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A B S T R A C T

In this paper, a sliding mode sensor fault tolerant control scheme which involves a first order
sliding mode observer, fault compensation logic and an integral sliding mode controller, is
proposed for a class of uncertain linear parameter-varying systems. The proposed scheme
has the capability to retain near nominal fault-free performance in the face of a class of
sensor faults/failures. In particular, the closed-loop stability of the sensor fault tolerant scheme
involving the sliding mode observer and the sliding mode controller in the presence of faults
and uncertainty, is rigorously analysed. Furthermore, the paper proposes an algorithm to
simultaneously synthesize the design freedom associated with the observer gains and control
law despite the lack of a separation principle in the closed loop system overall caused by
the uncertainty. The proposed scheme is validated using a commercial aircraft model. Good
simulation results show the efficacy of the scheme.

1. Introduction

One of the key properties of sliding mode observers (SMOs) is their capability to track measured plant outputs whilst
simultaneously estimating exogenous signals (faults or disturbance) and the system states [1,2]. In a sensor fault scenario, if the
corrupting faults can be accurately estimated (by the sliding mode observer), a ‘virtual sensor’ can be established, and the actual
measured output corrected using the fault estimate [3]. Sensor fault tolerant control can then be induced if the virtual sensor is
used as part of the feedback loop instead of the raw (corrupted) measurement. This approach has the advantage that it can help
to retain close to nominal fault-free performance in a faulty situation without the necessity of reconfiguring the original baseline
control law [4]. This can be very advantageous from a flight certification perspective. The approach is captured schematically in
Fig. 1.

In Fig. 1, the sliding mode observer reconstructs the fault 𝑓 , using only the known control inputs 𝑢𝑝 and the measured outputs
𝑦𝑝. The fault reconstruction 𝑓 then compensates the raw measurements before they are used in the feedback loop.

Integral sliding mode (ISM) control has been the subject of extensive research interest in recent years [5–10]. ISM based
methodologies address the reaching phase problem in the face of matched uncertainties [11,12]. The ISM control law usually
contains two components. One component is created to maintain the stability of the nominal plant and to introduce an appropriate
level of performance, whilst the other discontinuous ‘retro-fitted’ component is included to induce a sliding motion and to
compensate for the effect of matched uncertainty. Furthermore, an ISM controller allows the matched uncertainty to be compensated
from the time control is initiated.

This paper proposes an active sensor fault tolerant control (FTC) scheme for a class of LPV systems involving a SMO and an ISM
controller. In most conventional active sensor FTC schemes, the control law and the observer (representing the fault detection
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Fig. 1. The scheme of sensor FTC using SMO.

and isolation (FDI) aspect) are developed separately. This helps in terms of simplicity, but also has disadvantages. Also it is
well understood that plant/model mismatches in the form of uncertainty introduces coupling between the controller and observer
elements — and often affects the level of performance which can be achieved. Recently, more holistic integrated FDI and feedback
control schemes have been proposed — see for example [13–15]. Broadly these approaches can be divided into two categories,
depending on whether any FDI elements are explicitly included. In the works of [16–18], the fault signals in the residuals may
be marginalized and dominated by the effects arising from external reference demands and the presence of uncertainty. This
detrimentally affects the sensitivity of the residuals to the faults and can contribute to increased miss-detection rates. To counteract
these disadvantages, higher order controllers need to be adopted to create the control and the residual signals. The integrated
schemes [3,19–21], incorporate explicit observer and controller structures, and are of fixed order. Here the objective is to attempt
to decouple the residual signals from the effects of the control laws. In this situation, the sensitivity of the residual to modelling
uncertainty is crucial and necessitates the FDI component being highly robust with respect to the plant/model uncertainties.

The author’s previous work in [22] integrated a conventional SMO and an SMC to ensure fault tolerance in the face of sensor
faults. In contrast, the scheme proposed here is quite different from the one in [22]. Compared with [22], the proposed scheme
described in this paper develops an integral siding surface involving the compensated states, and it ensures the sliding motion occurs
from the beginning of the simulation. Furthermore in the literature, very few works attempt to formally analyse the stability of the
FTC scheme which involves both a SMO and a SMC in the feedback loop. A rigorous stability analysis of the closed-loop FTC system
involving an ISM controller is investigated in this paper. In addition, a locally optimal solution, selecting all the design parameters,
can be synthesized using an iterative matrix inequality based approach (which was not discussed in [22]). In this sense, the work
described in this paper is both rigorous and constructive. The algorithm which is proposed simultaneously synthesizes the design
freedom associated with the observer gains and control law, despite the lack of a separation principle caused by the uncertainty.

The paper is organized as follows: in Section 2, the LPV SMO is described; whilst in Section 3, the ISM controller design is
discussed and the closed-loop stability is analysed. Section 4 introduces an LPV/BMI problem which must be solved to simultaneously
obtain the observer and controller gains. An iterative algorithm is then proposed to solve this problem. Finally, a commercial aircraft
model case study is undertaken in Section 5 to demonstrate the efficiency of the scheme.

2. LPV sliding mode fault reconstruction

Consider the uncertain LPV system subject to sensor faults given by

�̇�𝑝(𝑡) = 𝐴𝑝(𝜌)𝑥𝑝(𝑡) + 𝐵𝑝(𝜌)𝑢𝑝(𝑡) +𝑀𝑝(𝜌)𝜉(𝑥𝑝, 𝑡)

𝑦𝑝(𝑡) = 𝑥𝑝(𝑡) +𝐻𝑝𝑓 (𝑡)

𝑧∞(𝑡) = 𝐶𝑐𝑥𝑝(𝑡)

(1)

where 𝐴𝑝(𝜌) ∈ R𝑛×𝑛, 𝐵𝑝(𝜌) ∈ R𝑛×𝑚, 𝑀𝑝(𝜌) ∈ R𝑛×𝑘 and 𝐶𝑐 ∈ Rℎ×𝑛. In Eq. (1), 𝑥𝑝(𝑡), 𝑢𝑝(𝑡) and 𝑦𝑝(𝑡) denote the system states, the control
nputs and the measured outputs, respectively. The scheduling parameters 𝜌 ∈ 𝛺 ⊂ R𝑛𝑟 are assumed to be perfectly measurable
nd lie in a compact set 𝛺. The matrix 𝐻𝑝 ∈ R𝑛×𝑞 in Eq. (1) describes how the faults 𝑓 (𝑡) corrupt the measurements. Here it is
ssumed that rank(𝐻𝑝) = 𝑞 where 𝑞 < 𝑛, and that 𝐻𝑝 is formed from columns belonging to the standard basis for R𝑛. The signal

𝑓 (𝑡) is assumed to be piecewise differentiable and represents the unknown sensor faults. Furthermore the fault signals are assumed
to be bounded and satisfy ‖𝑓 (𝑡)‖ ≤ 𝑓𝑚𝑎𝑥 where 𝑓𝑚𝑎𝑥 is a known positive constant. This value would be chosen a-priori based on a
physical understanding of the sensors and their range, based on normal fault free behaviour.

The signal 𝑧∞(𝑡) encapsulates a measure of performance and is to be minimized [23]: specifically, as part of the design process,
the gains in the observer and controller structure will be optimized to ensure

∫

∞

0
‖𝑧∞(𝑠)𝑑𝑠‖ ≤ 𝛾 ∫

∞

0
‖𝜉(𝑠)‖𝑑𝑠
2

where 𝛾 > 0 is small and 𝜉 is the lumped disturbance present in (1).
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In Eq. (1) is assumed that ‖𝜉(⋅)‖ ≤ 𝑐1‖𝑥𝑝(𝑡)‖ + 𝑐2(𝑡) where 𝑐1 > 0 is a known constant and 𝑐2(𝑡) is an unknown scalar function
which satisfies ‖𝑐2(𝑡)‖ ≤ 𝑑 where 𝑑 is a known constant.

Remark 2.1. In the representation in (1), each column of 𝐻𝑝 is identified with a fault on a particular sensor, and as a consequence,
up to 𝑞 < 𝑛 faults are considered. The resulting FTC scheme aims to provide tolerance to faults within the subset of the measurements
defined by 𝐻𝑝. The matrix 𝐻𝑝 can be viewed as a design choice, and would be selected in an application specific way to address
faults which would be considered as the most safety critical.

Since 𝐻𝑝 is formed of columns from the standard basis for R𝑛, the system outputs 𝑦𝑝(𝑡) can be permuted and then partitioned as

[

𝑦𝑝,1(𝑡)
𝑦𝑝,2(𝑡)

]

=
[

𝐶1
𝐶2

]

𝑥𝑝(𝑡) +
[

0
𝐼𝑞

]

𝑓 (𝑡) (2)

where the 𝑦𝑝,1(𝑡) are fault free sensor measurements whilst the set 𝑦𝑝,2(𝑡) are corrupted by faults. In Eq. (2), 𝐶1 ∈ R(𝑛−𝑞)×𝑛 is formed
from rows of the identity matrix and satisfies rank(𝐶1) = 𝑛 − 𝑞 and 𝐶2 ∈ R𝑞×𝑛.

Assumption 2.1. The pair (𝐴𝑝(𝜌), 𝐶1) is quadratically detectable.

To formulate the sensor fault as an unknown input so that a classical SMO design scheme can be employed [2], a first order
filter will be introduced defined as

�̇�𝑓 (𝑡) = −𝐴𝑓 𝑧𝑓 (𝑡) + 𝐴𝑓 𝑦𝑝,2(𝑡) (3)

where 𝐴𝑓 ∈ R𝑞×𝑞 is a symmetric positive definite (s.p.d) matrix. Notice that a good choice of 𝐴𝑓 can be used to help mitigate the
degradation of the fault estimation performance in the presence of unmatched uncertainties [2].

Combine Eqs. (1) and (3) to create an augmented system, and then apply a coordinate transformation col(𝑥𝑝, 𝑥𝑓 ) ↦ 𝑥𝑎 given by

𝑥𝑎 =
[

𝑇𝑠 0
0 𝐼𝑞

] [

𝑥𝑝
𝑧𝑓

]

(4)

where 𝑇𝑠 ∈ R𝑛×𝑛 is a permutation matrix which satisfies 𝐶1𝑇 −1
𝑠 =

[

0 𝐼𝑛−𝑞
]

. The overall system in the new coordinates takes the
form

�̇�𝑎(𝑡) = 𝐴(𝜌)𝑥𝑎(𝑡) + 𝐵(𝜌)𝑢𝑝(𝑡) +𝐷𝑓 (𝑡) +𝑀(𝜌)𝜉(⋅)

𝑦(𝑡) = 𝐶𝑥𝑎(𝑡)
(5)

where 𝑥𝑎 ∈ R𝑛+𝑞 , 𝑦 = col(𝑦𝑝,1, 𝑧𝑓 ) and 𝐷 = [0 𝐴𝑓 ]𝑇 . As a result of the coordinate transformation in (4), the system matrix in (5) is
given by

𝐴(𝜌) =
[

𝑇𝑠 0
0 𝐼𝑞

] [

𝐴𝑝(𝜌) 0
𝐴𝑓𝐶2 −𝐴𝑓

] [

𝑇 −1
𝑠 0
0 𝐼𝑞

]

=
[

𝑇𝑠𝐴𝑝(𝜌)𝑇 −1
𝑠 0

𝐴𝑓𝐶2𝑇 −1
𝑠 −𝐴𝑓

]

(6)

the output distribution matrix

𝐶 =
[

𝐶1 0
0 𝐼𝑞

] [

𝑇 −1
𝑠 0
0 𝐼𝑞

]

=
[

0 𝐼𝑛−𝑞 0
0 0 𝐼𝑞

]

=
[

0 𝐼𝑛
]

(7)

nd

𝑀(𝜌) =
[

𝑇𝑠𝑀𝑝(𝜌)
0

]

(8)

or the system in Eq. (5), an LPV sliding mode observer is proposed taking the form

�̇�(𝑡) = 𝐴(𝜌)𝑧(𝑡) + 𝐵(𝜌)𝑢𝑝(𝑡) + 𝐺𝑙(𝜌)𝑒𝑦(𝑡) + 𝐺𝑛𝜈(𝑡) (9)

where

𝜈 = −𝑘(𝑡) 𝑒𝑦
‖𝑒𝑦‖

if 𝑒𝑦 ≠ 0 (10)

is a discontinuous output error injection vector used to induce sliding in the state estimation error subspace. In Eq. (10), the positive
scalar 𝑘(⋅) is the modulation function to be determined and 𝑒𝑦(𝑡) = 𝐶(𝑧(𝑡) − 𝑥𝑎(𝑡)) represents the output estimation error.

To help with the exposition which follows, partition the augmented system and disturbance matrices in Eq. (5) as

𝐴(𝜌) ∶=
[

𝐴11(𝜌) 𝐴12(𝜌)
𝐴21(𝜌) 𝐴22(𝜌)

]

, 𝑀(𝜌) ∶=
[

𝑀1(𝜌)
𝑀2(𝜌)

]

(11)

where 𝐴11(𝜌) ∈ R𝑞×𝑞 , 𝑀2(𝜌) ∈ R𝑛×𝑘. From (6), since the bottom 𝑞 rows of 𝐴(𝜌) do not depend on 𝜌, the sub-matrix 𝐴21(𝜌) has the
articular form

𝐴21(𝜌) =
[

𝐴211(𝜌)
𝐴212

]

(12)

(𝑛−𝑞)×𝑞 𝑞×𝑞
3

here 𝐴211(𝜌) ∈ R and 𝐴212 ∈ R . This structure is important to some of the analysis which follows.
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In Eq. (9), the observer gains 𝐺𝑙(𝜌) and 𝐺𝑛 are chosen to take the form

𝐺𝑙(𝜌) =
[

𝐴11(𝜌)𝐿 − 𝐴12(𝜌) + 𝑘2𝐿
−𝐴22(𝜌) + 𝐴21(𝜌)𝐿 − 𝑘2𝐼

]

, 𝐺𝑛 =
[

−𝐿
𝐼𝑛

]

(13)

In Eq. (13)𝐿 ∈ R𝑞×𝑛 has the particular structure

𝐿 =
[

𝐿1 0
]

(14)

where 𝐿1 ∈ R𝑞×(𝑛−𝑞), and 𝑘2 is a positive scalar. These two quantities represent the design freedom.

Remark 2.2. Since from Assumption 2.1, (𝐴𝑝(𝜌), 𝐶1) is quadratically detectable, the pair (𝐴11(𝜌), 𝐴211(𝜌)) is also quadratically
detectable. Hence there exists a s.p.d matrix 𝑃1 and a gain 𝐿1 such that

𝑃1(𝐴11(𝜌) + 𝐿1𝐴211(𝜌)) + (𝐴11(𝜌) + 𝐿1𝐴211(𝜌))𝑇 𝑃1 < 0 ∀ 𝜌 ∈ 𝛺 (15)

Define

𝑒 = 𝑧 − 𝑥𝑎 = col(𝑒1, 𝑒𝑦) (16)

where 𝑒1 ∈ R𝑞 , and define a coordinate transformation 𝑒 = 𝑇𝐿𝑒 where

𝑇𝐿 =
[

𝐼𝑞 𝐿
0 𝐼𝑛

]

(17)

In the new coordinates, 𝑒 = col(𝑒1, 𝑒𝑦) where 𝑒1 = 𝑒1 +𝐿𝑒𝑦. Because of the specific choice of 𝐺𝑙(𝜌) in (13), it is quite straightforward
to show in the new coordinates

̇̃𝑒1 = �̃�11(𝜌)𝑒1 + �̃�1(𝜌)𝜉 (18)
�̇�𝑦 = �̃�21(𝜌)𝑒1 − 𝑘2𝑒𝑦 − 𝑣 + �̃�2(𝜌)𝜉 +𝐷2𝑓 (19)

where �̃�11(𝜌) = 𝐴11(𝜌) +𝐿𝐴21(𝜌), �̃�21(𝜌) = 𝐴21(𝜌); the disturbance distribution matrices �̃�1(𝜌) = 𝑀1(𝜌) +𝐿𝑀2(𝜌) and �̃�2(𝜌) = 𝑀2(𝜌);
and 𝐷2 =

[

0 𝐴𝑇
𝑓

]𝑇
. Define the system matrix associated with the error system in (18)–(19) as

𝐴𝑒(𝜌) =
[

�̃�11(𝜌) 0
�̃�21(𝜌) −𝑘2𝐼𝑛

]

(20)

and assume 𝐿 is chosen so that Eq. (15) holds. Then as argued in [14], for any positive 𝑘2, there exist s.d.p matrices 𝑄0 and

𝑃 = diag(𝑃1, 𝑝2𝐼𝑛) (21)

(where the scalar 𝑝2 > 0) such that

𝑃 �̃�𝑒(𝜌) + �̃�𝑒(𝜌)𝑇 𝑃 +𝑄0 < 0 ∀𝜌 ∈ 𝛺 (22)

Let 𝜂1(𝑦𝑝, 𝑑) be any function, depending on the upper bound of the disturbance, with the property that

‖𝜉‖ ≤ 𝑐1‖𝑥𝑝‖ + 𝑑 ≤ 𝜂1(𝑦𝑝, 𝑑) (23)

and define 𝑞0 ∶=
1
2𝜆𝑚𝑖𝑛(𝑃

− 1
2 𝑄0𝑃

− 1
2 ) > 0 where 𝜆𝑚𝑖𝑛(⋅) denotes the minimum eigenvalue. Using these quantities define

�̇�(𝑡) = −𝑞0𝜒(𝑡) + ‖𝑃
1
2 𝑇𝐿𝑀(𝜌)‖𝜂1(𝑦𝑝, 𝑑), 𝜒(0) = 0 (24)

Let 𝑉𝑒 = 𝑒𝑇 𝑃𝑒 then using (18)–(19) together with (22), and assuming the modulation gain from (10) is chosen to satisfy 𝑘(𝑡) >
‖𝐷2‖‖𝑓‖, then

�̇�𝑒 = −𝑒𝑇𝑄0𝑒 − 2𝑝2𝑘(𝑡)‖𝑒𝑦‖ + 2𝑒𝑇 𝑃�̃�(𝜌)𝜉 + 2𝑝2𝐷2𝑓

= −𝑒𝑇 𝑃 1∕2𝑃−1∕2𝑄0𝑃
−1∕2𝑃 1∕2𝑒 + 2𝑒𝑃 1∕2𝑃 1∕2�̃�(𝜌)𝜉

≤ −𝜆𝑚𝑖𝑛(𝑃−1∕2𝑄0𝑃
1∕2)𝑉𝑒 + 2

√

𝑉𝑒‖𝑃
1∕2�̃�(𝜌)‖‖𝜉‖

≤ −𝜆𝑚𝑖𝑛(𝑃−1∕2𝑄0𝑃
1∕2)𝑉𝑒 + 2

√

𝑉𝑒‖𝑃
1∕2�̃�(𝜌)‖𝜂1(𝑦𝑝, 𝑑) (25)

Define 𝑉 =
√

𝑉𝑒. Consequently ̇̃𝑉 = 1
2 �̇�𝑒∕

√

𝑉𝑒 and therefore from (25)

̇̃𝑉 (𝑡) ≤ −𝑞0𝑉 + ‖𝑃 1∕2�̃�(𝜌)‖𝜂1(𝑦𝑝, 𝑑) (26)

Integrating both sides of (26) yields

𝑉 (𝑡) ≤ 𝑒−𝑞0𝑡𝑉 (0) + ∫

𝑡

0
𝑒−𝑞0(𝑡−𝑠)‖𝑃 1∕2�̃�(𝜌)‖𝜂1(𝑦𝑝, 𝑑) (27)

Note in (27) the initial condition 𝑉 (0) is not known, but in finite time 𝑡0 (say), since 𝑞0 > 0,

𝑒−𝑞0𝑡0𝑉 (0) ≤ 𝜒
4

0
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for any positive (design) scalar 𝜒0. Thus for all 𝑡 > 𝑡0

𝑉 (𝑡) ≤ 𝜒0 + ∫

𝑡

0
𝑒−𝑞0(𝑡−𝑠)‖𝑃 1∕2�̃�(𝜌)‖𝜂1(𝑦𝑝, 𝑑)𝑑𝑠

From solving (24), for all 𝑡 > 𝑡0,

𝑉 (𝑡) ≤ 𝜒(𝑡) + 𝜒0 (28)

and since 𝜆𝑚𝑖𝑛(𝑃 )‖𝑒(𝑡)‖2 < 𝑉𝑒(𝑡), it follows

‖𝑒(𝑡)‖ ≤
√

𝑉𝑒(𝑡)∕𝜆𝑚𝑖𝑛(𝑃 ) ≤ (𝜒(𝑡) + 𝜒0)∕
√

𝜆𝑚𝑖𝑛(𝑃 )

exploiting inequality (28). Since ‖𝑒1(𝑡)‖ ≤ ‖𝑒(𝑡)‖ it follows

𝜒(𝑡) ∶= (𝜒(𝑡) + 𝜒0)∕
√

𝜆𝑚𝑖𝑛(𝑃 ) ≥ ‖𝑒1(𝑡)‖ (29)

for all 𝑡 ≥ 𝑡0 ≥ 0 for some (finite) time 𝑡0 > 0. Let 𝑎21(𝑡) = ‖�̃�21(𝜌)‖ and 𝑚2(𝑡) = ‖�̃�2(𝜌)‖. Since 𝜒(𝑡) is known, the modulation function
in Eq. (10) is selected as

𝑘(𝑡) = 𝑎21(𝑡)𝜒(𝑡) + ‖𝐷2‖𝑓𝑚𝑎𝑥 + 𝑚2(𝑡)𝜂1(𝑦𝑝, 𝑑) + 𝜂 (30)

where 𝜂 is a positive scalar. Note that since 𝜒(𝑡) is obtained from solving (24), the signal 𝜒(𝑡) is known in real time and therefore
the RHS of (30) is known. Then, considering (19),

𝑒𝑇𝑦 �̇�𝑦 = 𝑒𝑇𝑦 �̃�21(𝜌)𝑒1 − 𝑘2‖𝑒𝑦‖
2 − 𝑘(𝑡)‖𝑒𝑦‖ + 𝑒𝑇𝑦 �̃�2(𝜌)𝜉 + 𝑒𝑇𝑦 𝐷2𝑓

≤ ‖𝑒𝑦‖‖�̃�21(𝜌)‖‖𝑒1‖ − 𝑘(𝑡)‖𝑒𝑦‖ + ‖𝑒𝑦‖‖�̃�2(𝜌)‖‖𝜉‖ + ‖𝑒𝑦‖‖𝐷2‖‖𝑓‖

and thus choosing the modulation gain as in (30), guarantees 𝑒𝑇𝑦 �̇�𝑦 ≤ −𝜂‖𝑒𝑦‖ and hence sliding occurs on

𝑜 = {𝑒(𝑡) ∈ R𝑛+𝑞 ∶ 𝐶𝑒(𝑡) = 𝑒𝑦(𝑡) = 0} (31)

in finite time.
Define a fault estimation signal according to

𝑓 = 𝑊 𝜈𝑒𝑞 (32)

where 𝜈𝑒𝑞 denotes the equivalent output error injection signal [24] and

𝑊 =
[

0 𝐴−1
𝑓

]

(33)

where 𝐴𝑓 is defined in Eq. (3). Note that by construction 𝑊 �̃�2(𝜌) = 0 and 𝑊𝐷2 = 𝐼𝑞 , then from (19), during sliding

𝑣𝑒𝑞 = �̃�21(𝜌)𝑒1 − �̃�2(𝜌)𝜉 +𝐷2𝑓 (34)

Therefore if the fault estimate error 𝑒𝑓 is defined as 𝑒𝑓 = 𝑓 − 𝑓 , then from (19) and (34), during sliding, its evolution is governed
by

̇̃𝑒1 = �̃�11(𝜌)𝑒1 − �̃�1(𝜌)𝜉

𝑒𝑓 = −𝐴−1
𝑓 𝐴212𝑒1

(35)

From Eq. (35), in the situation when 𝜉 = 0, 𝑒1 → 0 asymptotically and therefore 𝑒𝑓 → 0 as 𝑡 → ∞. However when 𝜉 ≠ 0, 𝑒𝑓 is
non-vanishing and the gain 𝐿 will be chosen, as part of the design process to ensure a given induced 2 norm for the system in
Eq. (35).

3. Controller design and closed-loop analysis

In this paper, integrator states, depending on the controlled outputs

𝑦𝑐 (𝑡) = 𝐶𝑐𝑥𝑝(𝑡) (36)

where 𝐶𝑐 ∈ R𝑙×𝑛, will be employed to provide low frequency tracking behaviour in the controller. As shown in Fig. 1, to induce
fault tolerance, the estimated fault is used to create a ‘corrected’ version of 𝑥𝑝(𝑡) in Eq. (36) given by

�̂�𝑝(𝑡) = 𝑥𝑝(𝑡) +𝐻𝑝𝑓 (𝑡) −𝐻𝑝𝑓 (𝑡) = 𝑥𝑝(𝑡) −𝐻𝑝𝑒𝑓 (𝑡) (37)

Based on the above, the integral action states satisfy

�̇�𝑟(𝑡) = 𝑟(𝑡) − 𝐶𝑐 �̂�𝑝(𝑡) = 𝑟(𝑡) − 𝐶𝑐𝑥𝑝(𝑡) + 𝐶𝑐𝐻𝑝𝑒𝑓 (𝑡) (38)

where 𝑟(𝑡) is the reference signal which emerges from the pre-filter
5

�̇�(𝑡) = 𝛤 (𝑟(𝑡) − 𝑅𝑐 ) (39)
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In which 𝑅𝑐 is fixed and 𝛤 ∈ R𝑙×𝑙 is Hurwitz. Define 𝑥𝑐 (𝑡) = col(𝑥𝑟(𝑡), 𝑥𝑝(𝑡)) then combining Eqs. (1) and (38) gives

�̇�𝑐 (𝑡) = 𝐴𝑐 (𝜌)𝑥𝑐 (𝑡) + 𝐵𝑐 (𝜌)𝑢𝑝(𝑡) + 𝐵𝑟𝑟(𝑡) +𝑀𝑐 (𝜌)𝜉(⋅) +𝐻𝑐𝑒𝑓 (𝑡) (40)

where the system and input distribution matrices 𝐴𝑐 (𝜌), 𝐵𝑐 (𝜌), 𝐵𝑟, 𝑀𝑐 (𝜌) take appropriate forms (see [25]), and in particular

𝐻𝑐 =
[

(𝐶𝑐𝐻𝑝)𝑇 0
]𝑇 (41)

Based on this augmented form

𝑧∞ =
[

0 𝐶𝑐
]

⏟⏞⏟⏞⏟
𝐶∞

𝑥𝑐 (42)

where the performance signal 𝑧∞ [23] is defined in Eq. (1). Here it is assumed the (augmented) input distribution matrix can be
written as

𝐵𝑐 (𝜌) = 𝐵𝑣𝐵2(𝜌) (43)

where 𝐵𝑣 ∈ R(𝑙+𝑛)×𝑙 (and is of rank 𝑙), and the parameter dependent matrix 𝐵2(𝜌) ∈ R𝑙×𝑚 has the property that rank(𝐵2(𝜌)) = 𝑙 for
all 𝜌 ∈ 𝛺.

Remark 3.1. The decomposition in (43) is a common one in the literature concerning over-actuation and control allocation [26,27].
It is an assumption and is often referred to as the requirement for perfect factorization. The decomposition in Eq. (43) clearly implies
that 𝑟𝑎𝑛𝑘(𝐵𝑐 ) ≤ 𝑟𝑎𝑛𝑘(𝐵𝑣) and in practice the factorization is chosen so that 𝑟𝑎𝑛𝑘(𝐵𝑐 ) = 𝑟𝑎𝑛𝑘(𝐵𝑣). Since 𝐵𝑐 has 𝑚 columns (it is
associated with m control inputs) whilst 𝐵𝑣 has only 𝑙 columns (where 𝑙 < 𝑚), it equates with the system having redundancy and
being over-actuated. This redundancy can then be exploited by control allocation to maintain performance in the event of total
failures to certain actuators.

Without loss of generality (and by invoking a change of coordinates if necessary), it is assumed that

𝐵𝑣 =
[

0
𝐼𝑙

]

(44)

For the developments which are to follow define

𝑣(𝑡) = 𝐵2(𝜌)𝑢𝑝(𝑡) (45)

Using the definition of the virtual control in Eq. (45) the augmented system in Eq. (40) can be written as

�̇�𝑐 (𝑡) = 𝐴𝑐 (𝜌)𝑥𝑐 (𝑡) + 𝐵𝑣𝑣(𝑡) + 𝐵𝑟𝑟(𝑡) +𝑀𝑐 (𝜌)𝜉(⋅) +𝐻𝑐𝑒𝑓 (𝑡) (46)

The virtual control will be designed using an ISM [9,28] approach. Let

𝐺 = (𝐵𝑇
𝑣 𝐵𝑣)−1𝐵𝑇

𝑣 (47)

where 𝐵𝑣 is from Eq. (44). Since by assumption, 𝐵𝑣 has full column rank, the expression in Eq. (47) is well defined.
Define the ISM switching function as

𝜎(𝑡) = 𝐺�̂�𝑐 (𝑡) + 𝐺�̂�𝑐 (0) − ∫

𝑡

0
𝐺(𝐴𝑐 (𝜌) − 𝐵𝑣𝐹 (𝜌))�̂�𝑐 (𝜏)𝑑𝜏 (48)

where, as defined in Eq. (37), �̂�𝑐 is associated with the compensated measurements and the integral action states i.e. col(𝑥𝑟, �̂�𝑝), and
therefore satisfies

�̂�𝑐 = 𝑥𝑐 − �̂�𝑐𝑒𝑓 (49)

where 𝑒𝑓 is the error in the fault estimate and

�̂�𝑐 =
[

−𝐶𝑐𝐻𝑝
𝐻𝑝

]

(50)

In Eq. (48) the gain 𝐹 (𝜌) is to be chosen to make 𝐴(𝜌) − 𝐵𝑣𝐹 (𝜌) quadratically stable. By construction, �̂�𝑐 in Eq. (49) is known
(although both 𝑥𝑐 and 𝑒𝑓 are not). Note that 𝐺 defined in Eq. (47) has the property that

𝐺𝐵𝑟 = 0 and 𝐺𝐵𝑣 = 𝐼𝑙 (51)

Differentiating Eq. (48) along the system trajectories, and using Eq. (40) and the properties in Eq. (51) results in

�̇� = 𝐺𝐴𝑐 (𝜌)𝑥𝑐 + 𝑣 + 𝐺𝑀𝑐 (𝜌)𝜉 + 𝐺𝐻𝑐𝑒𝑓 − 𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐹 (𝜌)�̂�𝑐 − 𝐺�̂�𝑐 �̇�𝑓
= 𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐴𝑐 (𝜌)�̂�𝑐𝑒𝑓 + 𝑣 + 𝐺𝑀𝑐 (𝜌)𝜉 + 𝐺𝐻𝑐𝑒𝑓 − 𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐹 (𝜌)�̂�𝑐 − 𝐺�̂�𝑐 �̇�𝑓 (52)
6

= 𝑣 + 𝐹 (𝜌)�̂�𝑐 + (𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝑒𝑓 + 𝐺𝑀𝑐 (𝜌)𝜉 − 𝐺�̂�𝑐 �̇�𝑓
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Let the virtual control take the form

𝑣 = −𝐹 (𝜌)�̂�𝑐 + 𝑣𝑛 (53)

here

𝑣𝑛 = −(𝑡) 𝜎
‖𝜎‖

(54)

and the modulation gain (𝑡) is to be defined. Then it follows from Eq. (52)

�̇� = 𝑣𝑛 + (𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝑒𝑓 + 𝐺𝑀𝑐 (𝜌)𝜉 − 𝐺�̂�𝑐 �̇�𝑓 (55)

The term 𝑣𝑛 will now be chosen to enforce a sliding motion on 𝜎 ≡ 0 by choice of the modulation gain (𝑡). Using Eq. (35), the
term �̇�𝑓 will now be removed: specifically Eq. (55) can be written as

�̇� = 𝑣𝑛 +
(

𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�11(𝜌) − (𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝐴−1

𝑓 𝐴212
)

𝑒1 +
(

𝐺𝑀𝑐 (𝜌) − 𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�1(𝜌)

)

𝜉 (56)

Proposition 3.1. If the modulation gain in Eq. (54) is chosen to satisfy

(𝑡) ≥ 𝜂0 + ‖𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�11(𝜌) − (𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝐴−1

𝑓 𝐴212‖𝜒(𝑡) + ‖𝐺𝑀𝑐 (𝜌) − 𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�1(𝜌)‖𝜂1(𝑦𝑝, 𝑑) (57)

where 𝜒(𝑡) is defined in Eq. (29), 𝜂1(𝑦𝑝, 𝑑) in Eq. (23) and 𝜂0 > 0, then sliding takes place on 𝜎 ≡ 0 in finite time.

Proof. The output of the filter in Eq. (24) has the property that in finite time 𝜒(𝑡) ≥ ‖𝑒1(𝑡)‖. Also, by construction, 𝜂1(𝑦𝑑 , 𝑑) in
q. (23) satisfies 𝜂1(𝑦𝑑 , 𝑑) ≥ ‖𝜉‖. Choose 𝑉 = 1

2𝜎
𝑇 𝜎, then

�̇� = 𝜎𝑇 𝑣𝑛 +
(

𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�11(𝜌) − (𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝐴−1

𝑓 𝐴212
)

𝑒1 +
(

𝐺𝑀𝑐 (𝜌) − 𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�1(𝜌)

)

𝜉

≤ ‖𝜎‖‖𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�11(𝜌) − (𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝐴−1

𝑓 𝐴212‖‖𝑒1‖ + ‖𝜎‖‖𝐺𝑀𝑐 (𝜌) − 𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�1(𝜌)‖‖𝜉‖ −(𝑡)‖𝜎‖

(58)

Since in finite time 𝜒(𝑡) ≥ ‖𝑒1(𝑡)‖ and 𝜂1(𝑦𝑑 , 𝑑) ≥ ‖𝜉‖, choosing (𝑡) to satisfy Eq. (57) implies in finite time

�̇� ≤ −𝜂0‖𝜎‖ = −𝜂0
√

2𝑉
1
2 (59)

and so 𝑉 ≡ 0 in finite time, and therefore 𝜎 ≡ 0 in finite time. □

Remark 3.2. Usually in an ISM setting sliding on 𝜎 = 0 can be ensured for all time because the surface has the property that 𝜎(0) = 0.
This property cannot be guaranteed here since the modulation gain can only be guaranteed to dominate the state estimation error
after a finite amount of time because 𝜒(𝑡) only dominates ‖𝑒1(𝑡)‖ after a finite period of time.

During sliding, from Eq. (55), the equivalent injection signal necessary to maintain sliding is

𝑣𝑛𝑒𝑞 = −(𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝑒𝑓 − 𝐺𝑀𝑐 (𝜌)𝜉 + 𝐺�̂�𝑐 �̇�𝑓 (60)

This expression will be used to analyse the sliding motion. Substituting 𝑣𝑒𝑞 = −𝐹 (𝜌)�̂�𝑐 + 𝑣𝑛𝑒𝑞 into Eq. (46) yields

�̇�𝑐 = 𝐴𝑐 (𝜌)𝑥𝑐 − 𝐵𝑣𝐹 (𝜌)�̂�𝑐 − 𝐵𝑣(𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝑒𝑓 − 𝐵𝑣𝐺𝑀𝑐 (𝜌)𝜉 + 𝐵𝑣𝐺�̂�𝑐 �̇�𝑓 + 𝐵𝑟𝑟 +𝑀𝑐 (𝜌)𝜉 +𝐻𝑐𝑒𝑓
= 𝐴𝑐 (𝜌)𝑥𝑐 − 𝐵𝑣𝐹 (𝜌)𝑥𝑐 + 𝐵𝑣𝐹 (𝜌)�̂�𝑐𝑒𝑓 − 𝐵𝑣(𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝑒𝑓 − 𝐵𝑣𝐺𝑀𝑐 (𝜌)𝜉 + 𝐵𝑣𝐺�̂�𝑐 �̇�𝑓 + 𝐵𝑟𝑟 +𝑀𝑐 (𝜌)𝜉 +𝐻𝑐𝑒𝑓
= (𝐴𝑐 (𝜌) − 𝐵𝑣𝐹 (𝜌))𝑥𝑐 + 𝐵𝑣(𝐹 (𝜌)�̂�𝑐 − 𝐺𝐴𝑐 (𝜌)�̂�𝑐 − 𝐺𝐻𝑐 )𝑒𝑓 +𝐻𝑐𝑒𝑓 + (𝐼 − 𝐵𝑣𝐺)𝑀𝑐 (𝜌)𝜉 + 𝐵𝑟𝑟 + 𝐵𝑣𝐺�̂�𝑐 �̇�𝑓

(61)
7
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Thus during sliding, the overall closed loop dynamics can be written as

�̇�𝑐 = (𝐴𝑐 (𝜌) − 𝐵𝑣𝐹 (𝜌))𝑥𝑐 − 𝐵𝑣𝐹 (𝜌)�̂�𝑐𝐴
−1
𝑓 𝐴212𝑒1 −𝐻𝑐𝐴

−1
𝑓 𝐴212𝑒1 − 𝐵𝑣

(

𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�11(𝜌) − (𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝐴−1

𝑓 𝐴212
)

𝑒1
+
(

(𝐼 − 𝐵𝑣𝐺)𝑀𝑐 (𝜌) + 𝐵𝑣𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�1(𝜌)

)

𝜉 + 𝐵𝑟𝑟

̇̃𝑒1 = �̃�11(𝜌)𝑒1 − �̃�1(𝜌)𝜉 (62)

The two equations in (62) are coupled by the uncertainty 𝜉 which depends on the state and satisfies the conic sector constraint
‖𝜉‖ < 𝑐1‖𝑥𝑐‖ + 𝑐2(𝑡) since 𝑥𝑐 = col(𝑥𝑟, 𝑥𝑝). If 𝑟 = 0 and 𝑐2(𝑡) = 0 then using the Small Gain Theorem the origin of the system in
Eq. (62) is quadratically stable if the 2 gain of the mapping  ∶ 𝜉 → 𝑥𝑐 is less than 1∕𝑐1, where from Eq. (62) the operator

 =

⎡

⎢

⎢

⎢

⎣

[

(

𝐴𝑐 (𝜌) − 𝐵𝑣𝐹 (𝜌)
)

− 𝐵𝑣𝐹 (𝜌)�̂�𝑐𝐴−1
𝑓 𝐴212 −𝐻12(𝜌)

0 �̃�11(𝜌)

]

[

𝑀ℎ(𝜌)
−�̃�1(𝜌)

]

[

𝐼 0
]

0

⎤

⎥

⎥

⎥

⎦

in which the term

𝐻12(𝜌) = 𝐻𝑐𝐴
−1
𝑓 𝐴212 + 𝐵𝑣

(

−(𝐺𝐴𝑐 (𝜌)�̂�𝑐 + 𝐺𝐻𝑐 )𝐴−1
𝑓 𝐴212 + 𝐺�̂�𝑐𝐴

−1
𝑓 𝐴212�̃�11(𝜌)

)

nd

𝑀ℎ(𝜌) = (𝐼 − 𝐵𝑣𝐺)𝑀𝑐 (𝜌) + 𝐵𝑣𝐺�̂�𝑐𝐴
−1
𝑓 𝐴212�̃�1(𝜌)

The operator  depends on the design freedom associated with the gains 𝐹 (𝜌) and 𝐿1. Separately, both 𝐹 (𝜌) and 𝐿 must as a
minimum be chosen so that 𝐴𝑐 (𝜌) − 𝐵𝑣𝐹 (𝜌) and �̃�11(𝜌) are quadratically stable.

Suppose the design freedom 𝐺 can be selected so that 𝐺�̂�𝑐 = 0 (which is possible if the sensor faults belong to the null space
 (𝐵𝑣)). In this case, the operator  simplifies somewhat to become

̂ ∶

⎡

⎢

⎢

⎢

⎣

[

(

𝐴𝑐 (𝜌) − 𝐵𝑣𝐹 (𝜌)
)

−𝐵𝑣𝐹 (𝜌)�̂�𝑐𝐴−1
𝑓 𝐴212 − �̂�12(𝜌)

0 �̃�11(𝜌)

]

[

�̂�ℎ(𝜌)
−�̃�1(𝜌)

]

[

𝐼 0
]

0

⎤

⎥

⎥

⎥

⎦

(63)

where in this case the term �̂�12(𝜌) = 𝐻𝑐𝐴−1
𝑓 𝐴212 − 𝐵𝑣

(

𝐺𝐴𝑐 (𝜌)�̂�𝑐𝐴−1
𝑓 𝐴212

)

and �̂�ℎ(𝜌) = (𝐼 − 𝐵𝑣𝐺)𝑀𝑐 (𝜌).
Again if the induced 2 gain of the operator ̂ is less than 1∕𝑐1, the closed-loop system is guaranteed to be stable by the Small

Gain Theorem. This slightly more simplified form of ̂ in (63) admits the possibility of introducing a BMI representation of the
design problem.

The simultaneous design of the gains 𝐹 (𝜌) and the observer parameter 𝐿 associated with (63) will be discussed in the sequel.

4. Integrated synthesis of the controller/estimator

For the purposes of developing an iterative design algorithm, suppose the controller feedback gain in (48) is written as

𝐹 (𝜌) = 𝐹0(𝜌) + 𝛥(𝜌) (64)

where 𝐹0(𝜌) is an initial choice of gain which has been computed independently (of the observer design) under the assumption that
the system is fault free. A minimum design requirement is that 𝐴𝑐 (𝜌) − 𝐵𝑣𝐹0(𝜌) is stable. Any one of the methods discussed in [29]
or [30] could be employed to guarantee that 𝐴𝑐 (𝜌) −𝐵𝑣𝐹0(𝜌) is quadratically stable and the performance signal 𝑧∞(𝑡) remains small
in the face of the uncertainty 𝜉(⋅). The problem may then be viewed as one of selecting the matrix 𝛥(𝜌) to improve the performance
of the closed-loop when sensor faults are present, taking into account the additional dynamics introduced by the observer used to
estimate the fault.

To understand the effect of 𝛥(𝜌) in Eq. (48), for design purposes, an error system is created according to

�̇�𝑧 = (𝐴𝑐 (𝜌) − 𝐵𝑣𝐹0(𝜌))𝑒𝑧 − 𝐵𝑣𝛥(𝜌)𝑥𝑐 (65)

The motivation for Eq. (65) is that it represents the difference in state evolution between different two systems: one governed by
the original system matrix 𝐴𝑐 (𝜌) −𝐵𝑣𝐹0(𝜌) and the other governed by the system matrix 𝐴𝑐 (𝜌) −𝐵𝑣(𝐹0(𝜌) +𝛥(𝜌)). The idea is that the
performance of the first system governed by 𝐴𝑐 (𝜌) −𝐵𝑣𝐹0(𝜌) represents the ideal closed loop performance, and therefore keeping 𝑒𝑧
small should form part of the integrated design process.
8
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Combining Eqs. (35), (63) and (65), the overall LPV system representing the dynamics between 𝜉 and the overall performance

easure defined as 𝑤 = col(𝑒𝑧, 𝑧∞, 𝑒𝑓 ) can be expressed as

⎡

⎢

⎢

⎣

�̇�𝑧
�̇�𝑐
̇̃𝑒1

⎤

⎥

⎥

⎦

⏟⏟⏟
�̇�

=
⎡

⎢

⎢

⎣

𝐴0(𝜌) −𝐵𝑣𝛥(𝜌) 0
0 𝐴0(𝜌) − 𝐵𝑣𝛥(𝜌) −𝐵𝑣(𝐹0(𝜌) + 𝛥(𝜌))�̂�0 − 𝐶0 + 𝐵𝑣𝐺𝐴𝑐 (𝜌)�̂�0
0 0 𝐴11(𝜌) + 𝐿𝐴21(𝜌)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴𝑎(𝜌)

⎡

⎢

⎢

⎣

𝑒𝑧
𝑥𝑐
𝑒1

⎤

⎥

⎥

⎦

⏟⏟⏟
𝑥

+
⎡

⎢

⎢

⎣

0
(𝐼 − 𝐵𝑣𝐺)𝑀𝑐 (𝜌)

−(𝑀1(𝜌) + 𝐿𝑀2(𝜌))

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀𝑎(𝜌)

𝜉

⎡

⎢

⎢

⎣

𝑒𝑧
𝑧∞
𝑒𝑓

⎤

⎥

⎥

⎦

⏟⏟⏟
𝑤

=
⎡

⎢

⎢

⎣

𝐼 0 0
0 𝐶∞ 0
0 0 −𝐴−1

𝑓 𝐴212

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑎

⎡

⎢

⎢

⎣

𝑒𝑧
𝑥𝑐
𝑒1

⎤

⎥

⎥

⎦

(66)

where 𝐴0(𝜌) = 𝐴𝑐 (𝜌) − 𝐵𝑣𝐹0(𝜌), 𝐶0 = 𝐻𝑐𝐴−1
𝑓 𝐴212 and �̂�0 = �̂�𝑐𝐴−1

𝑓 𝐴212.

Define the matrix set

 =
{

𝑋 ∈ S+2𝑙+2𝑛+𝑞 ∶ 𝑋 = diag(𝑋1, 𝑋1, 𝑋2), 𝑋1 ∈ S+𝑙+𝑛, 𝑋2 ∈ S+𝑞
}

(67)

then the design problem can be posed as: find the gain 𝛥(𝜌) (and then from Eq. (64) the controller feedback gain 𝐹 (𝜌)), 𝑃𝑎 ∈  and
an observer gain parameter 𝐿 (simultaneously) to minimize 𝛾, subject to

𝛯(𝑃𝑎, 𝐴𝑎(𝜌),𝑀𝑎(𝜌), 𝐶𝑎, 𝛾) < 0 and 𝑃𝑎 > 0 (68)

where

𝛯(𝑃𝑎, 𝐴𝑎(𝜌),𝑀𝑎(𝜌), 𝐶𝑎, 𝛾) ∶=
⎡

⎢

⎢

⎣

𝑃𝑎𝐴𝑎(𝜌) + 𝐴𝑎(𝜌)𝑇 𝑃𝑎 𝑃𝑎𝑀𝑎(𝜌) 𝐶𝑇
𝑎

∗ −𝛾𝐼 0
∗ ∗ −𝛾𝐼

⎤

⎥

⎥

⎦

(69)

and 𝐴𝑎(𝜌), 𝑀𝑎(𝜌) and 𝐶𝑎 are defined in Eq. (66).

Remark 4.1. Satisfaction of the inequality in Eq. (68) constitutes a matrix inequality version of the Bounded Real Lemma and
implies ‖𝑤‖2 ≤ 𝛾‖𝜉‖2. In the situation when ‖𝜉‖ < 𝑐1‖𝑥𝑝‖, it follows ‖𝜉‖ < 𝑐1‖𝑥‖ which 𝑥 is defined in Eq. (66), and therefore if
𝛾 ≤ 1∕𝑐1, the system in Eq. (62) is quadratically stable.

Remark 4.2. To reduce the design complexity, the set  in (67) has a specific structure. However, this imposes a certain level of
conservatism in terms of estimating the 2 gain between 𝑤 and 𝜉. Thus there exists a trade-off between simplicity of formulation
and unacceptable conservatism (see for example [31]).

Since 𝐴𝑎(𝜌) in Eq. (66) depends on 𝛥(𝜌), the inequality in Eq. (68) is bilinear and therefore the problem in Eq. (68) is non-convex.
In this paper, a variation on the iterative approach proposed in [14] will be employed.

Assumption 4.1. It is assumed, all the system matrices 𝐴𝑝(𝜌), 𝐹0(𝜌), 𝐵𝑝(𝜌) and 𝑀𝑝(𝜌) in Eq. (1) are affinely dependent on 𝜌. In
particular

𝐹0(𝜌) =
𝑛𝜌
∑

𝑖=1
𝜁𝑖(𝜌)𝐹0𝑖 𝛥(𝜌) =

𝑛𝜌
∑

𝑖=1
𝜁𝑖(𝜌)𝛥𝑖 (70)

where 𝜁𝑖(𝜌) ≥ 0 and ∑𝑛𝜌
𝑖=1 𝜁𝑖(𝜌) = 1.

Define another matrix set ̄ ⊂  as

̄ =
{

�̄� ∈ S+2𝑙+2𝑛+𝑞 ∶ �̄� = diag(𝑋3, 𝑋4, 𝑋3, 𝑋4, 𝑋5), 𝑋3 ∈ S+𝑛 , 𝑋4 ∈ S+𝑙 , 𝑋5 ∈ S+𝑞
}

(71)
9
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The following lemma is crucial to what follows:

Lemma 4.1. Suppose the decision variables 𝛥(𝜌), 𝐿, 𝛾 and 𝑃𝑎 ∈  satisfy Eq. (68). Then there exists a change of coordinates 𝑥 ↦ �̄� 𝑥 = �̄�
for the augmented system given in Eq. (66), where �̄� = diag(𝑇 , 𝑇 , 𝐼𝑞) and the block diagonal matrix 𝑇 ∈ R(𝑛+𝑙)×(𝑛+𝑙) is nonsingular, so that
in the new coordinates (𝐴𝑎(𝜌),𝑀𝑎(𝜌), 𝐶𝑎) ↦ (�̄�𝑎(𝜌), �̄�𝑎(𝜌), �̄�𝑎) the corresponding Bounded Real Lemma inequality is given by

𝛯(𝑃𝑎, �̄�𝑎(𝜌), �̄�𝑎(𝜌), �̄�𝑎, 𝛾) < 0 and 𝑃𝑎 ∈ ̄ (72)

where �̄�𝑎(𝜌) = �̄� 𝐴𝑎(𝜌)�̄� −1, �̄�𝑎(𝜌) = �̄�𝑀𝑎(𝜌), �̄�𝑎 = 𝐶𝑎�̄� −1. Furthermore, it is possible to choose 𝑇 and hence �̄� so that 𝑃𝑎 =
diag(𝑃1, 𝑃2, 𝑃1, 𝑃2, 𝑃𝑒) and �̄�𝑣 = 𝑇𝐵𝑣 = 𝐵𝑣.

Proof. See [14]. □

emark 4.3. Note that in Eq. (72)

𝑃𝑎�̄�𝑎(𝜌) =
⎡

⎢

⎢

⎣

𝑃 �̄�0(𝜌) −𝑃 �̄�𝑣𝛥(𝜌)𝐶𝑐𝑇 −1 0
0 𝑃 �̄�0(𝜌) − 𝑃 �̄�𝑣𝛥(𝜌)𝐶𝑐𝑇 −1 −𝑃 �̄�𝑣(𝐹0(𝜌) + 𝛥(𝜌) − 𝐺𝐴𝑐 (𝜌))�̂�0 − 𝑃𝐶0
0 0 𝑃𝑒(𝐴11 + 𝐿𝐴21)

⎤

⎥

⎥

⎦

(73)

where �̄�0(𝜌) = 𝑇𝐴0(𝜌)𝑇 −1 and 𝑃 takes the form

𝑃 =
[

𝑃1 0
0 𝑃2

]

(74)

This block diagonal structure means

𝑃 �̄�𝑣𝛥(𝜌) =
[

0
𝑃2𝛥(𝜌)

]

(75)

Choosing 𝑋(𝜌) = 𝑃2𝛥(𝜌) and 𝑌 = 𝑃𝑒𝐿 makes the expression in Eq. 4.3 affine w.r.t 𝑃 , 𝑃𝑒, 𝑋(𝜌) and 𝑌 . This is crucial to what follows.

In order to set up the notation necessary to describe the algorithm, define

𝐴𝑎(𝜌)(𝑗) =

⎡

⎢

⎢

⎢

⎣

𝐴0(𝜌) −𝐵𝑣(
∑𝑗−1

𝑖=1 𝛥(𝜌)
(𝑖) + 𝛥(𝜌)(𝑗))𝐶𝑐 0

0 𝐴0(𝜌) − 𝐵𝑣(
∑𝑗−1

𝑖=1 𝛥(𝜌)
(𝑖) + 𝛥(𝜌)(𝑗))𝐶𝑐 −𝐵𝑣(𝐹0(𝜌) +

∑𝑗−1
𝑖=1 𝛥(𝜌)

(𝑖) + 𝛥(𝜌)(𝑗) − 𝐺𝐴𝑐 (𝜌))�̂�0 − 𝐶0
0 0 𝐴11(𝜌) + 𝐿(𝑗)𝐴21(𝜌)

⎤

⎥

⎥

⎥

⎦

𝑀𝑎(𝜌)(𝑗) =
⎡

⎢

⎢

⎣

0
(𝐼 − 𝐵𝑣𝐺)𝑀𝑐 (𝜌)

−(𝑀1(𝜌) + 𝐿(𝑗)𝑀2(𝜌))

⎤

⎥

⎥

⎦

(76)

Note that in (76), 𝛥(𝜌) has been written as 𝛥(𝜌) ∶=
∑𝑗−1

𝑖=1 𝛥(𝜌)
(𝑖) + 𝛥(𝜌)(𝑗). Then the following iterative algorithm can be used to

synthesize 𝛥(𝜌) to create 𝐹 (𝜌) = 𝐹0(𝜌) + 𝛥(𝜌).

Algorithm 3.1.

Step 0. Initialize 𝑗 = 1 and select a suitable stopping criteria 𝜖 > 0.

Step 1. Minimize 𝛾 w.r.t the variables 𝐿(𝑗) and 𝑃 (𝑗)
𝑎 ∈  , subject to the LMIs

𝛯(𝑃 (𝑗)
𝑎 , 𝐴𝑎(𝜌)(𝑗),𝑀𝑎(𝜌)(𝑗), 𝐶𝑎, 𝛾

(𝑗)) < 0 and 𝑃 (𝑗)
𝑎 > 0 (77)

where 𝐴𝑎(𝜌)(𝑗) and 𝑀𝑎(𝜌)(𝑗) are defined in (76) and (76), and in the expression for 𝐴𝑎(𝜌)(𝑗), 𝛥(𝜌)(𝑗) = 0. Since 𝑃 (𝑗)
𝑎 ∈  write

𝑃 (𝑗)
𝑎 = diag(𝑃 (𝑗), 𝑃 (𝑗), 𝑃 (𝑗)

𝑒 ) where 𝑃 (𝑗)
𝑒 ∈ S+𝑛−𝑝+𝑞 . Then defining 𝑌 = 𝑃 (𝑗)

𝑒 𝐿(𝑗), inequality Eq. (77) is affine w.r.t the variables 𝑃 (𝑗), 𝑃 (𝑗)
𝑒 , 𝑌

and 𝛾, and constitutes an LMI optimization problem. Let 𝛾 (𝑗) represents the optimal value of 𝛾 obtained from the optimization
process.

Step 2. Using the Lyapunov matrix 𝑃 (𝑗) from Step 1 and using the result of Lemma 4.1, create the change of coordinates matrix �̄� (𝑗)

exploiting the Lyapunov matrix 𝑃 (𝑗)
𝑎 from Step 1 and the fact that it belongs to  .

Change coordinates, (𝐴𝑎(𝜌)(𝑗), 𝐶𝑎,𝑀𝑎(𝜌)(𝑗)) ↦ (�̄�𝑎(𝜌)(𝑗), �̄�𝑎, �̄�𝑎(𝜌)(𝑗)) using �̄�(𝑗). Then using the arguments used to prove Lemma 4.1
and the ideas discussed in Remark 4.3, the BRL inequality in the new coordinates becomes

𝛯(𝑃 (𝑗)
𝑎 , �̄�𝑎(𝜌)(𝑗), �̄�𝑎(𝜌)(𝑗), �̄�𝑎, �̄�) < 0 and 𝑃 (𝑗)

𝑎 > 0 (78)

Note Eq. (78) has a feasible solution 𝑃 (𝑗) = ((�̄� (𝑗))−1)𝑇 𝑃 (𝑗)(�̄� (𝑗))−1 ∈ ̄ , 𝛥(𝜌)(𝑗) = 0 and �̄� = 𝛾 (𝑗). Now minimize �̄� w.r.t the variable
𝐿(𝑗), 𝛥(𝜌)(𝑗) where 𝑃 (𝑗)

𝑎 ∈ ̄ subject to Eq. (78).
Using the arguments in the proof of Lemma 4.1 if 𝑃 (𝑗)

𝑎 is written as 𝑃 (𝑗)
𝑎 = diag(𝑃 (𝑗)

1 , 𝑃 (𝑗)
2 , 𝑃 (𝑗)

1 , 𝑃 (𝑗)
2 , 𝑃 (𝑗)

𝑒 ) and defining 𝑋(𝜌)(𝑗) =
(𝑗) ̄ (𝑗) (𝑗) (𝑗) (𝑗) (𝑗) (𝑗) (𝑗)
10
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Fig. 2. Fault free: states.

�̄� in Eq. (78) be written �̄� (𝑗). Since Eq. (78) has a feasible solution in which 𝛥(𝜌)(𝑗) = 0, the solution to the optimization guarantees
�̄� (𝑗) ≤ 𝛾 (𝑗).

tep 3. Define 𝛥(𝜌)(𝑗) = (𝑃 (𝑗)
2 )−1𝐵−1

𝑢 𝑋(𝜌)(𝑗).

tep 4. If |�̄� (𝑗) − 𝛾 (𝑗)| < 𝜖 then stop the iteration and a local optimal feasible solution for 𝐹 (𝜌) and 𝐿 is given by

𝐹 (𝜌) = 𝐹0(𝜌) +
𝑗
∑

𝑖=1
𝛥(𝜌)(𝑖) 𝐿 = 𝐿(𝑗) (79)

Otherwise update the counter 𝑗 → 𝑗 + 1 and return to Step 1. □

During the current iteration, the component ∑𝑗−1
𝑖=1 𝛥(𝜌)

(𝑖), from earlier iterations, is treated as known. This component is
aggregated with the initial value of the controller (i.e. 𝐹0(𝜌) +

∑𝑗−1
𝑖=1 𝛥(𝜌)

(𝑖)) whilst 𝛥(𝜌)(𝑗) is treated as the decision variable in the
current iteration. The algorithm guarantees the sequence of scalars 𝛾 (𝑗) is always decreasing and is bounded from below by zero.
Convergence of the algorithm in the sense that 𝛾 (𝑗) → 𝛾∗ as 𝑗 → ∞ is guaranteed and therefore the algorithm stopping criteria (Step
11

4) will always be satisfied.
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Fig. 3. Fault free: switching function 𝜎 and control inputs.

Remark 4.4. Since the optimization problem is non-convex, different initial choices of 𝐹0(𝜌) potentially lead to different (locally
optimal) solutions.

5. Design example

In this paper, the proposed scheme is tested using a longitudinal LPV commercial aircraft model [32,33]. The states of the LPV
system are

𝑥𝑝 =
[

𝜃 𝛼 𝑉𝑡 𝑞
]

(80)

which represents pitch angle, angle of attack, true airspeed and pitch rate, respectively. The system inputs are the elevator deflection,
the stabilizer deflection and the engine thrust which are given by

𝑢𝑝 =
[

𝛿𝑒 𝛿𝑠 𝑇𝑛
]

(81)

It is assumed that the controlled outputs are

𝑦 =
[ ]

(82)
12
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Fig. 4. Fault free: sliding surface ‖𝑒𝑦‖ and fault estimate.

where 𝛾𝑒 represents the flight path angle (FPA) and therefore the controlled-outputs distribution matrix 𝐶𝑐 in Eq. (36) is

𝐶𝑐 =
[

1 −1 0 0
0 0 1 0

]

(83)

At an altitude of 7000 m, the LPV model is obtained from the trim conditions
[

𝜃𝑡𝑟𝑖𝑚 𝛼𝑡𝑟𝑖𝑚 𝑉𝑡,𝑡𝑟𝑖𝑚 𝑞𝑡𝑟𝑖𝑚
]

=
[

1.05 deg 1.05 deg 227.02 m∕s 0 deg∕s
]

[

𝛿𝑒,𝑡𝑟𝑖𝑚 𝛿𝑠,𝑡𝑟𝑖𝑚 𝑇𝑛,𝑡𝑟𝑖𝑚
]

=
[

0.163 deg 0.590 deg 42291 N
] (84)

The matrices 𝐴𝑝(𝜌) and 𝐵𝑝(𝜌) are assumed to depend affinely on the scheduling parameter 𝜌

𝐴𝑝(𝜌) = 𝐴𝑝,0 +
4
∑

𝑖=1
𝐴𝑝,𝑖 and 𝐵𝑝(𝜌) = 𝐵𝑝,0 +

4
∑

𝑖=1
𝐵𝑝,𝑖 (85)

where

𝜌 =
[

𝛿𝑉𝑡 𝛿𝑉 2
𝑡 𝛿𝑉 3

𝑡 𝛿𝑉 4
𝑡
]

(86)

and 𝛿𝑉𝑡 represents a perturbation in true airspeed from the trim value in (84). This representation is valid in the range 𝛿𝑉𝑡 ∈
[−77.02 22.98] m∕s [33]. The numerical values of 𝐴𝑝(𝜌) and 𝐵𝑝(𝜌) are taken from [32,33]. In this example, the matrix

𝐵𝑣 =
[

04×2
𝐼2

]

(87)

and the gain associated with the integral surface 𝐺, defined in Eq. (47), is chosen as

𝐺 =
[

0 0 0 0 1 0
0 0 0 0 0 1

]

(88)

The external disturbances considered in this paper arise from light forward turbulence and pitch rate turbulence at 7000 m generated
13

using the Dryden Wind Turbulence model from the MATLAB Aerospace Toolbox. To demonstrate the robustness of the proposed
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Fig. 5. Faulty case (with disturbance): states.

cheme in the face of measurement noise, it is assumed that Lebesgue measurable noise modelled as 0.003 sin(50𝑡) occurs in the angle
f attack, pitch angle and pitch rate measurements, and noise represented by 0.009 sin(50𝑡) is injected into the velocity measurement.
he noise is set to occur from 1000 s onwards in the simulations so that there is a noise-free portion to compare with. It is also
ssumed that the disturbances affect the 𝑉𝑡 and 𝑞 channels and therefore the disturbance distribution matrix

𝑀𝑝(𝜌) =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
0 1
1 0

⎤

⎥

⎥

⎥

⎥

⎦

(89)

n terms of the observer design, the filter parameter in Eq. (9) is chosen as 𝐴𝑓 = 0.01𝐼2 and the scalar 𝑘2 in Eq. (13) used to construct
𝑙(𝜌) was selected as 𝑘2 = 0.1. In Eq. (10), the modulation gain 𝑘(𝑡) has been very conservatively chosen to be 1. To avoid chattering,

he discontinuous unit vector term has been replaced by a sigmoidal approximation and the smoothing factor was chosen to be 0.01.
The nominal controller 𝐹0(𝜌) was calculated to optimize the standard infinite horizon quadratic cost

𝐽 = ∫

∞

0
𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 (90)

ased on the nominal system represented by the pair (𝐴(𝜌), 𝐵𝑣).
14
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H

Fig. 6. Faulty case (with disturbance): control inputs.

ere 𝑄 and 𝑅 are chosen as

𝑄 = diag(1.1 0.05 1 1 0.03 5) and 𝑅 = diag(0.007 1.1) (91)

By solving the semidefinite programming problem:

min
𝑌 ,𝑍,𝐾(𝜌)

trace(𝑍) subject to

⎡

⎢

⎢

⎣

− (𝐴(𝜌)𝑌 − 𝐵𝑣𝐾(𝜌))𝑇 − (𝐴(𝜌)𝑌 − 𝐵𝑣𝐾(𝜌)) 𝑌 𝐾𝑇 (𝜌)
𝑌 𝑄−1 0

𝐾𝑇 (𝜌) 0 𝑅−1

⎤

⎥

⎥

⎦

> 0

[

𝑍 𝐼
𝐼 𝑌

]

> 0

(92)

where 𝑌 is a s.p.d matrix and 𝐾(𝜌) = 𝐾0 +
∑4

𝑖=1 𝐾𝑖𝜌𝑖. Then the nominal controller 𝐹0(𝜌) can be obtained from

𝐹0(𝜌) = 𝐾(𝜌)𝑌 −1 (93)

The inequalities in arise from the use of the Schur complement, and constitute a well known LMI representation of the LQR-like
15

problem associated with mimimizing (90).
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T

Fig. 7. Faulty case (with disturbance): sliding surface ‖𝑒𝑦‖ and fault estimate.

Using YALMIP with the SEDUMI LMI solver,1 the values of 𝑌 and the nominal controller 𝐹0(𝜌) = 𝐹0 +
∑4

𝑖=1 𝐹𝑖𝜌𝑖 components are
given by

𝑌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

98.1330 −0.1129 13.2241 0.4038 −0.0485 0.4431
−0.1129 99.4635 0.6802 0.0465 0.5263 −0.0323
13.2241 0.6802 6.2060 0.2865 0.4449 −3.1034
0.4038 0.0465 0.2865 2.3122 0.5426 −1.6072
−0.0485 0.5263 0.4449 0.5426 99.4669 0.0792
0.4431 −0.0323 −3.1034 −1.6072 0.0792 99.8647

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(94)

𝐹0 =
[

−0.0186 −1.0302 −7.1129 7.8872 0.9839 −0.0740
−2.9282 −0.1363 20.2474 37.1070 −0.5462 2.0307

]

𝐹1 =
[

−0.0005 −0.0001 0.0076 −0.0222 0.0004 0.0041
0.0039 −0.0006 0.0597 −0.2627 0.0007 0.0330

]

𝐹2 =
[

−0.0000 −0.0000 0.0001 −0.0000 −0.0003 0.0004
−0.0023 −0.0000 0.0004 0.0011 −0.0048 −0.0012

]

𝐹3 =
[

−0.0019 0.0000 0.0046 0.0090 −0.0005 0.0139
0.0170 0.0005 −0.0054 −0.2585 0.0172 0.1432

]

× 10−8

𝐹4 =
[

−0.0017 −0.0000 0.0025 0.0178 −0.0018 −0.0015
−0.0251 −0.0003 0.0285 0.2581 −0.0246 −0.0300

]

× 10−9

(95)

he modulation gain in Eq. (54) was selected (conservatively) as (𝑡) = 0.4. Using Algorithm 3.1, gives 𝛾 = 4.0201 and

𝐿 =
[

−0.0875 −2.6922 0 0
0.0520 0.5139 0 0

]

(96)

1 https://yalmip.github.io/solver/sedumi/
16
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𝛥0 =
[

−0.0401 −0.0979 −0.8432 −1.8866 0.2764 0.6612
−0.5315 −0.1692 10.0344 −0.3063 −0.7166 8.1402

]

𝛥1 =
[

0.0097 −0.0045 −0.1455 −0.2711 0.1486 0.0602
0.1530 0.0189 −1.3575 −3.9835 −0.3026 1.2893

]

𝛥2 =
[

−0.0000 −0.0001 0.0006 −0.0006 0.0004 0.0010
−0.0001 −0.0004 −0.0000 −0.0000 0.0012 −0.0013

]

𝛥3 =
[

−0.0023 −0.0011 0.0537 0.0028 −0.0064 0.0414
0.0269 0.0068 −0.6801 −0.0287 0.2697 −0.4985

]

× 10−5

𝛥4 =
[

0.0012 0.0044 0.0265 −0.0016 −0.0672 0.0082
0.0430 0.0117 −0.2917 −0.0362 0.0067 −0.2241

]

× 10−6

(97)

.1. Simulation results

.1.1. Fault free
In this section, fault free simulation results in the presence of external disturbances (wind/gusts) and sensor noise will be shown

or the purpose of comparison. During the simulation, a series of 3deg FPA and 10 m∕s true airspeed manoeuvres are created as the
eference commands. Fig. 2 shows the aircraft states in the fault free situation. It can be seen from Fig. 2 that the ISM controller
17
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Fig. 9. Fault tolerance (with disturbance): switching function 𝜎 and control inputs.

as the capability to force the aircraft states to track the reference commands despite external disturbances and sensor noise. The
rajectories of the aircraft states 𝜃, 𝛼 and 𝑞 are shown in Fig. 2. The switching function associated with the ISM controller and the
hree control inputs generated from the ISM controller are shown in Fig. 3. In terms of observer performance, the sliding surface
nd the fault reconstruction signal are shown in Fig. 4. Clearly, in the absence of sensor faults, the fault estimate signal is close to
ero (as it should be). In the simulation results, the effect of sensor noise can be seen from 1000 s onwards, especially in Fig. 3.
ote that the paper is not concerned about fault detection and isolation per se and is focussed more on sensor fault tolerant control.
owever, from Fig. 4, it is clear a threshold can be selected around the reconstruction signals to provide detection and isolation of

ensor faults. (Although this information is not needed in this paper).

.1.2. Simultaneous pitch and angle of attack sensor faults — without sensor fault tolerant
In the faulty case, both the pitch and angle of attack sensors are assumed to be corrupted by sensor bias (to represent a sensor

ault). The bias associated with the pitch angle measurements is set to be 1 deg and occurs at 300 s. The angle of attack sensor
bias is set to be 0.6 deg and is assumed to occur from 100 s onwards. The external disturbances resulting from wind turbulence,
occur throughout the simulation and as before, the sensor noise occurs from 1000 s onwards. The trajectories of the aircraft states
in the faulty case (without FTC) are shown in Figs. 5–7. In this test, the fault estimates are not used to correct the measurements
of pitch angle and angle of attack. Unsurprisingly, as can be seen from Figs. 5, the FPA tracking performance is degraded in the
face of simultaneous angle of attack and pitch angle biases. This can be seen at 100 and 300 s when the sensor faults occur, and
subsequently, a visible degradation in tracking performance can be seen in the flight path angle tracking. Fig. 7 shows good fault
reconstruction for both the pitch and angle of attack sensors. Note that although not implemented (and not the focus of the paper),
18

the fault reconstruction figure shows that the faults could be detected and isolated relatively quickly if carefully selected thresholds
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Fig. 10. Fault tolerance (with disturbance): sliding surface ‖𝑒𝑦‖ and fault estimate.

re chosen around zero in the reconstruction signals. Fig. 7 also shows the switching function of the observer is close to zero
ndicating good sliding performance. Fig. 6 shows the control surface deflections and the controller switching function. Again the
ffect of sensor noise can be seen in this figure, especially on the stabilizer signals after 1000 s

.1.3. Simultaneous pitch and angle of attack sensor faults — without sensor fault tolerant
Figs. 8–10 show the fault tolerant performance of the proposed scheme in the presence of the angle of attack and pitch angle

ensor faults (with wind/turbulence and sensor noise). The trajectories of the aircraft states in the face of the sensor bias and wind
urbulence are shown in Fig. 8 where it can be seen that the aircraft states are still capable of following the reference commands. At
00 and 300 s, a small deviation can be seen from the flight path angle tracking, until the fault reconstruction estimates the correct
ault level. The small deviation shows the effect of the filter (required to minimize the effect of noise and wind/gust) when extracting
he equivalent output error injection. However, this discrepancy quickly disappears and tracking performance is regained. Fig. 9
isplays the switching function of the ISM controller (and shows pseudo-sliding is maintained) and the control inputs generated
rom the ISM controller. From Fig. 10, both the pitch angle and angle of attack sensor faults can be seen to be well estimated and
he sliding surface is close to zero. As before, the effect of sensor noise can be seen after 1000 s, especially on the control signals
n Fig. 9. The simulation results show that the FTC performance is still retained despite sensor noise.

. Conclusion

In this paper, a linear parameter varying integral sliding mode sensor FTC scheme has been proposed in which a sliding mode
bserver is employed to create sensor fault estimates to compensate the effect of corrupted sensor readings. This approach addresses
he problem of the robustness of the sensor faults/failures reconstruction process, and the closed-loop reference tracking performance
n the presence of external disturbances. It is shown that the scheme retains near to nominal closed-loop performance in the face of
ensor faults/failures. Furthermore, a rigorous analysis of the closed-loop stability of the sensor fault tolerant scheme involving the
liding mode observer and the sliding mode controller is given. Importantly an algorithm is proposed to simultaneously synthesize
he gains associated with the controller and the observer. This adds to the practicality of the scheme. The FTC scheme has been
ested using an LPV commercial aircraft model. Good simulation results show the efficacy of the proposed scheme.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.
19



Journal of the Franklin Institute 361 (2024) 106839L. Chen et al.

a

R

Acknowledgement

This origin of this work was supported by the EU H2020 under grant agreement No. 690811 and the Japan NEDO under grant
greement No. 062800, as a part of the VISION project.

eferences

[1] C. Edwards, S.K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor & Francis, 1998.
[2] H. Alwi, C. Edwards, C.P. Tan, Fault Detection and Fault-Tolerant Control Using Sliding Modes, Springer, London, 2011.
[3] H. Alwi, C. Edwards, Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme, IEEE Trans. Control Syst. Technol.

16 (3) (2008) 499–510.
[4] H. Alwi, C. Edwards, Development and application of sliding mode LPV fault reconstruction schemes for the ADDSAFE benchmark, Control Eng. Pract. 31

(2014) 148–170.
[5] M. Basin, J. Rodriguez-Gonzalez, L. Fridman, Optimal and robust control for linear state-delay systems, J. Franklin Inst. 344 (6) (2007) 830–845.
[6] W.J. Cao, J.X. Xu, Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems, IEEE Trans. Automat. Control 49 (8) (2004)

1355–1360.
[7] M. Rubagotti, A. Estrada, F. Castanos, A. Ferrara, L. Fridman, Integral sliding mode control for nonlinear systems with matched and unmatched

perturbations, IEEE Trans. Automat. Control 56 (11) (2011) 2699–2704.
[8] H. Alwi, C. Edwards, Fault Tolerant Longitudinal Aircraft Control Using Non-Linear Integral Sliding Mode, IET Control Theory Appl, 2014.
[9] M.T. Hamayun, C. Edwards, H. Alwi, Fault Tolerant Control Schemes Using Integral Sliding Modes, Cham, Springer, 2016.

[10] L. Chen, H. Alwi, C. Edwards, Development and evaluation of an integral sliding mode fault-tolerant control scheme on the RECONFIGURE benchmark,
Internat. J. Robust Nonlinear Control 29 (16) (2017) 5314–5340.

[11] G.P. Matthews, R.A. DeCarlo, Decentralized tracking for a class of interconnected nonlinear systems using variable structure control, Automatica 24 (2)
(1988) 187–193.

[12] V. Utkin, J. Shi, Integral sliding mode in systems operating under uncertainty conditions, in: Proceedings of 35th IEEE Conference on Decision and Control,
IEEE, 1996.

[13] S.X. Ding, Integrated design of feedback controllers and fault detectors, Annu. Rev. Control 33 (2009) 124–135.
[14] L. Chen, H. Alwi, C. Edwards, On the synthesis of an integrated active LPV FTC scheme using sliding modes, Automatica 110 (2019).
[15] J. Lan, R.J. Patton, Robust Integration of Model-Based Fault Estimation and Fault-Tolerant Control, Springer International Publishing, 2020-12-11.
[16] C.T. Nett, C.A. Jacobson, A.T. Miller, An integrated approach to controls and diagnostics: The 4-parameter controller, in: Proc. Amer. Contr, Conf, 1988,

pp. 824–835.
[17] A. Marcos, G.J. Balas, A robust integrated controller/diagnosis aircraft application, Internat. J. Robust Nonlinear Control 15 (12) (2005) 531–551.
[18] H. Wang, G.H. Yang, Integrated fault detection and control for LPV systems, Internat. J. Robust Nonlinear Control 19 (2009) 341–363.
[19] T. Suzuki, M. Tomizuka, Joint synthesis of fault detector and controller based on structure of two-degree-of-freedom control system, in: Proceedings of

the IEEE CDC, 1999.
[20] K. Zhou, Z. Ren, A new controller architecture for high performance, robust, and fault-tolerant control, IEEE Trans. Autom. Control 46 (2001) 1613–1618.
[21] D. Henry, A. Zolghadri, Design and analysis of robust residual generators for systems under feedback control, Automatica 41 (2005) 251–264.
[22] L. Chen, H. Alwi, C. Edwards, M. Sato, Flight evaluation of an LPV sliding mode observer for sensor FTC, IEEE Trans. Control Syst. Technol. 30 (2022)

1319–1327.
[23] K. Zhou, J. Doyle, Essentials of Robust Control, Prentice Hall, 1998.
[24] V.I. Utkin, Sliding Modes in Control and Optimization, Springer, Berlin Heidelberg, 1992.
[25] L. Chen, H. Alwi, C. Edwards, M. Sato, Flight evaluation of a sliding mode online control allocation scheme for fault tolerant control, Automatica 114

(2020).
[26] H. Alwi, C. Edwards, Fault tolerant control using sliding modes with on-line control allocation, Automatica 44 (7) (2008) 1859–1866.
[27] O. Harkegard, S. Glad, Resolving actuator redundancy - optimal vs. control allocation, Automatica 41 (1) (2005) 137–144.
[28] F. Castanos, L. Fridman, Analysis and design of integral sliding manifolds for systems with unmatched perturbations, IEEE Trans. Automat. Control 51 (5)

(2006) 853–858.
[29] J. Mohammadpour, C. Scherer, Control of Linear Parameter Varying Systems with Applications, Springer, 2012.
[30] D. Rotondo, F. Nejjari, V. Puig, Robust state-feedback control of uncertain LPV systems: An LMI-based approach, J. Franklin Inst. 351 (2014) 2781–2803.
[31] W.M. Haddad, D.S. Bernstein, Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and popov theorems and their

application to robust stability, Internat. J. Robust Nonlinear Control 3 (1993) 313–339.
[32] T. Khong, J.-Y. Shin, Robustness analysis of integrated LPV-FDI filters and LTI-FTC system for a transport aircraft, in: AIAA Guidance, Navigation and

Control Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2007.
[33] H. Alwi, C. Edwards, A. Marcos, Fault reconstruction using a LPV sliding mode observer for a class of LPV systems, J. Franklin Inst. 349 (2) (2012)

510–530.
20

http://refhub.elsevier.com/S0016-0032(24)00260-6/sb1
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb2
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb3
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb3
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb3
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb4
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb4
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb4
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb5
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb6
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb6
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb6
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb7
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb7
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb7
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb8
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb9
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb10
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb10
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb10
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb11
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb11
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb11
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb12
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb12
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb12
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb13
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb14
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb15
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb16
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb16
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb16
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb17
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb18
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb19
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb19
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb19
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb20
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb21
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb22
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb22
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb22
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb23
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb24
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb25
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb25
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb25
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb26
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb27
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb28
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb28
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb28
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb29
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb30
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb31
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb31
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb31
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb32
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb32
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb32
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb33
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb33
http://refhub.elsevier.com/S0016-0032(24)00260-6/sb33

	Integrated sensor FTC using integral sliding mode control
	Introduction
	LPV sliding mode fault reconstruction
	Controller Design and Closed-Loop Analysis
	Integrated Synthesis of the Controller/Estimator
	Design example
	Simulation results
	Fault free
	Simultaneous pitch and angle of attack sensor faults — without sensor fault tolerant
	Simultaneous pitch and angle of attack sensor faults — without sensor fault tolerant


	Conclusion
	Declaration of competing interest
	Acknowledgement
	References


