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Abstract

Compared to traditional robotic systems, small-scale robots, ranging from several millimetres to
micrometres in size, are capable of reaching narrower and vulnerable regions with minimal damage.
However, conventional small-scale robots’ limited maneuverability and controlability hinder their
ability to effectively navigate in the intricate environments, such as the gastrointestinal tract. Self-
propelled capsule robots driven by vibrations and impacts emerge as a promising solution, holding
the potentials to enhance diagnostic accuracy, enable targeted drug delivery, and alleviate patient
discomfort during gastrointestinal endoscopic procedures. This paper builds upon our previous
work on self-propelled capsule robots, exploring the potential of nonlinear connecting springs to
enhance its propulsion capabilities. Leveraging a mathematical model for self-propelling robots
with a von Mises truss spring, which is verified using a finite element model, we investigate the
effects of negative stiffness and snap-back within the nonlinear structural spring on the robots’
propelling speed. Our analysis reveals that the negative stiffness of the von Mises truss can sig-
nificantly reduce the sensitivity of the propelling speed to excitation frequency. As a result, the
capsule robot exhibits a remarkably wider operational band where it maintains a high average
propelling speed, surpassing its linear counterpart. This work sheds light on the potential for
developing customised nonlinear structural systems for diverse scenarios in small-scale robot ap-
plications, opening up new possibilities for enhanced functionality and maneuverability in various
biomedical applications.

Keywords: Functionalised nonlinear structures; von Mises truss; Self-propelling robots;
Structural dynamics; Elastic tailoring; Performance-based inverse design.

1. Introduction

Scientific advances in robot design and control offer exciting opportunities in various engineer-
ing sections, such as healthcare [1], energy [2], water [3] and food industry [4]. However, robotic
engineers face enormous challenges in making robots robust enough to remain environmentally
resilient and commercially competitive. This has led to their poor control performance due to the
intrinsic or external nonlinearities caused by their mechanical structures or environmental interfer-
ence, respectively. Small-scale robots [5], known as smaller-than-conventional robots, ranging from
several millimetres to micrometres in size, fall into this category. They are of interest for appli-
cations that range from tools for minimally invasive surgical procedures in clinical medicine [6, 7]
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to flying robots for environmental exploration and manipulation [8]. As the size of the robot
decreases, the physics that governs their modes of operation changes dramatically. In particular,
the limited classes of structures and materials that can be used in such robots, however, create
challenges in achieving desired performance and modes of operation. The limited force or torque
outputs of miniature actuators and power deliveries constrain their performances and functional-
ities. Thus, novel engineering solutions for these robots to improve their performances (such as
propelling speed) in terms of robustness and efficacy are timely and vital.

Compared to conventional robotic systems, small-scale robots are capable of reaching narrower
and vulnerable regions with minimal damage. However, limited by their dimensions, micropro-
cessors, power supplies, and sensors can hardly be integrated onboard. In addition, existing
small-scale robots are characterised by slow propelling speeds and limited re-programmability
(controllability) in their modes of operations [9]. In this paper, we will explore and exploit struc-
tural instability for enhancing the performance of small-scale robots. We will exemplify and
demonstrate our proposed design on a self-propelled capsule robot [10, 11]. The robot experiences
oscillations, frictions and collisions, with limited propulsive force due to its millimetre-scale di-
mension. Its dynamic characteristics [12] are typical in small-scale robots, which thus provides
a rationale for using it as a benchmark system in the present work. In particular, we will show
the significant improvement of its propelling speed by utilising the structural instability of a von
Mises truss.

Structural instabilities, which were traditionally regarded as failure modes [13, 14], are recently
exploited as a functionality or benefit, such as shape shifting in adaptive structures for lightweight
design [15, 16], surface texturing [17, 18], advanced manufacturing of flexible electronics [19–21],
fast response soft robots [22–25], mechanical metamaterials exhibiting distinct and programmable
properties [26–29] and non-destructive structural testing technique [30–35]. These novel applica-
tions are known as well-behaved nonlinear structures [36] or Buckliphilia [37].

A key challenge in the broader application of well-behaved nonlinear structures lies in the
absence of a robust analysis and design tool. Well-behaved nonlinear structures, due to their
slender nature, often exhibit highly nonlinear behaviour or multistability [18, 24, 29, 36, 38].
Existing quasi-static nonlinear solvers in commercial finite element (FE) packages, such asAbaqus
and Ansys, cannot efficiently and accurately explore the design space without prior knowledge of
their bifurcation landscape. The generalised path-following algorithm [36, 39, 40], which can pin-
point critical points, switching branches, and trace equilibria with respect to third parameters, has
demonstrated its capabilities in unveiling the complex nonlinear behaviour of compliant structures
in a robust and efficient way [18, 29, 41]. However, there is still a need for the development of
a user-friendly inverse design tool to complement existing methods. Recent advancements in
machine learning algorithms and toolboxes, coupled with optimisation algorithms, have shown
promise in addressing this need [28, 42–44]. These approaches enable the development of an
efficient inverse design tool by leveraging trained machine learning models, which can significantly
reduce the computational effort required for nonlinear analysis. To ensure the success of such
a tool, high-quality training data is essential. On the other hand, training a robust machine
learning model capable of describing the entire nonlinear equilibrium path of nonlinear structures
remains a formidable challenge due to its high dimensionality [45]. Hence, an analytical model
with a closed-form solution or one that can be efficiently solved using numerical methods remains
a promising approach for the inverse design of ‘well-behaved nonlinear structures’, particularly in
the initial design phase [16].

Owing to its simplicity, analytical solvability and programmable characteristic nonlinear re-
sponse, von Mises truss has been widely used as a benchmark example to unveil the nonlinear
mechanics of complex structural systems and develop novel techniques or design philosophy [31, 46–
48]. In particular, Findeisen et al. [47] introduced a vertical spring in parallel connected with a
von Mises truss. By varying the stiffness of the new added spring and the rise-span ratio, they
produced a variety of different nonlinear behaviour from mono-stable or bi-stable behaviour. This
model facilitates the design of the building blocks in mechanical metamaterials, contributing to
enhanced energy dissipation capabilities. More recently, Neville et al. [31] further unveiled that
von Mises truss can exhibit snap-backs, i.e. displacement limit points, when the apex of the truss
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is connected in series with a vertical spring. This concept was implemented on a soft mechanical
metamaterial both numerically and experimentally, where the snap-back behaviour tailored via
fiber reinforcement [49]. Yang et al. [48] developed a von Mises truss with a tunable horizontal
spring connecting its supports. By adjusting the spring’s stiffness, they achieved a switchable
behaviour between mono-stable and bi-stable responses in the von Mises truss. This mechanical
design served as the foundation for their development of a shape memory metamaterial. Given
their rich programmability and simplicity, we will utilise the von Mises truss as the nonlinear
structural spring to replace the linear spring in the existing self-propelling capsule robot to tailor
its driving performance.

In the authors’ recent work [50], a comprehensive mathematical model was developed to de-
scribe the dynamic response of a self-propelling capsule robot integrated with a von Mises truss
spring. Our findings demonstrated that by using the von Mises truss spring, the robot can achieve
faster average propelling speeds than its linear spring counterpart under specific parameter regimes
with restricted power inputs. The discovery addresses one of the key challenges for small-scale
robots, where power input limitations pose a persistent obstacle. However, a comprehensive under-
standing of how the von Mises truss’s nonlinearities influence the robot’s propelling performance
remains elusive.

This study delves deeper into this crucial gap, investigating the nuanced interplay between
the nonlinear spring’s mechanics and the robot’s dynamics. By unraveling these complexities, we
aim to unlock the full potential of the von Mises truss for propelling the next-generation small-
scale robots with superior agility, efficiency and robustness. The rest of the paper is structured
as follows. Section 2 defines the problem. Section 3 presents the mathematical model describing
the nonlinear dynamic response of the capsule robot integrated with a von Mises truss spring.
This section also details the verification of the mathematical model using finite element modelling.
The numerical results obtained from the model are presented in Section 4, and further discussions
are made in Section 5. Finally, conclusions are drawn in Section 6.

2. Problem description and von Mises truss

This study investigates a self-propelled capsule robot driven by a periodically actuated magnet
(as a “hammer”) within its core, as shown in Fig. 1(a). This unique configuration leverages
the hammer-main body interaction as a propulsion mechanism, particularly during resonance,
while overcoming external resistances encountered in diverse environments (e.g., in the colon for
bowel cancer screening [11]). While miniaturised capsule robots with electromagnetic actuation
have been explored [51, 52], limitations in onboard or external coil-generated forces often hinder
their locomotor performance. To address this, we depart from existing designs by replacing the
conventional linear connecting spring in Fig. 1(b) with a nonlinear spring exhibiting negative
stiffness or even snap-back behaviour. This study delves into the intricate interplay between
this novel spring’s mechanics and the capsule robot’s propelling performance, paving the way for
enhanced mobility in the challenging environments.

3. Method

3.1. Nonlinear mechanics of the von Mises truss

Figure 1(b2) presents a von Mises truss connected in series with linear springs. This structure
features an arch-like arrangement of two inclined linear springs k1, two vertical linear springs k2
to provide vertical elastic constraint to the supports and a horizontal spring k3 connecting the
actuation point and the apex. The rise of the truss is H, and the span is L. The external loading
is applied at the left end of the horizontal spring. The governing equation for this model can be
found from the Supplementary Materials. Considering that the shell of the capsule robot is much
stiffer than the support spring systems, we assume that k2 = ∞ in the paper. Then the von Mises
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Figure 1: (Colour online) (a) Working principle of the self-propelled capsule robot for colon screening [11]: a perma-
nent magnet attaching to a capsule via a conventional connecting spring is excited using an on-off electromagnetic
field (sinusoidal wave) and collides with an impact spring intermittently. Once the resultant elastic force on the
capsule is greater than the resistant force from the environment (the colon), the robot will move forward. (b)
Physical model of the self-propelled capsule robot system integrated with a linear and a von Mises truss (VMT)
connecting springs and their characteristic reaction force–relative displacement relationships. k1, k2 and k3 are the
stiffness of the inclined springs, vertical springs at the supports to control the span deformation and the horizontal
spring at the loading point. Note that the VMT spring exhibits an asymmetric response to both compression and
tension. (c) Simplified von Mises truss model with a fixed span L, i.e. set k2 = ∞ in the VMT spring in subfigure
b(2). Elastic tailoring of VMT spring by adjusting the stiffness properties (k3/k1) and geometry (H/L) to achieve
a variety of different nonlinear behaviours.

truss model can be simplified as that in Fig. 1(c1). The governing equation of the simplified von
Mises truss can be written as:

Fv =

2 k1

(
L−

√
L2 −H2 + (H − uapx)

2

)
(H − uapx)√

L2 −H2 + (H − uapx)
2

, (1)

where uapx is the horizontal displacement at the apex of the von Mises truss, i.e., Point A in
Fig. 1(c1). The horizontal displacement at the actuation point Xr can be written as

Xr =
Fv

k3
+ uapex. (2)

The von Mises truss spring exhibits an asymmetric response to both compression and tension.
By adjusting the rise-span ratio H/L as well as the stiffness ratio between the horizontal and
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inclined springs k3/k1, a relatively rich behaviour, i.e. a variety of different initial stiffness, critical
loads and snap-backs, can be obtained, as shown in Figs. 1(c2) and (c3). Note that a detailed
exposition of the analytical model of the von Mises truss, the extensive parametric study, and the
performance-based inverse design can be found from the Supplementary Materials.

3.2. Mathematical model development and solution technique

In this section, a relatively concise but self-contained introduction of the mathematical model
describing the dynamic response of the self-propelling capsule robot with a von Mises truss spring
and its solution method are presented, as shown in Fig. 1(b). A more detailed exposition can
be found in the authors’ work [50]. The capsule robot system, as depicted in Fig. 1(a), operates
in bidirectional stick-slip phases comprising the following four modes: stationary capsule robot
without impact, moving capsule robot without impact, stationary capsule robot with impact, and
moving capsule robot with impact. All these modes can be modelled using the following equations
of motion {

MmẌm = Fe − Fi,

McẌc = Ff + Fi,
(3)

where Fe is the external excitation on the permanent magnet from an electromagnetic field, Ff

is the friction acting on the capsule robot, and Fi represents the interaction force between the
capsule and the magnet written as

Fi =

 Fv + cvr + F2, Xr ≤ −G2,
Fv + cvr, −G2 ≤ Xr ≤ G1,
Fv + cvr + F1, Xr ≥ G1.

(4)

Here, Xr = Xm−Xc and vr = vm−vc represent the relative displacement and velocity between the
magnet and the capsule. The interaction forces for the front and back constraints are represented
by F1 = kf(Xr − G1) and F2 = kb(Xr + G2), respectively. The reaction force in the von Mises
spring, as shown in Fig. 1(c1), can be written asFv = k3 (Xr −Xn) ,

Fv = 2k1

(
L−

√
L2 −H2 + (H −Xn)

2

)
H−Xn√

L2−H2+(H−Xn)
2
.

(5)

For any given relative displacement, Xr, the displacement of the node point and the force of the von
Mises spring, Xn and Fv, can be obtained by numerically solving Eq. (5) using Newton-Rapson
method. For some parameter combinations, the von Mises spring displays a hysteresis loop, as
seen in Fig. 3(c). Namely, there is a region in the vicinity of Xr = H where Fv has two values for
a given relative displacement.

In this study, the frictional force between the capsule robot and the supporting surface is given
as {

Ff ∈ [−Pf , Pf ], vc = 0,
Ff = −sign(vc)Pf , vc ̸= 0,

(6)

where Pf = µ(Mm + Mc)g is the static friction of the capsule robot, and g is the gravitational
acceleration. The external excitation, Fe, is a sinusoidal excitation written as

Fe(t) = Pd sin(Ωt), (7)

where Pd and Ω are the amplitude and frequency of the excitation, respectively. The system and
control parameters of the capsule robot used in the present study are summarised in Table 1.

3.3. Verification of the mathematical model using finite element model

To verify the mathematical model in the preceding section, we develop a 2-D plane stress finite
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Table 1: System and control parameters of the capsule robot. Physical parameters of the robot were adopted from
our previously reported prototype [52]. Physical parameters of the von Mises truss were selected based on the
dimensions of our capsule robot prototype and the feasibility of fabricating such a truss in real-world scenarios.

Parameters Unit Values

Inner mass weight Mm g 1.8
Capsule weight Mc g 1.67
Friction coefficient µ − 0.2293
Inclined spring of von Mises truss k1 kN/m [0,1000]
Horizontal spring of von Mises truss k3 kN/m 0.062
Rise of the von Mises truss H mm [0.1,1.5]
Span of the von Mises truss L mm [0.1,1.5]
Forward constraint spring kf kN/m 53.5
Backward constraint spring kb kN/m 27.9
Magnitude of the excitation force Pd mN [10, 80]
Frequency of the excitation Ω Hz [1, 50]
Elastic modulus of inner mass Em GPa 200
Elastic modulus of capsule Ec GPa 0.11
Mass density of inner mass ρm g/cm3 7.85
Mass density of capsule ρc g/cm3 0.95

element model in the commercial finite element package Abaqus, as shown in Figure 2(a). The
details of the FE model and the solution method can be found in Appendix A.

Figure 2(b) presents the displacement and velocity of the capsule robot within 0.05 seconds
under the excitation force of 20 mN and frequency of 37 Hz, respectively. The key parameters
of the von Mises truss spring are: k1 = 0.368 kN/m, k3 = 1000 kN/m, H = 0.289 mm, and
L = 0.911 mm. The other system and control parameters are presented in Table 1. For better vi-
sualization, the deformation configurations of the capsule robot from the FE simulation at selected
states are shown in Figure 2(c). An excellent agreement is observed between the results obtained
from the finite element model and the mathematical model. While both models provide valuable
insights, the mathematical model offers a significant advantage in computational efficiency. To
illustrate this, consider a simulation of the first ten cycles. On an Intel(R) Core(TM) i7-10870H
processor, the mathematical model takes only 13.68 seconds, whereas the FE model requires 4759
seconds (over 82 minutes). This translates to a remarkable 350 times faster computation with the
mathematical model.

Based on this comparison, we can confidently conclude that the developed mathematical model
has been successfully verified against the FE model. This verification demonstrates that the
mathematical model captures the essential behaviors of the capsule robot with sufficient accuracy
for preliminary design purposes. The mathematical model is now ready for further applications.

4. Results

With the integrated mathematical model, we conduct an extensive parametric study on how
the nonlinearity of the von Mises spring system affects the propelling performance of the capsule
robot. In particular, we select the average effective propelling speed vpro,avg as the key performance
index. Each simulation was conducted for a total of 60 driven periods of sinusoidal excitation.
To eliminate the transient effects associated with the initial transient phase, the first 40 periods
were discarded. The average propelling speed vpro,avg was then calculated by dividing the total
propelling displacement of the robot over the last 20 periods by the elapsed time. For simplicity,
we assume that both the initial displacement and speed are zero. Additionally, we consider the
initial net gaps, G1 and G2, to be equal. Note that the scope of parameters considered in this
parametric study is intentionally limited. This approach is designed to reveal the fundamental
mechanics governing the interaction between the nonlinear spring and the system as a whole. A
comprehensive parametric analysis, encompassing all parameter regimes of practical significance,
is earmarked for subsequent research endeavors.
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Figure 2: (a) Illustration of the FE model for capsule robot developed in Abaqus. Note that the von Mises truss
spring is modelled using a pair of axial connectors that exhibit an identical force–displacement relationship as the
von Mises truss. (b) Time history for the displacement and velocity of the capsule robot under the excitation force
Pd = 20 mN and the frequency Ω = 37 Hz. The stiffness and geometric properties of the von Mises are k1 = 0.368
kN/m, k3 = 1000 kN/m, H = 0.289 mm, and L = 0.911 mm. All the other parameters of the capsule robots
are presented in Table 1. (c) Deformation configurations of the capsule robot at selected states within the first
excitation cycle. The red flag represents the initial position of the capsule.

As shown in Table 1, the stiffness of the forward and backward constraint springs is significantly
larger than that of the supporting spring ks connected to the mass. Therefore, when the mass
contacts with the constraint springs, the reaction force applied to the mass will be mainly provided
by the constraint springs. The effective working regime for the von Mises spring will be the net
distance G1. In this study, G1 is set based on the parametric study on the performance of a capsule
robot with a linear connecting spring ks, as shown in Fig. 1(b). The details of the parametric
results can be found in the Supplementary Materials. We found that with the excitation frequency
and amplitude being 29 Hz and 30 mN, the combination of G1 = 0.5 mm and ks = 0.025 kN/m,
leading to the fastest average propelling speed vpro,avg. Therefore, we set G1 = 0.5 mm as the net
distance of the capsule robot throughout our analysis.
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4.1. Effects of negative stiffness

Referring to Fig. 1(c) and the governing equations Eqs. (1) and (2), the mechanical performance
indices of the von Mises truss, i.e. the initial tangential stiffness kint,T, the force and displacement
at the critical point Fmax and Xr,max, are coupled. Changing one index would lead to the change
of the other indices. To understand the effects of each factor on the response of the robot, we
adopt a step-by-step approach, where only one parameter is studied at one time. For simplicity,
we start with the case that the horizontal spring k3 is rigid, i.e. k3 → ∞, such that there is no
snap-back in its nonlinear equilibrium path.

The case with the linear connecting spring yielding the highest propelling speed, i.e. G1 =
0.5 mm, and ks = 0.025 kN/m, is selected as the reference baseline state. We set the initial
tangential stiffness of the von Mises truss identical to the stiffness of the linear spring, i.e. kini,T =
0.025 kN/m. The corresponding geometry and material properties for von Mises trusses are solved
using a performance-based inverse design framework based on optimisation, which can be found
in Supplementary Materials.

We select four characteristic von Mises truss nonlinear springs in the parametric study, as
shown in Fig. 3(a). They exhibit identical initial tangent stiffness but with different characteristic
points locating at Xr/G1 = 1, i.e. when the inner mass collides with the capsule:

• Case 1: the snap-through point with Fv = Fmax locates at Xr = G1;

• Case 2, the local minimum with Fv = −Fmax locates at Xr = G1;

• Case 3, the transitional unstable equilibrium with Fv = 0 locates at Xr = G1;

• Case 4, the local maximum with Fv = Fmax locates at Xr = G1.

Under the constraint of identical tangential stiffness, the stiffness of the four cases also exhibits
opposite trends for Xr > 0 and Xr < 0, respectively. For instance, when Xr > 0, the stiffness of
case 1 exhibits the most pronounced softening due to nonlinearity. Conversely, when Xr < 0, it
stiffens most significantly.

Figure 3(b) presents the average propelling velocity of the capsule robots with the four different
types of von Mises truss springs under the excitation force Pd = 20 mN in the frequency domain
[0 50] Hz. Generally, in all four cases, the average propelling velocity vpro,avg exhibits sensitivity
to the excitation frequency, particularly in the low frequency high domain [0 20] Hz, where the
direction and the magnitude of vpro,avg can change sharply in an irregular way. In these regime, the
inner mass exhibit a chaotic response under the excitation, thus leading their irregular velocity
variation. More details can be found in the Supplementary Materials. Compared with case 4,
where the von Mises truss exhibit no negative stiffness under compression, the other three cases
exhibit a relatively high vpro,avg in a relatively wide excitation frequency domain. This implies
that the dynamic systems with the negative stiffness spring exhibit a more robust performance.

Figure 3(c) presents the detailed phase diagram and time history results corresponding to
highest average propelling velocity for the each capsule. Subfigures 1 (first row) represent the
phase portraits describing the relative velocity of the inner mass at different relative locations in
the capsule for five periods. The overlap of the phase portraits for each case implies that the inner
masses exhibit a periodic response. In all case, the inner mass collides with the front constraint
spring (dashed red line at Xr/G1 = 1) but do not contact with the back constraint spring, leading
to a higher propelling efficiency of the capsule robot. The net distance between the inner mass
and the back spring decreases gradually from case 1 to case 4. Moreover, the left end of the phase
portrait, which depicts the velocity deceleration rate pattern, transitions from a round shape to
a sharp one. This aligns with the stiffness stiffening pattern of the von Mises truss springs across
cases 1 to 4 (see Fig. 1(a)). It implies that we could adopt a stiffening spring in tension and a
softening spring in compression to achieve a higher forward propelling speed for the capsule robot.
Subfigures 2 and 3 (second and third rows in (c)) present the absolute displacement and velocity
of the inner mass and the capsule robot within a single period. Note the displacements of the
capsule and inner mass for a single period in case 4 are larger than those in other cases. However,
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Figure 3: The average propelling speed of the capsule robots with the von Mises truss springs with identical tangent
stiffness but different rises and peak loads. (a) Nonlinear equilibrium paths of the three characteristic von Mises
trusses. (b) Average propelling speed of the capsule under the excitation force amplitude Pd = 20 mN in the
excitation frequency ranging from 0 to 50 Hz. (c) The phase portraits and time history results of the capsule robots
exhibiting highest average propelling velocity in (b). First row presents the relative velocity of the inner mass at
different positions in a period of excitation circle. The thick red dashed red lines represent the front and back
constraint springs. The thin blue dashed lines represent the force limit point, i.e. the starting point of the negative
stiffness. The second and third rows present the time history for the displacement and velocity of the capsule robot
(red solid curve) and the inner mass (black dashed curve) for a single period.
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the period of case 4 is almost twice of the other three cases. Therefore, their average speed is
almost identical.

The displacement and velocity diagrams vividly illustrate the working mechanics of the capsule
robot. In these diagrams, both the displacement and velocity time histories begin at the state
where the von Mises truss is stress-free, denoted by Xr = Xm − Xc = 0. Initially, the inner
mass and capsule moves in the opposite direction. When their relative displacement reaches
the net distance between the inner mass and front panel, i.e. Xr = G1, collision occurs. This
corresponds to the first sharp turning point on the displacement history curves and the the abrupt
jump in the velocity history curve. After the collision, the inner mass and the capsule move in
the same direction but the capsule moves much faster than the inner mass. As a result, the
inner mass returns to ‘origin’ (the von Mises truss is stress-free), which corresponds to the cross
of the displacement curves. Note that the velocity of the capsule vc keeps decreasing after the
collision and finally becomes negative. The transition point with vc = 0 corresponds to the peak
of the displacement curve for the capsule. After that, the capsule moves backwards until the next
collision. Note that the displacement and velocity time history diagrams for case 4 have some
differences from cases 1–3, the latter of which are very similar. The capsule robot almost remains
stationary instead of moving backward before its collision with the inner mass. This is because the
reaction force applied on the capsule from the von Mises truss is not sufficiently large to overcome
friction.

From the results in this section, we could conclude that the negative stiffness of the von
Mises truss make the overall capsule robot less sensitive to the excitation frequency. Note that
we also conducted a sensitivity study on cases with identical scant stiffness. They show similar
trends as the case with the initial tangent stiffness. More detailed information could be found in
Supplementary Materials.

4.2. Effects of initial stiffness and snap-back

In this section, we investigate the effects of initial tangential stiffness as well as the snap-
back behaviour of the von Mises truss on the propelling performance of capsule robots. This
is achieved by varying the stiffness of the horizontal spring k3. In particular, we set the case 2
von Mises truss introduced in the previous subsection as the baseline, where the local minimum
locates at ua = G1. Figure 4(a) presents four characteristic nonlinear equilibrium path of the
connecting von Mises truss spring with different k3. The critical load Fmax remains constant.
The snap-back behaviour becomes more severe as the parameter k3 decreases, while the initial
stiffness concurrently decreases. The excitation force is set as Pd = 20 mN. A sensitivity study on
the excitation frequency is also conducted to identify the periodic response of the inner mass that
leads to the maximum average propelling speed of the capsule robot.

As shown in Fig. 4(b), the maximum average propelling speed vpro,avg of the capsule robot
almost remains constant with the varying k3. However, the sensitivity of vpro,avg to the excitation
frequency increases as k3 decreases. For illustration purposes, the phase portraits and time history
results of the dynamic behaviour of the inner mass and capsule robots with the highest average
propelling velocity are presented in Fig. 4(c). From the phase portrait, the inner mass begins to
collide with the back constraint spring as k3 decreases. This behaviour aligns with the expected
reduction in the stiffness of von Mises truss in both compression and tension drops as k3 decreases.
Moreover, the behaviour of the inner mass also transitions from periodic to aperiodic. This may
explain their increased sensitivity to the excitation frequency. The detailed time history results
for the displacement and velocity of the inner mass and the capsule are presented in the second
and third rows of Fig. 4(c). Within the period, three collisions for case 1 (one for front panel and
two for back panel), two collisions for cases 2 and 3 (one for front panel and the other one for
back panel), and one collision for case 4 (only the front panel). Prior to the first collision, the
capsules in cases 1–3 have zero velocity and remain stationary. This is attributed to the relatively
small stiffness on the tension side of the von Mises truss, where the reaction force applied on the
capsule is insufficient to overcome the friction force. As the stiffness on the tension side increases
such that the applied force on the capsule surpasses the friction force, the capsules start moving
backward before the collision, as that in case 4.
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Figure 4: The average velocity of the capsule robots with the von Mises truss with different horizontal spring
stiffness k3. (a) Equilibrium paths of the von Mises trusses with different k3. (b) The average propelling velocity
of the capsule robots with different von Mises trusses with the excitation force Pd = 20 mN. (c) Phase portraits
and time history results for the displacement and velocity of the inner mass and the capsule robots with the highest
average speed for each case (red dots in (b)). Subfigures are as described in Fig. 3.
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From the section, we could conclude that the snap-backs in the nonlinear spring would not
improve the performance of the capsule robot. Moreover, to make the capsule robot move forward
efficiently, we could design to make the von Mises truss spring stiffer under tension so that the inner
mass would not collide with the back panel and the energy efficiency of the system would be much
higher. Building upon the parametric study, we performed a mass-constrained optimization of the
von Mises truss, achieving high propelling speeds across a broader frequency domain. Details of
the optimized designs and further analyses are provided in the Supplementary Materials.

5. Discussion

This work provides another compelling example of ‘well-behaved nonlinear structures’ [36],
wherein structural instability is harnessed for functional purposes. Much of the earlier research
on well-behaved nonlinear structures primarily revolved around scenarios where these nonlinear
structures operated independently to achieve desired functionalities [15, 22, 29, 53]. However, in
this particular example, the nonlinear structure is seamlessly integrated into a complex system as a
fundamental component. Assessing their performance for functionality necessitates the analysis of
the overall system using the dynamic analysis, which is a more complex endeavor, often requiring
interdisciplinary collaboration. This presents a new and exciting design paradigm and research
avenue for exploring the potential of well-behaved nonlinear structures.

Unlike a linear spring, the von Mises truss exhibit distinct responses under compression and
tension. While its behaviour remains nearly linear under tension, it becomes highly nonlinear
during compression, displaying both positive and negative stiffness. This asymmetry in response
contributes to the boost in the propelling speed of capsules. Note that we have demonstrated that
the nonlinear spring systems can boost the performance of the self-propelling capsule robots via
von Mises truss through analytical modelling and numerical continuation techniques. However,
von Mises truss is not easy for manufacturing and minimization [54]. Pin linkages connecting the
component springs can complicate the internal structure of the capsule robot. This complexity can
hinder core functionalities like drug loading capacity and potentially pose challenges for the main-
tenance. Therefore, our future research will shift its focus towards the development of continuum
nonlinear structures, such as shallow arches, domes [24], or origami [55], which have much simpler
geometry but can also achieve the desired nonlinear response characteristics. By integrating these
nonlinear continuum structures with additive manufacturing, we can develop a scale-independent
nonlinear ‘spring systems’ with better performance. Furthermore, our current study concentrates
solely on substituting the supporting spring with a nonlinear structured spring. Subsequent inves-
tigations could extend to replacing the two constraint springs, namely kf and kb in Fig. 1(a), with
nonlinear structured springs. Given that they are already in the form of continuum structures [56],
the replacement process is comparatively more straightforward. However, considering the compu-
tational efficiency of the von Mises truss model, it can be used as an inter-media for the analysis.
More specifically, the performance-based inverse design process, which involves determining the
specific structural form based on the desired nonlinear equilibrium path, can be carried out at the
substructure level to enhance computational efficiency. Meanwhile, the evaluation of the robot’s
performance is conducted at the entire structure level using the von Mises truss model.

As for the von Mises truss model, it can exhibit a variety of different nonlinear behaviour
by varying the stiffness of the component springs and the geometry. However, their nonlinear
equilibrium path is centrosymmetry about the equilibrium state (Xr = H, Fv = 0). To further
generalize the nonlinear response of the nonlinear spring, additional spring elements could be
introduced in the von Mises truss, such as rotational springs mimic the bending stiffness between
two inclined springs at the apex [16] or translational supporting spring at the apex [47] to make
the von Mises truss exhibit mono-stable response. Additionally, exploring the concept of ‘building
blocks’ [16], where distinct nonlinear substructures with characteristic bifurcation properties are
combined, holds the potential to yield richer and more diverse nonlinear equilibrium paths. This
approach has been demonstrated to potentially addresses some conflicting requirements [16], which
otherwise cannot be satisfied using a single type of nonlinear structures.
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In this study, our analysis is exclusively focused on the forward propulsion of the capsule
robot. However, it is essential to note that the von Mises truss spring is bistable. Consequently,
by applying an external stimulus to induce a mode switch from one stress-free state to another,
the capsule could achieve enhanced speed in both forward and backward directions, as illustrated
in Fig. 5. Furthermore, considering the net distance requirements for both directions, the mode
switch could be accomplished by adjusting the position of the supports, as illustrated in Fig. 5.
The detailed implementation of this concept will be explored in future work.

Figure 5: The two stable stress-free states of a von Mises truss and their characteristic reaction-force displacement
relationship under compression and tension. In configurations (a) and (b), von Mises truss exhibit negative stiffness
in the forward and backward directions, respectively. By switching between the two stable states, the capsule robot
can achieve speed acceleration in both directions.

While this work focuses on the capsule’s motion in a two-dimensional scenario, practical appli-
cation within the complex gastrointestinal tract environment necessitates a broader range of ma-
neuverability. Our future efforts will focus on developing a three-dimensional model incorporating
novel re-programmable functionalized nonlinear structural elements. These elements, embedded
with active materials (as explored by Qi et al. [57]), will possess the ability to dynamically modify
their response upon external stimuli. This could potentially improve the maneuverability over
the capsule robot, paving the way for achieving a degree of ‘physical intelligence’ [58] within the
small-scale robot.

6. Conclusion

In this paper, we present a preliminary study on the integration of nonlinear structural spring
systems with self-propelling capsule robots to enhance their propulsion performance. We ex-
ploited a finite element-verified mathematical model, which describes the dynamic response of
self-propelling capsule robots integrated with von Mises truss, to unveil how the negative stiffness
and the snap-back in the nonlinear equilibrium path of the von Mises truss affect the propelling
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performance of capsule robots. We identified that the negative stiffness in the von Mises truss
spring significantly reduces the sensitivity of the propelling speed to excitation frequency. As a
result, the capsule robot exhibits a remarkably wider operational band where it maintains a high
average propelling velocity, surpassing its linear counterpart and these exhibiting snap-back.

This study sheds light on the integration of well-behaved nonlinear structures with dynamic
systems as a means to tailor the overall system performance. In future research, our focus will
shift towards the development of size-independent and more readily manufacturable continuum
nonlinear structures. These continuum structures are intended to replace the current von Mises
truss system. A prototype robot will be manufactured and tested to substantiate the efficacy of
this innovative design approach.
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Appendix A. Finite Element Model Development

The FE model in Figure 2(a) is designed to replicate the mathematical model by adhering to
the following key principles:

1. The inner mass can only move along the horizontal direction without any rotation or deflec-
tion.

2. The inner mass, forward and backward constraint plate as well as the capsule shell as set as
rigid body to avoid any elastic deformation.

3. All the surface are smooth except the interface between the capsule shell and the supporting
ground.
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Appendix A.1. Choice of element type and mesh scheme

The overall capsule shell, constraint plates, inner mass and supporting ground are discretised
using four-node plane stress element with reduced integration (CPS4R) elements. The thicknesses
of the CPS4R elements are determined based on the density and sectional area of the inner mass
and the capsule, respectively. The density and stiffness properties of the materials are presented
in Table 1. Based on the mesh sensitivity study in authors’ previous study [56], the mesh sizes of
the capsule, inner mass and intestine are taken as 0.3, 0.6 and 0.3mm, respectively.

The front and backward constraint springs kf and kb are modelled using 2-node linear spring
element Spring2. For simplicity, the von Mises spring is modelled using a pair of axial connector
elements CONN2D2 with a user-defined force–displacement relationship derived from Eq. (2) using
the corresponding parameters.

The viscous damping effect between the inner mass and capsule is modelled using the Dashpots
element. This element connects the capsule shell and the inner mass. The damping coefficient
(0.0156 Ns/m) is identical to that in the mathematical model.

Appendix A.2. Contact modelling, loading and boundary conditions

Contact interactions play an important role in the FE model. Here, we adopt two different
strategies for modeling these interactions:

• Inner Mass and Capsule: To exclude frictional losses between the inner mass, capsule shell,
and constraint plates, we utilize separable ‘hard contact’ in the normal direction and ‘fric-
tionless’ behavior in the tangential direction.

• Intestine and Capsule: ‘Hard contact’ in the normal direction is used for the interaction
between the intestine and the bottom edge of the capsule. Additionally, a friction behavior
based on the penalty function with a friction coefficient is applied in the tangential direc-
tion. Here, the friction coefficient is 0.2293. This strategy ensures consistency with the
mathematical model’s friction behavior represented by Eq. (6).

As for the loading, the gravity effects and the excitation force are considered. A sinusoidal
excitation load is applied on a reference point defined on the inner mass directly, as shown in
Figure 2(a1).

To restrict movement and ensure desired behavior, two boundary conditions are applied:

• Intestine (supporting ground): All degrees of freedom on the bottom edge of the intestine
are fixed.

• Capsule and Inner Mass: The vertical movement (U2 degree of freedom) of the capsule and
inner mass is constrained, allowing them to move only in the horizontal direction (U1 degree
of freedom).

Appendix A.3. Solution procedure

Here, a two-step analysis procedure is adopted. The first analysis step is to apply the gravity to
the capsule robot using the *Static solver. The second step is the dynamic analysis to trace the
dynamic response of the capsule robot under the excitation force. The implicit dynamic analysis
using direct integration technique is adopted, i.e. *Dynamic, direct solver.

Appendix A.4. Limitations and future work

In this study, both the mathematical and FE models developed are intended as preliminary
design tools. Their primary purpose is to provide a qualitative understanding of the capsule
robot’s behavior. To achieve a more precise representation of real-world scenarios, particularly
regarding interactions with the environment, further refinement of the FE model is necessary. This
refinement will be explored in future studies.
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Supplementary Materials for ‘Enhancing the mobility of small-scale

robots via nonlinear structural springs exhibiting negative stiffness’

1 Nonlinear mechanics of the von Mises truss and performance-
based inverse design

Fig. S1(a) presents a von Mises truss connected in series with linear springs. This structure features an
arch-like arrangement of two inclined linear springs k1, a horizontal spring k2 connecting two base nodes
and a vertical spring k3 connecting the actuation point and the apex. The rise of the truss is H and the
span is L. Note that when the horizontal spring k2 approximates to infinity, the truss will be identical to
the classical von Mises truss discussed in authors’ previous work [1]. A displacement controlled loading ua

is applied at the top of the vertical spring point. In this section, we will first present the analytical model
for the von Mises truss and explore their design space. Subsequently, we introduce the performance-based
inverse design framework, which seamlessly integrates the analytical model and the Generic Optimization
algorithm. This inverse design tool will be used in the subsequent section for the parametric study on the
propelling performance of the capsule robot.

1.1 Analytical model of the von Mises truss

Considering the simplicity of the structure, we can derive the governing equation for the equilibrium condition
based on the direct equilibrium condition regarding the apex of the truss C, as shown in Fig. S1(b). For
simplicity, we choose the vertical displacement at the apex uapx as the primary variable:

Fa =
2k1 (H − uapx)

(√
H2 + L2/4− η1

)
η1

, (1)

where:

η1 =

√[
L

2
− FaL

2Fa − 8k2 (H − uapx)

]2
+ (H − uapx)

2 (2)

Note that the governing equation is implicit and is solved numerically using the embedded nonlinear
solver in Matlab. The actuation displacement at the actuation point can be expressed as follows:

ua = uapx + Fa/k3. (3)

Note that if k2 approximates infinity, the governing equation for the equilibrium is explicit and can be
written as:

Fa = 2k1 (H − uapx)

 √
H2 + L2/4√

L2/4 + (H − uapx)
2
− 1

 (4)

Due to its simplicity, we utilise this extreme case for the integration with the capsule robot. However, in this
section, we will continue to investigate the impact of k2 on the nonlinear response of the von Mises truss.
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Figure S1: (a) von-Mises truss under displacement-contrlled loading at the apex. The stiffness is comprised
of axial springs with stiffness k1, k2 and k3. The span and rise of the truss is L and H, respectively. (b)
Deformed state of the von-Mises truss under the actuation displacement at the apex.

1.2 Nonlinear behaviour of the von Mises truss

In this section, we will study how stiffness properties and rise–span ratio affect the behaviour of von Mises
truss and their energy-release performance, which may potentially be converted into kinematic effects to
enhance the speed, by exploiting the snap-down instability. We aim to address the following research
questions: 1) the threshold condition for von Mises truss exhibiting snap-backs such that it can be used for
energy release under displacement controlled loading; 2) how geometry properties and stiffness properties
affects the energy transformation efficiency, scant stiffness, and ultimate load-carrying capacity of von Mises
trusses.

To ensure that the von Mises truss effectively release energy through cyclic displacement controlled
loading and unloading, it is crucial for the corresponding nonlinear equilibrium path to exhibit snap-back
behavior, characterized by a pair of limit points. Fig. S2 illustrates three characteristic equilibrium paths
of von Mises trusses: a) no displacement limit point; b) a single stationary point; c) a pair of limit points.
Due to the structure’s symmetry, the nonlinear equilibrium path intersects with horizontal axis (Fa = 0)
at ua = 0, H, 2H. When the pair of displacement limit points merge, i.e. the cusp of the fold line [2], it
corresponds to the case in Fig. S2(b), which can be written as:

dua

dFa

∣∣∣
ua=H

= 0. (5)

By substituting Eqs. (1) and (3) into Eq. (5), we can obtain the critical condition for von Mises truss
exhibiting snap-backs:

4 + 2k3/k1
4− k3/k2

≤
√
4(H/L)

2
+ 1. (6)

All the analysis conducted in the following subsections will be in the parameter space satisfying the constraint
above. For illustration purposes, the corresponding phase change diagram for the case with k2 = ∞ is
presented in Fig. S3.

Moreover, a sensitivity study regarding the stiffness of the spring k2 is conducted to determine the ‘thresh-
old’ stiffness when these springs can be treated as rigid body. Instead of assessing the entire equilibrium
path, we select the maximum load-carrying capacity as the index, i.e. dF/dua = 0:

Fmax =
2k1k2L

k1 + 2k2
η32 , (7)

where η2 =

√[
4(H/L)

2
+ 1

] 1
3 − 1.
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Figure S2: Three characteristic equilibrium paths of von Mises truss under displacement control loading:
(a) with a pair of limit points; (b) with a single limit point; (c) without displacement limit point. Note that
the geometry and material properties of the von Mises truss are: H=400 mm, L=1600 mm, k1=20 N/mm,
k2=100 N/mm.

Figure S3: Phase change diagram for the von Mises truss with k2 = ∞. The dashed curve represent the
fold line where the limit points for displacement-controlled loading merge, i.e. the boundary where the von
Mises truss exhibits snap-back.

The sensitivity of Fmax to k2 can be determined by solving the partial derivatives of Fmax regarding to
k2:

dFmax

dk2
=

2k21Lη
3
2

(1 + 2k2)
2 (8)

When k2/k1 = 9.5, Fmax/Fmax,k2/k1→∞ = 0.95; k2/k1 = 49.5, Fmax/Fmax,k2/k1→∞ = 0.99. Further increase
in k2/k1 only leads to an infinitesimal increase in Fmax/Fmax,k2/k1→∞. For economical design, we assume
that the horizontal spring can be treated as a rigid bar for cases Fmax/Fmax,k2/k1→∞ > 0.99.

1.3 Key performance indexes and sensitivity study

Considering that the von Mises truss functions as a load-carrying component within the capsule robot, we
define the initial tangent stiffness kini maximum load Pmax and the corresponding scant stiffness kscant at
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Table S1: Geometry and stiffness properties of the baseline von Mises truss.

L (mm) H (mm) k1 (N/mm) k2 (N/mm) k3 (N/mm)
600 400 20 40 10

Pmax as the key performance indexes, as illustrated in Fig. S4. These indexes provide valuable insights into
the truss’s structural behavior and energy dissipation performance under loading conditions. A Matlab
script is specifically developed for computing these indexes based on a specific set of parameters.

Figure S4: Illustration of the key performance indexes of the von Mises truss.

To understand how the design parameters affects these performance index, a sensitivity study is con-
ducted. Fig. S5 presents the sensitivity of the nonlinear equilibrium path and the key performance indexes of
von Mises truss to the spring stiffness and the span L. The energy dissipated and the displacement to trigger
the snap-down instability ua,max increases with the increasing k1. For the scant stiffness, it initially increases
and then reaches a plateau. Note that there is a lower boundary for k1, below which the equilibrium path
exhibits no snap-back and consequently, zero energy dissipation occurs. The corresponding lower bound can
be determined using Eq. (6).

Similar to k1, increasing the parameter k2 also results in the improvement of the three performance
indexes, as shown in Fig. S5(b). This is in accordance with the previous study on 3D latticed structured
materials [3]. However, unlike the behavior observed for k1, we observe a plateau in the energy dissipation
Ēdisp and ūa,max as k2 surpasses a certain threshold stiffness. Beyond this point, further increases in k2 yield
only marginal improvements in the performance indexes. The upper threshold can be determined using
Eq. (8) based on the specific requirement. There is also a lower bound for k2, which can also be determined
using Eq. (6).

Unlike k1 and k2, the increase of k3 leads to the drop in the dissipated energy and ua,max but increase in
the scant stiffness. Accordingly, there is an upper threshold for k3, which is determined by Eq. (6), above
which the system will not dissipate energy during the cyclic loading. The increase of the span L leads to the
drop in all three performance indexes. Similar to k3, there is a upper limit for L, above which there will be
no energy dissipation. The upper limit can also be solved using Eq. (6).

1.4 Performance-based inverse design of von Mises truss

The extensive parametric studies in the previous section thoroughly examined the nonlinear mechanics of
the von Mises truss under varying geometry and stiffness properties. However, in practical applications
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Figure S5: Sensitivity of key performance indexes of the von Mises truss to (a) the stiffness of inclined
spring k1, (b) the horizontal spring k2, (c) the vertical spring k3 and (d) the span L. All the quantities are
normalised with respect to those of the baseline structure with the geometry and stiffness properties of the
baseline von Mises truss presented in Table S1. The arrows in (1) represent the increasing of the varying
design parameter.

for functionalised nonlinear structures, the inverse problem holds greater significance, where the goal is to
determine the geometry and stiffness properties to achieve the desired performance. To address this inverse
design problem, we formulate it as an optimization problem, where the objective function can be the entire
equilibrium path or the targeted performance indexes, as illustrated in Fig. S4. Owing to the analytical
equation derived for the nonlinear equilibrium path of the von Mises truss (Eq. (3)), the solution process is
as efficient as those employing trained machine learning models [4, 5] while offering enhanced accuracy and
robustness.

Here, to reduce the dimension of the problem and further improve the computational efficiency, we only
select the key performance indexes as the objective function, rather than considering the entire nonlin-
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ear equilibrium path as in previous studies [5]. This simplified approach proves adequate for the current
study. The framework for the performance-based inverse design or optimisation is presented in Fig. S6.
When employing the genetic algorithm (GA) for variable updating, critical parameters—such as population
size, mutation rate, crossover rate, and maximum number of iterations—are set to 50, 0.05, 0.6, and 100,
respectively.

The optimisation problem is formulated as:

minimize
x

Loss =
(
Y − Ỹ

)2

subject to m ≤ mbaseline

ua,max ≤ 2H

(9)

where x are the design parameters of the von Mises truss listed in Table S1.
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Figure S6: Flowchart for the performance-based inverse design of the von Mises truss spring.
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2 Parametric study

In addition to the results presented in the main paper, we have conducted some more analysis to understand
the mechanics of the capsule integrated with the von Mises truss. If not specified, the parameters adopted
here are the same as that in the main paper, as presented in Table S2, which is the same as in the main
paper.

Table S2: System and control parameters of the capsule robot.

Parameters Unit Values

Inner mass weight Mm g 1.8
Capsule weight Mc g 1.67
Friction factor µ − 0.59
Vertical spring of von Mises truss k1 kN/m [0,0.1]
Inclined spring of von Mises truss k3 kN/m 0.062
Rise of the von Mises truss H mm [0.8,0.9]
Span of the von Mises truss L mm [1,1.5]
Forward constraint spring kf kN/m 53.5
Backward constraint spring kb kN/m 27.9
Magnitude of the excitation force Pd mN [10, 80]
Frequency of the excitation Ω Hz [1, 50]

2.1 von Mises truss with k1 = ∞
In order to understand the effects of spring stiffness and the net distance on the dynamic response of capsule
robot, we first investigate the scenario with a linear spring, i.e. k1 = ∞. Fig. S7 illustrates the average speed
of the capsule robot in the parameter space defined by ks = [0, 0.1] kN/m and G1 = [0.2, 1.0] mm. In this
parameter range, the propelling speed reaches its maximum at ks = 0.025 kN/m and G1 = 0.5 mm. The
average speed exhibits a highly nonlinear relationship with G1 and ks. For capsule robots with G1 > 0.7
mm, the highest average speed occurs at ks = 0 kN/m, decreasing as ks increases. With a further increase
in ks, the average speed becomes negative, indicating backward motion. The magnitude of average velocity
then decreases. For cases with G1 =0.4–0.6 mm, the average speed increases with ks initially. A subsequent
increase in ks leads to a drop in velocity, followed by an increase and, finally, a decrease to zero. We also
plot a red curve defining G1ks = Fe for reference. Under the quasi-static case, the inner mass would not
collide with the capsule. Here, above the curve, the average speed of the capsule is almost zero.

Fig. S7(b–d) and (e–g) depict the time history of capsules with initial net gaps of G1 = 0.8 mm and
0.5 mm, respectively. For each case, three characteristic capsule responses are presented, corresponding to
forward movement with the highest average speed, forward movement with almost zero average speed, and
backward movement. In the scenario with the highest forwarding speed, the relative speed of the inner mass
increases as it approaches the rigid constraint spring, as illustrated in Fig. S7(b) and (f), resulting in a larger
momentum transfer to the capsule. Moreover, the relative velocity during backward movement collides with
the constraint spring with less velocity than during forward movement.

2.2 Results for von Mises truss with k3 = ∞
In the main paper, we only present the results for the case with a fixed excitation force amplitude. Here,
we present their sensitivity to the excitation force amplitude. The results are presented in Fig. S8. The
parametric analysis is based on the results of the linear spring system. We select the case with the largest
average speed, i.e. G1 = 0.5 mm and ks = 0.025 kN/m as the reference baseline state. In all the subsequent
analysis, we set G1 = 0.5 mm and the scant stiffness at the force limit point, see Fig. S4, is identical to
the stiffness of the linear spring, i.e. kscant = 0.025 kN/m. We adopt the performance inverse design tool
developed in Section 1.4 to back-calculate the stiffness and the geometry of the von Mises truss to ensure
that the initial tangent or scant stiffness of all the von Mises truss are identical.

We select four characteristic von Mises truss nonlinear springs in the parametric study, as shown in
Fig. S8(a). They have the identical initial tangent stiffness, with different characteristic points locating at
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Figure S7: (a) Sensitivity of the average propelling velocity of the capsule robot to linear spring stiffness
ks and the initial gap distance G1. Subfigures (b) and (c) show the time history results for the capsule
with different linear spring stiffness for G1 = 0.8 mm and G1 = 0.5 mm, respectively. The first row shows
the propelling speed (blue curve) as well as the average speed (red dashed line) versus time; the second
row shows the displacement history of the inner mass and the capsule; the third row shows the normalised
relative displacement of the inner mass xr/G1 versus the relative velocity vr. The reference red dashed lines
at xr/G1 = ±1 represent the inner mass colliding with the capsule.

ua = G1: case 1, the snap-through point with Fa = Fmax locates at ua = G1; in case 2, the local minimum
with Fa = −Fmax locates at ua = G1; in case 3, the transitional unstable equilibrium with Fa = 0 locates
at ua = G1; in case 4, the local maximum locates at ua = G1. Fig. S8(b–d) presents the average velocity of
the capsule robot in the frequency range [0 50] Hz and different excitation force levels. When the excitation
force is modest Pd ≤ 5 mN, the average velocity for for all configurations is nearly zero. This is because
the critical load of all the von Mises trusses in this situation is larger than the excitation force, preventing
the interior mass from colliding with the capsule. Moreover, the corresponding reaction force applied on
the capsule is smaller than the friction. With the increase of the excitation force Pd, the maximum average
velocity for each configuration increases and then drops with further increase of Pd.

When the excitation force magnitude Pd ≥ 10 mN, i.e. the critical load of all von Mises truss, the average
velocity of the capsule robot exhibits sensitivity to the excitation frequency Ω. Generally, the average velocity
is small for both extremely low and high frequency regimes. In the intermediate excitation frequency domain,
there are dramatic changes in the both the magnitude and the sign of the average velocity. Compared with
case 4, which exhibits no negative stiffness, the other three cases have a relatively large domain of high average
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velocity. This implies that the system is relatively robust and their performance is less sensitive to noises and
uncertainties. To gain insights into the mechanics, we present the time history results of the capsule robot
with case 3 von Mises truss and the excitation force Pd = 10 at selected excitation frequency in Fig. ??. If
the excitation frequencies are too low or high, the inner mass exhibits irregular chaotic responses, resulting
in aperiodic capsule movements. Note that the transition regime where the average velocity changes sign
also coincides with the chaotic response of the inner mass. The peak average forward velocity corresponds
to a periodic response of the inner mass. The capsule with case 3 von Mises truss shows a larger domain of
periodic inner mass response compared to that with the case 4 von Mises truss, as shown in Figs. S9 and
S10.

Of all four cases under the excitation force Pd = 20 mN, the capsule robot with case 3 von Mises truss
exhibits the highest average propelling speed as well as the widest frequency domain to maintain a relatively
high propelling speed. Thus, we conducted the sensitivity of the excitation force amplitude Pd on the highest
propelling speed for the case 3 von Mises truss in the excitatino frequency domain [10 50] Hz. As shown
in Fig. S11(a), the highest average speed of the capsule robot initially increases with the excitation forces,
reaching the plateau about 20 mN. With the further increase of the excitation force, the peak average speed
vpro,avg drops. Note that the corresponding excitation frequency at the largest vpro,avg for each case exhibits
a similar trend, as shown in Fig. S11(b). Fig. S11(c) presents the phase portraits of the inner mass and
the time history results for the displacement of both the capsule and inner mass for three characteristic
cases. When the excitation force amplitude Pd = 12 mN, the relative velocity of the inner mass remains
small, causing it only collides with the front constraint spring. As Pd increases, the relative velocity of the
inner mass escalates, bringing it closer to the back constraint spring. Simultaneously, the left half of the
phase portrait transits from sharp to rounded profile, due to the stiffening effects of von Mises truss in the
tension regime. The further increase in the excitation force leads to a drop in the largest vpro,avg. This arises
from the chaotic response of the inner mass, as illustrated in Fig. S11(c3-1). The second and third rows
of Fig. S11(c) present the time history results for the velocity and displacement of the inner mass and the
capsule. For cases with Pd = 12 mN and Pd = 18 mN, the graph patterns are very similar to those with
negative stiffness in Fig. 2(c) in the main paper, but with different velocities. For the case with Pd = 12 mN,
the capsule almost remains stationary before the first collision due to the fact that the reaction force applied
on the capsule cannot overcome the friction. For the case with Pd = 40 mN, the displacement per period
(almost four times of that for Pd = 18 mN) and the velocities of the inner mass and the capsule are much
larger than the other two cases. However, as depicted by the velocity history (closely located abrupt jumps),
there are multiple collisions between the inner mass and the capsule in a typical ‘period’. This makes the
effective velocity lower than those with periodic solutions and less energy efficient.

From the results, we could conclude that the negative stiffness of the von Mises truss make the overall
capsule robot less sensitive to the excitation frequency. Since the von Mises truss exhibits nonlinearity before
the critical point, the scant stiffness at the origin may not be representative enough, we also conducted a
sensitivity study on cases with identical scant stiffness. The results are shown in Fig. S12. Note that they
exhibit almost identical trend as those with identical tangent stiffness. Note that among all five cases, cases
2 and 3 exhibit a relative wide working frequency band with relatively high average propelling velocity. This
is in accordance with our findings in the main paper. In case 1, the stiffening effects of the von Mises truss
in proximity of Xr = G1 undermines the robustness of the capsule robot, making it sensitive to excitation
frequency.
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Figure S8: The average propelling speed of the capsule robots with the von Mises truss springs with identical
initial stiffness but different rises and peak loads. (a) Nonlinear equilibrium paths of the three characteristic
von Mises trusses. (b) Average propelling speed of the capsule robot at selected excitation force amplitude
in the excitation frequency ranging from 10 to 50 Hz.
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Figure S9: Time history of the capsule robots with the von Mises truss supporting springs corresponding to
cases 3 in Fig. S8(a). Note that the excitation force amplitude Pd = 20 mN in all cases.

Figure S10: Time history of the capsule robots with the von Mises truss supporting springs corresponding
to cases 4 in Fig. S8(a). Note that the excitation force amplitude Pd = 20 mN in all cases.
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Figure S11: (a, b) The maximum propelling speed of the capsule robots with case 3 von Mises truss in
Fig. S8(a) at excitation force amplitude ranging from 5 to 40 mN and the corresponding excitation frequency.
(c) The phase portraits and time history results for the displacement of the inner mass and the capsule at
selected excitation forces. (c) The phase portraits and time history results of the capsule robots exhibiting
highest average propelling velocity in (b). First row presents the relative velocity of the inner mass at
different positions in a period of excitation circle. The thick red dashed red lines represent the front and
back constraint springs. The thin blue dashed lines represent the force limit point, i.e. the starting point of
the negative stiffness. The second and third rows present the time history for the displacement and velocity
of the capsule robot (red solid curve) and the inner mass (black dashed curve) for a single period.
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Figure S12: The average propelling speed of the capsule robots with the von Mises truss springs with
identical secant stiffness but different rises and peak loads. (a) Nonlinear equilibrium paths of the three
characteristic von Mises trusses. (b) Average propelling speed of the capsule at selected excitation force
amplitude in the excitation frequency ranging from 10 to 50 Hz. (c) Phase portraits and time history results
for the displacement and velocity of the inner mass and the capsule robots with the highest average speed
for selected case in (b). The subfigures are as described in Fig. S11(c).
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2.3 Effects of initial stiffness and snap-back on the nonlinear equilibrium path

In the main paper, we only present the results for the case with a single excitation force amplitude Pd = 20
mN. Here, we present their sensitivity to Pd, as shown in Fig. S13. Similar to that in Fig. S8, the average
speed of the capsule is almost zero when the excitation force is small, due to the fact that the reaction force
applied on the capsule is lower than the friction force. At Pd = 30 mN, cases 2 and 3 exhibit a relatively wide
frequency band with high average propelling speed. However, upon closer inspection of the phase portraits
and time history results, we find that their response is aperiodic, suggesting that the energy efficiency might
not be as favorable as those exhibiting periodic responses, i.e. case 4.
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Figure S13: (a) The nonlinear equilibrium paths of the von Mises truss with different horizontal spring
stiffness k3. (b) Average propelling speed of the capsule robot at selected excitation force amplitude in the
excitation frequency ranging from 10 to 50 Hz.
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3 Optimisation of von Mises truss to boost the propelling per-
formance of capsule robot

From the parametric studies in Section 4 of the main paper, we deduce that an optimally performing capsule
robot should demonstrate a relatively high propelling speed over a broad excitation frequency range. This
range is defined as the operational frequency band ∆Ωop. This design choice can also ensure that the response
of the inner mass and capsule remains periodic, ultimately leading to enhanced energy efficiency. In this
section, we present an optimisation formulation to solve the geometry and stiffness properties of the von
Mises truss that leads to an optimally performing capsule robot under the structural weight constraint of
the von Mises truss. Here, we define the structural weight as the sum of the product of the stiffness of the
component springs and their length.

Since the snap-back behaviour of the von Mises truss leads to a high sensitivity to excitation frequency,
the optimisation only focuses on the case with a rigid horizontal spring, i.e. k3 = ∞. Moreover, we set
the case 3 von Mises in Fig. 2(a) in the main paper as the baseline, with its structural weight serving as a
constraint in the optimization formulation. Mathematically, the optimisation formulation is stated as:

maximize
k1, H, L

vmax,avg ·∆Ωop

subject to m ≤ mbaseline
(10)

where vmax,avg is the average speed of the capsule robot within a window characterized by high speed and a

broad frequency band, as illustrated in Fig. S14(b); m = k1
√
H2 + L2/4 is the structural weight of the von

Mises truss (excluding k3 as we assume that the horizontal spring is rigid and the force is directly applied
to the apex).

As for the computation of the objective function, we begin by computing the average propelling velocity
of the capsule robot at each excitation frequency within the domain [10 50] Hz and the excitation force
amplitude Pd = 20 mN. From these data, we identify the maximum average velocity vmax. Then, we define
an acceptable high propelling velocity range, which is expressed as [κvmax, vmax]. The average speed within
this high velocity window is denoted as vmax,avg, and the corresponding frequency span of the velocity window
is ∆Ωop. Moreover, we include the constraint ∆Ωop ≤ 5 in the objective function as a penalty for solutions
with large ∆Ωop but small vmax,avg. In this paper, we set κ = 0.75. Considering the high nonlinearity of
the problem, we adopt an non-gradient based optimization approach, Genetic Algorithm, to search for the
optimum. The key parameters of the genetic algorithm, including population size, mutation rate, crossover
rate and Maximum number of iterations, are selected as 20, 0.05, 0.6 and 10, respectively.

The geometry and nonlinear equilibrium path of the von Mises truss and the dynamic response of the
capsule robot as well as the inner mass in the working frequency domain [10 50] Hz under the excitation
force Pd = 20 mN are presented in Fig. S14. The net distance G1 between the mass and front constraint
spring locates in the positive stiffness regime, close to the local minimum, as seen in the dished red line
in Fig. S14(a). The optimised capsule exhibits a relatively high average speed in a wide frequency band.
Compared with the baseline solution (case 3 in Fig. 2 in the main paper), where the net distance locates
at Fv = 0 and Xr = H, the maximum average speed vmax increased by 6.29%, and the objective function
defined in Eq. (10) increased by 8.09%. As for the case with the maximum average velocity, see the red
dot in Fig. S14(b), the inner mass exhibit a periodic response and it only collides with the front constraint
spring. The displacement and velocity history diagrams essentially exhibit similar patterns as that in the
baseline case, while the inner mass moves much closer to the back constraint spring. The optimised results
align with the mechanics we have unveiled from our parametric study.

Note that we introduce an upper limit (penalty) for the working frequency bandwidth in Eq. (10). This
penalty is incorporated to prevent the optimizer from converging to solutions with a relatively low speed but a
wide effective working frequency band. condition in the objective function. We also conduct the optimisation
without the penalty. The configurations of the von Mises trusses, along with their nonlinear equilibrium
paths using the two different objective functions and the baseline case, are presented in Fig. S15(a, b). The
key outputs of the optimisation solution process for objective functions 1 and 2 are presented in Fig. S15(c)
and (d), respectively. The dynamic behavior of the capsule robots are shown in Fig. S16. The geometry
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Figure S14: (a) The geometry and the nonlinear equilibrium path of the optimised von Mises truss based
on the formulation Eq. (10). Note that we set the horizontal spring k3 as rigid. The blue dashed window
encloses the data used for the computation of the objective function. (b) The sensitivity of the average
velocity of the capsule robot to excitation frequency under the excitation force Pd = 20 mN. (c) The time
history results for the inner mass and the capsule robot for the case with the peak average velocity at Ω =
37 Hz. Subfigures are as described in Fig. S11.

of the two optimized von Mises trusses are very similar. Their rise, span, and the stiffness of the inclined
springs are almost half of those of the baseline. Accordingly, their structural weight is reduced by 75%
and 63%, respectively, compared to the baseline. It’s worth noting that the relatively significant drop in
structural weight and stiffness leads to a marginal increase in the maximum average speed. Regarding the
dynamic behavior of capsules with the fastest propelling speed for each case, their responses are very similar.
The only difference is that in the case optimized with penalty in ∆Ωop, the inner mass approaches closer to
the back constraint panel in its periodic movement.
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Figure S15: Optimisation results using two different objective functions. (a) The geometric configuration of
von Mises trusses: the baseline structure, optimised structure with the objective function with and without
penalty on the working frequency band ∆Ωop, and (b) their load-displacement curve. (c) Curve of fitness
with generations in optimization process for two objective functions.
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Figure S16: The dynamic response of the capsule robot with the baseline and two optimised von Mises
springs. The subfigures are as described as those in Fig. S11.
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The Matlab scripts for the objective functions are provided below.

1 % The variable oumigaarr is the frequency sequence

2 % The variable speedarr is the speed sequence with the frequency in the range of 10-50 Hz

3 % The variable limit is the lower limit of the acceptable high propelling velocity range

4 % The variable method is the option variable , which provides two optimization objective

functions to choose from.

5 function [robust ]= getrobust(oumigaarr ,speedarr ,limit ,method);

6 % find the maximum speed

7 [max_sp ,max_ind ]=max(speedarr);

8 % Define labes for the ponits in the acceptable high propelling velocity range as 1,

otherwise as 0.

9 speed1=speedarr -limit*max_sp;

10 jud_1= speed1 >0;

11 % Find the start of the continuous interval

12 if max_ind ~=1

13 i=max_ind -1;

14 while jud_1(i) ==1 && speedarr(i) >0

15 if i~=1

16 i=i-1;

17 else

18 i=i-1;

19 break;

20 end

21 end

22 % The start of the continuous interval

23 start_ind=i+1;

24 else

25 start_ind =1;

26 end

27 % Find the end of the continuous interval

28 if max_ind ~=size(speedarr ,1)

29 j=max_ind +1;

30 while jud_1(j)==1 && speedarr(j)>0

31 if j~=size(speedarr ,1)

32 j=j+1;

33 else

34 j=j+1;

35 break;

36 end

37 end

38 % The end of the continuous interval

39 end_ind=j-1;

40 else

41 end_ind=size(speedarr ,1);

42 end

43 % Compute the objective function

44 if method ==1

45 o_arr=oumigaarr(start_ind:end_ind);

46 s_arr=speedarr2(start_ind:end_ind);

47 % Returns the value of the first objective function

48 robust=trapz(o_arr ,s_arr);

49 else

50 % If the effective working frequncy band <=5, compute the objective function

directly

51 if end_ind -start_ind <5

52 o_arr=oumigaarr(start_ind:end_ind);

53 s_arr=speedarr2(start_ind:end_ind);

54 robust=trapz(o_arr ,s_arr);

55 else

56 %If the effective frequency band width is larger than 5, a truncation is

required

57 runk =0;

58 % It is used to record the largest objective function interval

59 robumax =0;

60 while runk < end_ind -start_ind +1-5+1

61

62 o_arr=oumigaarr(start_ind+runk:start_ind +5+runk -1);
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63 s_arr=speedarr2(start_ind+runk:start_ind +5+runk -1);

64 robust=trapz(o_arr ,s_arr);

65 if robust >robumax

66 robumax=robust;

67 end

68 runk=runk +1;

69

70 end

71 robust=robumax;

72 end

Listing 1: Source script for the objective functions.
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