is presented in Fig. 7(a), where one of

the points is above the discontinuity boundary x = h while another one is below. As the parameter r

increases, the periodic point below intersects with the boundary at r = 0.833 from the left side, resulting

in a BCB. As a result, the period-2 orbit vanishes, leaving behind the period-3 orbit with the symbolic

representation LRR. The Cobweb diagram of the period-3 orbit calculated for r = 0.9 is given in Fig.

7(b), and it can be seen that two periodic points are above the boundary x = h while one periodic point

is below. The value of r decreases until it reaches 0.803, causing one of the fixed points to collide with

the boundary and resulting in the disappearance of the period-3 orbit. Therefore, the period-2 and the

period-3 orbit coexist for r ∈ [0.803, 0.833]. The same dynamical phenomena are observed in Fig. 7(c)

and (d), such that once the periodic point below the boundary x = h collides with the boundary, one

additional periodic point emerges.

As the parameter r increases in Fig. 6, the period-3 orbit with the symbolic representation LR2

experiences a BCB at r = 1.141, resulting in the emergence of a period-4 orbit with the symbolic

representation LR3. As the parameter r decreases, the period-4 orbit undergoes a BCB at r = 1.047.

So the period-3 and the period-4 orbits coexist for r ∈ [1.047, 1.141]. Repeating the same bifurcation

scenario, the BCB causes the period-i (i ≥ 3) orbit to disappear, and a coexisting period-(i + 1) orbit

is left as the parameter r increases. On the other hand, the BCB results in the disappearance of the
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Fig. 6. (colour online) One-parameter bifurcation diagram of the system (3) constructed for varying the

parameter r ∈ [0, 1.5], and h = 0.2, α = 0.4. The discontinuity boundary x = 0.2 is marked by a dashed

magenta line, and coexistence regions are shaded by grey. The numbers in the figure indicate the period

of the periodic solutions.

period-i orbit, and a coexisting period-(i − 1) orbit is left as the parameter r decreases. This iteration

will continue until the parameter r reaches r = 1
1−h = 1.25 where the system (3) has a stable fixed point

at x = 1− 1
r = h.

4.4. Period-adding scenario

The period-adding scenario is recorded in the region of C in Fig. 2, and one of the bifurcations is

shown in Fig. 8(a) by varying the parameter r ∈ [0, 1.5] and fixing the parameters h = 0.2, α = 0.05. No

coexisting periodic orbit is observed in Fig. 8(a), and the period-adding regions are marked in grey. The

perio-adding scenario terminates at r = 1
1−h = 1.25 where the system (3) only has a stable fixed point

x = 1− 1
r = h. The iterates of the system (3) using Cobweb diagrams for α = 0.05 are presented in Fig.

9. It can be seen from Fig. 9 that as the parameter r increases, one of the attractors collides with the

discontinuity boundary x = h. The primary periodic orbit evolves from L4R to LR.

Fig. 8(b) presents the period-adding scenario calculated for α = 0.2, and the same period-adding

scenarios are observed in the grey area. Fig. 10 shows the iterates of the system (3) using Cobweb

diagrams for α = 0.2. As the parameter r increases, the primary periodic orbit changes from LR to LR4

via the BCB. Again, infinite period orbits and period-adding scenarios exist before the primary period-1

orbit is encountered. Summarizing from the above studies, we can conclude that period-(k1 + k2) orbits

occur between the primary period-k1 and period-k2 orbits in the regime of C.

From Figs. 6 and 8, there are differences between the period increment scenario and the period-

adding scenario. The period increment scenario is associated with coexisting attractors. The shaded grey
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Fig. 7. (colour online) Cobweb diagrams showing the iterates of the system (3) calculated for h = 0.2,

α = 0.4, (a) r = 0.4, (b) r = 0.9, (c) r = 1.1, and (d) r = 1.15. The discontinuity boundary x = 0.2 is

shown by a dashed magenta line.
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Fig. 8. (colour online) One-parameter bifurcation diagram of the system (3) constructed by varying the

parameter r ∈ [0, 1.5], and h = 0.2, (a) α = 0.05, (b) α = 0.20. A dashed magenta line marks the

discontinuity boundary x = 0.2, and period-adding regions are shaded by grey.
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Fig. 9. (colour online) Cobweb diagrams showing the iterates of the system (3) calculated for h = 0.2,

α = 0.05, (a) r = 0.15, (b) r = 0.4, (c) r = 0.7, and (d) r = 0.95. The discontinuity boundary x = 0.2 is

shown by a dashed magenta line.
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Fig. 10. (colour online) Cobweb diagrams showing the iterates of the system (3) computed for h = 0.2,

α = 0.2, (a) r = 0.4, (b) r = 0.94, (c) r = 1.1, and (d) r = 1.16. The discontinuity boundary x = 0.2 is

shown by a dashed magenta line.
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in Fig. 6 denotes the coexistence regions where two periodic orbits coexist. However, the period-adding

scenario is not related to coexisting attractors. The shaded grey in Fig. 8 denotes the period-adding

regions where new periodic orbits exist.

4.5. Bifurcation curves
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Fig. 11. (colour online) Two-parameter bifurcation diagram of the system (3) in the parameter plane

(r, α) computed for h = 0.2.

By following the bifurcation points recorded in the previous sections, a number of bifurcation curves

of the periodic orbits in the low period are calculated by using Newton’s method [32] and depicted in

Fig. 11. For simplicity, we use the abbreviations in the two-parameter bifurcation diagram to describe

different bifurcation curves, e.g. BC2R
1 represents the initial border-collision curve for the period-2 orbit

from the right side, PD2 illustrates the period-doubling curve for the fixed point, PD4 represents the

period-doubling curve for the period-2 orbit. As can be seen from Fig. 11 that, there are three particular

bifurcation points O1, O2, and O3, where O1 is the intersection point of PD2, PD4, and BC2L, O2 is the

intersection point of BC2L
0 , BC1R, BC3R

1 , BC2L
2 , BC4R

1 , BC3L
2 ..., BCkR

1 , BC
(k−1)L
2 and BC1R, and O3
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is the intersection point of BCkL
3 , BC

(k−1)R
3 , ..., BC3L

3 , BC2R
3 , BC2L

2 , BC3R
1 , ..., BC

(k−1)L
2 , BCkR

1 , and

BC1R
2 . The codimension-2 border-collision bifurcation points O2 and O3 known as organizing centers

in [19, 21] were defined as the bifurcation points from which an infinite number of bifurcation curves

originate. Note that the two-parameter bifurcation diagram in Fig.11 matches the dynamical regions

presented in Fig. 2.

5. Conclusions

This paper explores the intricate dynamics of the Logistic map involving impulsive forces that depend

on the state. The conditions of stability and BCB of periodic orbits have been presented. To demonstrate

the significance of the BCB of the system, we have created the dynamical regions and the bifurcation

diagram with two parameters. The bifurcation curves for the periodic orbits in the low period have

been computed to elucidate the corresponding bifurcation scenarios, encompassing the period-doubling

bifurcation, period increment scenario, and period-adding scenario. The potential applications of the

Logistic map involving impulsive forces include data, image, and video encryption. Future work will

study the complex dynamics of high-dimensional maps with impulsive forces and their applications.
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